
ar
X

iv
:1

00
9.

42
42

v6
  [

m
at

h.
L

O
] 

 1
9 

O
ct

 2
01

0

A CONSISTENCY PROOF FOR SOME RESTRICTIONS OF TAIT’S

REFLECTION PRINCIPLES

RUPERT McCALLUM

Abstract. In [4] Tait identifies a set of reflection principles which he calls Γ
(2)
n -reflection

principles which Peter Koellner has shown to be consistent relative to an Erdös cardinal
κ(ω) in [1]. Tait also goes on in the same work to define a set of reflection principles which

he calls Γ
(m)
n -reflection principles; however Koellner has shown that these are inconsistent

when m > 2 in [2], but identifies restricted versions of them which he proves consistent
relative to κ(ω). In this paper we introduce a new large-cardinal property with an ordinal
parameter α, calling those cardinals which satisfy it strongly α-reflecting cardinals. Its
definition is motivated by the remarks Tait makes in [4] about why reflection principles
must be restricted when parameters of third or higher order are introduced. We prove that
if κ is (α+ 1)-strong and α < κ then κ is strongly α-reflecting. Furthermore we show that
strongly α-reflecting cardinals relativize to L, and that if κ(ω) exists and α is a countable
ordinal such that all β ≤ α are absolutely definable then there exists a λ < κ(ω) which is
strongly α-reflecting in L. We also introduce a weaker version of the property, calling those
cardinals which satisfy it weakly α-reflecting cardinals. We prove that if κ is a remarkable
cardinal and α is a countable ordinal such that all β ≤ α are absolutely definable then κ

is weakly α-reflecting. From this it follows that if κ(ω) exists and α is a countable ordinal
as before then there is a cardinal λ such that λ < κ(ω), and λ is weakly α-reflecting. We

show that a weakly ω-reflecting cardinal satisfies some restricted versions of Γ
(m)
n -reflection,

as well as all the reflection properties which Koellner proves consistent in [2].

1. Introduction

We are going to investigate reflection principles, which postulate the existence of a level
of the universe Vκ, whose properties reflect down to some lower level Vβ where β < κ. It is
useful to begin by considering reflection principles involving second-order parameters only.
In later sections we will consider the issues which arise when one introduces higher-order
parameters.

The cardinals yielded by these reflection principles involving second-order parameters only
are called “indescribable cardinals”. These principles assert the existence of a cardinal κ such
that certain statements true when relativized to Vκ hold when relativized to a level Vβ where
β < κ. The strength of the reflection principles increase as one increases the expressive
power of the language in which the statements are formulated, and the complexity of the
formulas which express them. For example, one may consider the case where the language L
in which the statements are expressed is the first-order language of set theory extended by
variables of all finite orders. We denote the order of a variable with a superscript, so that
X(m) is a variable of mth order. If a formula ϕ in the language L is relativized to Vκ, then
the variables of mth order range over Vκ+m−1.
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Definition 1.1. We say that a formula in the language L is a Πm
0 -formula if the only

quantified variables it contains are at most mth order.
We say that a formula in the language L is a Πm

1 -formula if it consists of a block of universal
(m+ 1)th order quantifiers tacked on to the beginning of a Πm

0 -formula.
We say that a formula in the language L is Σm

k+1 if it consists of a block of existential
(m+ 1)th-order quantifiers tacked on to the beginning of a Πm

k -formula.
We say that a formula in the language L is Πm

k+1 if it consists of a block of universal (m+1)th-
order quantifiers tacked on to the beginning of a Σm

k -formula.

Definition 1.2. If ϕ is formula in the language L, we denote by ϕβ the result of relativizing
every mth-order quantifier to V β+m−1. If X(2) is a second-order variable we abbreviate X(2)∩
V β to X(2),β.

Definition 1.3. If Ω is a class of formulas, we say that κ is Ω-indescribable if for all formulas
ϕ ∈ Ω whose only free variable is second-order, for all sets U ⊂ V κ, ϕκ(U) =⇒ ∃β < κ
ϕβ(Uβ). We say that κ is totally indescribable if it is Πm

n -indescribable for all m,n > 0.

Definition 1.4. Suppose that α is an ordinal. We say that κ is α-indescribable if for all Π1
0

formulas ϕ in the language L whose only free variable is second-order, for all sets U ⊂ Vκ,
Vκ+α |= ϕ(U) =⇒ ∃β < κ Vβ+α |= ϕ(Uβ) for some β < κ.

Definition 1.5. We say that κ is absolutely indescribable if κ is α-indescribable for all
α < κ.

Definition 1.6. We say that κ is extremely indescribable if for all formulas Π1
0 formulas

ϕ in the language L whose only free variable is second-order, for all sets U ⊂ Vκ, Vκ+κ |=
ϕ(U) =⇒ ∃β < κ Vβ+β |= ϕ(Uβ).

Here we are giving examples of cardinals κ such that Vκ satisfies reflection of formulas with
second-order parameters. Let us next consider what happens when we move to parameters
of third or higher order.

2. Reflection involving parameters of third or higher order

We have already defined A(2),β when A(2) is a second-order parameter. We define A(m+1),β =
{B(m),β | B(m) ∈ A(m+1)} for all integers m ≥ 2. We say that κ satisfies reflection with mth-
order parameters for all formulas in a class Ω if, whenever ϕκ(U (m)) for some U (m) ⊂ V κ+m−1,
there exists a β < κ such that ϕβ(U (m),β). It is inconsistent to postulate the existence of
cardinal κ which satisfies reflection for all first-order formulas with third-order parameters.
To see this, let A(3) be a third-order parameter and let ϕ be the assertion that every element
of A(3) is a bounded subset of On. This assertion can be written as a sentence in L with a
third-order parameter, and all quantifiers first-order. Now, suppose that κ satisfies reflection
for such sentences with third-order parameters. Let U (3) = {{ξ | ξ < α} | α ∈ On ∩ κ}.
We have ϕκ(U (3)). So by the hypothesis about κ we must have ϕβ(U (3),β) for some β < κ.
But this is impossible because U (3),β contains the set {ξ | ξ < β}, which is not bounded
in On ∩ Vβ. Thus no ordinal κ satisfies reflection for first-order formulas with third-order
parameters.

This means that in order to formulate consistent reflection principles for formulas with
third-order parameters or higher one must constrain the formulas relativized in some way.
Let us consider what Tait writes in [4] about this issue.
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“One plausible way to think about the difference between reflecting ϕ(A) when A is second-
order and when it is of higher-order is that, in the former case, reflection is asserting that, if
ϕ(A) holds in the structure 〈R(κ),∈, A〉, then it holds in the substructure 〈R(β),∈, Aβ〉 for
some β < κ . . . But, when A is higher-order, say of third-order this is no longer so. Now we
are considering the structure 〈R(κ), R(κ + 1),∈, A〉 and 〈R(β), R(β + 1),∈, Aβ〉. But, the
latter is not a substructure of the former, that is the ‘inclusion map’ of the latter structure
into the former is no longer single-valued: for subclasses X and Y of R(κ), X 6= Y does not
imply Xβ 6= Y β. Likewise for X ∈ R(β + 1), X /∈ A does not imply Xβ /∈ Aβ. For this
reason, the formulas that we can expect to be preserved in passing from the former structure
to the latter must be suitably restricted and, in particular, should not contain the relation
/∈ between second- and third-order objects or the relation 6= between second-order objects.”

Now, suppose that we are reflecting a formula ϕ of the form

∀X
(m1)
1 ∃Y

(n1)
1 ∀X

(m2)
2 ∃Y

(n2)
2 · · · ∀X

(mk)
k ∃Y

(nk)
k

ψ(X
(m1)
1 , Y

(n1)
1 , X

(m2)
2 , Y

(n2)
2 , . . .X

(mk)
k , Y

(nk)
k , A

(l1)
1 , A

(l2)
2 , . . . A

(lj)
j )

This can be re-written as

∃f1∃f2 · · · ∃fk∀X
(m1)
1 ∀X

(m2)
2 · · · ∀X

(mk)
k

ψ(X
(m1)
1 , f1(X

(m1)
1 ), X

(m2)
2 , f2(X

(m1)
1 , X

(m2)
2 ), . . .X

(mk)
k , fk(X

(m1)
1 , X

(m2)
2 , . . .X

(mk)
k ),

A
(l1)
1 , A

(l2)
2 , . . . A

(lj)
j )

The point is that if this formula, without the existential function quantifiers, is conceived

of as holding in the structure 〈Vκ, Vκ+, . . . Vκ+l,∈, f1, . . . fk, A
(l1)
1 , A

(l2)
2 , . . . A

(lj)
j 〉, where l =

max(m1, n1, . . .mk, nk, l1 − 1, . . . lj − 1) − 1, and we try to reflect down to the structure

〈Vβ, Vβ+1, . . . Vβ+l,∈, f
β
1 , . . . f

β
k , A

(l1),β
1 , A

(l2),β
2 , . . . A

(lj),β
j 〉 for some β < κ, then the functions

fβ
i are no longer necessarily single-valued. This consideration suggests the following reflection
principle.

Definition 2.1. We define l(γ) = γ − 1 if γ < ω and l(γ) = γ otherwise. We extend the
definition A(m+1),β = {B(m),β | B(m) ∈ A(m+1)} to A(α),β = {Bβ | B ∈ A(α)} for all ordinals
α > 1, it being understood that if Vκ is the domain of discourse then A(α) ranges over Vκ+l(α).

Definition 2.2. Suppose that α, κ are ordinals such that α < κ and that

(1) S = 〈{Vκ+γ | γ < α},∈, f1, f2, . . . fk, A1, A2, . . . An〉 is a structure where each fi is a
function Vκ+l(γ1) × Vκ+l(γ2) × . . . Vκ+l(γi) → Vκ+ζi for some ordinals γ1, γ2, . . . γi, ζi such that
l(γ1), l(γ2), . . . l(γi), ζi < α, and each Ai is a subset of Vκ+l(δi) for some δi < α
(2) ϕ is a formula true in the structure S, of the form

∀X
(γ1)
1 ∀X

(γ2)
2 · · · ∀X

(γk)
k

ψ(X
(γ1)
1 , f1(X

(γ1)
1 ), X

(γ2)
2 , f2(X

(γ1)
1 , X

(γ2)
2 ), . . .X

(γk)
k , fk(X

(γ1)
1 , X

(γ2)
2 , . . .X

(γk)
k ),

A1, A2, . . . Aj) with ψ a formula with first-order quantifiers only
(3) there exists a β < κ and a mapping j : Vβ+α → Vκ+α, such that j(X) ∈ Vκ+γ whenever
X ∈ Vβ+γ, j(X) = X for all X ∈ Vβ, X ⊂ j(X) for all X ∈ Vβ+1 and j(X) ∈ j(Y ) whenever
X ∈ Y , and such that, in the structure
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Sβ = 〈Vβ, {Vβ+γ | 0 < γ < α}, {Vκ+γ | 0 < γ < α},∈, j, f1, f2, . . . fk, A1, A2 . . . An〉, with
variables of order γ ranging over Vβ+l(γ), we have

∀X
(γ1)
1 ∀X

(γ2)
2 · · · ∀X

(γk)
k

ψ(j(X
(γ1)
1 ), f1(j(X

(γ1)
1 )), j(X

(γ2)
2 ), f2(j(X

(γ1)
1 ), j(X

(γ2)
2 )), . . . j(X

(γk)
k ), fk(j(X

(γ1)
1 ), j(X

(γ2)
2 ), . . . j(X

(γk)
k )),

A1, A2, . . . An)

Then we say that the formula ϕ reflects down from S to β. If for all formulas ϕ of the
above form true in the structure S, this occurs for some β < κ, then κ is said to be strongly
α-reflecting.

We now give a consistency proof for this large cardinal property.

Theorem 2.3. Suppose that ω ≤ α < κ and κ is α+1-strong. Then κ is strongly α-reflecting.

Proof. Suppose that ω ≤ α < κ and κ is α + 1-strong. Then there exists an elementary
embedding k : V → M with critical point κ such that Vκ+α+1 ⊂ M . Let S = 〈{Vκ+γ | γ <
α},∈, f1, f2, . . . fk, A1, A2, . . . An〉 and ϕ be as in the definition of an α-reflecting cardinal.
Working in M , consider the structure k(S). Since Vκ+α+1 ⊂ M , the elementary embedding
k induces a mapping j ∈ M as in the definition of an α-reflecting cardinal such that the
structure k(S) reflects down to κ in M . Since k is an elementary embedding we may infer
that there exists a δ < κ such that S reflects down to δ in V . This completes the proof. �

Theorem 2.4. Suppose that ω ≤ α < κ and κ is strongly α-reflecting. Then κ is strongly
α-reflecting in the constructible universe L.

Proof. Suppose that ω ≤ α < κ. Let S = 〈{Vκ+γ | γ < α},∈, f1, f2, . . . fk, A1, A2, . . . An〉,
let SL = 〈{V L

κ+γ | γ < α},∈, f1, f2, . . . fk, A1, A2, . . . An〉 ∈ L and ϕ be a formula as in the

definition of an α-reflecting cardinal which is true in SL. We may consider the formula ϕL

with all α-order quantifiers relativized to V L
κ+l(α). By introducing new Skolem functions for

ϕL into the structure S to produce an expanded structure S ′, we may replace ϕL with a
formula ψ which is true in the expanded structure S ′. Then since κ is α-reflecting in V then
there must be a mapping j which witnesses that ψ reflects down to some β < κ. One can
ensure that j ∈ L by defining j by means of the canonical well-ordering of L. This shows
that ϕ reflects down from SL to β in L. This completes the proof. �

Theorem 2.5. Suppose that κ(ω) exists, and that α is a countable ordinal such that all
ordinals β ≤ α are absolutely definable. Then there exists a λ < κ(ω) which is strongly
α-reflecting in the constructible universe L.

Proof. Suppose that κ = κ(ω). Then κ remains an ω-Erdös cardinal in L. Let < be a
well-ordering of Lκ and let S = {ι1, ι2, . . .} be a set of Silver indiscernibles for the structure
〈Lκ, ǫ, <〉. LetM be the Skolem hull of S in this structure and let λ = ι2. Then the mapping
ιk 7→ ιk+1 induces an elementary embedding j :M →M . If ϕ is a formula as in the definition
of an α-reflecting cardinal where α < λ then ϕ will reflect down in M from ι2 to ι1 by means
of a truncation of the mapping j. Then if one defines a mapping j′ by means of the canonical
well-ordering of M with the same property one will have j′ ∈ M . (Given the hypothesis on
α, one will only have to work with the Skolem hull of a finite fragment of S.) This shows
that ι2 is α-reflecting in M and hence in L. �
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Definition 2.6. Suppose that κ is a cardinal and that α is a countable ordinal such that
all ordinals β ≤ α are absolutely definable. Suppose that there exists an elementary em-
bedding π : M → Vκ+ω+1 with π(λ) = κ for some transitive set M and some λ ∈ M ,
and an elementary embedding σ : M → N , such that if we let S = 〈{V M

λ+γ | γ < ω},∈
, f1, f2, . . . fk, A1, A2, . . .An〉 ∈M , then in N all formulas ϕ as in the definition of a strongly
α-reflecting cardinal true in the structure σ(S) reflect down to some δ < σ(λ), by means of
some mapping j which is not necessarily in N . Then κ is said to be weakly α-reflecting.

Definition 2.7. We say that a cardinal κ is remarkable [3] if for all regular cardinals θ > κ,
there exist π,M, λ, σ,N and ρ such that

(1) π :M → Hθ is an elementary embedding.
(2) M is countable and transitive
(3) π(λ) = κ
(4) σ :M → N is an elementary embedding with critical point λ
(5) N is countable and transitive
(6) ρ =M ∩On is a regular cardinal in N
(7) σ(λ) > ρ
(8) M = HN

ρ

We now prove the following.

Theorem 2.8. Suppose that κ is a remarkable cardinal, and that α is a countable ordinal
such that all β ≤ α are absolutely definable. Then κ is weakly α-reflecting.

Proof. Let κ be a remarkable cardinal. Let θ be a regular cardinal such that θ > κ and θ
is strong limit. Let π,M, λ, σ,N and ρ be as stipulated in the definition of a remarkable
cardinal.

Working in M , let S = 〈{V M
λ+γ | γ < α},∈, f1, f2, . . . fk, A1, A2, . . .An〉 and ϕ be as in the

definition of an α-reflecting cardinal.

Now, working in N , consider the structure σ(S). We have σ(α) = α. The formula ϕ is
true in the structure σ(S), and the elementary embedding σ induces a mapping j as in the
definition of a α-reflecting cardinal from Vλ+α → Vσ(λ)+α (in N), and the formula ϕ reflects
down (in N) from σ(S) to λ by means of j, which is not necessarily in N . This shows that
κ is weakly α-reflecting and completes the proof. �

Corollary 2.9. Suppose that κ(ω) exists, and that α is a countable ordinal as before. Then
there exists a cardinal λ such that λ < κ(ω), and λ is weakly α-reflecting.

Next we establish some properties of weakly ω-reflecting cardinals.

3. Restricted versions of Tait’s reflection principles

In [4] Tait defines the following set of reflection principles.

Definition 3.1. A formula in the language of finite orders is positive iff it is built up by
means of the operations ∨, ∧, ∀, ∃ from atoms of the form x = y, x 6= y, x ∈ y, x /∈ y,
x ∈ Y (2), x /∈ Y (2) and X(m) = X ′(m) and X(m) ∈ Y (m+1), where m ≥ 2.
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Definition 3.2. For 0 < n < ω, Γ
(2)
n is the class of formulas

(1) ∀X
(2)
1 ∃Y

(k1)
1 · · · ∀X(2)

n ∃Y (kn)
n ϕ(X

(2)
1 , Y

(k1)
1 , . . . , X(2)

n , Y (kn)
n , A(l1), . . . A(ln′ ))

where ϕ does not have quantifiers or second or higher-order and k1, . . . kn, l1, . . . ln′ are
natural numbers.

Definition 3.3. We say that Vα satisfies Γ
(2)
n -reflection if for each formula ϕ ∈ Γ

(2)
n , if

Vα |= ϕ then there is a δ < α such that Vα |= ϕδ.

Theorem 3.4 (Koellner). Suppose that κ = κ(ω) is the first ω-Erdös cardinal. Then there

exists a δ < κ such that Vδ satisfies Γ
(2)
n -reflection for all n.

Theorem 3.5 (Tait). Suppose that n < ω and Vκ satisfies Γ
(2)
n -reflection. Then κ is n-

ineffable.

Theorem 3.6 (Tait). Suppose that κ is measurable. Then Vκ satisfies Γ
(2)
n -reflection for all

n < ω.

In [4] Tait proposes to define Γ
(m)
n in the same way as the class of formulas Γ

(2)
n , except

that universal quantifiers of order ≤ m are permitted. Koellner shows in [2] that this form
of reflection is inconsistent when m > 2. We formulate a new form of reflection which we
will be able to prove holds for an ω-reflecting cardinal.

Definition 3.7. For 2 ≤ m < ω, 0 < n < ω, Γ
∗(m)
n is the class of formulas

(2) ∀X
(k1)
1 ∃Y

(l1)
1 · · · ∀X(kn)

n ∃Y (ln)
n ψ(X

(k1)
1 , Y

(l1)
1 , . . . , X(kn)

n , Y (ln)
n , A(m1), . . .A(mp))

where ψ does not have quantifiers or second or higher-order and k1, . . . kn, l1, . . . ln, m1, . . .mp

are natural numbers such that li ≥ kj whenever 0 < i ≤ j ≤ n.

Definition 3.8. We say that Vκ satisfies Γ
∗(m)
n -reflection if, for all ϕ ∈ Γ

∗(m)
n , if Vκ |=

ϕ(A(m1), A(m2), . . . A(mp)) then Vκ |= ϕδ(A(m1),δ, A(m2),δ, . . . A(mp),δ for some δ < κ.

We shall now prove that if κ is weakly ω-reflecting then Vκ satisfies Γ
∗(m)
n -reflection for all

m ≥ 2, n > 0. Note that Γ
∗(2)
n -reflection is the same as Γ

(2)
n -reflection.

Theorem 3.9. Suppose that κ is weakly ω-reflecting. Then Vκ satisfies Γ
∗(m)
n -reflection for

all m ≥ 2, n > 0.

Proof. We will prove it when κ is strongly ω-reflecting, and the argument will be easily

modifiable to prove the case where κ is weakly ω-reflecting. Suppose that ϕ ∈ Γ
∗(m)
n is true

in Vκ and that ϕ is as in Formula 2. There must exist functions f1, f2, . . . fn such that

(3) ∀X
(k1)
1 . . .∀X(kn)

n ψ(X
(k1)
1 , f1(X

(k1)
1 ), . . .X(kn)

n , fn(X
(k1)
1 , X

(k2)
2 , . . .X(kn)

n ), A(m1), . . . A(mp))

is true in Vκ. Since κ is ω-reflecting there will be some β < κ and a function j : Vβ+ω →
Vκ+ω as in the definition of an ω-reflecting cardinal such that
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(4) ∀X
(k1)
1 . . .∀X(kn)

n ψ(j(X
(k1)
1 ), f1(j(X

(k1)
1 )), . . . j(X(kn)

n ), fn(j(X
(k1)
1 ), j(X

(k2)
2 ), . . .

j(X
(kn)
n )), A(m1), . . . A(mp))

is true in Vβ. As Koellner observes in [1], when ki = 2 for each i this is enough to prove

Γ
(2)
n -reflection because the map X(2) 7→ j(X(2))∩Vβ is surjective on Vβ+1. To establish Γ

∗(m)
n -

reflection for m > 2, we replace j in the above formula with the function j′ which agrees
with j on Vβ+1, and on Vβ+m \ Vβ+m−1, satisfies j

′(X) = {j′(Y ) | Y ∈ X}. The part of the
formula inside the quantifiers will certainly remain true in Vκ. Since there exists a function
k such that j = k ◦ j′, the formula will remain true in Vβ as it is equivalent to a formula
asserting the existence of certain Skolem functions pickinng out appropriate values for the
first-order variables, and these Skolem functions can be composed on the right with k. This
completes the proof. �

It is also easy to see by examining Koellner’s proofs in [2] that weakly ω-reflecting cardinals
satisfy the reflection principles which he proves consistent there.

It is plausible to regard strongly α-reflecting cardinals as the natural generalization of
Tait’s proposed reflection principles. It would be of interest to know whether the existence
of κ(ω) implies the existence of strongly α-reflecting cardinals outright, as opposed to merely
in the constructible universe L. In any event the results here shows that these cardinals do
not break the V = L barrier. This provides further evidence for the view that Koellner has
expressed in [2] that reflection principles are not sufficient to effect a significant reduction in
incompleteness of ZFC.
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