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ALGEBRAIC DENSITY PROPERTY OF DANILOV-GIZATULLIN

SURFACES

FABRIZIO DONZELLI

Abstract. A Danilov-Gizatullin surface is an affine surface V which is the com-

plement of an ample section S of a Hirzebruch surface. The remarkable theorem of

Danilov and Gizatullin states that the isomorphism class of V depends only on the

self-intersection number S2. In this paper we apply their theorem to present V as the

quotient of an affine threefold by a torus action, and to prove that the Lie algebra

generated by the complete algebraic vector fields on V coincides with the set of all

algebraic vector fields.

1. Introduction

Andersén-Lempert theory and density property.

Let X be a complex manifold. We say that a holomorphic vector field µ on X is
complete if the solution of the associated first order ODE exists for all complex time,

for any choice of initial point on X . In other words, µ induces a holomorphic action
of the additive group C+ on X ; conversely, given an holomorphic C+-action ψt on X
there is a unique complete holomorphic vector field µ such that its flow coincides with

ψt.
For n ≥ 2, the abundance (in the sense of the next definition) of complete vector fields

on Cn was a crucial observation in the work of Andersén and Lempert on the group

Authol(C
n) of holomorphic automorphisms of Cn [2], further developed by Forstneric

and Rosay [14].

1.1. Definition. A complex manifold X is said to have the density property if the Lie
algebra Liehol(X) generated by complete holomorphic vector fields on X is dense, with
respect to the compact-open topology, in the Lie algebra VFhol(X) of all holomorphic

vector fields on X .

The density property for Cn has many implications. An example is the existence

of non-equivalent holomorphic embeddings of Ck into Cn [7], a result that was used
by Kutzschebauch and Derksen to construct non-linearizable holomorphic actions of
reductive Lie groups on affine spaces [9, 10].

The density property was introduced by Varolin [22], who was the first to extend the
results of Andersén and Lempert to Stein manifolds different from Cn. An interesting

application from the prospective of the present paper concerns k-homogeneity.
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1.2. Definition. Let X be a complex manifold, k a positive integer. We say that a
group G of holomorphic automorphisms of X acts k-transitively on X if given two col-
lections (x1, ..., xk), (y1, ..., yk) of pairwise distinct points, there exists an automorphism

f ∈ G such that f(xi) = yi.

1.3. Proposition. If a Stein manifold X has the density property, then the group

AutholX of holomorphic automorphisms of X is acts k-transitively for all k.

Varolin found various examples of Stein manifolds with the density property, such as

some homogeneous spaces of complex semisimple Lie groups (see the paper with Toth,
[23]).

If we are interested in affine algebraic varieties, we can refine the definition as follows.

1.4. Definition. A smooth affine algebraic variety X is said to have the algebraic
density property if the Lie algebra Liealg(X) generated by complete algebraic vector

fields on X coincides with the Lie algebra VFalg(X) of all algebraic vector fields on X .

Since the ring of regular functions of an affine variety is dense in the ring of the

holomorphic functions, the algebraic density property implies the density property.
Kaliman and Kutzschebauch proved that all complex linear algebraic groups with the
exception of the tori (C∗)n and C+ have the algebraic density property [18]. The tori do

not have the algebraic density property since Andersén [1], by using some results from
Nevanlinna theory, proves that all complete polynomial vector fields on (C∗)n must
have divergence zero with respect to the canonical volume form, but we do not know

if the tori have the (not necessarily algebraic) density property. Dvorsky, Kaliman
and the author [8] prove the algebraic density property for homogeneous spaces not
isomorphic to (C∗)n, of dimension at least three that are quotient of linear algebraic

groups by a reductive subgroup. The proof relies on the methods developed in [18], but
it also requires some non trivial facts from Lie theory, and an application of the Luna’s

slice theorem. Finally, we mention the affine surface X in C
3 given by the equation

x + y + xyz = 1. By using results of Brunella on holomorphic foliations on rational
surfaces [5, 6], Kaliman and Kutzschebauch [20] prove that a complete vector field on

X must have divergence zero with respect to the volume form dx
x
∧ dy

y
, and hence that

X does not have the density property. In the same preprint, the authors show that

Authol(X) acts k-transitively for all k. Since we do not know if X has the density
property, X could be counterexample to the converse of Proposition 1.3 (together with

the tori). For a good survey of Andersén-Lempert Theory and it applications, we refer
the reader to [20].

Danilov-Gizatullin surfaces.

A Danilov-Gizatullin surface is an affine surface which is the complement of an ample
section S in a Hirzebruch surface Σd. The ampleness of S implies that n > d and n ≥ 2.
We have the following remarkable result of Danilov and Gizatullin [13] (see also [17]

for a short proof ):
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Theorem 1. Let S (S ′) be an ample section of Σd (Σd′).
Then Σd − S is isomorphic to Σd′ − S ′ if and only if S2 = S ′2.

Consequently, for all n ≥ 2 we will denote by Vn the surface complementary to a
section S with S2 = n. The Danilov-Gizatullin surfaces belong to the class of the
affine rational surfaces with trivial Makar-Limanov invariant (the suburing of regular

functions that are invariant with respect to all C+-actions consists of constants only)
[16]. Moreover, Vn is a flexible affine variety, that is for any point x ∈ Vn there are
pairs of C+-actions, such that the corresponding complete vector fields span the tangent

space at x. On a forthcoming paper of Arzhantsev, Flenner, Kaliman, Kutzschebauch
and Zaidenberg [3], it is proven that the flexibility implies that the subgroup G of

Aut(Vn) generated by C+-actions acts k-transitively on Vn, for all k (see Definition
1.2 ). Moreover, the set of complete vector fields whose flow is an algebraic C+-action
generates an infinite-dimensional Lie algebra. In this paper (Theorem 3) we prove that

for all n ≥ 2, Vn has the algebraic density property.

Sketch of the proof of Theorem 3.

By presenting the Hirzebruch surface Σd as a quotient of an open toric variety in C4

by a two dimensional torus T 2, we can describe any section S of the ruling as the zero
locus of a T 2-invariant polynomial in C4. The Danilov-Gizatullin theorem now plays

a crucial role: by choosing to embed Vn in Σn−2, and by making a specific choice for a
section S with S2 = n, we prove that Vn is isomorphic to the algebraic quotient by a
one-dimensional torus T of a smooth affine threefold Fn (Theorem 2), and we find a set

of generators for C[Fn]
T , the ring of T -invariant regular functions on Fn (Proposition

2.4), which is isomorphic to C[Vn]. Next, we construct some complete T -invariant
vector fields on Fn, that descends to complete vector fieds on Vn (Proposition 3.1). We

then perform some computations, involving those fields and the generators of C[Fn]
T ∼=

C[Vn], until we construct a non-zero C[Vn]-submodule N of all algebraic vector fields

that is contained in the Lie algebra generated by the complete ones (Theorem 6). We
then extend N to a C[Vn]-submodule M such that the fiber of M at a point x of Vn
generates the tangent space at x. The transitivity of the action of the group AutalgVn
of algebraic automorpshisms of Vn allows then to apply to M a technical principle
(Theorem 4) to prove the algebraic density property of Vn (Theorem 3).

2. Construction of Vn as a quotient by a torus action

A Hirzebruch surface can be realized as a quotient of a toric variety by a two-

dimensional torus ([21], Section 1): consider the action of T 2 ∼= C
∗

t1
×C

∗

t2
on C

4
(a1,a2,a3,a4)

given by

(t1, t2).(a1, a2, a3, a4) = (t1t
d
2a1, t2a2, t1a3, t2a4)

and let
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Z = {a1 = a3 = 0} ∪ {a2 = a4 = 0}.

Then we have that

Σd
∼= (C4 − Z)/T 2.

The isomorphism above can be understood by defining coordinates

t0 =
a1
ad2a3

for a2 6= 0,

t∞ =
a1
ad4a3

for a4 6= 0,

v =
a2
a4

∈ P
1

(since they are T 2-invariant, they are well defined).
The quotient space then is isomorphic to the Hirzerbruch surface Σd, with ruling

π : Σd → P
1

π(a1, a2, a3, a4) = (a2, a4)

and transition function

t∞ = vdt0.

Recall now ([4], chapter IV) that the Picard group of Σd is generated by the linear

equivalence class F of the fiber of π, and by the class of the unique irreducible curve
C with self-intersection C2 = −d. It follows that S is linear equivalent to C + bF , and

that n = 2b− d.
Theorem 1 implies that Σd − S ∼= Vn for any section S with S2 = n, and we claim

that

t∞ = vb

is a local equation (for v 6= ∞) of a section S of the ruling π with self intersection
n = 2b − d. In fact, the base locus of the family of section t∞ = cvb consists of
two multiple points, namely the point A(v = 0, t∞ = 0) with multiplicity b, and

B(v = ∞, t0 = 0) with multiplicity b − d: if we sum the intersection multiplicities at
A and B, we obtain that S2 = 2b− d = n.

In the coordinates (a1, a2, a3, a4) the defining equation of S takes the form

a1a
b−d
4 − ab2a3 = 0(1)
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(the ampleness of S implies that b > d).
Let S ′ be the hypersurface in C4 given by equation (1). Then the inverse image

ρ−1(S) = S ′ − Z under the quotient map is the closed T -invariant subset of C4 given

by the equation (1), and

Vn ∼= ρ(C4 − (S ′ ∪ Z)) = (C4 − (S ′ ∪ Z))/T 2.

Since Z ⊂ S ′, the variety C4−(S ′∪Z) is isomorphic to the affine manifold V ′ = C−S ′.

2.1. Lemma. The geometric quotient V ′/T 2 is isomorphic to the algebraic quotient

V ′//T 2 = SpecC[V ′]T
2

, where C[V ′]T
2

denotes the subring of the T 2-invariant regu-
lar functions of V ′.

Proof. The orbits of the T 2-action restricted to V ′ are all closed. Therefore the lemma

follows from the Luna’s slice theorem ([11], Theorem 5.4). �

We can invoke Theorem 1 again and fix from now on that Vn is embedded in Σn−2,

that is n = d+ 2, and b = d+ 1. Under this assumption, the equation of S ′ becomes

a1a4 − ab2a3 = 0.(2)

2.2. Proposition. Consider the smooth affine threefold

Fn = {a1a4 − ab2a3 = 1} ⊂ C
4.(3)

Then V ′ is equivarianlty isomorphic to C∗ × Fn, where the action of T 2 on C∗ × Fn

is defined by:

(t1, t2).(w, a1, a2, a3, a4) = (t−1
1 t−b

2 w, t−1
2 a1, t2a2, t

−b
2 a3, t2a4).(4)

Proof. The isomorphism (as affine varieties) is given by

(a1, a2, a3, a4) 7→

(

a1a4 − ab3a2,
a1

a1a4 − ab3a2
, a2,

a3
a1a4 − ab3a2

, a4

)

(5)

Then it is easy to check that the induced T 2 action on C∗ × Fn by the isomorphism
is given by (4).

�

When we pass to the quotient, we get rid of the factor C∗, as follows.

Theorem 2. For any n ≥ 2, the Danilov-Gizatullin surface Vn is isomorphic to the
algebraic quotient Fn//T , where Fn is the affine threefold given by the equation

a1a4 − ab2a3 = 1(6)

and the torus T ∼= C∗ acts on Fn via
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t.(a1, a2, a3, a4) = (t−1a1, ta2, t
−ba3, ta4)(7)

Proof. Lemma 2.1 implies that V ′/T 2 ∼= V ′//T 2. Observe that the T 2-action of V ′

(equation 4) is such that the t1-variable acts non-trivially only on the w-coordinate.

Therefore there are no non-constant T 2-invariant polynomials depending on w, and the
result follows. �

Perhaps, the above theorem has been already estabilished, but we do not know a
reference for it.

2.3. Remark. Theorem 2 presents Vn as a quotient of a hypersurface in C
4 given

by an equation of the type uv = p(y, z), for p a polynomial with smooth zero locus.
The affine manifolds of this type have the algebraic density property, as shown by

Kaliman and Kutzschebauch [19]. Furthermore, it is clear from its defining equation
that F is a ramified b-sheeteed covering of SL2, another manifold with the algebraic
density property [23]. The behavior of the density property with respect to quotients

or coverings is not known in general.

2.4. Proposition. C[Vn] ∼= C[Fn]
T is generated by the monomials

y = a1a2, z = a1a4, xk = ab−k
2 a3a

k
4 (0 ≤ k ≤ b).(8)

Proof. Since the action is monomial, it is sufficient to look for monomial generators.
The action of t on aX1 a

Y
2 a

Z
3 a

W
4 is

t.(aX1 a
Y
2 a

Z
3 a

W
4 ) = t−X+Y−bZ+WaX1 a

Y
2 a

Z
3 a

W
4 ,

therefore a monomial is invariant if and only if

−X + Y − bZ +W = 0.(9)

We show that every solution (with non-negative integers) of equation (9) is a linear
combination with non-negative integer coefficients of the vectors

(1, 1, 0, 0) (1, 0, 0, 1),

(0, b− k, 1, k) (for 0 ≤ k ≤ b).

Write W = NbZ + r and Y =MbZ + r′, for 0 ≤ r, r′ ≤ bZ. Suppose that W < bZ:
choose Z integers ki, with 0 ≤ ki ≤ b, such that

∑Z

i ki =W . Then

(X, Y, Z,W ) = X(1, 1, 0, 0) +
Z
∑

i

(0, b− ki, 1, ki)
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Suppose instead that W ≥ bZ. Then X − MbZ = W − bZ + r′ ≥ 0; choose Z
integers ki, with 0 ≤ ki ≤ b, such that

∑Z

i (b− ki) = r′. Then we can write

(X, Y, Z,W ) = (X −MbZ)(1, 0, 0, 1) +
Z
∑

i

(0, b− ki, 1, ki) +MbZ(1, 1, 0, 0).

�

3. Algebraic density property of Vn

In this section we prove the main result of the paper.

Theorem 3. The Danilov-Gizatullin surfaces Vn have the algebraic density property.

We make use of the following principle [18].

Theorem 4. Let X be a smooth affine algebraic variety, such that the group Autalg(X)

of algebraic automorphisms acts transitively on it. Let M be a submodule of the C[X ]-
module of all algebraic vector fields such that M ⊂ Liealg(X). Suppose that the fiber
of M at a point x0 ∈ X generates the tangent space Tx0

M . Then X has the algebraic

density property.

In our case the transitivity of the action of Autalg(Vn) follows from the following

result of Gizatullin [12].

Theorem 5. Let X be an irreducible smooth affine variety over an algebraically closed

field of characteristic zero. If X can be completed by a smooth rational curve, then
Autalg(X) acts transitively on X.

We start by listing the complete vector fields that will be used to construct the
module M of the theorem above.

3.1. Proposition. The following vector fields on Fn are complete and T -invariant, and
they descend to non-identically zero complete vector fields on Vn.

δ = bab−1
2 a3

∂

∂a1
+ a4

∂

∂a2
(10)

δ′ = ab−1
1 ab2

∂

∂a4
+ ab1

∂

∂a3
(11)

ε = a1
∂

∂a1
− a4

∂

∂a4
(12)

Moreover, δ and δ′ are locally nilpotent derivations (their flow is an algebraic action

of C+).

Proof. The vector fields are tangent to Fn, since they annihilate the defining equation
of the threefold. The invariance and their completeness is a straightforward check left
to the reader. Finally, the vector fields descends non-trivially on Vn because they are
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generically transversal to the vector field −a1
∂

∂a1
+ a2

∂
∂a2

− ba3
∂

∂a3
+ a4

∂
∂a4

that defines
the T -action on Fn.

�

We collect in the next two lemmas the formulas upon which the proofs of lemmas

4.5-4.9 are based.

3.2. Lemma. For the surface Vn:

ε(xk) = −kxk(13)

ε(y) = y(14)

δ(y) = 1 + nx0(15)

δ(xk) = (b− k)xk+1(16)

δ′(x0) = yb(17)

δ′(y) = 0(18)

3.3. Lemma. For the surface Vn:

[ε, δ] = −δ(19)

[ε, δ′] = bδ′ (n = b+ 1)(20)

We will also need a well-known fact ([25], Proposition 3.1) about differential equa-

tions that will be used implicitly in some of the remaining statements.

3.4. Proposition. Let µ be a complete vector field on a complex manifold X, and f be
a holomorphic function. Then the vector field fµ is complete if and only if µ2(f) = 0.

3.5. Lemma. The following algebraic vector fields belong to Liealg(Vn):
(1) x0ε, (2) xbε, (3) x0xbε.

Proof. Statement (1) follows from ε(x0) = 0 (in particular, x0ε is complete).
As for (2), let X1 = [δ, x0ε], Xs = [δ,Xs−1]. By definition Xs ∈ Liealg(Vn), for all s.

Then by induction on s ≥ 2 it follows that

Xs = sb(b− 1)...(b− s+ 2)xs−1δ + b(b− 1)...(b− s+ 1)xsε.

In particular, for s = b, one obtainsXb = b!xbε+b
2(b−1)...(2)xb−1δ. Since δ

2(xb−1) =

0, xb−1δ is complete, and the statement (2) is proven.
From the first two facts, one has that (3) [x0ε, xbε] = −bx0xbε ∈ Liealg(Vn).

�

3.6. Lemma. For 0 ≤ k ≤ b, for all N > 0, xkx
N
b δ ∈ Liealg(Vn).

Proof. Now we calculate that
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[x0ε, xbδ] = −(1 + b)x0xbδ − bx1xbε(21)

[δ, x0xbε] = x0xbδ + bx1xbε(22)

The sum of (21) and (22) shows that x0xbδ ∈ Liealg(Vn) (use Lemma 3.5). Then, for
all M ≥ 0, we have [xMb δ, x0xbδ] = bx1x

M+1
b δ ∈ Liealg(Vn). By induction on k we then

prove the statement for all positive k.
As for k = 0, observe that since yxb = (1+x0)xb−1, we obtain yxbδ = x0xb−1δ+xb−1δ.

This equation shows that yxbδ ∈ Liealg(Vn): in fact, xb−1δ is complete, and x0xb−1δ ∈
Liealg(Vn) as follows from Lemma 3.5 and Lemma 3.6 applied to

[x0ε, xb−1δ] = −bx0xb−1δ − bx1xb−1ε = −bx0xb−1δ − bx0xbε,

the second equality being true since x1xb−1 = x0xb. Hence, for M ≥ 0 we obtain

[xMb δ, yxbδ] = xM+1
b (1 + nx0)δ = xM+1

b δ + nx0x
M+1
b δ

which shows the case k = 0.

�

3.7. Lemma. For 1 ≤ k ≤ b, N > 0, M ≥ 0, xM0 xkx
N
b ε ∈ Liealg(Vn).

Proof. We know that x0xbε ∈ Liealg(Vn) (Lemma 3.5).

To show that xkxbε ∈ Liealg(Vn) for all k, apply induction on k and Lemma 3.6 to
the equation

[δ, xk−1xbε] = xk−1xbδ + (b− k + 1)xkxbε.

Next, the result for N ′ ≥ 0 M = 0 follows from the equation

[xN
′

b δ, xkxbε] = (1 + bN ′)xkx
N ′+1
b δ + xN

′+1
b (b− k)xk+1ε.

Finally, the case M ≥ 0, N > 0 follows from

[xM0 ε, xkx
N
b ε] = (−Nb − k)xM0 xkx

N
b ε.

�

The next computations deal with the y-variable.

3.8. Lemma. For all R ≥ 0, yb+Rε ∈ Liealg(Vn).

Proof. Use the formula

[x0ε, y
Rδ′] = (b+ j)x0y

Rδ′ − yb+Rε

and notice that δ′2(yRx0) = 0. �
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3.9. Proposition. For N > 0, M > 0, 0 < k < b, R ≥ 0, yb+RxM0 xkx
N
b ε ∈ Liealg(Vn)

Proof. Apply Lemma 3.7 and Lemma 3.8 to the equation

[yb+Rε, xM0 xkx
N
b ε] =

(1− k − bN − b−R)yb+RxM0 xkx
N
b ε.

�

Next, we make use of some relations between the invariant monomials.

3.10. Proposition. For any collection k1, ..., kr, there are integers N > 0 and M > 0,

0 ≤ h ≤ b, such that

x0xk1xk2 ...xkrxb = xM0 xhx
N
b ,(23)

Proof. We observe that:

if h+ k ≤ b xkxh = xh+kx0(24)

if h+ k ≥ b xkxh = xbxh+k−b(25)

Write the monomial in the form

xN
′

0 xk1 ...xksx
M ′

b

for xk1 , ..., xks 6= x0, xb.
Then, by applying (24) and (25) we can eliminate the factors xk not equal to x0 and

xb untill there will be left at most one.

�

Theorem 6. Let N be the C[Vn]-submodule of VFalg(Vn) generated by the vector field

x0x1...xby
bε. Then N ⊂ Liealg(Vn).

Proof. We need to show that, for all monomials zT yRxk1 ...xkr ,
zT yRxk1 ...xkrx0x1...xby

bε ∈ Liealg(Vn). Observe first that we can assume T = 0, since
we can eliminate z via the relation z = 1 + x0.

Then, according to Proposition 3.10, we can write

yRxk1 ...xkrx0x1...xby
b = yb+Rx0xh1

...xh
r
′
xb = xN0 xhx

M
b ,

for some N,M > 0, 0 ≤ h ≤ b
The theorem follows from Proposition 3.9.

�
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Conclusion of the proof of Theorem 3. We follow the idea of [18] to produce
a module M satisfying the hypothesis of Theorem 4. Consider the regular function
f = xb. The flow of the vector field fδ is an algebraic action of C+: this can be

checked directly by solving the associated ODE, or by using the fact that δ is a locally
nilpotent derivation and δ(xb) = 0 ([15], Principle 7 page 24). Let p ∈ Vn be a point
with f(p) = 0, δp 6= 0, εp 6= 0, εp(f) 6= 0: then ([18], Claim page 4) the flow ϕ of

fδ at time one induces an isomorphism ϕ∗ on the tangent space at p, that map εp
to εp + εp(f)δp. Let M = N + ϕ∗N: then M ⊂ Liealg(Vn), and since εp and δp are

linearly independent vectors, its fiber at p spans the tangent space at p. Since Vn is
homogeneous with respect to Autalg(Vn), we can then apply Theorem 4 to conclude
the proof of Theorem 3.

Acknowledgments. I would like to thank Shulim Kaliman and Dror Varolin for read-
ing the paper and giving a lot of useful comments; Patrick Clarke and Andrew Young

for useful conversations.
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