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INFINITE GENERATION OF NON-COCOMPACT

LATTICES ON RIGHT-ANGLED BUILDINGS

ANNE THOMAS AND KEVIN WORTMAN

Abstract. Let Γ be a non-cocompact lattice on a locally finite
regular right-angled building X . We prove that if Γ has a strict
fundamental domain then Γ is not finitely generated. We use the
separation properties of subcomplexes of X called tree-walls.

Tree lattices have been well-studied (see [BL]). Less understood are
lattices on higher-dimensional CAT(0) complexes. In this paper, we
consider lattices on X a locally finite, regular right-angled building (see
Davis [D] and Section 1 below). Examples of such X include products
of locally finite regular or biregular trees, or Bourdon’s building Ip,q
[B], which has apartments hyperbolic planes tesselated by right-angled
p–gons, and all vertex links the complete bipartite graph Kq,q.
Let G be a closed, cocompact group of type-preserving automor-

phisms of X , equipped with the compact-open topology, and let Γ be
a lattice in G. That is, Γ is discrete, and the series

∑
| StabΓ(φ)|

−1

converges, where the sum is over the set of chambers φ of a fundamen-
tal domain for Γ. The lattice Γ is cocompact in G if and only if the
quotient Γ\X is compact.
If there is a subcomplex Y ⊂ X containing exactly one point from

each Γ–orbit on X , then Y is called a strict fundamental domain for
Γ. Equivalently, Γ has a strict fundamental domain if Γ\X may be
embedded in X .
Any cocompact lattice in G is finitely generated. We prove:

Theorem 1. Let Γ be a non-cocompact lattice in G. If Γ has a strict

fundamental domain, then Γ is not finitely generated.

Our proof, in Section 3 below, uses the separation properties of sub-
complexes ofX which we call tree-walls. These generalize the tree-walls
(in French, arbre-murs) of Ip,q, which were introduced by Bourdon in
[B]. We define tree-walls and establish their properties in Section 2
below.

The first author was supported in part by NSF Grant No. DMS-0805206 and
in part by EPSRC Grant No. EP/D073626/2. The second author is supported in
part by NSF Grant No. DMS-0905891.
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The following examples of non-cocompact lattices on right-angled
buildings are known to us.

(1) For i = 1, 2, let Gi be a rank one Lie group over a nonar-
chimedean locally compact field whose Bruhat–Tits building is
the locally finite regular or biregular tree Ti. Then any irre-
ducible lattice in G = G1 × G2 is finitely generated (Raghu-
nathan [Ra]). Hence by Theorem 1 above, such lattices on
X = T1 × T2 cannot have strict fundamental domain.

(2) Let Λ be a minimal Kac–Moody group over a finite field Fq with
right-angled Weyl group W . Then Λ has locally finite, regular
right-angled twin buildings X+

∼= X−, and Λ acts diagonally on
the product X+ ×X−. For q large enough:
(a) By Theorem 0.2 of Carbone–Garland [CG] or Theorem 1(i)

of Rémy [Ré], the stabilizer in Λ of a point in X− is a non-
cocompact lattice in Aut(X+). Any such lattice is con-
tained in a negative maximal spherical parabolic subgroup
of Λ, which has strict fundamental domain a sector in X+,
and so any such lattice has strict fundamental domain.

(b) By Theorem 1(ii) of Rémy [Ré], the group Λ is itself a
non-cocompact lattice in Aut(X+)× Aut(X−). Since Λ is
finitely generated, Theorem 1 above implies that Λ does
not have strict fundamental domain in X = X+ ×X−.

(3) In [T], the first author constructed a functor from graphs of
groups to complexes of groups, which extends the correspond-
ing tree lattice to a lattice in Aut(X) where X is a regular
right-angled building. The resulting lattice in Aut(X) has strict
fundamental domain if and only if the original tree lattice has
strict fundamental domain.

We thank Martin Bridson and Pierre-Emmanuel Caprace for helpful
conversations.

1. Right-angled buildings

In this section we recall the basic definitions and some examples
for right-angled buildings. We mostly follow Davis [D], in particular
Section 12.2 and Example 18.1.10. See also Sections 1.2–1.4 of [KT].
Let (W,S) be a right-angled Coxeter system. That is,

W = 〈S | (st)mst = 1〉

where mss = 1 for all s ∈ S, and mst ∈ {2,∞} for all s, t ∈ S with
s 6= t. We will discuss the following examples:

• W1 = 〈s, t | s2 = t2 = 1〉 ∼= D∞, the infinite dihedral group;
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• W2 = 〈r, s, t | r2 = s2 = t2 = (rs)2 = 1〉 ∼= (C2×C2)∗C2, where
C2 is the cyclic group of order 2;

• The Coxeter group W3 generated by the set of reflections S in
the sides of a right-angled hyperbolic p–gon, p ≥ 5. That is,
W3 = 〈s1, . . . , sp | s

2
i = (sisi+1)

2 = 1〉 with cyclic indexing.

Fix (qs)s∈S a family of integers with qs ≥ 2. Given any family of
groups (Hs)s∈S with |Hs| = qs, let H be the quotient of the free product
of the (Hs)s∈S by the normal subgroup generated by the commutators
{[hs, ht] : hs ∈ Hs, ht ∈ Ht, mst = 2}.
Now let X be the piecewise Euclidean CAT(0) geometric realization

of the chamber system Φ = Φ(H, {1}, (Hs)s∈S). Then X is a locally
finite, regular right-angled building, with chamber set Ch(X) in bijec-
tion with the elements of the group H . Let δW : Ch(X)×Ch(X) → W

be the W–valued distance function and let lS :W → N be word length
with respect to the generating set S. Denote by dW : Ch(X)×Ch(X) →
N the gallery distance lS ◦ δW . That is, for two chambers φ and φ′ of
X , dW (φ, φ′) is the length of a minimal gallery from φ to φ′.
Suppose that φ and φ′ are s–adjacent chambers, for some s ∈ S.

That is, δW (φ, φ′) = s. The intersection φ∩φ′ is called an s–panel. By
definition, since X is regular, each s–panel is contained in qs distinct
chambers. For distinct s, t ∈ S, the s–panel and t–panel of any chamber
φ ofX have nonempty intersection if and only ifmst = 2. Each s–panel
of X is reduced to a vertex if and only if mst = ∞ for all t ∈ S − {s}.
For the examples W1, W2, and W3 above, respectively:

• The building X1 is a tree with each chamber an edge, each s–
panel a vertex of valence qs, and each t–panel a vertex of valence
qt. That is, X1 is the (qs, qt)–biregular tree. The apartments of
X1 are bi-infinite rays in this tree.

• The building X2 has chambers and apartments as shown in
Figure 1 below. The r– and s–panels are 1–dimensional and
the t–panels are vertices.

• The building X3 has chambers p–gons and s–panels the edges
of these p–gons. If qs = q ≥ 2 for all s ∈ S, then each s–panel
is contained in q chambers, and X3, equipped with the obvious
piecewise hyperbolic metric, is Bourdon’s building Ip,q.

2. Tree-walls

We now generalize the notion of tree-wall due to Bourdon [B]. We
will use basic facts about buildings, found in, for example, Davis [D].
Our main results concerning tree-walls are Corollary 3 below, which
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Figure 1. A chamber (on the left) and part of an apart-
ment (on the right) for the building X2.

describes three possibilities for tree-walls, and Proposition 6 below,
which generalizes the separation property 2.4.A(ii) of [B].
Let X be as in Section 1 above and let s ∈ S. As in Section 2.4.A of

[B], we define two s–panels of X to be equivalent if they are contained
in a common wall of type s in some apartment of X . A tree-wall of type

s is then an equivalence class under this relation. We note that in order
for walls and thus tree-walls to have a well-defined type, it is necessary
only that all finite mst, for s 6= t, be even. Tree-walls could thus be
defined for buildings of type any even Coxeter system, and they would
have similar properties to those below. We will however only explicitly
consider the right-angled case.
Let T be a tree-wall of X , of type s. We define a chamber φ of X

to be epicormic at T if the s–panel of φ is contained in T , and we say
that a gallery α = (φ0, . . . , φn) crosses T if, for some 0 ≤ i < n, the
chambers φi and φi+1 are epicormic at T .
By the definition of tree-wall, if φ ∈ Ch(X) is epicormic at T and

φ′ ∈ Ch(X) is t–adjacent to φ with t 6= s, then φ′ is epicormic at T if
and only if mst = 2. Let s⊥ := {t ∈ S | mst = 2} and denote by 〈s⊥〉
the subgroup ofW generated by the elements of s⊥. If s⊥ is empty then
by convention, 〈s⊥〉 is trivial. For the examples in Section 1 above:

• in W1, both 〈s⊥〉 and 〈t⊥〉 are trivial;
• in W2, 〈r

⊥〉 = 〈s〉 ∼= C2 and 〈s⊥〉 = 〈r〉 ∼= C2, while 〈t⊥〉 is
trivial; and

• in W3, 〈s
⊥
i 〉 = 〈si−1, si+1〉 ∼= D∞ for each 1 ≤ i ≤ p.
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Lemma 2. Let T be a tree-wall of X of type s. Let φ be a chamber

which is epicormic at T and let A be any apartment containing φ.

(1) The intersection T ∩ A is a wall of A, hence separates A.

(2) There is a bijection between the elements of the group 〈s⊥〉 and
the set of chambers of A which are epicormic at T and in the

same component of A− T ∩ A as φ.

Proof. Part (1) is immediate from the definition of tree-wall. For Part
(2), let w ∈ 〈s⊥〉 and let ψ = ψw be the unique chamber of A such
that δW (φ, ψ) = w. We claim that ψ is epicormic at T and in the same
component of A− T ∩A as φ.
For this, let s1 · · · sn be a reduced expression for w and let α =

(φ0, . . . , φn) be the minimal gallery from φ = φ0 to ψ = φn of type
(s1, . . . , sn). Since w is in 〈s⊥〉, we have msis = 2 for 1 ≤ i ≤ n. Hence
by induction each φi is epicormic at T , and so ψ = φn is epicormic at
T . Moreover, since none of the si are equal to s, the gallery α does not
cross T . Thus ψ = ψw is in the same component of A− T ∩A as φ.
It follows that w 7→ ψw is a well-defined, injective map from 〈s⊥〉 to

the set of chambers of A which are epicormic at T and in the same
component of A−T ∩A as φ. To complete the proof, we will show that
this map is surjective. So let ψ be a chamber of A which is epicormic at
T and in the same component of A−T ∩A as φ, and let w = δW (φ, ψ).
If 〈s⊥〉 is trivial then ψ = φ and w = 1, and we are done. Next

suppose that the chambers φ and ψ are t–adjacent, for some t ∈ S.
Since both φ and ψ are epicormic at T , either t = s or mst = 2. But ψ
is in the same component of A−T ∩A as φ, so t 6= s, hence w = t is in
〈s⊥〉 as required. If 〈s⊥〉 is finite, then finitely many applications of this
argument will finish the proof. If 〈s⊥〉 is infinite, we have established
the base case of an induction on n = lS(w).
For the inductive step, let s1 · · · sn be a reduced expression for w and

let α = (φ0, . . . , φn) be the minimal gallery from φ = φ0 to ψ = φn of
type (s1, . . . , sn). Since φ and ψ are in the same component of A−T ∩A
and α is minimal, the gallery α does not cross T . We claim that sn is
in s⊥. First note that sn 6= s since α does not cross T and ψ = φn is
epicormic at T . Now denote by Tn the tree-wall of X containing the
sn–panel φn−1 ∩ φn. Since α is minimal and crosses Tn, the chambers
φ = φ0 and ψ = φn are separated by the wall Tn∩A. Thus the s–panel
of φ and the s–panel of ψ are separated by Tn ∩A. As the s–panels of
both φ and ψ are in the wall T ∩ A, it follows that the walls Tn ∩ A

and T ∩ A intersect. Hence msns = 2, as claimed.
Now let w′ = wsn = s1 · · · sn−1 and let ψ′ be the unique chamber of

A such that δW (φ, ψ′) = w′. Since sn is in s⊥ and ψ′ is sn–adjacent



6 ANNE THOMAS AND KEVIN WORTMAN

to ψ, the chamber ψ′ is epicormic at T and in the same component of
A − T ∩ A as φ. Moreover s1 · · · sn−1 is a reduced expression for w′,
so lS(w

′) = n − 1. Hence by the inductive assumption, w′ is in 〈s⊥〉.
Therefore w = w′sn is in 〈s⊥〉, which completes the proof. �

Corollary 3. The following possibilities for tree-walls in X may occur.

(1) Every tree-wall of type s is reduced to a vertex if and only if

〈s⊥〉 is trivial.
(2) Every tree-wall of type s is finite but not reduced to a vertex if

and only if 〈s⊥〉 is finite but nontrivial.

(3) Every tree-wall of type s is infinite if and only if 〈s⊥〉 is infinite.

Proof. Let T , φ, and A be as in Lemma 2 above. The set of s–panels
in the wall T ∩ A is in bijection with the set of chambers of A which
are epicormic at T and in the same component of A−T ∩A as φ. �

For the examples in Section 1 above:

• in X1, every tree-wall of type s and of type t is a vertex;
• in X2, the tree-walls of types both r and s are finite and 1–
dimensional, while every tree-wall of type t is a vertex; and

• in X3, all tree-walls are infinite, and are 1–dimensional.

Corollary 4. Let T , φ, and A be as in Lemma 2 above and let

ρ = ρφ,A : X → A

be the retraction onto A centered at φ. Then ρ−1(T ∩A) = T .

Proof. Let ψ be any chamber of A which is epicormic at T and is in
the same component of A−T ∩A as φ. Then by the proof of Lemma 2
above, w := δW (φ, ψ) is in 〈s⊥〉. Let ψ′ be a chamber in the preimage
ρ−1(ψ) and let A′ be an apartment containing both φ and ψ′. Since the
retraction ρ preserves W–distances from φ, we have that δW (φ, ψ′) = w

is in 〈s⊥〉. Again by the proof of Lemma 2, it follows that the chamber
ψ′ is epicormic at T . But the image under ρ of the s–panel of ψ′ is the
s–panel of ψ. Thus ρ−1(T ∩ A) = T , as required. �

Lemma 5. Let T be a tree-wall and let φ and φ′ be two chambers of

X. Let α be a minimal gallery from φ to φ′ and let β be any gallery

from φ to φ′. If α crosses T then β crosses T .

Proof. Suppose that α crosses T . Since α is minimal, there is an apart-
ment A of X which contains α, and hence the wall T ∩ A separates
φ from φ′. Choose a chamber φ0 of A which is epicormic at T and
consider the retraction ρ = ρφ0,A onto A centered at φ0. Since φ and
φ′ are in A, ρ fixes φ and φ′. Hence ρ(β) is a gallery in A from φ to



INFINITE GENERATION FOR RIGHT-ANGLED BUILDINGS 7

φ′, and so ρ(β) crosses T ∩A. By Corollary 4 above, ρ−1(T ∩A) = T .
Therefore β crosses T . �

Proposition 6. Let T be a tree-wall of type s. Then T separates X

into qs gallery-connected components.

Proof. Fix an s–panel in T and let φ1, . . . , φqs be the qs chambers con-
taining this panel. Then for all 1 ≤ i < j ≤ qs, the minimal gallery
from φi to φj is just (φi, φj), and hence crosses T . Thus by Lemma
5 above, any gallery from φi to φj crosses T . So the qs chambers
φ1, . . . , φqs lie in qs distinct components of X − T .
To complete the proof, we show that T separates X into at most

qs components. Let φ be any chamber of X . Then among the cham-
bers φ1, . . . , φqs, there is a unique chamber, say φ1, at minimal gallery
distance from φ. It suffices to show that φ and φ1 are in the same
component of X − T .
Let α be a minimal gallery from φ to φ1 and let A be an apartment

containing α. Then there is a unique chamber of A which is s–adjacent
to φ1. Hence A contains φi for some i > 1, and the wall T ∩ A sep-
arates φ1 from φi. Since α is minimal and dW (φ, φ1) < dW (φ, φi), the
Exchange Condition (see p. 35 [D]) implies that a minimal gallery from
φ to φi may be obtained by concatenating α with the gallery (φ1, φi).
Since a minimal gallery can cross T ∩ A at most once, α does not
cross T ∩ A. Thus φ and φ1 are in the same component of X − T , as
required. �

3. Proof of Theorem

Let G be as in the introduction and let Γ be a non-cocompact lattice
in G with strict fundamental domain. Fix a chamber φ0 of X . For each
integer n ≥ 0 define

D(n) := {φ ∈ Ch(X) | dW (φ,Γφ0) ≤ n }.

Then D(0) = Γφ0, and for every n > 0 every connected component of
D(n) contains a chamber in Γφ0. To prove Theorem 1, we will show
that there is no n > 0 such that D(n) is connected.
Let Y be a strict fundamental domain for Γ which contains φ0. For

each chamber φ of X , denote by φY the representative of φ in Y .

Lemma 7. Let φ and φ′ be t–adjacent chambers in X, for t ∈ S. Then

either φY = φ′
Y , or φY and φ′

Y are t–adjacent.

Proof. It suffices to show that the t–panel of φY is the t–panel of φ′
Y .

Since Y is a subcomplex of X , the t–panel of φY is contained in Y .
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By definition of a strict fundamental domain, there is exactly one rep-
resentative in Y of the t–panel of φ. Hence the unique representative
in Y of the t–panel of φ is the t–panel of φY . Similarly, the unique
representative in Y of the t–panel of φ′ is the t–panel of φ′

Y . But φ and
φ′ are t–adjacent, hence have the same t–panel, and so it follows that
φY and φ′

Y have the same t–panel. �

Corollary 8. The fundamental domain Y is gallery-connected.

Lemma 9. For all n > 0, the fundamental domain Y contains a pair

of adjacent chambers φn and φ′
n such that, if Tn denotes the tree-wall

separating φn from φ′
n:

(1) the chambers φ0 and φn are in the same gallery-connected com-

ponent of Y − Tn ∩ Y ;
(2) min{dW (φ0, φ) | φ ∈ Ch(X) is epicormic at Tn} > n; and

(3) there is a γ ∈ StabΓ(φ
′
n) which does not fix φn.

Proof. Fix n > 0. Since Γ is not cocompact, Y is not compact. Thus
there exists a tree-wall Tn with Tn ∩ Y nonempty such that for every
φ ∈ Ch(X) which is epicormic at Tn, dW (φ0, φ) > n. Let sn be the type
of the tree-wall Tn. Then by Corollary 8 above, there is a chamber
φn of Y which is epicormic at Tn and in the same gallery-connected
component of Y −Tn∩Y as φ0, such that for some chamber φ′

n which is
sn–adjacent to φn, φ

′
n is also in Y . Now, as Γ is a non-cocompact lattice,

the orders of the Γ–stabilizers of the chambers in Y are unbounded.
Hence the tree-wall Tn and chambers φn and φ′

n may be chosen so that
| StabΓ(φn)| < | StabΓ(φ

′
n)|. �

Let φn, φ
′
n, Tn, and γ be as in Lemma 9 above and let s = sn be the

type of the tree-wall Tn. Let α be a gallery in Y −Tn∩Y from φ0 to φn.
The chambers φn and γ · φn are in two distinct components of X −Tn,
since they both contain the s–panel φn ∩ φ

′
n ⊆ Tn, which is fixed by γ.

Hence the galleries α and γ ·α are in two distinct components ofX−Tn,
and so the chambers φ0 and γ · φ0 are in two distinct components of
X − Tn. Denote by X0 the component of X − Tn which contains φ0,
and put Y0 = Y ∩X0.

Lemma 10. Let φ be a chamber in X0 that is epicormic at Tn. Then

φY is in Y0 and is epicormic at Tn ∩ Y .

Proof. We consider three cases, corresponding to the possibilities for
tree-walls in Corollary 3 above.

(1) If Tn is reduced to a vertex, there is only one chamber in X0

which is epicormic at Tn, namely φn. Thus φ = φn = φY and
we are done.
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(2) If Tn is finite but not reduced to a vertex, the result follows by
finitely many applications of Lemma 7 above.

(3) If Tn is infinite, the result follows by induction, using Lemma 7
above, on

k := min{dW (φ, ψ) | ψ is a chamber of Y0 epicormic at Tn ∩ Y }.

�

Lemma 11. For all n > 0, the complex D(n) is not connected.

Proof. Fix n > 0, and let α be a gallery in X between a chamber in
X0∩Γφ0 and some chamber φ in X0 that is epicormic at Tn. Let m be
the length of α.
By Lemmas 7 and 10 above, the gallery α projects to a gallery β

in Y between φ0 and a chamber φY that is epicormic at Tn ∩ Y . The
gallery β in Y has length at most m.
It follows from (2) of Lemma 9 above that the gallery β in Y has

length greater than n. Therefore m > n. Hence the gallery-connected
component ofD(n) that contains φ0 is contained inX0. As the chamber
γ ·φ0 is not inX0, it follows that the complexD(n) is not connected. �

This completes the proof, as Γ is finitely generated if and only if
D(n) is connected for some n.
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