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ON PIECEWISE LINEAR CELL DECOMPOSITIONS

ALEXANDER KIRILLOV, JR.

Abstract. In this note, we introduce a class of cell decompositions of PL
manifolds and polyhedra which are more general than triangulations yet not
as general as CW complexes; we propose calling them PLCW complexes. The
main result is an analog of Alexander’s theorem: any two PLCW decomposi-
tions of the same polyhedron can be obtained from each other by a sequence
of certain “elementary” moves.

This definition is motivated by the needs of Topological Quantum Field
Theory, especially extended theories as defined by Lurie.

1. Introduction

One of the main tools for studying piecewise-linear manifolds is the notion of
triangulation, or more generally, cell complexes formed by convex cells. However,
for many purposes this is too restrictive. For example, for any explicit computation
of state-sum invariants of 3-manifolds, triangulations turn out to be a very inefficient
tool: the number of simplices is necessarily quite large, a cylinder over a triangulated
manifold (or, more generally, a product of two triangulated manifolds) does not have
a canonical triangulation, etc. Allowing arbitrary convex cells helps but does not
solve all the problems: for example, a cell decomposition shown below (which is
quite useful for extended topological field theories and 2-categories, as it illustrates
a 2-morphism between two 1-morphisms) can not be realized using only convex
cells.

In addition, for many constructions it would be desirable to allow “singular
triangulations”, where the different faces of the same cell are allowed to be glued
to each other (for example, this would allow a cell decomposition of the torus T 2

obtained by gluing opposite sides of a rectangle). On the other hand, CW complexes
are too general and using them creates other problems: for example, there is no
analog of Alexander’s theorem describing simple moves necessary to obtain one CW
cell decomposition from another.

In this note, motivated by our earlier work [BK], we introduce a new notion of
a cell decomposition of a compact polyhedron (in particular, a PL manifold) which
will address many of the problems mentioned above. We propose calling such cell
decompositions PLCW cell decompositions. We also prove an analog of Alexander’s
theorem: any two PLCW decompositions of the same polyhedron can be obtained
from each other by a sequence of certain “elementary” moves.
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2. Basic definitions

In this section we recall some basic definitions and facts of PL topology, following
notation and terminology of the book [RS1982], where one can also find the proofs
of all results mentioned here.

Throughout this paper, the word “map” will mean “piecewise linear map”. We
will write X ≃ Y if there exists a PL homeomorphism X → Y .

For a subset X ⊂ R
N , we denote Int(X) the interior of X , by cl(X) the closure of

X and by ∂X the boundary of X . We will also use the following standard notation:
Bn = [−1, 1]n ⊂ R

n — the n-dimensional ball
Sn = ∂Bn+1 — the n-sphere
∆n ⊂ R

n+1— the n–dimensional simplex (note that ∆n ≃ Bn)
For any polyhedra X ⊂ R

N and a point a ∈ R
N , we denote aX the cone over

X . More generally, given two polyhedra X,Y ⊂ R
N , we denote by XY the join of

X,Y . When using this notation, we will always assume that X,Y are independent,
i.e. that every p ∈ XY can be uniquely written as p = ax+ by, a, b ∈ R, a+ b = 1.
For two polyhedra X ∈ R

n, Y ∈ R
m, we denote by X ∗Y ⊂ R

n+m+1 their external
join.

We define a convex n-cell C ⊂ R
N as a convex compact polyhedron generating an

affine subspace of dimension n; in such a situation, we will also write dimC = n.
In [RS1982], these are called just cells; we prefer a more specific name to avoid
confusion with other types of cells to be introduced later.

For any such cell we can define the set F (C) of faces of C (of arbitrary codimen-
sion); each face F is itself a convex cell. We will write F < C if F,C are convex
cells and F is a face of C.

Recall that each convex cell C is homeomorphic to a ball: C = ϕ(Bn) for some
homeomorphism ϕ. As usual, we denote

◦

C = Int(C) = ϕ(Int(Bn))
.

C = ∂C = ϕ(∂Bn)

if dimC > 0. If dimC = 0, i.e. C is a point, then we let
◦

C = C,
.

C = ∅.
Following [RS1982], we define a cell complex K as a finite collection of convex

cells in R
N such that the following conditions are satisfied:

(1) If A ∈ K and B < A, then B ∈ K

(2) If A,B ∈ K, and F = A ∩B 6= ∅, then F < A, F < B.

We define the support |K| = ∪C∈KC; it is a compact polyhedron in R
N . Con-

versely, given a compact polyhedron X , a cell decomposition of X is a complex K
such that |K| = X ; it is known that such a decomposition always exists. We will
denote by dimK the dimension of K and by Kn the n-skeleton of K. Given a
complex K and a cell C, we will denote K +C the complex obtained by adding to
K the cell C assuming that it does form a complex.

In particular, given a convex cell C, the set F (C) of faces of C is a cell complex,

with |F (C)| =
.

C; by adding to it C itself, we get a cell decomposition of C.

3. Generalized cells

Let C be a convex cell in R
N .
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Definition 3.1. A map f : C → R
m is called regular if the restriction f | ◦

C
is

injective.

Lemma 3.2. If C is a convex cell and f : C → R
m is regular, then C admits a cell

decomposition K such that for any cell Ki ∈ K, the restriction f |Ki
is injective.

Proof. By standard results of PL topology, C admits a cell decomposition such that
f |Ki

is linear, and a linear map which is injective on an open set is injective. �

We can now define the generalization of the notion of a convex cell.

Definition 3.3. A generalized n-cell is a subset C ⊂ R
N together with decompo-

sition C =
◦

C ⊔
.

C such that
◦

C = ϕ(IntBn),
.

C = ϕ(∂Bn) (and thus C = ϕ(Bn))
for some regular map ϕ : Bn → R

N .
In such a situation, the map ϕ is called a characteristic map.

Note that the definition implies that C = cl(
◦

C), so C is completely determined

by
◦

C. It is also clear from Lemma 3.2 that any generalized cell is a compact
polyhedron.

Clearly any convex cell is automatically a generalized cell. Other examples of
generalized cells are shown in Figure 1 below.

Note that characteristic map ϕ in the definition of generalized cell is not unique.
However, as the following theorem shows, it is unique up to a PL homeomorphism
of the ball.

Theorem 3.4. Let C ⊂ R
N be a generalized cell and ϕ1, ϕ2 : B

n → C be two

characteristic maps. Then there exists a unique homeomorphism ψ : Bn → Bn

such that ϕ1 = ϕ2 ◦ ψ.

Proof. Since restriction of ϕi to Int(Bn) is injective, the composition
◦

ψ = ϕ−1
2 ϕ1

is well defined as a map Int(Bn) → Int(Bn). To show that it can be extended
to the boundary, note that it follows from Lemma 3.2 that one can find a cell

decomposition K of Bn such that
◦

ψ|Ki
is linear for every n-cell Ki ∈ K. This

immediately implies that
◦

ψ can be extended to a homeomorphism ψ : Bn → Bn.
�

It is easy to show that cone and join of generalized cells is again a generalized
cell. Namely, if C = ϕ(Bn) is a generalized cell, and aC is the cone of C, then the
map ϕ can be in an obvious way lifted to a map {pt} ∗Bn ≃ Bn+1 → aC, which is
easily seen to be regular. Thus, aC is a generalized cell. In the similar way, using
homeomorphism Bm ∗Bn ≃ Bm+n+1, one shows that if C1, C2 are generalized cells
that are independent, then the join C1C2 is also a generalized cell.

4. Generalized cell complexes

From now on, unless noted otherwise, the word “cell” stands for a

generalized cell.

Definition 4.1. A generalized cell complex (g.c.c.) is a finite collection K of
generalized cells in R

N such that
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(1) for any distinct A,B in K, we have

◦

A ∩
◦

B = ∅

(2) For any cell C ∈ K,
.

C is a union of cells.

Support |K| ⊂ R
N of a generalized cell complex K is defined by

|K| =
⋃

C∈K

C

A generalized cell decomposition of a compact polyhedron P ⊂ R
N is a general-

ized complex K such that |K| = P .

We define the dimension dimK of a generalized cell complex and the n-skeleton

Kn in the usual way. Also, if A,B ∈ K are cells such that A ⊂
.

B, we will say that
A is a face of B and write A < B; clearly this is only possible if dimA < dimB.

If K,L are g.c.c., we denote by K + L the complex obtained by taking all cells
of K and all cells of L, assuming that the result is again a g.c.c.

Example 4.2. (1) Any cell complex is automatically a g.c.c.
(2) A 0-dimensional g.c.c. is the same as finite collection of points. A 1-

dimensional g.c.c. is the same as a finite collection of points (vertices) and
non-intersecting arcs (1-cells) with endpoints at these vertices. Note that
loops are allowed.

(3) Figure 1 shows some examples of 2-dimensional g.c.c.

(a) (b) (c) (d)

Figure 1. Examples of 2-dimensional generalized cell complexes.
The last one can be visualized as a sheet of paper with a fold,
with the lower edge glued back to itself. Note that it only has four
1-cells: the lines showing where the paper was folded are not 1-
cells.

(4) Figure 2 shows a generalized cell decomposition of S1 × I × I consisting of
a single 3-cell, five 2-cells, eight 1-cells and 4 vertices.

Figure 2. A generalized cell decomposition of S1 × I × I
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Definition 4.3. Let K,L be g.c.c. A regular cellular map f : L → K is a map
f : |L| → |K| such that for every cell C ∈ L, C = ϕ(Bn), there exists a cell C′ ∈ K

such that C′ = f(C) and moreover, f ◦ ϕ : Bn → C′ is a characteristic map for C′.

In other words, such a map is allowed to identify different cells of L but is
injective on the interior of each cell.

An example of a regular cellular map is shown in Figure 3.

a1 a2

b1 b2

→ b

a

Figure 3. An example of a regular cellular map. It identifies
edges a1b1 and a2b2, sending each of them to edge ab.

5. PLCW complexes

In this section, we give the central definition of the paper.

Definition 5.1. A generalized cell complex (respectively, a generalized cell decom-
position) K will be called a PLCW complex (respectively, PLCW decomposition)
if dimK = 0, or dimK = n > 0 and the following conditions holds:

(1) Kn−1 is a PLCW complex
(2) For any n-cell A ∈ K, A = ϕ(Bn), there exists a PLCW decomposition

L of ∂Bn such that the restriction ϕ|∂Bn : L → Kn−1 is a regular cellular
map. (It follows from Theorem 3.4 that this condition is independent of
the choice of characteristic map ϕ.)

In other words, a PLCW is obtained by successively attaching balls, and the
attaching map should be a regular cellular map for some PLCW decomposition of
the boundary sphere.

Note that this definition is inductive: definition of an n-dimensional PLCW
complex uses definition of an (n− 1) dimensional PLCW complex.

Example 5.2. Among examples in Example 4.2, example 2(d) is not a PLCW
complex. All other are PLCW.

It is easy to show that for an n-cell A ∈ K and fixed choice of characteristic map
ϕ : Bn → A, the generalized cell decomposition L of ∂Bn used in Definition 5.1 is

unique. Indeed, the cells of L are closures of connected components of ϕ−1(
◦

Ki),
Ki ∈ Kn−1. We will call such an L the pullback of K under the map ϕ and denote
it by

(5.1) L = ϕ−1(K).

The following properties of PLCW complexes are immediate from the definition.

(1) |K| = ⊔C∈K

◦

C

(2) If A,B ∈ K are two cells, then A ∩B is a union of cells of K.

(3) For any n-cell C ∈ K,
.

C is a union of (n− 1)-cells of K.
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(4) Every PLCW complex is automatically a CW complex.

Note that not every CW complex is a PLCW complex, even if its cells are
polyhedra. For example, property (3) could fail for more general CW complexes.

The following two lemmas, proof of which is straightforward and left to the
reader, show that product and join of PLCW complexes is a PLCW complex.

Lemma 5.3. Let K,L be PLCW complexes in R
M , RN respectively. Define the

complex

K × L =
∑

Ki × Lj ⊂ R
M × R

N .

Then K × L is a PLCW complex with support |K| × |L|.

Lemma 5.4. Let K,L be PLCW complexes in R
N such that |K|, |L| are inde-

pendent: every point p ∈ |K||L| can be uniquely written in the form p = ax + by,

x ∈ |K|, y ∈ |L|, a, b ≥ 0, a+ b = 1. Define the join of them by

KL = K + L+
∑

KiLj , Ki ∈ K, Lj ∈ L

Then KL is a PLCW complex with support |K||L|.

The proof is straightforward and left to the reader.
Note that in the case K = {a} — a point, we see that the cone

aL = a+ L+
∑

aLi, Li ∈ L

of a PLCW complex is a PLCW complex.

6. Subdivisions

Definition 6.1. Let K,L be PLCW complexes. We say that L is a subdivision of

K (notation: L ⊳ K) if |K| = |L| and for any cell C ∈ K, we have
◦

C = ∪
◦

Li for
some collection of cells Li ∈ L.

Note that this implies that any cell Li ∈ L is a subset of one of the cells of K
(which is the usual definition of subdivision of cell complexes). Moreover, it is easy
to see that if K,L are cell complexes, then this definition is actually equivalent to
the usual definition of subdivision.

There is a special kind of subdivisions we will be interesed in.

Definition 6.2. Let K be a PLCW complex, C = ϕ(Bn) an n-cell, n > 0 and
L = ϕ−1(K) the pullback cell decomposition on ∂Bn (see (5.1)). We define the
radial subdivision of K to be the subdivision obtained by replacing the cell C by
the cone PLCW complex ϕ(O) + ϕ(OL1) + · · ·+ ϕ(OLk), where L = {L1, . . . , Lk}
and O ∈ Int(Bn) is the origin. (Recall that a cone of a PLCW complex is PLCW
complex, see Lemma 5.4.)

Figure 4 shows examples of radial subdivisions.
Note that this is very closely related to the usual notion of stellar subdivision

for simplicial complexes but it is not identical to it. Namely, for radial subdivision
we are subdividing just one cell C without changing the higher dimensional cells
adjacent to C (see the last example in Figure 4). Comparing it with the definition
of the stellar subdivision, we see that if K is a simplicial complex, C ∈ K — an

n-cell, and L— the stellar subdivision of K obtained by starring at a ∈
◦

C, then L
can also be obtained by
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⊲

⊲

⊲

Figure 4. Examples of radial subdivisions. Note that in the last
example, we are subdividing a 1-cell.

(1) Replacing C by the radial subdivision R
(2) Replacing every cell A = CB in the star of C by the complex RiB, Ri ∈ R.

Theorem 6.3. Any PLCW complex K has a subdivision T ⊳K which is a trian-

gulation; moreover, T can be obtained from K by a sequence of radial subdivisions.

Proof. Let K ′ be obtained from K by radially subdividing of each cell of K of
positive dimension in order of increasing dimension. Then it is easy to see that K ′

has the following property:

(6.1) For any C ∈ K ′, the characteristic map ϕ : Bn → C is injective

Now, let T be obtained by again doing the radial subdivision of each cell of K ′

in order of increasing dimension. It is easy to see that T is a triangulation: this

follows by induction from the fact that given a triangulation
.

T of Sn−1, the radial

subdivision a
.

T of Bn is a triangulation (which in turn follows from the fact that
the cone over a simplex is a simplex). �

7. Elementary subdivisions

The other type of subdivision will be called elementary subdivision. Informally,
these are obtained by dividing an n-cell into two n-cells separated by an (n−1)-cell.
To give a more formal definition, we need some notation.

Let H0 ⊂ R
n be hyperplane defined by equation xn = 0. It divides Rn into two

subspaces:

(7.1)
H+ = {(x1, . . . , xn) ∈ R

n | xn ≥ 0}

H− = {(x1, . . . , xn) ∈ R
n | xn ≤ 0}

For the n-ball Bn ⊂ R
n, define upper and lower halfballs

(7.2) Bn
+ = Bn ∩H+, Bn

− = Bn ∩H−

We also define the middle disk and the equator by

(7.3) Bn
0 = Bn ∩H0 ≃ Bn−1, E = Sn−1 ∩H0 ≃ Sn−2
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Lemma 7.1. Let K be a PLCW and C = ϕ(Bn) — an n-cell. Assume that the

pullback decomposition L = ϕ−1(K) of ∂Bn is such that the equator E ⊂ ∂Bn is a

union of cells of L. Let K ′ be the g.c.c. obtained by replacing C by the collection

of cells C+ = ϕ(Bn
+), C− = ϕ(Bn

−), C0 = ϕ(Bn
0 ).

Then K ′ is a PLCW complex; moreover, K ′ is a subdivision of K.

Definition 7.2. Let K,K ′ be as in Lemma 7.1. Then we say that K ′ is obtained
from K by an elementary subdivision of cell C; we will also say that K is obtained
from K ′ by erasing cell C0.

We will write K ∼
e
L if K can be obtained from L by a finite sequence of

elementary subdivisions and their inverses.

An example of elementary subdivision is shown in Figure 5.

⊳

Figure 5. An elementary subdivision

Remark 7.3. Not every subdivision can be obtained by a sequence of elementary
subdivisions. For example, the subdivision shown in Figure 6 can not be obtained
by a sequence of elementary subdivisions. However, it can be obtained by a sequence

⊳

Figure 6. A non-elementary subdivision

of elementary subdivisions and their inverses as shown in Figure 7.

⊲ ⊲ ⊲ ⊳ ⊳

Figure 7. Obtaining a non-elementary subdivision by a sequence
of elementary subdivisions and their inverses

Theorem 7.4. If M = KL is a join of two PLCW complexes and K ′ ⊳K — an

elementary subdivision of K, then M ′ = K ′L be obtained from M by a sequence of

elementary subdivisions.

Proof. If C ∈ K is an n-cell and C = C+ + C− + C0 its elementary subdivision
as in Lemma 7.1, and D is a cell in L, then CD = C+D + C−D + C0D is an
elementary subdivision of CD, which follows from existence of a homeomorphism
ψ : Bn∗Bm ∼

−→ Bm+n+1 such that ψ(Bn
0 ∗B

m) = Bm+n+1
0 , ψ(Bn

±∗Bm) = Bm+n+1
± .

Repeating it for every cell D ∈ L in order of increasing dimension, we see that K ′L

can be obtained from KL by a sequence of elementary subdivisions. �

Corollary 7.5. If K ∼
e
K ′, then KL ∼

e
K ′L.
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8. Main theorem

In this section, we formulate and prove the main theorem of this paper. Recall
the notation K ∼

e
L from Definition 7.2.

Theorem 8.1. Let K,K ′ be two PLCW decompositions of a compact polyhedron

X. Then K ∼
e
K ′.

Proof. We proceed by induction in n = dimX . If n = 0, there is nothing to prove.
So from now on, we assume that n > 0 and that the theorem is already proved for
all polyhedra of dimension less than n.

Step 1. Let X = Bn be an n-ball,
.

K – a PLCW decomposition of Sn−1 = ∂Bn,

and R = a
.

K — the corresponding radial cell decomposition of X , a ∈ Int(Bn).

Then R ∼
e
Bn +

.

K.

Indeed, let L be a PLCW decomposition of Sn−1 consisting of the upper and
lower hemispheres Sn−1

± ≃ Bn−1 and some PLCW decomposition L0 of the equator

E. By induction assumption,
.

K ∼
e
L; by Corollary 7.5, this implies

a
.

K ∼
e
aL = Bn

+ +Bn
− + Sn−1

+ + Sn−1
− + aL0.

By using the induction assumption again, aL0 ∼
e
Bn

0 + L0, so

a
.

K ∼
e
Bn

+ +Bn
− +Bn

0 + Sn−1
+ + Sn−1

− + L0 ∼
e
Bn + Sn−1

+ + Sn−1
− + L0 ∼

e
Bn +

.

K

Step 2. If K ′ is obtained from K by a sequence of radial subdivisions, then
K ′ ∼

e
K.

This follows from the previous step and definition.
Step 3. For any PLCW decomposition K, there is a triangulation T such that

K ∼
e
T .

Indeed, it follows from the previous step and Theorem 6.3.
Step 4. If T, T ′ are triangulations of X , then T ∼

e
T ′.

By Alexander’s theorem, T can be obtained from T ′ by a sequence of stellar
moves, so it suffices to prove the theorem in the case when T ′ is obtained from
T by starring at point a ∈ Int(C) for some simplex C ∈ T . By the discussion in
Section 6, we can also describe T ′ by replacing C by the radial subdivision C′ of
C and replacing every simplex A = CB in the star of C by C′B. By step 2 and
Corollary 7.5, this implies that T ′ ∼

e
K.

Combining steps 3 and 4 above, we arrive at the statement of the theorem. �

9. Orientations

Recall that the group of homeomorphisms of Bn has a homomorphism to Z2,
called orientation. Using this, we can define the notion of orientation of a cell.

Definition 9.1. Let C ⊂ R
N be a generalized n-cell. An orientation of C is an

equivalence class of characteristic maps Bn → C, where two characteristic maps
ϕ1, ϕ2 : B

n → C are equivalent if ψ = ϕ2ϕ
−1
1 : Bn → Bn is orientation-preserving.

An oriented cell C = (C, [ϕ]) is a pair consisting of a cell C and an orientation
[ϕ].
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Note that any convex n-cell C ⊂ R
n has a canonical orientation. Moreover, if

C ⊂ R
n is is a convex n-cell, and D ⊂ ∂C is a generalized (n− 1)-cell, then D has

a canonical orientation defined by the usual condition:

(9.1) ε(C,D) = 1

where ε(C,D) is the incidence number, defined in the same way as for CW cells
(see, e.g., [RS1982, Appendix A.7]).

Thus, if C is is a convex n-cell in R
n, and L – a PLCW decomposition of ∂C,

then each of (n− 1)-cells Li ∈ L has a canonical orientation.
The following definition generalizes this to an arbitrary oriented cell.

Definition 9.2. Let K be a PLCW complex, and C = (C, [ϕ]) — an oriented cell.
Let L = ϕ−1(K) be the pullback decomposition of ∂Bn. We define the boundary
∂C as a multiset (set with multiplicities) of oriented (n− 1)-cells

∂C =
⋃

(ϕ(Li), [ϕ ◦ ϕi])

where the union is over all (n − 1)-cells Li ∈ L, each taken with the natural
orientation [ϕi] defined by (9.1).

It is easy to see, using Theorem 3.4, that this definition does not depend on the
choice of characteristic map ϕ in the equivalence class.

Note that by definition of a PLCW, for each Li ∈ L, ϕ(Li) is an (n−1)-cell of K;
however, the same (n−1)-cellD ∈ K can appear in ∂C more than once, and possibly
with different orientations. Note also that passing from the multisets to the abelian
group generated by oriented cells, we get the usual definition of the boundary
operator in the chain complex of a CW complex. However, for applications to
topological field theory, the definition of the boundary as a multiset is much more
useful.

Example 9.3. Let C be the 2-cell shown below. Then ∂C = {a, ā, b}, where ā
denotes a with opposite orientation.

a

b

The proof of the following lemma is left to the reader as an exercise.

Lemma 9.4. Let X be an oriented PL manifold with boundary and K — a PLCW

decomposition of X. Then

∪C∂C =
(

∪DD
)

∪
(

∪FF ∪ F̄
)

where

• C runs over all n-cells of K, each taken with orientation induced by orien-

tation of X

• D runs over all (n−1) cells such that D ⊂ ∂X, each taken with orientation

induced by orientation of ∂X

• F runs over all (unoriented) (n− 1)-cells such that
◦

F ⊂ Int(X); F and F̄

are the two possible orientations of F .
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