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HOM-LIE ALGEBRAS WITH SYMMETRIC INVARIANT NONDEGENERATE

BILINEAR FORMS

SAÏD BENAYADI AND ABDENACER MAKHLOUF

Abstract. The aim of this paper is to introduce and study quadratic Hom-Lie algebras, which are
Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. We provide several construc-
tions leading to examples and extend the double extension theory to Hom-Lie algebras. We reduce the
case where the twist map is invertible to the study of involutive quadratic Lie algebras. We establish
a correspondence between the class of involutive quadratic Hom-Lie algebras and quadratic simple Lie
algebras with symmetric involution. Centerless involutive quadratic Hom-Lie algebras are character-

ized. Also elements of a representation theory for Hom-Lie algebras, including adjoint and coadjoint
representations are supplied with application to quadratic Hom-Lie algebras.

Introduction

The Hom-algebra structures arose first in quasi-deformation of Lie algebras of vector fields. Discrete
modifications of vector fields via twisted derivations lead to Hom-Lie and quasi-Hom-Lie structures in
which the Jacobi condition is twisted. The first examples of q-deformations, in which the derivations are
replaced by σ-derivations, concerned the Witt and Virasoro algebras, see for example [1, 11, 12, 13, 14,
15, 16, 24, 29, 22]. A general study and construction of Hom-Lie algebras are considered in [20, 25, 26]
and a more general framework bordering color and super Lie algebras was introduced in [20, 25, 26, 27].
In the subclass of Hom-Lie algebras skew-symmetry is untwisted, whereas the Jacobi identity is twisted
by a single linear map and contains three terms as in Lie algebras, reducing to ordinary Lie algebras
when the twisting linear map is the identity map.
The notion of Hom-associative algebras generalizing associative algebras to a situation where associativity
law is twisted by a linear map was introduced in [30], it turns out that the commutator bracket multipli-
cation defined using the multiplication in a Hom-associative algebra leads naturally to Hom-Lie algebras.
This provided a different way of constructing Hom-Lie algebras. The Hom-Lie-admissible algebras and
more general G-Hom-associative algebras with subclasses of Hom-Vinberg and pre-Hom-Lie algebras,
generalizing to the twisted situation Lie-admissible algebras, G-associative algebras, Vinberg and pre-Lie
algebras respectively, and shown that for these classes of algebras the operation of taking commutator
leads to Hom-Lie algebras as well. The enveloping algebras of Hom-Lie algebras were discussed in [39].
The fundamentals of the formal deformation theory and associated cohomology structures for Hom-Lie
algebras have been considered initially in [32] and completed in [2]. Simultaneously, in [40] elements of
homology for Hom-Lie algebras have been developed. In [31] and [33], the theory of Hom-coalgebras and
related structures are developed. Further development could be found in [3, 4, 10, 23, 41].
The quadratic Lie algebras, also called metrizable or orthogonal, are intensively studied, one of the
fundamental results of constructing and characterizing quadratic Lie algebras is due to Medina and
Revoy (see [34]) using double extension, while the concept of T ∗-extension is due to Bordemann (see [9]).
The T ∗-extension concerns nonassociative algebras with nondegenerate associative symmetric bilinear
form, such algebras are called metrizable algebas. In [9], the metrizable nilpotent associative algebras
and metrizable solvable Lie algebras are described. The study of graded quadratic Lie algebras could be
found in [6] .
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The purpose of this paper is to study and construct quadratic Hom-Lie algebras. In the first Section we
summarize the definitions and some key constructions of Hom-Lie algebras. Section 2 is dedicated to a
theory of representations of Hom-Lie algebras including adjoint and coadjoint representations. In Section
3 we introduce the notion of quadratic Hom-Lie algebra and give some properties. Several procedures of
construction leading to many examples are provided in Section 4. We show in Section 5 that there exists
biunivoque correspondence between some classes of Lie algebras and classes of Hom-Lie algebras. In
Section 6 we study simple and semisimple involutive Hom-Lie algebras. The last Section aims to extend
double extension theory to Hom-Lie algebras. We give a characterization of a class of quadratic Hom-Lie
algebras. Mainly we a give a structure theorem of centerless involutive quadratic Hom-Lie algebra.

1. Preliminaries

In the following we summarize the definitions of Hom-Lie and Hom-associative algebraic structures (see
[30]) generalizing the well known Lie and associative algebras. Also we define the notion of modules over
Hom-algebras.
Throughout the article we let K be an algebraically closed field of characteristic 0. We mean by a Hom-
algebra a triple (A, µ, α) consisting of a vector space A, a bilinear map µ and a linear map α. In all the
examples involving the unspecified products are either given by skewsymmetry or equal to zero.

1.1. Definitions. The notion of Hom-Lie algebra was introduced by Hartwig, Larsson and Silvestrov in
[20, 25, 26] motivated initially by examples of deformed Lie algebras coming from twisted discretizations
of vector fields. In this article, we follow notations and a slightly more general definition of Hom-Lie
algebras from [30].

Definition 1.1. A Hom-Lie algebra is a triple (g, [ , ], α) consisting of a linear space g on which [ , ] :
g× g → g is a bilinear map and α : g → g a linear map satisfying

[x, y] = −[y, x], (skew-symmetry)(1.1)

	x,y,z [α(x), [y, z]] = 0 (Hom-Jacobi condition)(1.2)

for all x, y, z from g, where 	x,y,z denotes summation over the cyclic permutation on x, y, z.

We recover classical Lie algebra when α = idg and the identity (1.2) is the Jacobi identity in this case.
Let (g, µ, α) and g′ = (g′, µ′, α′) be two Hom-Lie algebras. A linear map f : g → g′ is a morphism of
Hom-Lie algebras if

µ′ ◦ (f ⊗ f) = f ◦ µ and f ◦ α = α′ ◦ f.

In particular, Hom-Lie algebras (g, µ, α) and (g, µ′, α′) are isomorphic if there exists a bijective linear
map f such that

µ = f−1 ◦ µ′ ◦ (f ⊗ f) and α = f−1 ◦ α′ ◦ f.

A subspace I of g is said to be an ideal if for x ∈ I and y ∈ g we have [x, y] ∈ I and α(x) ∈ I. A Hom-Lie
algebra in which the commutator is not identically zero and which has no proper ideals is called simple.

Example 1.2. Let {x1, x2, x3} be a basis of a 3-dimensional linear space g over K. The following bracket
and linear map α on g = K3 define a Hom-Lie algebra over K:

[x1, x2] = ax1 + bx3
[x1, x3] = cx2
[x2, x3] = dx1 + 2ax3,

α(x1) = x1
α(x2) = 2x2
α(x3) = 2x3

with [x2, x1], [x3, x1] and [x3, x2] defined via skewsymmetry. It is not a Lie algebra if and only if a 6= 0
and c 6= 0, since

[x1, [x2, x3]] + [x3, [x1, x2]] + [x2, [x3, x1]] = acx2.
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Example 1.3 (Jackson sl2). The Jackson sl2 is a q-deformation of the classical sl2. It carries a Hom-Lie
algebra structure but not a Lie algebra structure. It is defined with respect to a basis {x1, x2, x3} by the
brackets and a linear map α such that

[x1, x2] = −2qx2
[x1, x3] = 2x3
[x2, x3] = − 1

2 (1 + q)x1,

α(x1) = qx1
α(x2) = q2x2
α(x3) = qx3

where q is a parameter in K. if q = 1 we recover the classical sl2.

For simplicity we will use in the sequel the following terminology and notations.

Definition 1.4. Let (g, [·, ·], α) be a Hom-Lie algebra. The Hom-algebra is called

• multiplicative Hom-Lie algebra if ∀x, y ∈ g we have α([x, y]) = [α(x), α(y)];
• regular Hom-Lie algebra if α is an automorphism;
• involutive Hom-Lie algebra if α is an involution, that is α2 = id.

The center of the Hom-Lie algebra is denoted Z(g) and defined by

Z(g) = {x ∈ g : [x, y] = 0 ∀y ∈ g}.

We recall in the following the definition of Hom-associative algebra which provide a different way for
constructing Hom-Lie algebras by extending the fundamental construction of Lie algebras from associative
algebras via commutator bracket multiplication. This structure was introduced by the second author and
Silvestrov (see [30]).

Definition 1.5. A Hom-associative algebra is a triple (A, µ, α) consisting of a linear space A, µ : A×A→
A is a bilinear map and α : A→ A is a linear map, satisfying

(1.3) µ(α(x), µ(y, z)) = µ(µ(x, y), α(z)).

There is a functor from the category of Hom-associative algebras in the category of Hom-Lie algebras.

Proposition 1.6 ([30]). Let (A, µ, α) be a Hom-associative algebra defined on the linear space A by the
multiplication µ and a homomorphism α. Then the triple (A, [ , ], α), where the bracket is defined for
x, y ∈ A by [x, y] = µ(x, y)− µ(y, x), is a Hom-Lie algebra.

A structure of module over Hom-associative algebras is defined in [31] and [33] as follows.

Definition 1.7. Let (A, µ, α) be a Hom-associative algebra. A (left) A-module is a triple (M, f, γ) where
M is a K-vector space and f, γ are K-linear maps, f : M → M and γ : A ⊗M → M , such that the
following diagram commutes:

A⊗A⊗M
µ⊗f
−→ A⊗Myα⊗γ ↓γ

A⊗M
γ

−→ M

Remark 1.8. A Hom-associative algebra (A, µ, α) is a left A-module with M = A, f = α and γ = µ.

The following result shows that Lie algebras deform into Hom-Lie algebras via endomorphisms.

Theorem 1.9 ([40]). Let (g, [ , ]) be a Lie algebra and α : g → g be a Lie algebra endomorphism. Then
gα = (g, [ , ]α, α) is a Hom-Lie algebra, where [ , ]α = α ◦ [ , ].
Moreover, suppose that (g′, [ , ]′) is another Lie algebra and α′ : g′ → g′ is a Lie algebra endomorphism.
If f : g → g′ is a Lie algebra morphism that satisfies f ◦ α = α′ ◦ f then

f : (g, [ , ]α, α) −→ (g′, [ , ]′α′ , α
′)

is a morphism of Hom-Lie algebras.

Proof. Observe that [α(x), [y, z]α]α = α[α(x), α[y, z]] = α2[x, [y, z]]. Therefore the Hom-Jacobi identity
for gα = (g, [ , ]α, α) follows obviously from the Jacobi identity of (g, [ , ]). The skew-symmetry and the
second assertion are proved similarly. �
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In the sequel we denote by gα the Hom-Lie algebra (g, α ◦ [ , ], α) corresponding to a given Lie algebra
(g, [ , ]) and an endomorphism α. We say that the Hom-Lie algebra is obtained by composition.
Let (g, [ , ], α) be a regular Hom-Lie algebra. It was observed in [19] that the composition method using
α−1 leads to a Lie algebra.

Proposition 1.10. Let (g, [ , ], α) be a regular Hom-Lie algebra. Then (g, [ , ]α−1 = α−1 ◦ [ , ]) is a Lie
algebra.

Proof. It follows from

	x,y,z [x, [y, z]α−1 ]α−1 =	x,y,z α
−1([x, α−1([y, z])]) =	x,y,z α

−2[α(x), [y, z]] = 0.

�

Remark 1.11. In particular the proposition is valid when α is an involution.

We may also derive new Hom-Lie algebras from a given multiplicative Hom-Lie algebra using the following
procedure.

Definition 1.12 ([42]). Let (g, [ , ], α) be a multiplicative Hom-Lie algebra and n ≥ 0. The nth derived
Hom-algebra of g is defined by

(1.4) g(n) =
(
g, [ , ](n) = αn ◦ [ , ], αn+1

)
,

Note that g(0) = g and g(1) =
(
g, [ , ](1) = α ◦ [ , ], α2

)
.

Observe that for n ≥ 1 and x, y, z ∈ g we have

[[x, y](n), αn+1(z)](n) = αn([αn([x, y]), αn+1(z)])

= α2n([[x, y], α(z)]).

Hence, one obtains the following result.

Theorem 1.13 ([42]). Let (g, [ , ], α) be a multiplicative Hom-Lie algebra. Then its nth derived Hom-
algebra is a Hom-Lie algebra.

In the following we construct Hom-Lie algebras involving elements of the centroid of Lie algebras. Let
(g, [·, ·]) be a Lie algebra. An endomorphism θ ∈ End(g) is said to be an element of the centroid if
θ[x, y] = [θ(x), y] for any x, y ∈ g. The centroid is defined by

Cent(g) = {θ ∈ End(g) : θ[x, y] = [θ(x), y], ∀x, y ∈ g}.

The same definition is assumed for Hom-Lie algebra.

Proposition 1.14. Let (g, [·, ·]) be a Lie algebra and θ ∈ Cent(g). Set for x, y ∈ g

{x, y} = [θ(x), y],

[x, y]θ = [θ(x), θ(y)].

Then (g, {·, ·}, θ) and (g, [·, ·]θ, θ) are Hom-Lie algebras.

Proof. For θ ∈ Cent(g) we have [θ(x), y] = θ([x, y]) = −θ([y, x]) = −[θ(y), x] = [x, θ(y)]. Then

{x, y} = [θ(x), y] = −[θ(y), x] = −θ[y, x] = −{y, x}.

Also we have

{θ(x), {y, z}} = [θ2(x), {y, z}] = [θ2(x), [θ(y), z]]

= θ([θ(x), [θ(y), z]]) = [θ(x), θ([θ(y), z])]

= [θ(x), [θ(y), θ(z)]].

It follows 	x,y,z {θ(x), {y, z}} =	x,y,z [θ(x), [θ(y), θ(z)]] = 0 since (g, [ , ]) is a Lie algebra. Therefore
the Hom-Jacobi is satisfied. Thus (g, {·, ·}, θ) is a Hom-Lie algebra.
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Similarly we have the skewsymmetry and the Hom-Jacobi identity satisfied for (g, [·, ·]θ, θ). Indeed

[x, y]θ = [θ(x), θ(y)] = −[θ(y), θ(x)] = −[y, x]θ.

and

[θ(x), [y, z]θ]θ = [θ2(x), θ([y, z]θ)] = [θ2(x), θ([θ(y), θ(z)]] = θ2([θ(x), [θ(y), θ(z)]].

which leads to 	x,y,z [θ(x), [y, z]θ]θ = θ2(	x,y,z [θ(x), [θ(y), θ(z)]]) = 0. �

2. Representations of Hom-Lie algebras

In this section we introduce a representation theory of Hom-Lie algebras and discuss the cases of ad-
joint and coadjoint representations for Hom-Lie algebras. The representations of Hom-Lie algebras were
considered independently in a general framework in [36]. Moreover the author give the corresponding
coboundary operator, the cohomologies associated to the adjoint representations and the trivial repre-
sentation are explicitly defined. Notice that the coadjoint representations are not discussed there.

Definition 2.1. Let (g, [ , ], α) be a Hom-Lie algebra. A representation of g is a triple (V, ρ, β), where
V is a K-vector space, β ∈ End(V ) and ρ : g → End(V ) is a linear map satisfying

(2.1) ρ([x, y]) ◦ β = ρ(α(x)) ◦ ρ(y)− ρ(α(y)) ◦ ρ(x) ∀x, y ∈ g

One recovers the definition of a representation in the case of Lie algebras by setting α = Idg and β = IdV .

Definition 2.2. Let (g, [ , ], α) be a Hom-Lie algebra. Two representations (V, ρ, β) and (V ′, ρ′, β′) of g
are said to be isomorphic if there exists a linear map φ : V → V ′ such that

∀x ∈ g ρ′(x) ◦ φ = φ ◦ ρ(x) and φ ◦ β = β′ ◦ φ.

in the following, we discuss some properties of Hom-Lie algebras representations.

Proposition 2.3. Let (g, [ , ]g, α) be a Hom-Lie algebra and (V, ρ, β) be a representation of g.
The direct summand g⊕ V with a bracket defined by

(2.2) [x+ u, y + w] := [x, y]g + ρ(x)(w) − ρ(y)(u) ∀x, y ∈ g ∀u,w ∈ V

and the twisted map γ : g⊕ V → g⊕ V defined by

(2.3) γ(x+ w) = α(x) + β(u) ∀x ∈ g ∀u ∈ V.

is a Hom-Lie algebra.

Proof. The skew-symmetry of the bracket is obvious. We show that the Hom-Jacobi identity is satisfied:
Let x, y, z ∈ g and ∀u, v, w ∈ V.

	(x,u),(y,v),(z,w) [γ(x+ u), [y + v, z + w]] =	(x,u),(y,v),(z,w) [α(x) + β(u), [y, z]g + ρ(y)(w) − ρ(z)(v)]

=	(x,u),(y,v),(z,w) [α(x), [y, z]g]g + ρ(α(x)(ρ(y)(w) − ρ(z)(v)) − ρ([y, z]g)(β(u))

=	(x,u),(y,v),(z,w) ρ(α(x)(ρ(y)(w)) − ρ(α(x)(ρ(z)(v)) − ρ(α(y)(ρ(z)(u)) + ρ(α(z)(ρ(y)(u))

= ρ(α(x)(ρ(y)(w)) − ρ(α(x)(ρ(z)(v)) − ρ(α(y)(ρ(z)(u)) + ρ(α(z)(ρ(y)(u))

+ρ(α(y)(ρ(z)(u))− ρ(α(y)(ρ(x)(w)) − ρ(α(z)(ρ(x)(v)) + ρ(α(x)(ρ(z)(v))

+ρ(α(z)(ρ(x)(v)) − ρ(α(z)(ρ(y)(u)) − ρ(α(x)(ρ(y)(w)) + ρ(α(y)(ρ(x)(w))

= 0

where 	(x,u),(y,v),(z,w) denotes summation over the cyclic permutation on (x, u), (y, v), (z, w). �

Now, we discuss the adjoint representations of a Hom-Lie algebra.

Proposition 2.4. Let (g, [ , ], α) be a Hom-Lie algebra and ad : g → End(g) be an operator defined for
x ∈ g by ad(x)(y) = [x, y]. Then (g, ad, α) is a representation of g.
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Proof. Since g is Hom-Lie algebra, the Hom-Jacobi condition on x, y, z ∈ g is

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0

and may be written

ad[x, y](α(z)) = ad(α(x))(ad(y)(z))− ad(α(y))(ad(x)(z))

Then the operator ad satisfies

ad[x, y] ◦ α = ad(α(x)) ◦ ad(y)− ad(α(y)) ◦ (ad(x).

Therefore, it determines a representation of the Hom-Lie algebra g. �

We call the representation defined in the previous proposition adjoint representation of the Hom-Lie
algebra.
In the following, we explore the dual representations and coadjoint representations of Hom-Lie algebras.
Let (g, [ , ], α) be a Hom-Lie algebra and (V, ρ, β) be a representation of g. Let V ∗ be the dual vector
space of V . We define a linear map ρ̃ : g → End(V ∗) by ρ̃(x) = −tρ(x).
Let f ∈ V ∗, x, y ∈ g and u ∈ V . We compute the right hand side of the identity (2.1)

(ρ̃(α(x)) ◦ ρ̃(y)− ρ̃(α(y)) ◦ ρ̃(x))(f)(u) = (ρ̃(α(x))(ρ̃(y)(f))− ρ̃(α(y))(ρ̃(x)(f)))(u)

= −ρ̃(y)(f)(ρ(α(x))(u)) + ρ̃(x)(f)(ρ(α(y))(u))

= f(ρ(y)ρ(α(x))(u)) − f(ρ(x)ρ(α(y))(u))

= f(ρ(y)ρ(α(x)) − ρ(x)ρ(α(y))(u)).

On the other hand, we set that the twisted map for ρ̃ is β̃ =t β, then the left hand side of (2.1) writes

((ρ̃([x, y])β̃)(f))(u) = (ρ̃([x, y])(f ◦ β)(u),

= −f ◦ β(ρ([x, y])(u)).

Therefore, we have the following proposition:

Proposition 2.5. Let (g, [·, ·], α) be a Hom-Lie algebra and (V, ρ, β) be a representation of g.

The triple (V ∗, ρ̃, β̃), where ρ̃ : g → End(V ∗) is given by ρ̃(x) = −tρ(x), defines a representation of the
Hom-Lie algebra (g, [·, ·], α) if and only if

(2.4) β ◦ ρ([x, y]) = ρ(x)ρ(α(y)) − ρ(y)ρ(α(x)).

We obtain the following characterization in the case of adjoint representation.

Corollary 2.6. Let (g, [ , ], α) be a Hom-Lie algebra and (g, ad, α) be the adjoint representation of g,

where ad : g → End(g). We set ãd : g → End(g∗) and ãd(x)(f) = −f ◦ ad(x).

Then (g∗, ãd, α̃) is a representation of g if and only if

(2.5) α([[x, y], z]) = [x, [α(y), z]]− [y, [α(x), z]] ∀x, y, z ∈ g.

3. Definition and properties of Quadratic Hom-Lie algebras

In this section we extend the notion of quadratic Lie algebra to Hom-Lie algebras and provide some
properties.
Let (g, [ , ]) be a Lie algebra and B : g× g → K a symmetric nondegenerate bilinear form satisfying

(3.1) B([x, y], z) = B(x, [y, z]) ∀x, y, z ∈ g.

The identity (3.1) may be written B([x, y], z) = −B(y, [x, z]) and is called invariance of B. The bilinear
form B is called, with misuse of language, invariant scalar product. The triple (g, [ , ], B) is called
quadratic Lie algebra or sometimes orthogonal Lie algebra.
More generally, for nonassociative algebras (A, ·), a triple (A, ·, B) where B is a symmetric nondegenerate
bilinear form satisfying

(3.2) B(x · y, z) = B(x, y · z) ∀x, y, z ∈ A



HOM-LIE ALGEBRAS WITH SYMMETRIC INVARIANT NONDEGENERATE BILINEAR FORMS 7

defines a quadratic algebra, called also metrizable algebra. A bilinear form B satisfying (3.2) is said
either associative form or invariant form.

Definition 3.1. Let (g, [ , ], α) be a Hom-Lie algebra and B : g × g → K be an invariant symmetric
nondegenerate bilinear form satisfying

(3.3) B(α(x), y) = B(x, α(y)) ∀x, y ∈ g.

The quadruple (g, [ , ], α,B) is called quadratic Hom-Lie algebra.
If α is an involution (resp. invertible), the quadratic Hom-Lie algebra is said to be involutive (resp.
regular) quadratic Hom-Lie algebra and we write for shortness IQH-Lie algebra (resp. RQH-Lie algebra).

We recover the classical notion of quadratic Lie algebra when α is the identity map. One may consider a
larger class with a definition without condition (3.3). We may also introduce in the following a generalized
quadratic Hom-Lie algebra notion where the invariance is twisted by a linear map.

Definition 3.2. A Hom-Lie algebra (g, [ , ], α) is called Hom-quadratic if there exist a pair (B, γ) where
B : g× g → K is a symmetric nondegenerate bilinear form and γ : g → g is a linear map satisfying

(3.4) B([x, y], γ(z)) = −B(γ(y), [x, z]) ∀x, y, z ∈ g

We call the identity (3.4) the γ-invariance of B. We recover the quadratic Hom-Lie algebras when γ = id.

3.1. Quadratic Hom-Lie algebras and Representation theory. We establish in the following a
connection between quadratic Hom-Lie algebras and representation theory.

Proposition 3.3. Let (g, [·, ·], α) be a Hom-Lie algebra. If there exists B : g × g → K a bilinear form
such that the quadruple (g, [·, ·], α,B) is a quadratic Hom-Lie algebra then

(1) (g∗, ãd, α̃) is a representation of g

(2) The representations (g, ad, α) and (g∗, ãd, α̃) are isomorphic.

Proof. To prove the first assertion, we should show that for any z we have

(3.5) α ◦ ad([x, y])(z)− ρ(x)ad(α(y))(z) + ad(y)ad(α(x))(z) = 0,

that is
α[[x, y], z]− [x, [α(y), z]] + [y, [α(x), z]] = 0.

Let u ∈ g

B(α[[x, y], z]− [x, [α(y), z]] + [y, [α(x), z]], u) =B(α[[x, y], z], u)−B([x, [α(y), z]], u) +B([y, [α(x), z]], u)

=B([[x, y], z], α(u)) +B([α(y), z], [x, u]) −B([α(x), z], [y, u])

=− (B(z, [[x, y], α(u)]) +B(z, [α(y), [x, u]])−B(z, [α(x), [y, u]]))

=− (B(z, [[x, y], α(u)] + [α(y), [x, u]]) − [α(x), [y, u]])

=− (B(z, [α(u), [y, x]]) + [α(y), [x, u]]) + [α(x), [u, y]]))

=0.

The identity 3.5 since B is nondegenerate.
For the second assertion we consider the map φ : g → g⋆ defined by x → B(x, ·) which is bijective since
B is nondegenerate and prove that it is also a module morphism. �

3.2. Ideals and Decompositions of Quadratic Hom-Lie algebras. We introduce the following
definitions and give some properties related to ideals of Hom-Lie algebras.

Definition 3.4. Let (g, [·, ·], α,B) be a quadratic Hom-Lie algebra.

(1) An ideal I of g is said to be nondegenerate if B|I×I is nondegenerate.
(2) The quadratic Hom-Lie algebra is said to be irreducible (or B-irreducible) if g doesn’t contain

any nondegenerate ideal I such that I 6= {0} and I 6= g.
(3) Let I be an ideal of g. The orthogonal I⊥ of I with respect to B is defined by {x ∈ g : B(x, y) =

0 ∀y ∈ I}.
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Remark 3.5. Let I be a nondegenerate ideal of a quadratic Hom-Lie algebra (g, [·, ·], α,B).
Then (I, [ , ]|I×I , α|I, B|I×I) is a quadratic Hom-Lie algebra.

Lemma 3.6. Let (g, [·, ·], α) be a multiplicative Hom-Lie algebra. Then the center Z(g) is an ideal of g.

Proof. We have [g,Z(g)] = {0} ⊆ Z(g). Let x ∈ Z(g) and y ∈ g. For any z ∈ g the invariance and
the symmetry of B leads to B([α(x), y], z) = B(α(x), [y, z]) = B(x, α([y, z])) = B(x, [α(y), α(z)]) =
B([x, α(y)], α(z)]) = 0 (since x ∈ Z(g)).
Then for any y ∈ g we have [α(x), y] = 0 since B is nondegenerate. Thus α(x) ∈ Z(g). �

Lemma 3.7. Let (g, [·, ·], α,B) be a quadratic Hom-Lie algebra and I be an ideal of g. Then the orthogonal
I⊥ of I with respect to B is an ideal of g.

Proof. It is clear that [g, I⊥] ⊆ I⊥. Let y ∈ I and z ∈ I⊥, then B(α(y), z) = B(y, α(z)) = 0 since
α(I) ⊆ I. We conclude that I⊥ is an ideal of g. �

Proposition 3.8. Let (g, [·, ·], α,B) be a quadratic Hom-Lie algebra. Then g = g1 ⊕ · · · ⊕ gn such that

(1) gi is an irreducible ideal of g, for any i ∈ {1, · · · , n},
(2) B(gi, gj) = {0}, for any i, j ∈ {1, · · · , n} such that i 6= j,

(3) (gi, [·, ·]|gi×gi
, α|gi

, B|gi×gi
) is an irreducible quadratic Hom-Lie algebra.

Proof. By induction on the dimension of g. �

Now, let g = (g, [ , ], α,B) be a quadratic multiplicative Hom-Lie algebra. We provide in the following
some observations.

Proposition 3.9. If the linear map α is an automorphism and the center Z(g) = {0} then α is an
involution i.e. α2 = id.

Proof. Let x, y, z ∈ g, we have

B([α(x), y], z) = B(α(x), [y, z]) = B(x, α([y, z])

= B(x, [α(y), α(z)]) = B([x, α(y)], α(z))

= B(α([x, α(y)]), z) = B([α(x), α2(y)], z).

Then B([α(x), y]− [α(x), α2(y)], z) = 0 which may be written B([α(x), y−α2(y)], z) = 0. Hence, for any
x, y ∈ g we have [α(x), (id − α2)(y)] = 0. Since α is bijective and Z(g) = {0} then α2 = id. �

Proposition 3.10. There exist two nondegenerate ideals I, J of g = (g, [ , ], α,B) such that

(1) B(I, J) = {0},
(2) g = I ⊕ J ,
(3) α|I is nilpotent and α|J is invertible.

Proof. The fitting decomposition with respect to the linear map α leads to the existence of an integer n
such that g = I ⊕ J , where I = Ker(αn) and J = Im(αn), satisfying

• α(I) ⊆ I,
• α(J) ⊆ I,
• α|I is nilpotent,
• α|J is invertible.

Let x ∈ g, y ∈ I. We have αn([x, y]) = [αn(x), αn(y)] = 0 since αn(y) = 0, and [x, y] ∈ I. Then [g, I] ⊆ I.
In addition αn(α(y)) = αn+1(y) = 0 which implies that α(y) ∈ Ker(αn). Therefore I is an ideal of g.
Let x, y ∈ J then there exist x′, y′ ∈ g such that x = αn(x′) and y = αn(y′). We have [x, y] =
[αn(x′), αn(y′)] = αn([x′, y′]) ∈ J. In addition α(J) ⊆ J . Therefore J is a subalgebra.
Let x ∈ I and y ∈ J . There exists y′ ∈ g such that y = αn(y′). For any z ∈ g, we have B([x, y], z) =
−B([y, x], z) = −B(y, [x, z]) = −B(αn(y′), [x, z]) = −B(y′, αn([x, z]) = −B(y′, [αn(x), αn(z)]) = 0. Then
[x, y] = 0, since B is a nondegenerate bilinear form. We conclude that I = Im(αn) is an ideal of g and
[I, J ] = 0.
Now let x ∈ I and y = αn(y′) ∈ J , where y′ ∈ g. We have B(x, y) = B(x, αn(y′)) = B(αn(x), y′) = 0
since αn(x) = 0. Therefore B(I, J) = 0. �
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Corollary 3.11. Let (g, [·, ·], α,B) be a quadratic Hom-Lie algebra which is B-irreducible. Then either
α is nilpotent or α is an automorphism of g.

4. Construction of Quadratic Hom-Lie algebras and Examples

We show in the following some constructions leading to new examples of quadratic Hom-Lie algebras. We
use Theorem 1.9 and Theorem 1.13 to provide some classes of quadratic Hom-Lie algebras starting from
an ordinary quadratic Lie algebras, respectively from any multiplicative quadratic Hom-Lie algebra. Also
we provide constructions using elements in the centroid of a Lie algebras and constructions of T ∗-extension
type.
Let (g, [ , ], B) be a quadratic Lie algebra. We denote by AutS(g, B) the set of symmetric automorphisms
of g with respect of B, that is automorphisms f : g → g such that B(f(x), y) = B(x, f(y)), ∀x, y ∈ g.

Proposition 4.1. Let (g, [ , ], B) be a quadratic Lie algebra and α ∈ AutS(g, B).
Then gα = (g, [ , ]α, α,Bα), where for any x, y ∈ g

[x, y]α = [α(x), α(y)](4.1)

Bα(x, y) = B(α(x), y),(4.2)

is a quadratic Hom-Lie algebra.

Proof. The triple (g, [ , ]α, α) is a Hom-Lie algebra by Theorem 1.9.
The linear form Bα is nondegenerate since B is nondegenerate and α bijective.
We show that the identity (3.1) is satisfied by gα = (g, [ , ]α, α,Bα). Let x, y, z ∈ g, then

Bα([x, y]α, z) = B(α([α(x), α(y)]), z)

= B([α(x), α(y)], α(z))

= B(α(x), [α(y), α(z)]) (Invariance of B)

= B(α(x), [y, z]α)

= Bα(x, [y, z]α).

Therefore Bα is invariant.
We have α ∈ AutS(gα, Bα). Indeed

α([x, y]α) = α([α(x), α(y)]) = [α2(x), α2(y)] = [α(x), α(y)]α,

and

Bα(α(x), y) = B(α(α(x)), y) = B(α(x), α(y)) = Bα(x, α(y)).

�

The following theorem permits to obtain new quadratic Hom-Lie algebras starting from a multiplicative
quadratic Hom-Lie algebra.

Proposition 4.2. Let (g, [ , ], α,B) be a multiplicative quadratic Hom-Lie algebra. For any n ≥ 0, the
quadruple

(4.3) g(n) =
(
g, [ , ](n) = αn ◦ [ , ], αn+1, Bαn

)
,

where Bαn is defined for x, y ∈ g by Bαn(x, y) = B(αn(x), y), determine a multiplicative quadratic
Hom-Lie algebra.

Proof. The triple g(n) =
(
g, [ , ](n) = αn ◦ [ , ], αn+1

)
is a Hom-Lie algebra by Theorem 1.13.

Since α ∈ Aut(g) by induction we have αn ∈ Aut(g). The bilinear form Bαn is nondegenerate because B
is nondegenerate and αn is bijective. It is is symmetric. Indeed

Bαn(x, y) = B(αn(x), y) = B(x, αn(y)) = B(αn(y), x) = Bαn(y, x).
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The invariance of Bαn is given by

Bαn([x, y]n, z) = B(αn ◦ αn([x, y]), z) = B(αn([x, y]), αn(z)) = B([αn(x), αn(y)], αn(z))

= B(αn(x), [αn(y), αn(z)]) = B(αn(x), αn([y, z])) = Bαn(x, [y, z]n).

We have also Bαn(αn(x), y) = Bαn(x, αn(y)), indeed

Bαn(αn(x), y) = B(α2n(x), y) = B(αn(x), αn(y)) = Bαn(x, αn(y)).

�

We provide here a construction a Hom-Lie algebra L which is a generalization of the trivial T ∗-extension
introduced by M. Bordemann [9] and also the double extension of {0} by L see [34].

Proposition 4.3. Let (g, [ , ]g) be a Lie algebra and g∗ be the underlying dual vector space. The vector
space L = g⊕ g∗ equipped with the following product

(4.4) [ , ] :
L × L → L

(x + f, y + h) 7→ [x, y]g + f ◦ ady − h ◦ adx

and a bilinear form

(4.5) B :
L× L → K

(x+ f, y + h) 7→ f(y) + h(x)

is a quadratic Lie algebra, which we denote by L.

In the sequel we denote L by T ∗(g) and B by B0.

Theorem 4.4. Let (g, [ , ]) be a Lie algebra and α ∈ Aut(g). Then the endomorphism Ω := α + tα of
T ∗(g) is a symmetric automorphism of T ∗(g) with respect to B0 if and only if Im(α2− id) ⊆ Z(g), where
Z(g) is the center of g.
Hence, if Im(α2 − id) ⊆ Z(g) then (T ∗

0 (g)Ω, [ , ]Ω,Ω, BΩ) is a RQH-Lie algebra where Ω = α+ tα.

Proof. Let x, y ∈ g and f, h ∈ g∗.

Ω([x+ f, y + h]) = Ω([x, y]g + f ◦ ady − h ◦ adx)

= α([x, y]g) + f ◦ ady ◦ α− h ◦ adx ◦ α,

and

[Ω(x+ f),Ω(y + h)] = [α(x) + f ◦ α, α(y) + h ◦ α]

= [α(x), α(y)]g + f ◦ α ◦ adα(y)− h ◦ α ◦ adα(x),

Then Ω([x + f, y + h]) = [Ω(x+ f),Ω(y + h)] if and only if

∀x, y ∈ g, f ◦ ady ◦ α− h ◦ adx ◦ α = f ◦ α ◦ adα(y)− h ◦ α ◦ adα(x).

That is for all z ∈ g

f([y, α(z)])− h([x, α(z)]) = f(α[α(y), z])− h(α[α(x), z]).

Hence, Ω is an automorphism of T ∗(g) if and only if f([x, α(y)]) = f(α[α(x), y]), ∀f ∈ g∗ ∀x, y ∈ g, which
is equivalent to [x, α(y)] = α[α(x), y] ∀x, y ∈ g.

As a consequence, Ω ∈ Aut(T ∗
0 (g)) if and only if [α2(x)−x, α(y)]g = 0 ∀x, y ∈ g, ie. Im(α2− id) ⊆ Z(g),

since α ∈ Aut(g).
In the following we show that Ω is symmetric with respect to B0. Indeed, let x, y ∈ g and f, h ∈ g∗
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B0(Ω(x + f), y + h) = B0(α(x) + f ◦ α, y + h)

= f ◦ α(y) + h(α(x))

= f ◦ α(y) + h ◦ α(x)

= B0(x+ f, α(y) + h ◦ α)

= B0(x+ f,Ω(y + h)).

The last assertion is a consequence of the previous calculations and Proposition 2.3. �

In the following we provide examples which show that the class of Lie algebras with automorphisms
satisfying the condition Im(α2(x) − x) ∈ Z(g) is large. We consider first Lie algebras with involutions.

Corollary 4.5. Let (g, [ , ]g) be a Lie algebra and θ ∈ Aut(g) such that θ2 = id (θ is an involution),
then θ2(x)−x = 0 ∈ Z(g), ∀x ∈ g. Thus (T ∗

0 (g)Ω, [ , ]Ω,Ω, BΩ) is a RQH-Lie algebra where Ω = α+ tα.

Example 4.6. Recall that considering an involution on a Lie algebra g is equivalent to have a Z2-
graduation on g. The Lie algebras with involutions are called symmetric (see [17] [38]).
It is well known that starting from a Lie algebra one may construct a symmetric Lie algebra in the
following way :
Let (g, [·, ·]) be a Lie algebra, we consider the Lie algebra (L, [·, ·]L) where L = g × g and the bracket
defined by for all x, y, x′, y′ ∈ g by [(x, y), (x′, y′)]L := ([x, x′], [y, y′]).

It is easy to check that the map θ :
L → L

(x, y) 7→ (y, x)
is an automorphism of L.

Then the trivial T ∗-extension of L has Ω = θ + tθ as a symmetric automorphism with respect to B0.
Moreover, Ω is an involution. According to corollary 4.5, we have (T ∗

0 (L)Ω, [ , ]Ω,Ω, (B0)Ω) is a quadratic
Hom-Lie algebra.

Example 4.7. Let (g, [·, ·]) be a semisimple Lie algebra with an involution θ. Recall that the classifi-
cation of semisimple Lie algebras with involutions could be found in [28]. The Killing form K of g is
nondegenerate and θ is symmetric with respect to K. Then (gθ, [ , ]θ, θ,Kθ) is a RQH-Lie algebra.
For example, let g = sln(K) (with n ≥ 2). The linear map θ : g → g defined for all x ∈ g by θ(x) = −tx

is an involution automorphism. Therefore we endow (sln(K))θ with a RQH-Lie algebra structure.

Example 4.8. We show an example of Lie algebra g with automorphisms α which are not involutions
and satisfying Im(α2 − id) ⊆ Z(g).
Let g be a finite-dimensional vector space and A = {x0, · · · , xn}, (n ≥ 1) be a basis of g. We define on g

a structure of Lie algebra by

[x0, xi] = xi+1, ∀i ∈ {1, · · · , n− 1}

The others brackets are defined obtained by skewsymmetry or equal to zero.
This Lie algebra is nilpotent and called filiform Lie algebra, its center is the subvector space generated by
< xn >.
The endomorphism α : g → g defined by

α(x0) = x0 + λxn, where λ ∈ K \ {0},

α(xi) = xi, ∀i ∈ {1, · · · , n}

is an automorphism of g satisfying

α2(x0) = x0 + 2λxn,

α2(xi) = xi, ∀i ∈ {1, · · · , n}

Therefore (α2 − id)(g) ⊆ Z(g) and α2 6= id. According to Theorem 4.4, (T ∗
0 (L)Ω, [ , ]Ω,Ω, (B0)Ω), where

Ω = α+t α, is a RQH-Lie algebra.
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Example 4.9 (Nonabelian 2-nilpotent Lie algebras). Let g = V ⊕Z(g), where V 6= {0} is a subspace of
the vector space g with [V, V ] = [g, g] ⊆ Z(g).
Let λ : g → Z(g) be a nontrivial linear map and α : g → g is an endomorphism of g defined by

α(v + z) := v + λ(v) + z ∀v ∈ V ∀z ∈ Z(g).

We have α([v + z, v′ + z′]) = α([v, v′]) = [v, v′] since [v, v′] ∈ Z(g). Also [α(v + z), α(v′ + z′)]) = [v, v′].
Therefore, the map α is an injective Lie algebra morphism. Thus α is an automorphism of g.
Moreover, if v ∈ g and z ∈ Z(g), we have

(α2 − id)(v + z) = α2(v + z)− (v + z)

= α(v + λ(v) + z)− (v + z)

= v + 2λ(v) + z − v − z)

= 2λ(v).

Then α2 − id 6= 0 and Im(α2 − id) ⊆ Z(g). It follows that (T ∗
0 (g)Ω, [ , ]Ω,Ω, (B0)Ω), where Ω = α +t α,

is a RQH-Lie algebra.
It is clear that T ∗

0 (g)Ω is 2-nilpotente. It ’s also a quadratic Lie algebra.

Proposition 4.10. Let A be a commutative associative algebra and g be a Lie algebra.
If A has an automorphism θ such that Im(θ2 − id) ⊆ Ann(A), where Ann(A) denotes the annihilator of

A, then the endomorphism θ̃ := idg ⊗ θ of g ⊗ A is an automorphism of the Lie algebra (g ⊗ A, [ , ]),

where [x⊗ a, y⊗ b] := [x, y]g ⊗ ab for all x, y ∈ g and a, b ∈ A. In addition, Im(θ̃2 − idg⊗A) ⊆ Z(g⊗A).
Then (T ∗

0 (g⊗A)Ω, [ , ]Ω,Ω, (B0)Ω) is a RQH-Lie algebra.

Moreover, if θ2 6= idA then θ̃2 6= idg⊗A.

Proof. It follows from direct calculation and Theorem 4.4. �

Example 4.11. Let A be the vector space spanned by {e, f, h, t} on which we define a commutative
associative multiplication by

ee = f, ef = fe = h, eh = he = t, ff = t.

We consider the algebra morphism θ : A → A defined by

θ(e) = e+ qt, θ(f) = f, θ(h) = h, θ(t) = t.

where q ∈ K \ {0}. It is easy to check that Im(θ2 − id) ⊆ Ann(A) and θ2 6= id.

Let g be a Lie algebra (for example g = sl(2)), then g⊗A is a Lie algebra with θ̃ = idg ⊗ θ ∈ Aut(g⊗A)

satisfying Im(θ̃2 − idg⊗A) ⊆ Z(g⊗A). Then (T ∗
0 (g⊗A)Ω, [ , ]Ω,Ω, (B0)Ω) is a RQH-Lie algebra.

5. Connection between quadratic Lie algebras and Hom-Lie algebras

We establish a connection between some classes of Lie algebras (resp. quadratic Lie algebras) and classes
of Hom-Lie algebras (resp. quadratic Hom-Lie algebras).

5.1. Lie algebras with involutive automorphisms.

Theorem 5.1. There exists a biunivoque correspondence between the class of Lie algebras (resp. qua-
dratic Lie algebras) admitting involutive automorphisms (resp. symmetric involutive automorphisms)
and the class of Hom-Lie algebras (resp. quadratic Hom-Lie algebras) where twist maps are involutive
automorphisms (resp. symmetric involutive automorphisms)

Proof. Let (g, [ , ]) be a symmetric Lie algebra with θ an involutive automorphism of g.
Then, according to Theorem 1.9, (gθ, [ , ]θ, θ) is a Hom-Lie algebra where θ is an involutive automorphism
of gθ.
Moreover, if g has an invariant scalar product B such that θ is symmetric with respect to B, we have
seen that

(5.1) Bθ :
gθ × gθ → K

(x, y) 7→ Bθ(x, y) := B(θ(x), y)
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defines a quadratic structure on gθ.
Conversely, let (H, [ , ]H , θ) be a Hom-Lie algebra where θ is an involutive automorphism of H .
We will untwist the Hom-Lie algebra structure by considering the vector space H and the bracket

(5.2) [ , ] :
H ×H → H

(x, y) 7→ [x, y] := [θ(x), θ(y)]H

Obviously the new bracket is bilinear and skewsymmetric. We show that it satisfies the Jacobi identity.
Indeed, for x, y, z ∈ H we have

[x, [y, z]] = [θ(x), θ([y, z])]H

= [θ(x), θ([θ(y), θ(z)]H )]H

= [θ(x), [θ2(y), θ2(z)]H)]H

= [θ(x), [y, z]H)]H .

Thus

	x,y,z [x, [y, z]] =	x,y,z [θ(x), [y, z]H)]H = 0.

Thus (H, [ , ]) is a Lie algebra.
Furthermore, for x, y ∈ H

θ([x, y]) = θ([θ(x), θ(y)]H ) = [θ2(x), θ2(y)]H = [x, y]H

and

[θ(x), θ(y)] = [θ2(x), θ2(y)]H = [x, y]H .

Then θ([x, y]) = [θ(x), θ(y)]. Therefore θ is an involutive automorphism of the Lie algebra (H, [ , ]).
Also for x, y ∈ H

[x, y]θ : = [θ(x), θ(y)] = [θ2(x), θ2(y)]H = [x, y]H .

Then (H, [ , ]θ, θ) is the Hom-Lie algebra (H, [ , ]H , θ).
Now, let (H, [ , ]H , θ, B) be a quadratic Hom-Lie algebra.
The bilinear form

(5.3) T :
H ×H → K

(x, y) 7→ T (x, y) = B(θ(x), y)

is symmetric and nondegenerate.
Indeed, for Let x, y, z ∈ H , we have

T ([x, y], z) = B(θ([x, y]), z)

= B(θ[θ(x), θ(y)]H , z)

= B([x, y]H , z)

= B(x, [y, z]H)

= B(θ(x), θ([y, z]H)) θ is B-symmetric

= B(θ(x), [θ(y), θ(z)]H ))

= B(θ(x), [y, z]))

= T (x, [y, z]).

Then T is invariant. In the other hand,

T (θ(x), y) = B(x, y) = B(θ(x), θ(y)) = T (x, θ(y)).

That is θ is symmetric with respect to T .
Therefore (H, [ , ], T ) is a quadratic Lie algebra and (H, [ , ]θ, θ, Tθ) is an IQH-Lie algebra. �
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5.2. Quadratic Hom-Lie algebras and Centroid’s elements. Now we discuss the connection be-
tween Hom-Lie algebras where the twist map is in the centroid and quadratic Lie algebras. Let (g, [ , ], B)
be a quadratic Lie algebra and θ ∈ Cent(g) such that θ is invertible and symmetric with respect to B.
We set

CentS(g) = {θ ∈ Cent(g) : θ symmetric with respect to B}.

We consider

(5.4) Bθ :
g× g → K

(x, y) 7→ Bθ(x, y) := B(θ(x), y)

We have

• Bθ is symmetric.
• Bθ is nondegenerate.
• Bθ is invariant, indeed

Bθ({x, y}, z) = Bθ([θ(x), y], z) = B(θ([θ(x), y]), z)

= B([θ(x), y], θ(z)) = B(θ(x), [y, θ(z)])

= B(θ(x), [θ(y), z]) = B(θ(x), {y, z})

= Bθ(x, {y, z}).

Also, we have
Bθ(θ(x), y) = B(θ2(x), y) = B(θ(x), θ(y)) = Bθ(x, θ(y)).

Then (g, { , }, θ, Bθ) is a quadratic Hom-Lie algebra.
Notice that Bθ is also an invariant scalar product of the Lie algebra g.
We have also that (g, [ , ]θ, θ, Bθ) is a quadratic Hom-Lie algebra. indeed

Bθ([x, y]θ, z) = Bθ([θ(x), θ(y)], z) = B(θ([θ(x), θ(y)]), z)

= B([θ(x), θ(y)], θ(z)) = B(θ(x), [θ(y), θ(z)])

= B(θ(x), [y, z]θ)

= Bθ(x, [y, z]θ).

Observe that

θ([x, y]θ) = θ[θ(x), θ(y)] = [θ2(x), θ(y)] = [θ(x), y]θ .

θ({x, y}) = θ[θ(x), y] = [θ2(x), y] = {θ(x), y}.

We may say that θ ∈ Cent(g, { , }) and θ ∈ Cent(g, [ , ]θ).
Conversely, let (g, [ , ], α) be a Hom-Lie algebra such that α ∈ Cent(g, [ , ], α).
We define a new bracket as {x, y} := [α(x), y].. Then (g, { , })) is a Lie algebra. Indeed

• The bracket is skewsymmetric.
• We have

{x, {y, z}} = [α(x), [α(y), z]],

{y, {z, x}} = [α(y), [α(z), x] = [α2(y), [z, x]],

{z, {x, y}} = [α(z), [α(x), y]] = [α(z), [x, α(y)]].

Then

	x,y,z {x, {y, z}} = [α(x), [α(y), z]] + [α2(y), [z, x]] + [α(z), [x, α(y)]] = 0.

We may define another which gives rise to also a Lie algebra by [x, y]α := [α(x), α(y)].. Indeed the bracket
is skewsymmetric and we have

[x, [y, z]α]α = [α(x), α([α(y), α(z)])] = [α(x), [α2(y), α(z)]] = [α2(x), [α(y), α(z)]],

[y, [z, x]α]α = [α(y), α([α(z), α(x)])] = [α(y), [α2(z), α(x)]] = [α2(y), [α(z), α(x)]],

[z, [x, y]α]α = [α(z), α([α(x), α(y)])] = [α(z), [α2(x), α(y)]] = [α2(z), [α(x), α(y)]].
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Therefore

[α2(x), [α(y), α(z)]] + [α2(y), [α(z), α(x)]] + [α2(z), [α(x), α(y)]] = 0.

Now if there is an invariant scalar product B on (g, [ , ]) and assume that α is invertible and symmetric
with respect to B. Consider the bilinear form Bα defined by Bα(x, y) = B(α(x), y). We have

Bα({x, y}, z) = B(α({x, y})]), z)

= B(α([α(x), y], z)

= B(α(x), [y, α(z)])

= B(α(x), [α(y), z])

= Bα(x, {y, z}).

Similarly we have

Bα([x, y]α, z) = B(α([α(x), α(y)]), z)

= B([α(x), α(y)], α(z))

= B(α(x), [α(y), α(z)])

= B(α(x), [y, z]α)

= Bα(x, [y, z]α).

Therefore (g, { , }, Bα) and (g, [ , ]α, Bα) are quadratic Lie algebras. Hence, we have the following
theorem:

Theorem 5.2. There exists a biunivoque correspondence between the class of Lie algebras (resp. quadratic
Lie algebras) admitting an element in the centroid (resp. symmetric invertible element in the centroid)
and the class of Hom-Lie algebras (resp. quadratic Hom-Lie algebras) where twist map is in the centroid
(resp. symmetric invertible element in the centroid).

An interesting case is when the element θ of the centroid is not of the form θ = k idg where k ∈ K.
One may replace the class of quadratic Lie algebras admitting a symmetric invertible element θ in the
centroid, such that θ 6= k idg where k ∈ K, by the class of quadratic Lie algebras of quadratic dimension
larger than 2, i.e. there exist B and B′ two invariant scalar products on g such that ∄λ ∈ K such that
B = λB′. For quadratic dimension see [5, 8, 35].

Corollary 5.3. There exists a one to one correspondence between the class of quadratic Lie algebra of
quadratic dimension larger than 2 and the class of quadratic Hom-Lie algebras where the twist map is
invertible and in the centroid such that it is not a multiple of idg.

Consider a quadratic Lie algebras of quadratic dimension larger than 2, then there exists B and B′

two invariant scalar products on g such that it doesn’t exist λ ∈ K such that B = λB′. Since B is
nondegenerate then there exist θ ∈ End(g) such that B′(x, y) = B(θ(x), y) and θ 6= k idg where k ∈ K.
Observe that the invariance ofB and B′ induces that θ is in the centroid of g. Indeed for any x, y, z ∈ g

the identity B′([x, y], z) = B′(x, [y, z]) is equivalent to B(θ([x, y]), z) = B(θ(x), [y, z]) = B([θ(x), y], z). It
leads to θ([x, y]) = [θ(x), y] since B is non degenerate. Hence B and B′ are nondegenerate implies that
θ is invertible.
Notice that B′(x, y) = B′(y, x) implies B(θ(x), y) = B(θ(y), x) = B(x, θ(y)). Conversely when we start
with a Hom-Lie algebra where the twist map is invertible and in the centroid, we have constructed in the
proof of the previous theorem two quadratic structures on this algebra.

6. Simple and Semisimple Hom-Lie algebras

In this section we give some observations about simple and semisimple Hom-Lie algebras. In particular,
we study simple and semisimple Hom-Lie algebras with involution. Simple involutive Hom-Lie algebras
will appear in the last section when we will discuss a structure theorem of IQH-Lie algebra.
A Hom-Lie algebra is said to be simple if it has no non-trivial ideals and is not abelian. A Hom-Lie
algebra g is called semisimple if its radical is zero (a radical is the maximal solvable ideal). Equivalently,
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g is semisimple if it does not contain any non-zero abelian ideals. In particular, a simple Hom-Lie algebra
is semisimple. In [23], the authors studied when a finite-dimensional semi-simple Lie algebra admits
non-trivial hom-Lie algebra structures.

Proposition 6.1. Let (g, [·, ·]) be a Lie algebra and α ∈ Aut(g). If g is simple then gα obtained by
composition method is simple.

Proof. Indeed, let I be an ideal in gα, that is [gα, I] ⊆ I and α(I) ⊆ I. Then, ∀x ∈ g and ∀a ∈ I we have
[α(x), α(a)] ∈ I. Therefore I is an ideal of g because α(I) = I. Hence, I = {0} or I = g = gα.

Since [g, g] 6= {0}, then [gα, gα]α 6= {0}. Thus, gα is a simple Hom-Lie algebra. �

Hence the previous proposition provides a way to construct simple Hom-Lie algebras, see example 4.7.
We have proved in Proposition 6.1 that a simple Lie algebra with an automorphism (in particular an
involution) gives rise to a simple Hom-Lie algebra using composition method. The converse is discussed
further according to Proposition 1.10.
Let (g, [ , ], θ) be a simple involutive Hom-Lie algebra. We denote by ρ(x), for x ∈ g, the linear map
ρ(x) : g → g defined for y ∈ g by ρ(x)(y) = [x, y].
We also set B to be the map B : g× g → K defined for x, y ∈ g by B(x, y) = tr(ρ(x)ρ(y)). Obviously B
is bilinear and symmetric. We show now that it is also invariant. Let x, y, z ∈ g then

ρ([x, y])(z) = [[x, y], z] = −[z, [x, y]]

= −[θ(θ(z)), [x, y]] = [θ(x), [y, θ(z)]] + [θ(y), [θ(z), x]]

= θ([x, [θ(y), z]]) + θ([y, [z, θ(x)]])

= (θ ◦ ρ(x) ◦ ρ(θ(y)) − θ ◦ ρ(y) ◦ ρ(θ(x)))(z).

In addition we have ρ(θ(x))(z) = [θ(x), z] = θ([x, θ(z)]) = θ ◦ ρ(x) ◦ θ(z) which leads for any x ∈ g to

ρ(θ(x)) = θ ◦ ρ(x) ◦ θ.

Since for any x, y ∈ g we have

ρ([x, y]) = θ ◦ ρ(x) ◦ ρ(θ(y)) − θ ◦ ρ(y) ◦ ρ(θ(x)),

it follows for any x, y, z ∈ g

ρ([x, y])ρ(z) = (θ ◦ ρ(x) ◦ ρ(θ(y)) − θ ◦ ρ(y) ◦ ρ(θ(x)))ρ(z),

= θ ◦ ρ(x) ◦ θ ◦ ρ(y) ◦ θ ◦ ρ(z)− θ ◦ ρ(y) ◦ θ ◦ ρ(x) ◦ θ ◦ ρ(z).

Therefore

tr(ρ([x, y])ρ(z)) = tr(θ ◦ ρ(x) ◦ θ ◦ ρ(y) ◦ θ ◦ ρ(z))− tr(θ ◦ ρ(y) ◦ θ ◦ ρ(x) ◦ θ ◦ ρ(z)),

= tr(θ ◦ ρ(y) ◦ θ ◦ ρ(z) ◦ θ ◦ ρ(x))− tr(θ ◦ ρ(z) ◦ θ ◦ ρ(y) ◦ θ ◦ ρ(x)),

= tr((θ ◦ ρ(y) ◦ θ ◦ ρ(z) ◦ θ − θ ◦ ρ(z) ◦ θ ◦ ρ(y) ◦ θ) ◦ ρ(x)),

= tr(ρ([y, z]) ◦ ρ(x)),

= tr(ρ(x) ◦ ρ([y, z])).

Which proves that B([x, y], z) = B(x, [y, z]), that is B is invariant.
Let us consider Bθ : g× g → K defined for any x, y ∈ g by Bθ(x, y) = B(θ(x), y).
We have for x, y, z ∈ g

ρ(θ(x))ρ(y)(z) = [θ(x), [y, z]] = [x, θ([y, z])]θ,

= [θ2(x), [θ(y), θ(z)]]θ ,

= [θ2(x), [θ2(y), θ2(z)]θ]θ,

= [x, [y, z]θ]θ.

Hence ρ(θ(x))ρ(y) = adgθ
(x) ◦ adgθ

(y), where gθ is the Lie algebra associated to (g, [ , ], θ).
We conclude that Bθ is the Killing form of the Lie algebra gθ.
Then Bθ = K and for x, y ∈ g, B(x, y) = K(θ(x), y) = Kθ(x, y).
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Theorem 6.2. Let (g, [ , ], θ) be a simple involutive Hom-Lie algebra then gθ = (g, [ , ]θ) is either a
simple Lie algebra or a semisimple Lie algebra. Moreover in the second case it decomposes into S ⊕ θ(S)
where S is a simple ideal.
In addition the form B : g × g → K, defined for x, y ∈ g by B(x, y) = tr(ρ(x)ρ(y)) where ρ(x) = [x, ·],
defines a quadratic structure on (g, [ , ], θ) and B(x, y) = K(θ(x), y), where K is the Killing form of the
Lie algebra gθ = (g, [ , ]θ).
Conversely, if (g, [ ]) is a simple Lie algebra and θ ∈ Aut(g) is an involution then (g, [ , ], θ) is a simple
Hom-Lie algebra.

Proof. Assume that gθ is not simple, then gθ contains a minimal ideal S. Notice that gθ is equal to g

as a linear space, we refer by g to the Hom-Lie algebra and by gθ for the corresponding Lie algebra by
composition. Recall that I is a minimal ideal of gθ if I 6= {0}, I 6= gθ and if J is another ideal of gθ such
that J ⊆ I then J = {0} or J = I.

We do have [gθ, S]θ is an ideal of gθ such that [gθ, S]θ ⊆ S. Since S is minimal then [gθ, S]θ = {0} or
[gθ, S]θ = S.

If [gθ, S]θ = {0} then [θ(gθ), θ(S)] = {0} which implies [g, θ(S)] = {0} and θ(S) ⊆ Z(g). Hence Z(g) 6= {0}
since θ(S) 6= {0}. This contradicts the fact that (g, [ , ], θ) is a simple Hom-Lie algebra.
Consequently we have [gθ, S]θ = S. It follows [g, θ(S)] = S, then θ([g, θ(S)]) = θ(S). Thus [θ(g), θ2(S)]) =
[g, S] = θ(S). In addition, θ(S + θ(S)) = θ(S) + θ2(S) = θ(S) + S.

Then S + θ(S) is an ideal of (g, [ , ], θ) and S + θ(S) 6= {0}. Therefore g = S + θ(S).
We show that we have a direct sum. Since θ is an automorphism of gθ then θ(S) is an ideal of gθ.Thus
S
⋂
θ(S) = {0} or S

⋂
θ(S) = S since S is a minimal ideal in gθ. Assume S

⋂
θ(S) = S, then S ⊆ θ(S)

which leads to S = θ(S) since θ is bijective.
We do have [g, S] = θ([θ(g), θ(S)] = θ([g, S]θ) ⊆ θ(S) = S and θ(S) = θ2(S) = S. Then S is an ideal of
(g, [ , ], θ). Thus S = g which contradicts the assumption S 6= g. Hence S

⋂
θ(S) = {0} and g = S⊕θ(S).

Consequently, we do have gθ = S ⊕ θ(S). Indeed θ is an automorphism of g then θ is an automorphism
of gθ. Therefore θ(S) is an ideal of g. We do have [gθ, S]θ = S then [S ⊕ θ(S), S]θ = S which implies
[S, S]θ = S since [θ(S), S]θ = {0}.
Therefore S is a simple ideal because S is a minimal ideal such that [S, S]θ = S.

It follows that gθ is a semisimple Lie algebra because S and θ(S) are simple ideals of gθ. We may view
gθ as a Z2-graded simple Lie algebra.
We have also that K is nondegenerate and consequently B is non degenerate since B(x, y) = K(θ(x), y)
for x, y ∈ g. �

We have proved that if (g, [ , ]) is a simple Lie algebra with involution θ then (gθ, [ , ]θ, θ) is a simple
Hom-Lie algebra. We have also proved that if (g, [ , ], θ) is a simple Hom-Lie algebra then the Lie algebra
(gθ, [ , ]θ) is either simple or gθ = S ⊕ θ(S), where S is a simple ideal of the Lie algebra (gθ, [ , ]θ), (in
particular (gθ, [ , ]θ) is a semisimple Lie algebra.

Proposition 6.3. Let (g, [ , ]) is a semisimple Lie algebra different from {0} with an involution θ such
that g = S+θ(S), where S is a simple ideal of (g, [ , ]). Then the Hom-Lie algebra (gθ, [ , ]θ, θ) is simple.

Proof. Let I be an ideal of gθ such that I 6= {0}. Since θ(g) = g and g = gθ then [g, θ(I)] ⊆ I which
implies that [g, I] ⊆ I. It follows that I is an ideal of g. Consequently I = S or I = θ(S) or I = g. Since
θ(I) = I then I 6= S and I 6= θ(S), therefore I = S + θ(S) = g. Moreover g is semisimple then [g, g] = g

which implies [gθ, gθ]θ = gθ.Then (gθ, [ , ]θ, θ) is a simple Hom-Lie algebra. �

More generally, let (g, [ , ], θ) be an involutive Hom-Lie algebra. We consider the associated Lie algebra
gθ = (g, [ , ]θ) where [x, y]θ = [θ(x), θ(y)], ∀x, y ∈ g. Let R(g) be the solvable radical of gθ. By Taft’s
Theorem (see [37]), there exists a Levi’s component s of gθ invariant by θ. It is clear that θ(R(g)) = R(g).
The component s is a semisimple Lie algebra then it may be written s = s1 ⊕ · · · ⊕ sn where {s}1≤i≤n

is the set of the simple ideals of s. The fact θ(s) ⊆ s implies that θ|s is an involutive automorphism
of s. Then for i ∈ {1, · · · , n} we have θ(si) is a simple ideal of the Lie algebra s. Therefore for any
i ∈ {1, · · · , n} there exist a unique ji ∈ {1, · · · , n} such that θ(si) = sji . If i = ji then θ(si) = si and in
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this case (si, [ , ]θ |si×si
) is a simple Lie algebra with θi = θ|si is an involutive automorphism of si. We

can then assume that there exist m, p ∈ N such that m+ 2p = n and

s = s1 ⊕ · · · ⊕ sm ⊕ (sm+1 ⊕ θ(sm+1))⊕ · · · ⊕ (sm+p ⊕ θ(sm+p))

where, for i ∈ {1, · · · ,m+ p}, si are simple ideals of s and for i ∈ {1, · · · ,m} we have θ(si) = si.

Let us set, for i ∈ {1, · · · ,m}, Si = si and for i ∈ {1, · · · , p}, Sm+i = sm+i ⊕ θ(sm+i). Then, for
i ∈ {1, · · · ,m}, Si is a simple ideal of s that is invariant by θ. Also, for i ∈ {1, · · · , p}, Sm+i is a
semisimple ideal of s that is invariant by θ.
Since, for x, y ∈ g, [x, y] = [θ(x), θ(y)]θ then it is clear that

• R(g) is a solvable ideal of the Hom-Lie algebra (g, [ , ], θ).
• s is a subalgebra of the Hom-Lie algebra (g, [ , ], θ).
• For i ∈ {1, · · · ,m+ p}

(1) Si is a simple ideal of the Hom-Lie algebra (s, [ , ]θ |s×s, θ|s) is a simple

(2) Si is a simple subalgebra of the Hom-Lie algebra (g, [ , ], θ).

Proposition 6.4. R(g) is the greatest solvable ideal of the Hom-Lie algebra (g, [ , ], θ).

Proof. Indeed, if I is a solvable ideal of (g, [ , ], θ), then I is a solvable ideal of the Lie algebra gθ, because
θ(I) = I. Consequently I ⊆ R(g). �

Corollary 6.5. Let (g, [ , ], θ) be an involutive Hom-Lie algebra then

g = S1 ⊕ · · ·Sm+p ⊕R(g)

where

• for i ∈ {1, · · · ,m+ p}, Si is a simple subalgebra of (g, [ , ], θ),
• R(g) is the greatest solvable ideal of (g, [ , ], θ).

7. Double extension Theorems of Hom-Lie algebras

The fundamental result on quadratic Lie algebras in [34] leads to constructing and characterizing qua-
dratic Lie algebras using double extension. While T ∗-extension concept introduced in [9] concerns nonas-
sociative algebras with nondegenerate associative symmetric bilinear form.
The following theorem extends the double extension by one-dimensional Lie algebras to Hom-Lie algebras
case.

Theorem 7.1. Let (V, [ , ]V , αV , BV ) be a quadratic multiplicative Hom-Lie algebra and δ : V → V be a
linear map. Set x0 ∈ V , λ, λ0 ∈ K. We denote, for x ∈ V , ρV (x) := [x, ·]V and the bracket of two linear
maps stands for the commutator on End(V ).
If hold the following conditions

αV ◦ δ ◦ αV − λδ = ρV (x0),(7.1)

[αV , δ
2] = ρV (δ(x0)),(7.2)

∀x, y ∈ V, (λδ + ρV (x0))([x, y]V ) = [δ(x), αV (y)]V + [αV (x), δ(y)]V ,(7.3)

then the vector space g := Kb ⊕ V ⊕ Ke, where Kb and Ke are one-dimensional vector spaces, is a
multiplicative Hom-Lie algebra with the bracket [ , ] : g× g → g defined by

[x, y] = [x, y]V +BV (δ(x), y) ∀x, y ∈ V

[b, x] = δ(x) ∀x ∈ V

[e, z] = 0 ∀z ∈ g

and the linear map α : g → g defined by

α(x) = αV (x) +BV (x0, x)e ∀x ∈ V

α(b) = λb+ x0 + λ0e

α(e) = λe
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In addition the symmetric bilinear form B : g× g → K defined by

B(x, y) = BV (x, y) ∀x, y ∈ V

B(b, e) = 1

B(x, b) = B(x, e) = 0 ∀x ∈ V

B(b, b) = B(e, e) = 0

is an invariant scalar product on (g, [ , ], α).
In the particular case, when αV is invertible then α is invertible if and only if λ 6= 0 and when αV is an
involution, then α is an involution if and only if

(7.4) λ ∈ {−1, 1}, α(x0) = −λx0 and λ0 = −
1

2λ
BV (x0, x0).

Proof. One shows that g is a Hom-Lie algebra and B an invariant scalar product by straightforward
calculations.
We assume now that α is invertible. Then λ 6= 0. Let x ∈ V such that αV (x) = 0. It follows that α(x) =
BV (x0, x)e which implies α(x) = λ−1BV (x0, x)α(e). Then x = λ−1BV (x0, x)e. Thus λ−1BV (x0, x) = 0,
then BV (x0, x) = 0. Likewise x = 0. Hence α is invertible.
Conversely, assume that αV is invertible and λ 6= 0. Let x ∈ g such that α(x) = 0. The element x in g

may be written x = rb + y + se where r, s ∈ K and y ∈ V. Then

0 = α(x) = r(λb + x0 + λ0e) + (αV (y) +BV (x0, y)e) + sλe

= (λr)b + (αV (y) + rx0) + (rλ0 +B(x0, y) + sλ)e.

It follows

λr = 0

αV (y) = −rx0

rλ0 +BV (x0, y) + sh = 0.

The solution of the system is r = 0, αV (y) = 0, BV (x0, y)e) = −sλ. Then r = 0, y = 0, s = 0, which
gives x = 0. Then we conclude that α is invertible.
Now, assume that α is an involution. Then b = α2(b) is equivalent to

b = λα(b) + α(x0) + λα(e),

= λ(λb + x0 + λ0e) + αV (x0) +B(x0, x0)e + λ0λe

By identification, it follows

{
1− λ2 = 0

αV (x0) = −λx0
B(x0, x0) = −2λλ0.

Therefore, λ = ±1 which are the eigenvalues of the involution, αV (x0) = −λx0 and λ0 = − 1
2λBV (x0, x0).

Let x ∈ V . The identity α2(x) = x may be written

α(αV (x) +B(x0, x)e) = x

α(αV (x)) +B(x0, x)α(e) = x

α2(x) +B(x0, αV (x))e + λB(x0, x)e = x

Then its equivalent to α2
V (x) = x and αV (x0) = −λx0. This ends the proof that α is an involution.

Moreover, we have proved that α is an involution is equivalent to

α2
V = idV , λ2 = ±1, λ0 = −

1

2λ
BV (x0, x0).

�
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Definition 7.2. The quadratic multiplicative Hom-Lie algebra (g, [ , ], α,B) constructed in Theorem
7.1 is called a double extension of (V, [ , ]V , αV , BV ) ( by the one-dimensional Lie algebra) by means
(δ, x0, λ, λ0).
It is called involutive double extension when αV is an involution and the condition (7.4) satisfied and its
called regular double extension when αV is invertible and λ 6= 0.

We provide in the following the converse of the previous Theorem.

Theorem 7.3. Let (g, [ , ], α,B) be an irreducible quadratic multiplicative Hom-Lie algebra such that
dimg > 1.
If Z(g) 6= {0}, then (g, [ , ], α,B) is a double extension of a quadratic Hom-Lie algebra (V, [ , ]V , αV , BV )
(by a one-dimensional Lie algebra) such that dimV = dimg− 2.
If in addition α is an involution then the IQH-Lie algebra (g, [ , ], α,B) is an involutive double extension
of an a IQH-Lie algebra (V, [ , ]V , αV , BV ) and if α is invertible then the RQH-Lie algebra (g, [ , ], α,B)
is a regular double extension of a RQH-Lie algebra (V, [ , ]V , αV , BV ).

Proof. Let (g, [ , ], α,B) be an irreducible quadratic Hom-Lie algebra such that dimg > 1. Assume that
Z(g) 6= {0} and α(Z(g)) ⊆ Z(g). Then there exists λ ∈ K (K algebraically closed) and e ∈ Z(g) \ {0}
such that α(e) = λe. We have B(e, e) = 0 because Ke is an ideal of g, g is irreducible and dimg > 1.
Since B is nondegenerate then there exists b ∈ g such that B(e, b) = 1 and B(b, b) = 0.
The vector space A = Ke ⊕ Kb is nondegenerate (i.e. B|A×A is nondegenerate ), then g = A ⊕A⊥. Set

V = A⊥, then B|V ×V is nondegenerate and (Ke)⊥ = Ke⊕ V.

Then g = Ke ⊕ V ⊕ Kb with B(e, e) = B(b, b) = 0, B(e, b) = 1, B(V, e) = B(V, b) = {0} and B|V×V is
nondegenerate.
There exist a linear map αV : V → V and a linear form f : V → K such that α(x) = f(x)e + αV (x),
∀x ∈ V , because (Ke)⊥ is an ideal of g implies α((Ke)⊥) ⊆ (Ke)⊥.
There exist λ0 ∈ K, γ0 ∈ K, x0 ∈ W such that α(b) = λ0e+ x0 + γ0b.

The fact that (Ke)⊥ is ideal implies that

(1) there exist a bilinear map [ , ]V : V × V → V and a bilinear form ϕ : V × V → K such that

(7.5) [x, y] = ϕ(x, y)e + [x, y]V , ∀x, y ∈ V.

(2) there exist a linear map δ : V → V and a linear form h : V → K such that

(7.6) [b, y] = δ(x) + h(x)e, ∀x ∈ V.

Let x, y, z ∈ V , we have [α(x), [y, z]] = [α(x), [y, z]V ] because e ∈ Z(g). Then

[α(x), [y, z]] = [αV (x), [y, z]V ] = [αV (x), [y, z]V ]V + ϕ(αV (x), [y, z]V )e.

Therefore the Hom-Jacobi identity 	x,y,z [α(x), [y, z]] = 0 implies that

(7.7) 	x,y,z [αV (x), [y, z]V ]V = 0,

and

(7.8) 	x,y,z ϕ(αV (x), [y, z]V ) = 0.

Also the skewsymmetry [ , ] is equivalent for x, y ∈ V to

[x, y]V = −[y, x]V ,(7.9)

ϕ(x, y) = −ϕ(y, x).(7.10)

Thus (7.7) and (7.9) show that (V, [ , ]V , αV ) is a Hom-Lie algebra.
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Let x, y ∈ Z

0 = [α(b), [x, y]] + [α(x), [y, b]] + [α(y), [b, x]]

= [x0, [x, y]] + λ[b, [x, y]] + [αV (x), [y, b]] + [αV (y), [b, x]]

= [x0, [x, y]V ] + λ[b, [x, y]V ]− [αV (x), δ(y)] + [αV (y), δ(x)]

= [x0, [x, y]V ]V + ϕ(x0, [x, y]V )e + λδ([x, y]V ) + λh([x, y]V )e

+ [αV (x), δ(y)]V + ϕ(αV (x), δ(y))e + [αV (y), δ(x)]V + ϕ(αV (y), δ(x))e.

Therefore

ϕ(x0, [x, y]V ) + λh([x, y]V ) − ϕ(αV (x), δ(y)) + ϕ(αV (y), δ(x)) = 0,(7.11)

[x0, [x, y]V ]V + λδ([x, y]V )− [αV (x), δ(y)]V + [αV (y), δ(x)]V = 0.(7.12)

Let x, y ∈ V

ϕ(x, y) = B([x, y], b) = B(b, [x, y]) = B([b, x], y) = B(δ(x), y),

because B(e, y) = 0. Then [x, y] = [x, y]V +B(δ(x), y)e, that is (7.5).
Let x ∈ V ,

B([b, x], b) = −B(x, [b, b]) = 0.

In the other hand B([b, x], b) = h(x) because B(V, b) = {0} and B(e, b) = 1. Then h(x) = 0. We conclude
that [B, x] = δ(x) ∈ V i.e. (7.6).
Let y ∈ V , B(α(b), y) = B(b, α(y)), which is equivalent to B(x0, y) = B(b, αV (y) + f(y)e) = f(y). Then
f(y) = B(x0, y). It follows α(y) = αV (y) +B(x0, y)e.
Also B(α(b), e) = B(b, α(e)) is equivalent to γ0 = B(b, λe) = λ. Then

α(b) = λ0e+ x0 + λb = λb+ x0 + λ0e.

Now (7.11) is equivalent to

(7.13) B(δ(x0), [x, y]V )−B(δ(αV (x)), δ(y)) +B(δ(αV (y)), δ(x)) = 0,

because h = 0 and ϕ(x, y) = B(δ(x), y), ∀x, y ∈ V.

Let x, y, z ∈ V

B([x, y], z) = B([x, y]V , z) = BV ([x, y]V , z),

B(x, [y, z]) = B(x, [y, z]V ) = BV (x, [y, z]V ).

Then BV is invariant.
In addition B(α(x), y) = B(x, α(y)) implies BV (αV (x), y) = BV (x, αV (y)), that is αV is BV -symmetric.
It is obvious that BV is symmetric.
We have

α([x, y]) = α([x, y]V +B(δ(x), y)e)

= αV ([x, y]V ) +B(x0, [x, y]V )e+ λB(δ(x), y)e

= αV ([x, y]V ) +BV (x0, [x, y]V )e +B(λδ(x), y)e.

In the other hand

[α(x), α(y)] = [αV (x), αV (y)]V +B(δ(αV (x)), αV (y))e.

Then

(7.14) αV ([x, y]V ) = [αV (x), αV (y)].

Also

BV (x0, [x, y]V ) +B(λδ(x), y) = B(δ(αV (x), αV (y))

which is equivalent to

BV ([x0, x]V , y) +B(λδ(x), y) = B(αV ◦ δ ◦ αV (x), y),
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and to

(7.15) BV ([x0, x]V + λδ(x) − αV ◦ δ ◦ αV (x), y) = 0.

Since B is nondegenerate, then (7.15) leads to

[x0, x]V + λδ(x) − αV ◦ δ ◦ αV (x) = 0.

By setting ρV (x0) = [x0, ·]V , the previous identity may be written

(7.16) αV ◦ δ ◦ αV − λδ(x) = ρV (x0).

Then we have proved that (V, [ , ]V , αV , BV ) is quadratic Hom-Lie algebra. Also there exists δ ∈ End(V )
such that the condition 7.16 is satisfied. Hence

[x, y] = [x, y]V +BV (δ(x), y) ∀x, y ∈ V

[b, x] = δ(x) ∀x ∈ V

and the linear map α : g → g defined by

α(x) = αV (x) +BV (x0, x)e ∀x ∈ V

α(e) = λe

α(b) = λb + x0 + λ0e.

Let x, y ∈ V , we have B([b, x], y) = −B(x, [b, y]) which is equivalent to B(δ(x), y) = −B(x, δ(y)), then to
BV (δ(x), y) = −B(x, δ(y)). It means that δ is skewsymmetric with respect to B.
The condition (7.13) is equivalent to BV (δ(x0), [x, y]V )−B−V (δ ◦αV (x), δ(y))+BV (δ ◦αV (y), δ(x)) = 0
then BV ([δ(x0), x], y) + B(δ2 ◦ αV (x), y) − BV (y, αV ◦ δ2(x)) = 0. It is equivalent to [δ(x0), x] + (δ2 ◦
αV − αV ◦ δ2)(x) = 0, thus to

(7.17) δ2 ◦ αV − αV ◦ δ2 = −[δ(x0), ·].

Recall that we have denoted [δ(x0), ·] by ρ(δ(x0)).
Let x, y ∈ V . We have

	b,x,y [α(b), [x, y]] = [λb+ x0, [x, y]V ]− [αV (x), δ(y)] + [αV (y), δ(x)]

= λδ([x, y]V ) + [x0, [x, y]V ]V +B(δ(x0), [x, y]V )e − [αV (x), δ(y)]V

−B(δ(αV (x)), δ(y))e + [αV (y), δ(x)]V +B(δ(αV (y)), δ(x))e = 0

which leads to

λδ([x, y]V ) + [x0, [x, y]V ]− [αV (x), δ(y)]V + [αV (y), δ(x)]V = 0

and

B([δ(x0), x] + δ2 ◦ αV (x)− αV ◦ δ2(x), y) = 0.

These two identities are equivalent to

λδ([x, y]V ) = [δ(x), αV (y)]V + [αV (x), δ(y)]V − [x0, [x, y]V ]

which is equivalent to (7.13) and

δ2 ◦ αV − αV ◦ δ2 = [δ(x0), ·],

which is equivalent to (7.17). The identity (??) may be written

(7.18) (λδ + [x0, ·]V )([x, y]V ) = [δ(x), αV (y]V + [αV (x), δ(y)]V .

	b,b,x [α(b), [b, x]] = 0 is satisfied.
We have proved that (V, [ , ]V , αV , BV ) is quadratic multiplicative Hom-Lie algebra. Also it is clear that
using identities (7.16),(7.17),(7.18) the Hom-Lie algebra g is a double extension of this Hom-Lie algebra
by means of (δ, x0, λ, λ0). �

Theorem 7.3 and the Lemma 3.9 lead to
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Proposition 7.4. Let (g, [ , ], α,B) be a RQH-Lie algebra. Then it is obtained from a centerless IQH-
Lie algebra by a finite sequence of regular double extensions by the one dimensional Lie algebra or/and
orthogonal direct sum of RQH-Lie algebras.

Corollary 7.5. Let (g, [ , ], α,B) be an IQH-Lie algebra. Then it is obtained from centerless IQH-Lie
algebras by a finite sequence of involutive double extensions by the one dimensional Lie algebra or/and
orthogonal direct sum of IQH-Lie algebras.

Remark 7.6. The Proposition 7.4 reduces the study of IQH-Lie algebras to centerless IQH-Lie algebras.
Hence, the problem of Quadratic Hom-Lie algebras reduces to study two classes

(1) Quadratic Hom-Lie algebras (g, [ , ], α,B) with α nilpotent,
(2) centerless IQH-Lie algebras.

We study in the following the double extension of IQH-algebra by an involutive Hom-Lie algebra of any
dimension.

Theorem 7.7 (Involutive double extension Theorem). Let (V, [ , ]V , αV , BV ) be an IQH-Lie algebra and
(A, [ , ]A, αA) be an involutive Hom-Lie algebra.

Let φ :
A→ End(V )
a→ φ(a)

be a representation of A on (V, αA) such that

αV ◦ φ(a)([x, y]V ) = [φ(a) ◦ αV (x), y]V + [x, φ(a) ◦ αV (y)]V ∀x, y ∈ V,(7.19)

φ(a) ◦ αA(a) = αV ◦ φ(a) ◦ αV · ∀a ∈ A,(7.20)

BV (φ(a)(x), y) = −BV (x, φ(a)(y) ∀x, y ∈ V ∀a ∈ A.(7.21)

Let ψ :
V × V → A∗

(x, y) → ψ(x, y)
defined by ∀x, y ∈ V ∀a ∈ A by ψ(x, y)(a) = BV (φ(a)(x), y).

Then the vector space g := A⊕ V ⊕A∗ endowed with the bracket [ , ] : g× g → g defined for f, f ′ ∈ A∗,
a, a′inA and v, v′inV by

[f + v + a, f ′ + v′ + a′] = ãdA(a)(f
′)− ãdA(a

′)(f) + ψ(v, v′) + [v, v′]V + [a, a′]A

and the linear map α : g → g defined by

α(f + v + a) =t αA(a) + αV (f) + αA(a)

is an involutive Hom-Lie algebra.
In addition, the bilinear form B : g× g → K defined by

Bγ(f + v + a, f ′ + v′ + a′) = BV (a, a
′) + f(w′) + f ′(w) + γ(a, a′)

where γ is an invariant symmetric bilinear form on (A, [ , ], αA) such that γ(α(a), a′) = γ(a, α(a′)),
∀a, a′ ∈ A, is a quadratic structure on g, [ , ], α).
The IQH-Lie algebra g, [ , ], α,Bγ) is called the involutive double extension of (V, [ , ]V , αV , BV ) by
(A, [ , ]A, αA) by means of (φ, γ).

Proof. The proof is similar to the proof in [6]. �

We pursue the characterization of IQH-Lie algebras.

Theorem 7.8. Let (g, [ , ], α,B) be an irreducible IQH-Lie algebra such that Z(g) = {0}. Then it is
either an involutive simple Hom-Lie algebra or it is obtained by an involutive double extension of an
IQH-Lie algebra (V, [ , ]V , αV , BV ) by an involutive simple Hom-Lie algebra.

Proof. Let (g, [ , ], α,Q) be an irreducible involutive Hom-Lie algebra such that g is not simple, dimg > 1
and Z(g) = {0}. Then g 6= R(g) and g = s1 ⊕ · · · ⊕ sn ⊕ R(g) where si are simple Hom-subalgebras
(Corollary 6.5), J = s2 ⊕ · · · ⊕ sn ⊕R(g) is a maximal ideal of g such that g = s1 ⊕ J . Set A = s1 which
is a subalgebra of (g, [ , ], α). The fact that J is a maximal ideal implies that I := J⊥ is a minimal ideal
of g. Also I

⋂
I⊥ is an ideal of g contained in I. Then I

⋂
I⊥ = {0} or I

⋂
I⊥ = I, i.e. I ⊂ I⊥ = J .

Since g is irreducible then it implies that I ⊂ J , consequently B(I, I)={0}, i.e. I is isotropy.
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It is clear that B|(I⊕A)×(I⊕A) is nondegenerate. It follows that g = (I ⊕ A) ⊕ (I ⊕ A)⊥. We set

V := (I ⊕ A)⊥, which is a vector subspace of g. Consequently, J = I ⊕ V and BV ×V is nondegenerate.
Since [I, I⊥] = {0}, then [I, I] = {0} because I ⊂ J = I⊥ and [I, V ] = {0}.
Let x, y ∈ V , then [x, y] = [x, y]V + ϕ(x, y), where [ , ]V : V × V → V and ϕ : V × V → I are bilinear
maps.
Let x ∈ V and a ∈ A, then [a, x] = φ(a)(x) + ϕ′(a, x) where ϕ′ : A × V → I is a bilinear map and
φ(a) ∈ End(V ).
We denote, for a, a′ ∈ A, the bracket [a, a′] by [a, a′]A.
Let x, y ∈ V and a ∈ A, we have B([x, y], a) = B(ϕ(x, y), a) and B(x, [y, a]) = −B(x, [a, y]) =
−B(x, φ(a)y), then

B(ϕ(x, y), a) = −B(x, φ(a)y).

Also B([a, x], y) = −B(x, [a, y]) is equivalent to

B(φ(a)x, y) = −B(x, φ(a)y).

Therefore we have

B(ϕ(x, y), a) = −B(x, φ(a)y) = B(φ(a)x, y).

For x ∈ V we have α(x) ∈ J = I⊥ which implies α(x) = αV (x) + γ(x) where αV (x) ∈ V and γ(x) ∈ I.

Let x ∈ V and a ∈ A, then B(α(x), a) = B(x, α(a)) implies B(γ(x), a) = B(x, α(a)) = 0 since B(V,A) =
{0}. Therefore γ(x) = 0. Thus α(V ) ⊆ V and we denote in the sequel α|V by αV .
Let x ∈ V and a, b ∈ A, then B([a, x], b) = B(ϕ′(a, x), b) and on the other hand B([a, x], b) = −B(x, [a, b]) =
0 (because B(V,A) = {0}). Therefore B(ϕ′(a, x), b) = 0 for any b ∈ A. Then ϕ′(a, x) = 0. Thus

[a, x] = φ(a)x, ∀a ∈ A, ∀x ∈ V.

Let x, y ∈ V , then [x, y] = −[y, x] implies

[x, y]V = −[y, x]V ,

ϕ(x, y) = −ϕ(y, x).

We show that [ , ]V and ϕ satisfy the Hom-Jacobi condition. Let x, y, z ∈ V , we have

[α(x), [y, z]] = [α(x), [y, z]V ] because [V, I] = {0}

= [α(x), [y, z]V ]V + ϕ(α(x), [y, z]V )

= [αV (x), [y, z]V ]V + ϕ(αV (x), [y, z]V ).

Then

0 =	x,y,z [α(x), [y, z]] =	x,y,z [αV (x), [y, z]V ]V + 	x,y,z ϕ(αV (x), [y, z]V )

Since the first summation is in V and the second in I then we obtain

	x,y,z [αV (x), [y, z]V ]V = 0,(7.22)

	x,y,z ϕ(αV (x), [y, z]V ) = 0.(7.23)

Also α([x, y]) = [α(x), α(y)] = [αV (x), αV (y)] implies αV ([x, y]V ) + α(ϕ(x, y)) = [αV (x), αV (y)]V +
ϕ(αV (x), αV (y)). Therefore

αV ([x, y]V ) = [αV (x), αV (y)]V

α(ϕ(x, y)) = ϕ(αV (x), αV (y)).

It is obvious that α2 = id induces α2
V = id.

The previous calculations leads to the fact that (V, [ , ]V , αV ) is an involutive Hom-Lie algebra.
The Hom-Lie algebra (V, [ , ]V , αV ) is an IQH-Lie algebra by setting BV = B|V ×V . Indeed for any
x, y, z ∈ V we have

B([x, y]V , z) = B([x, y], z) = B(x, [y, z]) = B(x, [y, z]V )

and

B(αV (x), y) = B(α(x), y) = B(x, α(y)) = B(x, αV (y)).
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Using the identity (7.23) we have for any a ∈ A and x, y, z ∈ V

B(	x,y,z ϕ(αV (x), [y, z]V ), a) = 0

⇐⇒ 	x,y,z B(ϕ(αV (x), [y, z]V ), a) = 0

⇐⇒ 	x,y,z B(αV (x), φ(a)([y, z]V )) = 0

then we have

(7.24) 	x,y,z B(φ(a)(αV (x)), [y, z]V ) = 0

Expanding the identity (7.24) and using the fact that (V, [ , ]V , αV , BV ) is an IQH-Lie algebra we obtain

BV (φ(a)(αV (x)), [y, z]V ) +BV (φ(a)(αV (y)), [z, x]V ) +BV (φ(a)(αV (z)), [x, y]V ) = 0

which is equivalent to

BV ([φ(a) ◦ αV (x), y]V + [x, φ(a) ◦ αV (y)]− αV ◦ φ(a)[x, y]V , z) = 0.

Then we have

(7.25) αV ◦ φ(a)[x, y]V = [φ(a) ◦ αV (x), y]V + [x, φ(a) ◦ αV (y)]V .

Let a ∈ A and x, y ∈ V , the Hom-Jacobi identity

[α(a), [x, y]] + [α(x), [y, a]] + [α(y), [a, x]] = 0

may be written

[α(a), [x, y]V ] + [α(a), ϕ(x, y)] − [α(x), φ(a)y]V − ϕ(α(x), φ(a)y) + [α(y), φ(a)x]V + ϕ(α(y), φ(a)x) = 0.

It’s equivalent to

φ(α(a))([x, y]V ) + [α(a), ϕ(x, y)]− [α(x), φ(a)y]V −ϕ(α(x), φ(a)y) + [α(y), φ(a)x]V + ϕ(α(y), φ(a)x) = 0.

By gathering the elements in V and elements in I, the previous identity leads to

φ(α(a))([x, y]V ) = [α(x), φ(a)y]V + [φ(a)x, α(y)]V ,(7.26)

[α(a), ϕ(x, y)] = ϕ(α(x), φ(a)y) + ϕ(φ(a)x, α(y)).(7.27)

The identity (7.26) leads for any b ∈ A to

B(φ(α(a))([x, y]V ), b) = B([α(x), φ(a)y]V , b) +B([φ(a)x, α(y)]V , b)

⇔ B(ϕ(x, y), [b, α(a)]) = B(φ(b)(α(x)), φ(a)y) +B(φ(b)φ(a)(x), α(y))

⇔ B(φ([b, α(a)])(x), y) = −B(φ(a)φ(b)(α(x)), y) +B(α(φ(b)φ(a)(x)), y).

Hence
φ([b, α(a)])(x) = −φ(a)φ(b)α + α(φ(b)φ(a),

which may be written

(7.28) φ([α(a), b]) = φ(a)φ(b)α − αφ(b)φ(a).

Let a, b ∈ A and x ∈ V , the Hom-Jacobi identity

[α(a), [b, x]] + [α(b), [x, a]] + [α(x), [a, b]] = 0

may be written
φ(α(a))φ(b)(x) − φ(α(b))φ(a)(x) − φ([a, b])(α(x)) = 0.

Therefore we have

(7.29) φ([a, b]) ◦ α = φ(α(a))φ(b) − φ(α(b))φ(a).

In fact the identities (7.28) and (7.29) are equivalent.
Let a ∈ A and x ∈ V , the identity α([a, x]) = [α(a), α(x)] may be written α(φ(a)(x)) = φ(α(a))(α(x))
and also αV (φ(a)(x)) = φ(αA(a))(αV (x)) where αA = α|A. Then we have

φ ◦ αA = αV φ(a)α
−1
V = αV φ(a)αV .
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Now, we evaluate φ(α(a))[x, y]V for a ∈ A and x, y ∈ V . We have φ(α(a))[x, y]V = αV ◦ (αV ◦
φ(α(a))[x, y]V since αV is a involution. By applying the identity (7.25) we obtain

φ(α(a))[x, y]V = αV ([φ(α(a)) ◦ αV (x), y]V + [x, φ(α(a)) ◦ αV (y)]V )

= [αV ◦ φ(α(a)) ◦ αV (x), αV (y)]V + [αV (x), αV ◦ φ(α(a)) ◦ αV (y)]V

= [α(x), φ(a)y]V + [φ(a)x, α(y)]V

Therefore we proved that the identity (7.25) implies (7.26). In an other hand we have

αV φ(a)[x, y]V = αV (αV φ(α(a))αV )[x, y]V

= φ(α(a))αV [x, y]V = φ(α(a))[αV (x), αV (y)]V

= [x, φ(a)(αV (y))]V + [φ(a)(αV (x)), y]V .

Therefore we proved the converse. Hence the identities (7.25) and (7.26) are equivalent.
We set for a ∈ A and i ∈ I, [a, i] := a·i. The Hom-Jacobi condition [α(a), [b, i]]+[α(b), [i, a]]+[α(i), [a, b]] =
0 leads to

(7.30) α(a) · (b · i)− α(b) · (a · i) = [a, b] · (α(i))

which is equivalent to (7.27).

Denote l :
A→ End(I)
a 7→ l(a)

where l(a) :
I → I

i 7→ l(a)(i) = [a, i] = a · i
.

The identity (7.30) may be written for a, b ∈ A

(7.31) l([a, b]) ◦ αI = l(αA(a))l(b)− l(αA(b))l(a).

Notice that

(7.32) l ◦ αA(a) = αI ◦ l(a) ◦ αI

since l(αA(a))(i) = [αA(a), i] = αI [a, αI(i)].
Also we have for i ∈ I and a, b, c ∈ A

B([a, b], i) = B(a, [b, i]) = B(a, l(b)(i))

and

B(c, [α(a), [b, i]] + [α(b), [i, a]] + [α(i), [a, b]] = B([b, [α(a), c]] − [a, [α(b), c]] + α([[a, b], c]), i)

= B([b, [α(a), c]] + [a, [c, α(b)]] + α([c, [b, a]]), i)

= B(α([α(b), [a, α(c)]] + [α(a), [α(c), b]] + [c, [b, a]]), i)

= 0

since c = α(α(c)).

It is clear that ∇ :
I → A∗

i 7→ ∇(i) = B(i, ·)
is an isomorphism of vector spaces.

Denote α∗
A :

A∗ → A∗

f 7→ α∗
A(f) = f ◦ αA

i.e. α∗
A =t αA.

Let i ∈ I and a ∈ A, we have ∇(αI(i)(a) = B(αI(i), a) = B(i, αA(a)) = ∇(i) ◦ αA(a). Then

α∗(∇(i)) = ∇(i) ◦ αA = ∇(αI(i).(7.33)

Also B(a · i, b) = B([a, i], b) = −B(i, [a, b]) that is

(7.34) ∇(a · i)(b) = −∇(i)([a, b]).

Thus ∇ is an isomorphism of the A-modules I and A∗.

Recall that if (g, [ , ], α) is a Hom-Lie algebra then (g ∗, ãd, α̃) is a representation if and only if for
x, y, z ∈ g

(7.35) α([[x, y], z]) = [y, [α(x), z]] + [x, [z, α(y)]].
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In our case α is an involution which leads to αA is also an involution. Then the identity (7.35) is satisfied

which implies that (A∗, ãdA, α
∗
A =t αA) is a representation of (A, [ , ]A, αA) (i.e. A

∗ is an A-module).

φ :
V × V → I → A∗

(x, y) 7→ ϕ(x, y) 7→ B(ϕ(x, y), ·)

Consider Γ : g = A⊕V ⊕ I → A⊕V ⊕A⋆ defined by Γ(a+ v+ i) = a+ v+∇(i). It is easy to show that
it is a Hom-Lie algebras morphism. Notice that A⊕ V ⊕A⋆ is a double extension of V by A. �

Let us denote by U the set incorporating the trivial Hom-Lie algebra {0}, the one-dimensional Hom-Lie
algebra and simple involutive Hom-Lie algebras.

Theorem 7.9. Let (g, [ , ], α,B) be an IQH-Lie algebra such that Z(g) = {0}. Then it is either an
element of g or it is obtained from a finite number of element of U by a sequence of involutive double
extension by the one-dimensional Hom-Lie algebra and/or double extension by a simple involutive Hom-
Lie algebra and/or orthogonal direct sum of IQH-Lie algebras.

According to Theorem 6.2 and Proposition 6.3 simple involutive Hom-Lie algebras are determined by
simple or semisimple Lie algebras with involution.
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