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Abstract. Given E ⊂ Rd, d ≥ 2, define D(E) ≡
{

x−y
|x−y| : x, y ∈ E

}
⊂ Sd−1, the set of directions

determined by E. We prove that if the Hausdorff dimension of E is greater than d − 1, then

σ(D(E)) > 0, where σ denotes the surface measure on Sd−1. This result is sharp since the

conclusion fails to hold if E is a (d− 1)-dimensional hyper-plane. This result can be viewed as a
continuous analog of a recent result of Pach, Pinchasi, and Sharir ([24], [25]) on angles determined

by finite subsets of Rd. We also discuss the case when the Hausdorff dimension of E is precisely

d−1, where some interesting counter-examples were previously obtained by Simon and Solomyak
([26]) in the planar case. Also define A(E) = {θ(x, y, z) : x, y, z ∈ E}, where θ(x, y, z) is the angle

between x−y and y−z. We use the techniques developed to handle the problem of directions and

results on distance sets previously obtained by Wolff and Erdogan to prove that if the Hasudorff

dimension of E is greater than d−1
2

+ 1
3

, then the Lebesgue measure of A(E) is positive. This

result can be viewed as a continuous analog of a recent result of Apfelbaum and Sharir ([1]).
At the end of this paper we show that our continuous results can be used to recover and in

some case improve the exponents for the corresponding results in the discrete setting for large

classes of finite point sets. In particular, we prove that a finite point set P ⊂ Rd, d ≥ 3, satisfying
a certain discrete energy condition (Definition 4.1), determines ' #P distinct directions and

' (#P )
6

3d−1 distinct angles. In two dimensions, the lower bound on the number of angles is
' #P .

1. Introduction

A large class of Erdős type problem in geometric combinatorics asks whether a large set of
points in Euclidean space determines a suitably large sets of geometric relations or objects. For
example, the classical Erdős distance problem asks whether N points in Rd, d ≥ 2, determines
' N

2
d distinct distances, where here, and throughout, X / Y , with the controlling parameter N

means that for every ε > 0 there exists Cε > 0 such that X ≤ CεN
εY . See, for example [2], [18],

[21], [23], [27] and the references contained therein for a thorough description of these types of
problems and recent results.

Continuous variants of Erdős type geometric problems have also received much attention in
recent decades. Perhaps the best known of these is the Falconer distance problem, which asks
whether the Lebesgue measure of the distance set {|x− y| : x, y ∈ E} is positive, provided that the
Hausdorff dimension of E ⊂ Rd, d ≥ 2, is greater than d

2 . See [6] and [28] for the best currently
known results on this problem. See also [4], [16], [19] and [20]. Also see [5] for the closely related
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problem on finite point configurations. For related problems under the assumption of positive
Lebesgue density, see, for example, [3], [9] and [30].

In this paper we study the sets of directions and angles determined by subsets of the Euclidean
space. In the discrete setting the problem of angles was studied in recent years by Pach, Pinchasi,
and Sharir. See [24] and [25]. In the latter paper they prove that if P is a set of n points in R3, not
all in a common plane, then the pairs of points of P determine at least 2n − 5 distinct directions
if n is odd and at least 2n − 7 distinct directions if n is even. Our main result can be viewed as
a continuous variant of this result where finite point sets are replaced by infinite sets of a given
Hausdorff dimension. An explicit quantitative connection between our main result on directions
(Theorem 1.5 below) and the work of Pach, Pinchasi, and Sharir is made in Section 4 below. We
show that a finite set P , satisfying the (d−1+ε)-adaptability assumption (see Definition 4.1 below),
determines ' #P distinct directions. In dimensions two and three, this result is weaker than then
the result of Pach, Pinchasi, and Sharir described above. However, in dimensions four and higher,
our result gives, to the best of our knowledge, the only known bounds.

In the finite field setting, the problem of directions was previously studied by the first listed
author and Hannah Morgan. See [14] and the references contained therein.

The problem of angles in the discrete setting was studied in recent years by Apfelbaum and
Sharir ([1]). They prove that in three dimensions, a single angle does not arise more than O(n

7
3 )

times among n points. This implies, by the pigeon-hole principle, that the set of n points in the
three dimensions determines at least Ω(n

2
3 ) distinct angles. In four dimensions, they prove that

a single angle, different from π
2 , does not arise more than O(n

5
2 ), up to the inverse Ackerman

function, times among n points. Similarly, this implies that any set of n points in four dimensions
determines at least Ω(n

1
2 ) distinct directions. The explicit connection between our main result on

angles (Theorem 1.6 below) and the work of Apfelbaum and Sharir is made in Section 4 below. We
prove in the plane that a finite set P , satisfying the s-adaptability assumption, determines ' #P

distinct angles in two dimensions and ' (#P )
6

3d−1 distinct angles in dimension three and higher. In
dimensions three and four this gives a slight improvement over the result of Apfelbaum and Sharir,
albeit restricted to s-adaptable sets. In dimension five and higher, our result appears to be entirely
new.

Definition 1.1. Given E ⊂ Rd, d ≥ 2, define

D(E) =

{
x− y
|x− y|

: x, y ∈ E
}
⊂ Sd−1,

the set of directions determined by E.

Definition 1.2. Given E ⊂ Rd, d ≥ 2, define

A(E) = {θ(x, y, z) : x, y, z ∈ E},
where θ is the angle between x− y and y − z, measured counter-clockwise.

Definition 1.3. Let E ⊂ Sd−1, d ≥ 3. We say that γd is an acceptable spherical Falconer exponent
if the Lebesgue measure of ∆(E) = {|x−y| : x, y ∈ E} is positive whenever the Hausdorff dimension
of E is greater than γd.

Remark 1.4. The result due to Wolff in two dimensions ([28]) and Erdogan in higher dimensions
([6]) says that if the Hausdorff dimension of E ⊂ Rd. d ≥ 2, is greater than d

2 + 1
3 , then the Lebesgue

measure of the set of distances is positive. One can check that Erdogan’s proof carries over to the
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case of the sphere. Namely, if the Hausdorff dimension of E ⊂ Sd−1, d ≥ 3, is greater than d−1
2 + 1

3 ,

then the Lebesgue measure of the set of distances is positive. In particular, any s > d−1
2 + 1

3 is an
acceptable spherical Falconer exponent.

Our main results are the following.

Theorem 1.5. Let E ⊂ Rd, d ≥ 2, of Hausdorff dimension greater than d− 1. Then

(1.1) σ(D(E)) > 0,

where σ denotes the Lebesgue measure on Sd−1.

Theorem 1.6. Suppose that γd is an acceptable spherical Falconer exponent, and E ⊂ Rd, with
d ≥ 3. Then if the Hausdorff dimension of E is greater than γd, the one-dimensional Lebesgue
measure of A(E) is positive.

In two dimensions, the assumption that the Hausdorff dimension of E is greater than one
guarantees that the Lebesgue measure of A(E) is positive.

Remark 1.7. Given a set E ⊂ Rd, and a point y ∈ E, let Ay(E) denote the pinned angle set,
defined as {θ(x, y, z) : x, y, z ∈ E}. The proof of Theorem 1.6 actually guarantees the existence of
a point, y0 ∈ E, for which the Lebesgue measure of Ay0(E) is positive.

Remark 1.8. The approaches to similar problems in geometric measure theory (see e.g. [7], [6],
[28]) typically involve constructing a measure on a set under consideration, (in this case– directions),
and then proving, using Fourier transform methods, that this measure is in L2 or in L∞. While
our approach is also Fourier based, we prove that the measure of a ball centered at a point in the
direction set equals a quantity comparable to εd−1 plus an error. We then show that this error is
o(εd−1) in L1 norm provided that the Hausdorff dimension of the underlying set E is greater than
d−1. This, combined with the Lebesgue differentiation theorem, allows us to conclude that the set
of directions has a positive Lebesgue measure on the sphere. This approach is quite reminiscent of
the techniques used to study geometric combinatorics problems in the finite field setting. See, for
example, ([12]) and the references contained therein.

Remark 1.9. The proof below gives us a bit more. It shows that if the Hausdorff dimension of E
is greater than k, 1 ≤ k ≤ d− 1, then there exists Sk ⊂ Sd−1 such that σk(D(E)) > 0, where σk is
the Lebesgue measure on Sk.

Remark 1.10. It is not difficult to check that if E is a (d − 1)-dimensional Lipschitz surface in
Rd, which is not contained in a (d − 1)-dimensional plane, then σ(D(E)) > 0. It is reasonable to
conjecture that the same conclusion holds if E is merely a (d− 1)-dimensional rectifiable subset of
Rd. We discuss the purely non-recitifiable case in the Subsection 1.1 below.

Remark 1.11. It is interesting to contrast this result with the Besicovitch-Kakeya conjecture (see
e.g. [29] and the references contained therein), which says that any subset of Rd, containing a
unit line segment in every direction has Hausdorff dimension d. On the other hand, Theorem 1.5
says that Hausdorff dimension greater than d− 1 is sufficient for the set to contain endpoints of a
segment of some length pointing in the direction of a positive proportion of vectors in Sd−1.

1.1. Sharpness of the main results:
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1.1.1. Directions: Theorem 1.5 cannot be improved in the following sense. Suppose that E is
contained in a (d− 1)-dimensional hyper-plane. Then σ(D(E)) = 0. It follows that the conclusion
of Theorem 1.5 does not in general hold if the Hausdorff dimension of E is less than or equal to
d− 1.

Another very different sharpness example comes from the theory of distance sets. Let Eq denote

the q−
d
s -neighborhood of

q−1
(
Zd ∩ [0, q]

d
)
,

where Zd denote the standard integer lattice and 0 < s < d. It is known that if qi is a sequence of
integers given by q1 = 2, qi+1 > qii , then the Hausdorff dimension of

E = ∩iEqi
is s. See, for example, [7], [8]. Observe that

σ(D(Eq)) ≈ q−
d(d−1)
s · qd

since the number of lattice points in [0, q]
d
, d ≥ 2, with relatively prime coordinates is equal to

qd

ζ(d)
(1 + o(1)),

where ζ(t) is the Riemann zeta function. See, for example, [17]. It follows that

σ(D(Eq))→ 0 as q →∞
if s < d − 1. It follows that σ(D(E)) = 0. This example does not rule out s = d − 1 and one
might reasonably conjecture, consistent in spirit with the result due to Pach, Pinchasi, and Sharir
stated above, that if the Hausdorff dimension of E is equal to d − 1, then (1.1) holds if and only
E is not a subset of a single (d− 1)-dimensional hyper-plane. This, however, is not true. A result
due to Simon and Solomyak ([26] shows that for every self-similar set of Hausdorff dimension one
satisfying an additional mild condition, the Lebesgue measure of D(E) is zero. In particular, if
E is the four-cornered Cantor set known as the Garnett set (see e.g. [10]), then the Hausdorff
dimension of E is one and the Lebesgue measure of D(E) is zero. It is not difficult to use Simon
and Solomyak’s result to construct a set of Hausdorff dimension d− 1 in Rd that is not contained
in the plane and the Lebesgue measure of D(E) is zero.

In the realm of rectifiable sets, we believe that Theorem 1.5 can be strengthened as follows.

Conjecture 1.12. Let E ⊂ Rd, d ≥ 2, of Hausdorff dimension d−1. Suppose that E is rectifiable.
Then (1.1) holds.

1.1.2. Angles: There are fewer known sharpness examples for problems involving angles in Rd.
Suppose that the set E is contained in a straight line. Clearly, points in such a set can only
determine the angles 0 and π/2. Thus, it is tempting to conjecture that for any set, E, with
Hausdorff dimension strictly greater than one, the Lebesgue measure of A(E) should be positive.

1.2. Structure of the paper. Theorem 1.5 is proved in Section 2 below. The modifications
of that proof which yield Theorem 1.6 are described in Section 3. In Section 4 we describe an
explicit connection between the main results of the paper and the discrete problems, such as those
studied by Apfelbaum, Pach, Pinchasi, and Sharir.
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2. Proof of Theorem 1.5

Let s be the Hausdorff dimension of E. Now, although the set D(E) is a subset of the (d− 1)-
dimensional sphere, in the arguments to follow, it is convenient to work with sets of slopes of line
segments defined by pairs of points in the set E. If p and q are two points, with coordinates
(p1, p2, ..., pd) and (q1, q2, ..., qd), then we define the slope of the line segment between p and q as
the (d− 1)-tuple {

p1 − q1
pd − qd

,
p2 − q2
pd − qd

, ...,
pd−1 − qd−1
pd − qd

}
.

It is not difficult to see that if the (d − 1)-dimesional Lebesgue measure of the set of slopes
determined by E is positive, then (1.1) holds. With a slight abuse of notation, we will refer to the
set of slopes as D(E) as well. It is convenient to extract two subsets from E, separated from each
other in at least one of the coordinates. To this end, we have the following construction.

Lemma 2.1. If µ is a Frostman probability measure on E ⊂ Rd, with Hausdorff dimension greater
than d−1, then there exist c1, c2 positive constants and E1, E2 subsets of E such that µ(Ej) ≥ c1 > 0,
for j = 1, 2 and

max
1≤k≤d

(inf{|xk − yk| : x ∈ E1, y ∈ E2}) ≥ c2 > 0.

We will employ a stopping time argument. Define Cδ to be the constant in the Frostman
condition,

µ(Br) ≤ Cδrs−δ.

Let [0, 1]d be the unit cube in Rd, and subdivide it into 4d smaller cubes of side-length 1
4 .

Choose 2d collections of subcubes such that no two cubes of the same collection touch each other.
Then by the pigeon-hole principle, at least one of them has measure greater than or equal to 1

2d
.

If there are two cubes, Q1, and Q′1, in the same collection, such that µ(Q1), µ(Q′1) ≥ c
2d

for some

c > 0, then we are done. If not, there exists a cube Q1 of side-length 1
4 , so that µ(Q1) ≥ 1

2d
. Then

we repeat the same procedure on the cube Q1. Now, either we have two cubes, Q2 and Q′2, with
µ(Q2), and µ(Q′2) ≥ c

22d
, for some c > 0, which are in the same collection, or we do not. If we do

not, then again, there must be a cube, Q2, with side length 1
42 , so that µ(Q2) ≥ 1

22d
. We can repeat

this process, and at each stage check for two cubes, from the same collection, with the requisite
measure. Let the integer n depend on Cδ. If we fail to find two such cubes at the n-th iteration,
we obtain a cube Qn of side-length 1

4n for which µ(Q) ≥ 1
2dn

. By the Frostman measure condition,
for every δ > 0, there exists Cδ > 0 such that

1

2dn
≤ µ(Q) ≤ Cδ

1

4n(s−δ)
,

which is true if n ≤ log2(Cδ)
(2s−2δ−d) . So, picking n > log2(Cδ)

(2s−2δ−d) , it is only true whenever s < d
2 + δ, and

since s > d− 1 > δ + d
2 , for sufficiently small δ, we have a contradiction.

Let x and y be points in Rd with coordinates (x1, x2, ..., xd) and (y1, y2, ..., yd). Apply Lemma
2.1 to E. Without loss of generality, let the sets E1 and E2 be separated in the d-th coordinate.
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1 2 1 2

3 4 3 4

1 2 2

3 4 3 4

Figure 1. The first decomposition into four collections of four cubes each is shown
with a 1 in the cubes of the first collection, a 2 in the cubes of the second collection,
etc... In this case, the first decomposition was not enough, and a positive proportion
of the mass was in the lower-right cube of the first collection. After the second
iteration, there are two shaded boxes, representing E1 and E2.

Let µ1 and µ2 be restrictions of µ to the sets E1 and E2, respectively. Let t = (t1, t2, . . . , td−1).
For slopes t ∈ [ 12 , 1]d−1, define νε(t) to be the quantity

µ× µ
{

(x, y) ∈ E1 × E2 : t1 − ε ≤
x1 − y1
xd − yd

≤ t1 + ε, ..., td−1 − ε ≤
xd−1 − yd−1
xd − yd

≤ td−1 + ε

}
.

Since xd− yd is guaranteed to be more than c2 by Lemma 2.1, we can multiply each inequality
through by the denominator to get that

νε(t) ≈ µ1 × µ2{(x, y) ∈ E1 × E2 : (xd − yd)t1 − ε ≤ x1 − y1 ≤ (xd − yd)t1 + ε, ...,

(xd − yd)td−1 − ε ≤ xd−1 − yd−1 ≤ (xd − yd)td−1 + ε}.

Our plan is to show that νε(t) is comparable to a quantity which can be written as the sum of
two terms. We shall prove that the first term is bounded from below by a constant multiple of εd−1.
Then we will show that the integral of the second second term in t1, . . . , td−1 is much smaller than

εd−1. We then conclude νε(t) > 0 for a subset of
[
1
2 , 1
]d−1

of positive (d− 1)-dimensional Lebesgue
measure. As we note above, this implies that σ(D(E)) > 0.
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Let ψ : R → R be a smooth, even bump function, whose support is contained in the set

[−2,− 1
2 ] ∪ [ 12 , 2] such that ψ̂(0) = 1. We have

νε(t) ≈
∫ ∫

ψ

(
(x1 − y1)− t1(xd − yd)

ε

)
ψ

(
(x2 − y2)− t2(xd − yd)

ε

)
...

ψ

(
(xd−1 − yd−1)− td−1(xd − yd)

ε

)
dµ1(x)dµ2(y).

By Fourier inversion, this quantity equals

∫ ∫ ∫
...

∫
ψ̂(λ1)ψ̂(λ2)...ψ̂(λd−1)e

2πi
ε λ1((x1−y1)−t1(xd−yd))e

2πi
ε λ2((x2−y2)−t2(xd−yd))...

e
2πi
ε λd−1((xd−1−yd−1)−td−1(xd−yd))dλ1dλ2...dλd−1dµ1(x)dµ2(y)

=

∫ ∫
...

∫
ψ̂(λ1)ψ̂(λ2)...ψ̂(λd−1)µ̂1

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))
µ̂2

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))
dλ1dλ2...dλd−1 ≡ I.

We handle the integral above by splitting it into two integrals, where the domains of integration
are [0, c0ε]

d−1 and Fε ≡ [0, 1]d−1 \ [0, c0ε]
d−1, respectively.

I =

∫ c0ε

0

∫ c0ε

0

...

∫ c0ε

0

dλ1dλ2...dλd−1 +

∫
Fε

dλ1dλ2...dλd−1 ≡Mε(t) +Rε(t).

From the first integral, Mε(t), we obtain the main term and an error term. We will bound
|Mε(t)| from below by a constant multiple of εd−1. The second integral will be denoted by Rε(t)
for which we will show the bound ||Rε(t)||L1 = o(εs).

Observe that ψ̂(0) = 1 and µ̂j(0, 0, ..., 0) > c1, so we add and subtract the appropriate constants
and have that Mε(t) is equal to

∫ c0ε

0

∫ c0ε

0

...

∫ c0ε

0

µ̂1(0, 0, ..., 0)µ̂2(0, 0, ..., 0)dλ1dλ2...dλd−1 +M ′ε(t),

where M ′ε(t) is the error term, whose modulus, since |µ̂j | ≤ 1, for j = 1, 2, is bounded from above
by
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∑
1≤i≤d−1

∫
[0,c0ε]d−1

|ψ̂(λi)− ψ̂(0)|dλ1dλ2...dλd−1+

∑
1≤i,j≤d−1

i 6=j

∫
[0,c0ε]d−1

|ψ̂(λi)− ψ̂(0)||ψ̂(λj)− ψ̂(0)|dλ1dλ2...dλd−1 + · · ·+

∫
[0,c0ε]d−1

∏
1≤k≤d−1

|ψ̂(λk)− ψ̂(0)|dλ1dλ2...dλd−1+

∫
[0,c0ε]d−1

|f(λ1, ..., λd−1)− f(0, 0, ..., 0)| |g(λ1, ..., λd−1)− g(0, 0, ..., 0)| dλ1dλ2...dλd−1+

∫
[0,c0ε]d−1

|f(0, 0, ..., 0)| |g(λ1, ..., λd−1)− g(0, 0, ..., 0)| dλ1dλ2...dλd−1+

∫
[0,c0ε]d−1

|f(λ1, ..., λd−1)− f(0, 0, ..., 0)| |g(0, 0, ..., 0)|dλ1dλ2...dλd−1,

where

f(λ1, ..., λd−1) ≡ µ̂1

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))
g(λ1, ..., λd−1) ≡ µ̂2

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))
.

Since ψ̂, µ̂1, and µ̂2 are uniformly continuous, for every η > 0, there exists δ > 0 and c0(δ) > 0,
with c0ε < δ, such that

|M ′ε(t)| ≤
(

(d− 1)η +

(
d− 1

2

)
η2 + ...+ ηd−1 + 2η + η2

)
(c0ε)

d−1,

where an appropriate choice of η > 0 guarantees that

θ ≡ cd−10

(
(d− 1)η +

(
d− 1

2

)
η2 + ...+ ηd−1 + η2 + 2η

)
<

1

106
.

So, |M ′ε(t)| < θεd−1, for some θ < 1
106 .

Now, by the definition of µj , j = 1, 2, we obtain that∫ c0ε

0

∫ c0ε

0

...

∫ c0ε

0

µ̂1(0, 0, ..., 0)µ̂2(0, 0, ..., 0)dλ1dλ2...dλd−1 ≥ cd−10 c21ε
d−1,

which gives us the desired lower bound for the main term, namely

|Mε(t)| & εd−1.
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Now we will bound the L1 norm of the quantity Rε(t). Recall, Fε = [0, 1]d−1 \ [0, c0ε]
d−1.∫

[ 12 ,1]
d−1

|Rε(t)|dt1...dtd−1 ≤
∫

[ 12 ,1]
d−1

∫
Fε

|ψ̂(λ1)ψ̂(λ2)...ψ̂(λd−1)|

∣∣∣∣µ̂1

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))∣∣∣∣∣∣∣∣µ̂2

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))∣∣∣∣ dλ1dλ2...dλd−1dt1...dtd−1.
By applying Cauchy-Schwarz, the square of the expression above is

.
∫

[ 12 ,1]
d−1

∫
Fε

∣∣∣ψ̂(λ1)ψ̂(λ2)...ψ̂(λd−1)
∣∣∣ψ(t1)ψ(t2)...ψ(td−1)

∣∣∣∣µ̂1

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))∣∣∣∣2 dλ1...dλd−1dt1...dtd−1∫
[ 12 ,1]

d−1

∫
Fε

∣∣∣ψ̂(λ1)ψ̂(λ2)...ψ̂(λd−1)
∣∣∣ψ(t1)ψ(t2)...ψ(td−1)

∣∣∣∣µ̂2

(
−λ1
ε
,−λ2

ε
, ...,

(
t1λ1 + t2λ2 + ...td−1λd−1

ε

))∣∣∣∣2 dλ1...dλd−1dt1...dtd−1
= A ·B,

where A is the first integral, and B is the second. We will break each of these integrals up into
integrals over regions which make up the whole region.

A =

∫
[ 12 ,1]

d−1

∫
Fε

=

∫
[ 12 ,1]

d−1

∫
[c0ε,1]d−1︸ ︷︷ ︸
A1

+

∫
[ 12 ,1]

d−1

1∫
c0ε

c0ε∫
0

· · ·
1∫

c0ε︸ ︷︷ ︸
A2

+

∫
[ 12 ,1]

d−1

c0ε∫
0

c0ε∫
0

· · ·
1∫

c0ε︸ ︷︷ ︸
A3

+...

We will now estimate the Aj . The estimates of the corresponding Bj are identical. Notice that in
each integral Aj , there will always be at least one variable whose range goes from c0ε to 1

ε . In what
follows, we will treat λ1 as the variable with this range. If λ1 does not have this range, we can
alter the change of variables to suit that particular integral. Now, in both integrals, we will make
a change of variables.

z1 =

d−1∑
k=1

tkλk, z2 = t2, z3 = t3, ..., zd−1 = td−1,

w1 = −λ1, w2 = −λ2, ..., wd−3 = −λd−3.

The last two assignments depend on the dimension. If d is even, let wd−2 = −λd−2 and wd−1 =
−λd−1. If d is odd, let wd−2 = −λd−1 and wd−1 = −λd−2. This change of variables will have
Jacobian determinant of −λ1, or w1. Here, we will illustrate the estimation of the integral A1. The
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other pieces can be estimated in a similar fashion.

A1 =

∫
[ 12 ,1]

d−1

∫
[c0ε,1]d−1

∣∣∣ψ̂(−w1)ψ̂(−w2)...ψ̂(−wd−1)
∣∣∣ ∣∣∣µ̂1

(w1

ε
,
w2

ε
, ...,

wd−1
ε

,
z1
ε

)∣∣∣2

ψ

(
z1 + z2w2 + ...+ zd−1wd−1

w1

)
ψ(z2)...ψ(zd−1)

dw1

w1
dw2...dwd−1dz1...dzd−1.

Now we make another change of variables, uj =
wj
ε and uj+d−1 =

zj
ε , for 1 ≤ j ≤ d−1, which gives

us

A1 = ε2d−2
∫

[ 1
2ε ,

1
ε ]
d−1

∫
[c0,

1
ε ]
d−1

∣∣∣∣∣ ψ̂(−εu1)

εu1
ψ̂(−εu2)...ψ̂(−εud−1)

∣∣∣∣∣ |µ̂1 (u1, u2, ..., ud−1, ud)|2

du1du2...dud−1ψ

(
ud + ε(u2ud+1 + ...+ u2(d−2)ud−1)

u1

)
dudψ(εud+1)dud+1...ψ(εu2(d−1))du2(d−1)

. ε2d−2 · ε−(d−2)εs−d = εs−(d−1) · εd−1.

For the last inequality we used that the energy integral is bounded by Cεs−d along with the fact
that for u1 > c0,

(2.1)
∣∣∣ψ̂(εu1)

∣∣∣ ≤ Cn ∑
m≥0

2−nmφ(2−mεu1),

where φ is a smooth cut-off with the additional property φ(k)(0) = 0, for any k ∈ N.
In the term corresponding to m = 0, we have

φ(εu1)

u1
= ε

φ(εu1)

εu1
= ε · φ̃(εu1),

where φ̃(εu1) is, once again, a smooth cut-off function due to the fact that φ and its derivatives
vanish at the origin. This allows us to handle the term corresponding to m = 0, while for m ≥ 1,
we only have to adjust the power n to obtain a decaying factor which allows our series to converge.

The same trick applies to ψ̂ for any of the first d variables without the need to be bounded from
below, while for the remaining variables we just use that ‖ψ‖L1 = 1. The other Aj are estimated
the same way, so now we have a bound on the L1 norm of Rε(t),∫

|Rε(t)| dt . εs = o
(
εd−1

)
.

One can repeat the argument above for νδε (t) = (νε ∗ ρδ)(t), where

ρδ(x) =
1

δd−1
ρ
(x
δ

)
,

δ > 0, and ρ ∈ C∞0
(
Rd−1

)
is a mollifier. We will obtain the same bounds independently of δ.

Let Mδ
ε (t) and Rδε(t) denote the main and the remainder term of νδε (t), respectively. Let also

Id−1 ≡
[

1

2
, 1

]d−1
. What is proved is that∣∣M δ

ε (t)
∣∣ & εd−1,
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while ∫ ∣∣Rδε(t)∣∣ dt = o(εd−1).

Hence, by Chebyshev’s inequality,

(2.2)

∣∣∣∣{t ∈ Id−1 :
∣∣Rδε(t)∣∣ ≥ C

2
εd−1

}∣∣∣∣ ≤ 2

Cεd−1

∫ ∣∣Rδε(t)∣∣ dt . εs−(d−1).

Set

Uε =

{
t ∈ Id−1 : |Rδε(t)| ≥

C

2
εd−1

}
,

and by (2.2), observe that |Uε| . εs−(d−1). This indicates that for any fixed ε > 0,∣∣{t ∈ Id−1 : νδε (t) ≥ 2Cεd−1}
∣∣ = |Id−1 \ Uε| &

1

2d−1
− εs−(d−1).

Applying the Lebesgue differentiation theorem to νδεj (t), for the subsequence εj = 2−j , j =

1, 2, ..., we have that νδ(t) > C > 0, for almost every t ∈ Id−1 \
∞⋃
j=N

Uj , where N is a large positive

integer such that ∣∣∣∣∣∣Id−1 \
∞⋃
j=N

Uj

∣∣∣∣∣∣ ≥ 1

2d−1
−
∑
j>N

1

2(s−(d−1))j
>

1

2d
.

Finally, since supp(ν) ⊂ supp(νδ) ⊂ B(0, δ) + supp(ν), for any δ > 0, taking δ → 0 concludes the
proof of Theorem 1.5.

Remark 2.2. The above argument shows that for any t ∈ Id−1 \
⋃∞
j=N Uj , we have that

ν(B(t, r)) ≈ rd−1.

Remark 2.3. Observe that despite the fact that we integrate in all tj ’s, it is enough to integrate
in only one of them and obtain∫ 1

1/2

|Rε (t1, ..., tj−1, tj , tj+1, ..., td−1)| dtj . εs,

uniformly in t1, ..tj−1, tj+1, ..., td−1.

3. Proof of Theorem 1.6

The proof of the two-dimensional case follows instantly from the proof of Theorem 1.5 above.
We now confine our attention to the higher dimensional case.

Again, we consider a set E ⊂ Rd with Hausdorff dimension s. First, we notice, by Remark 1.9,
that we can prove a statement analogous to Theorem 1.5 for any integral dimension, k. However,
when the acceptable spherical Falconer exponent, γd, is not an integer, we need to argue that we
can get a similar result on directions for s > γd. This will give us a more general result on the
direction set of E, namely, the following claim.

Claim 3.1. Let E ⊂ Rd, d ≥ 3 with Hausdorff dimension greater than s0, then the Hausdorff
dimension of D(E) is at least s0.
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After proving this, we need to strengthen it slightly, by showing that there exists a fixed y ∈ E,

for which a similar argument holds for the pinned direction set, Dy(E) =
{
x−y
|x−y| : x ∈ E

}
⊂ Sd−1.

Claim 3.2. Let E ⊂ Rd, d ≥ 2 with Hausdorff dimension greater than s0, then there exists a y ∈ E
for which the Hausdorff dimension of Dy(E) is at least s0.

Once we prove Claim 3.1 and Claim 3.2, Theorem 1.6 follows. We have

dimH

{
x− y
|x− y|

: x ∈ E
}
≥ s0,

for some y ∈ E. It follows that if s0 is an acceptable spherical Falconer exponent, by Definition
1.3, we obtain that

(3.1) L1 (∆ (Dy(E))) > 0.

Now, we observe that there exists a one-to-one correspondence between the arcs determined
by two different points x and x′ ∈ E, which lie on the sphere of radius 1, centered at y ∈ E, and
the angles θ(x, y, x′). Thus, by (3.1), since the Lebesgue measure of all the different arclengths is
positive, we have that the Lebesgue measure of all the different angles is also positive, i.e.

L1 (A(E)) > 0.

3.1. Proof of Claim 3.1. Notice first that if d = 2, the pinned result, Claim 3.2, is enough.
If d ≥ 3, observe that for any positive integer k < d− 1, we can argue as in proof of Theorem 1.1,

using C0ε
k
d−1 instead of C0ε when we split the integral into the main part and the remainder. Then

the main term is comparable to εk, while for the remainder we have∫ 1

1/2

|Rε (t1, ..., tj−1, tj , tj+1, ..., td−1)| dtj . εs,

uniformly t1, ..tj−1, tj+1, ..., td−1, as we did before. The main difference lies on the application of
the Lebesgue differentiation Theorem, where in this case, it is applied in k variables. So, what we
get is

|Uε| . εs−k,

where

Ik =

[
1

2
, 1

]k
,

and

Uε =

{
t ∈ Ik : |Rδε(t)| ≥

C

2
εk
}
.

We apply Lebesgue differentiation Theorem for the subsequence εj = 2−j , and then if we set

Jk ≡ Ik \
⋃
j>N

Uj ,

we can choose a large positive integer N, such that

(3.2) |Jk| >
3

4

1

2k
.
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Let µα = Gα ∗ µ, where Gα is the kernel of the Bessel potential with the property

Ĝα(x) =
1

(1 + 4π2|x|2)α/2
.

After we associate the quantity ναε (t) with the cross product µα × µα, and pick α0 = k−s0
2 and

α1 = (k+1)−s0
2 , the argument above and Remark 2.3 show that

νδ,αj (B(t, r)) ≈ rk+j ,

for every t ∈ Jk+j , and j = 0, 1, where

νδ,αj (t) = (ναj ∗ ρδ)(t).

Let A0 ≡ Jk ×
[
1
2 , 1
]d−1−k

and A1 ≡ Jk+1 ×
[
1
2 , 1
]d−1−(k+1)

. By (3.2),

|Aj | >
3

4

1

2d−1
,

for j = 0, 1. It is clear that there exists a set O ⊂ A0

⋂
A1, such that

|O| > 1

2

1

2d−1
.

We restrict ourselves slightly by replacing the measure ν by the new measure ν · χO, which, for
simplicity, we will keep denoting by ν. An interpolation argument for the energy integral will prove
our claim. Let

F (λ) ≡ Iγ(λ)
(
νδ,α(λ)

)
=

∫
|ν̂δ,α(λ)(ξ)|2|ξ|−(d−1)+γ(λ) dξ,

for 0 ≤ λ ≤ 1, where

α(λ) = (1− λ)α0 + λα1,

γ(λ) = 2α(λ) + s0 − β,
for β > 0, and

νδ,α(λ)(t) = (να(λ) ∗ ρδ)(t).
It is enough to prove that F (0) and F (1) are finite. Then, by three-lines lemma, for λ0 = s0 − k,

F (λ0) = Is0−β
(
νδ
)
<∞,

which in turn, since β can be arbitrarily small, after taking the limit as δ → 0, proves our result.

To this end, we will prove F (0) <∞, while the other case can be proved similarly.

F (0) =

∫
|ξ|<1

|ν̂δ,α0(ξ)|2|ξ|−(d−1+β−k) dξ +

∞∑
j=0

∫
|ξ|≈2j

|ν̂δ,α0(ξ)|2|ξ|−(d−1+β−k) dξ

= I +

∞∑
j=0

Ij .

It can be easily shown that I <∞, since να0 ≤ 1. Now,
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Ij . 2−j(d−1+β−k)
∫∫∫

ψ

(
ξ

2j

)
e−2π(x−y)ξνδ,α0(x)νδ,α0(y)dxdydξ

= 2−j(β−k)
∫∫

ψ̂
(
2j(x− y)

)
νδ,α0(x)νδ,α0(y)dxdy,

and since ψ̂ is a rapidly decreasing function we can replace it by

cn
∑
m>0

2−nmχB(0,2−m)

(
2j(x− y)

)
.

So,

Ij . cn2−j(β−k)
∑
m>0

2−nm2k(m−j) . 2−βj ,

and hence, F (0) is finite, which concludes the proof of Claim 3.1.

3.2. Proof of Claim 3.2. Here, we indicate how the above proofs would be modified to get
the pinned result. Initially, we will apply Lemma 2.1, as before, to get two subsets, E1 and E2,
which have measure comparable to that of E, and which are separated in at least one dimension.
Without loss of generality, we suppose that these sets are separated in the d-th dimension. For
every y ∈ E2, we work as above to obtain the following quantity

νε(t, y) ≈
∫ ∫

ψ

(
(x1 − y1)− t1(xd − yd)

ε

)
ψ

(
(x2 − y2)− t2(xd − yd)

ε

)
...

ψ

(
(xd−1 − yd−1)− td−1(xd − yd)

ε

)
dµ1(x).

Again, we write this quantity as an integral which will be analogous to the integral in (2). Since
y is fixed, we do not integrate with respect to µ2. When we apply Fourier inversion to the integral
defining ν(t, y), instead of getting µ̂2, we get exponentials in terms of the coordinates of y.

In the same way we split the earlier integral, we split this one into Mε(t, y) and Rε(t, y). In the
first piece, all of the λj are smaller than c0ε, where c0 is, again, a constant which will be chosen
later. In the second piece, in each region of integration, at least one of the λj is larger than c0ε.
As mentioned above, we will bound the first piece from below by a constant multiple of εd−1, and
bound the t1, . . . , td−1 integral of the second piece from above by a quantity much smaller than
εd−1.

Notice that the lower bound on the main term will follow by the same method as in the unpinned
case. The only difference here is the exponentials in yj . However, these are analytic, so we can use
a similar argument.

For the upper bound on the error term, we want to show that there exists a y ∈ E2 for
which |Rε(t, y)| = o(εd−1), which would guarantee that νε(t, y) ≈ εd−1. We argue by contradiction.
Suppose that for every y ∈ E2, we have that νε(t, y) = o(εd−1), and we have that

(3.3) |Rε(t, y)| & εd−1.

Then, if we integrate (3.3) in t, we get that∫
|Rε(t, y)|dt & εd−1,
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since νε(t, y) = o(εd−1). However, if we integrate again in y, we get that∫ ∫
|Rε(t, y)|dtdµ2(y) & εd−1,

which contradicts the analogous bound in the proof of Theorem 1.5. Therefore, there must exist a
y for which the bound |Rε(t, y)| = o(εd−1).

With this final bound on |Rε(t, y)| and arguing as in the proof of Claim 3.1, we are done.

4. Some connections between continuous and discrete aspects of the problem at hand

In this section we appeal to a conversion mechanism developed in [13], [11], and [15], to deduce
a Pach-Pinchasi-Sharir type result from Theorem 1.5. In the aforementioned papers, the conversion
mechanism was used in the context of distance sets. However, as we shall see below, the idea is
quite flexible and lends itself to a variety of applications.

Definition 4.1. Let P be a set of n points contained in [0, 1]
d
, d ≥ 2. Define the measure

dµsP (x) = n−1 · n ds ·
∑
p∈P

χB
n
− 1
s
(p)(x)dx,

where χB
n
− 1
s
(p)(x) is the characteristic function of the ball of radius n−

1
s centered at p.

We say that P is s-adaptable if P is n−
1
s -separated and

Is(µP ) =

∫ ∫
|x− y|−sdµsP (x)dµsP (y) <∞.

This is equivalent to the statement

n−2
∑

p 6=p′∈P

|p− p′|−s . 1.

To put it simply, s-adaptability means that a discrete point set P can be thickened into a set
which is uniformly s-dimensional in the sense that its energy integral of order s is finite. Unfor-
tunately, it is shown in [15] that there exist finite point sets which are not s-adaptable for certain
ranges of the parameter s. The point is that the notion of Hausdorff dimension is much more subtle
than the simple “size” estimate. This turns out to be a serious obstruction to efforts to convert
“continuous” results into “discrete analogs”.

The first main result of this section is the following.

Theorem 4.2. Suppose that for arbitrarily small ε > 0, P is a (d− 1 + ε)-adaptable set in [0, 1]
d
,

d ≥ 2, consisting of n points. Then

(4.1) #D(P ) ' n.

Moreover, there exists a subset, D′(P ) ⊂ D(P ), such that #D′(P ) ≥ 1
2d−1 #D(P ) and the

elements in D′(P ) are n−
d−1
d−1+ε -separated.
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Observe that in dimensions two and three, this result is much weaker than what is known, as we
note in the introduction above. Another weakness of this result is that it only holds for s-adaptable
sets. However, in dimensions four and higher, Theorem 4.2 appears to give a new result in the
discrete setting.

To prove Theorem 4.2 thicken each point of P by n−
1
s , where s > d − 1. Let EP denote the

resulting set. Then

σ(D(EP )) . n−
d−1
s ·#D(P ).

By the adaptability assumption and the proof of Theorem 1.5, we see that

#D(P ) ' n
d−1
s ,

establishing (4.1) in view of the fact that we may take s arbitrarily close to d− 1. Note that since
Theorem 1.5 does not hold for s = d− 1, we cannot replace (4.1) by

(4.2) #D(P ) ≥ C#P.

To see that there exists a subset of the direction set which is n−
d−1
d−1+ε -separated, we recall that

σ(D(EP )) > 0, so we can break D(EP ) up into pieces with Lebesgue measure n−
d−1
d−1+ε , each of

which contains a representative from D(P ). Then by a simple pigeon-hole argument, we see that

at least
1

2d−1
#D(P ) of these must be separated.

The other main result of this section is the following.

Theorem 4.3. Suppose that for arbitrarily small ε > 0, P is a (γd + ε)-adaptable set in [0, 1]
d
,

d ≥ 3, consisting of n points. Then

(4.3) #A(P ) ' n
1
γd .

Moreover, there exists a subset, A′(P ) ⊂ A(P ), such that #A′(P ) ≥ 1
2#A(P ) and the elements in

A′(P ) are n
− 1
γd+ε -separated.

In two dimensions, under the same assumptions, #A(P ) ' n.

This result follows by a conversion similar to that of Theorem 4.2. Again, we construct a new
set, EP , by thickening each point of P by n−

1
s , where s ≥ γd. Since P is s-adaptable, we have

a continuous subset of Rd, with Hausdorff dimension s. Since s > γd, the proof of Theorem 1.6
guarantees that the Lebesgue measure of the set of angles determined by EP is positive. However,
the Lebesgue measure of EP is also bounded from above by

σ(A(EP )) . n−
1
s ·#A(P ).

Therefore,

#A(P ) ' n
1
s ,

which yields (4.3) as s can be as low as an acceptable spherical Falconer exponent, γd.

To see that there exists a subset of the angle set which is n
− 1
γd+ε -separated, we recall that

σ(A(EP )) > 0, so we can break A(EP ) up into pieces with Lebesgue measure n
− 1
γd+ε , each of

which contains a representative from A(P ). Then by a simple pigeon-hole argument, we see that
at least 1

2#A(P ) of these must be separated.
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Theorem 4.3 should be compared to the results of Pach and Sharir, in [22], Apfelbaum and
Sharir, in [1]. In [22], it is shown that for a set of n points in R2, no angle can occur more than
cn2 log n times. Since there are about n3 triples of points, this implies that there must be at least
cn/ log n distinct angles. In [1], it is shown that for a set of n points in R3, no angle can occur
more than cn7/3 times, which gives a lower bound of at least cn2/3 distinct angles. They also show
that for a set of n points in R4, no angle besides π/2 can occur more than cn5/2β(n) times, where
β(n) grows extremely slowly with respect to n. This means that there must be about n1/2(β(n))−1

distinct angles.
Our exponents are a bit stronger in dimensions three and higher, albeit in the context of s-

adaptable sets. In three dimensions our result implies that an ( 4
3 + ε)-adaptable set P determines

' (#P )
3
4 distinct angles. In four dimensions, an ( 11

6 + ε)-adaptable set determines ' (#P )
6
11

distinct angles. In dimensions five and higher, the only known results appear to be the ones given
by Theorem 4.3.

Remark 4.4. One should take note that the separation statements in these last two theorems are
relatively unique to continuous techniques. Most of the standard discrete results say nothing about
the separation of the distinct elements in a given set. For example, in [24], there is a sharp lower
bound on the number of distinct directions determined by a set of points in R3, but there are no
guarantees on the separation or distribution of these directions on S2.
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