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ON THE HADAMARD TYPE INEQUALITIES INVOLVING

PRODUCT OF TWO CONVEX FUNCTIONS ON THE

CO-ORDINATES

⋆M. EMIN ÖZDEMİR AND �,♣AHMET OCAK AKDEMİR

Abstract. In this paper some Hadamard-type inequalities for product of con-
vex funcitons of 2−variables on the co-ordinates are given.

1. INTRODUCTION

The inequality

(1.1) f

(

a+ b

2

)

≤
1

b− a

b
∫

a

f(x)dx ≤
f(a) + f(b)

2

where f : I ⊂ R → R is a convex function defined on the interval I of R, the set of
real numbers, and a, b ∈ I with a < b, is well known in the literature as Hadamard’s
inequality.

For some recent results related to this classic inequality, see [1], [8], [10], [11],
and [13], where further references are given.

In [2], Hudzik and Maligranda considered, among others, the class of functions
which are s−convex in the second sense. This class is defined as following:

Definition 1. A function f : [0,∞) → R is said to be s−convex in the second
sense if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

The class of s−convex functions in the second sense is usually denoted with K2
s .

It is clear that if we choose s = 1 we have ordinary convexity of functions defined
on [0,∞).

In [14], Kırmacı et al., proved the following inequalities related to product of
convex functions. They are given in the next theorems.

Theorem 1. Let f, g : [a, b] → R, a, b ∈ [0,∞), a < b, be functions such that g and
fg are in L1([a, b]), If f is convex and nonnegative on [a, b], and if g is s−convex
on [a, b] for some fixed s ∈ (0, 1), then

(1.2)
1

b− a

b
∫

a

f(x)g(x)dx ≤
1

s+ 2
M(a, b) +

1

(s+ 1)(s+ 2)
N(a, b)
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where

M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Theorem 2. Let f, g : [a, b] → R, a, b ∈ [0,∞), a < b, be functions such that g and
fg are in L1([a, b]), If f is s1−convex and g is s2−convex on [a, b] for some fixed
s1, s2 ∈ (0, 1), then

1

b− a

b
∫

a

f(x)g(x)dx ≤
1

s1 + s2 + 1
M(a, b) +B(s1 + 1, s2 + 1)N(a, b)

=
1

s1 + s2 + 1

[

M(a, b) + s1s2
Γ(s1)Γ(s2)

Γ(s1 + s2 + 1)
N(a, b)

]

(1.3)

Theorem 3. Let f, g : [a, b] → R, a, b ∈ [0,∞), a < b, be functions such that g and
fg are in L1([a, b]), If f is convex and nonnegative on [a, b], and if g is s−convex
on [a, b] for some fixed s ∈ (0, 1), then

2sf(
a+ b

2
)g(

a+ b

2
)−

1

b− a

b
∫

a

f(x)g(x)dx(1.4)

≤
1

(s+ 1)(s+ 2)
M(a, b) +

1

s+ 2
N(a, b)

For similar results, see the papers [2], [12].
In [11], Dragomir defined convex functions on the co-ordinates as following and

proved lemma 1 related to this definiton:

Definition 2. Let us consider the bidimensional interval ∆ := [a, b]× [c, d] in R
2

with a < b and c < d. A function f : ∆ → R is convex on ∆ if the following
inequality

f(λx+ (1 − λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1− λ)f(z, w)

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].

Lemma 1. Every convex mapping f : ∆ → R is convex on the co-ordinates, but
converse is not general true.

In [11], Dragomir established the following inequalities:

Theorem 4. Suppose that f : ∆ = [a, b]× [c, d] → R is convex on the co-ordinates
on ∆. Then one has the inequalities:

f(
a+ b

2
,
c+ d

2
)

≤
1

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)dxdy(1.5)

≤
f(a, c) + f(a, d) + f(b, c) + f(b, d)

4

Similar results, refinements and generalizations can be found in [3], [5], [6], [7]
and [9].

In [7], M. Alomari and M. Darus defined s−convexity on ∆ with the folllowing
definition:
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Definition 3. Consider the bidimensional interval ∆ := [a, b] × [c, d] in [0,∞)2

with a < b and c < d. The mapping f : ∆ → R is s−convex on ∆ if

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λsf(x, y) + (1− λ)sf(z, w)

holds for all (x, y), (z, w) ∈ ∆ with λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

In [7], M. Alomari and M. Darus proved the following lemma:

Lemma 2. Every s−convex mappings f : ∆ := [a, b]× [c, d] ⊂ [0,∞)2 → [0,∞) is
s−convex on the co-ordinates, but converse is not general true.

In [4], M. A. Latif and M. Alomari established Hadamard-type inequalities for
product of two convex functions on the co-ordinates as follow:

Theorem 5. Let f, g : ∆ := [a, b] × [c, d] ⊂ R
2 → [0,∞) be convex functions on

the co-ordinates on ∆ with a < b and c < d. Then

1

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy(1.6)

≤
1

9
L(a, b, c, d) +

1

18
M(a, b, c, d) +

1

36
N(a, b, c, d)

where

L(a, b, c, d) = f(a, c)g(a, c) + f(b, c)g(b, c) + f(a, d)g(a, d) + f(b, d)g(b, d)

M(a, b, c, d) = f(a, c)g(a, d) + f(a, d)g(a, c) + f(b, c)g(b, d) + f(b, d)g(b, c)

+f(b, c)g(a, c) + f(b, d)g(a, d) + f(a, c)g(b, c) + f(a, d)g(b, d)

N(a, b, c, d) = f(b, c)g(a, d) + f(b, d)g(a, c) + f(a, c)g(b, d) + f(a, d)g(b, c)

Theorem 6. Let f, g : ∆ := [a, b] × [c, d] ⊂ R
2 → [0,∞) be convex functions on

the co-ordinates on ∆ with a < b and c < d. Then

4f(
a+ b

2
,
c+ d

2
)g(

a+ b

2
,
c+ d

2
)(1.7)

≤
1

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy

+
5

36
L(a, b, c, d) +

7

36
M(a, b, c, d) +

2

9
N(a, b, c, d)

where L(a, b, c, d), M(a, b, c, d), N(a, b, c, d) as in (1.6).

The main purpose of this paper is to establish new inequalities like (1.6) and
(1.7), but now for convex functions and s−convex functions of 2−variables on the
co-ordinates.

2. MAIN RESULTS

Theorem 7. Let f : ∆ := [a, b]× [c, d] ⊂ [0,∞)2 → [0,∞) be convex function on
the co-ordinates and g : ∆ := [a, b]× [c, d] ⊂ [0,∞)2 → [0,∞) be s−convex function
on the co-ordinates with a < b, c < d and fx(y)gx(y), fy(x)gy(x) ∈ L1[∆] for some
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fixed s ∈ (0, 1). Then one has the inequality:

1

(d− c) (b− a)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy(2.1)

≤
1

(s+ 2)
2
L(a, b, c, d) +

1

(s+ 1) (s+ 2)
2
M(a, b, c, d)

+
1

(s+ 1)2(s+ 2)2
N(a, b, c, d)

where

L(a, b, c, d) =
1

(s+ 2)
2
([f(a, c)g(a, c) + f(b, c)g(b, c)] + [f(a, d)g(a, d) + f(b, d)g(b, d)])

M(a, b, c, d) =
1

(s+ 1) (s+ 2)2
([f(a, c)g(b, c) + f(b, c)g(a, c)] + [f(a, d)g(b, d) + f(b, d)g(a, d)])

+
1

(s+ 1) (s+ 2)
2
([f(a, c)g(a, d) + f(b, c)g(b, d)] + [f(a, d)g(a, c) + f(b, d)g(b, c)])

N(a, b, c, d) =
1

(s+ 1)2(s+ 2)2
([f(a, c)g(b, d) + f(b, c)g(a, d)] + [f(a, d)g(b, c) + f(b, d)g(a, c)])

Proof. Since f is co-ordinated convex and g is co-ordinated s−convex, from Lemma
1 and Lemma 2, the partial mappings

fy : [a, b] → [0,∞), fy(x) = f(x, y)

fx : [c, d] → [0,∞), fx(y) = f(x, y)

and

gy : [a, b] → [0,∞), gy(x) = g(x, y)

gx : [c, d] → [0,∞), gx(y) = g(x, y)

are convex on [a, b] and [c, d], where x ∈ [a, b], y ∈ [c, d].
Using (1.2), we can write

1

d− c

d
∫

c

fx(y)gx(y)dy ≤
1

s+ 2
[fx(c)gx(c) + fx(d)gx(d)]

+
1

(s+ 1)(s+ 2)
[fx(c)gx(d) + fx(d)gx(c)]

That is

1

d− c

d
∫

c

f(x, y)g(x, y)dy ≤
1

s+ 2
[f(x, c)g(x, c) + f(x, d)g(x, d)]

+
1

(s+ 1)(s+ 2)
[f(x, c)g(x, d) + f(x, d)g(x, c)]
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Dividing both sides (b− a) and integrating over [a, b], we get

1

(d− c) (b − a)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy(2.2)

≤
1

s+ 2





1

b− a

b
∫

a

f(x, c)g(x, c)dx +
1

b− a

b
∫

a

f(x, d)g(x, d)dx





+
1

(s+ 1)(s+ 2)





1

b− a

b
∫

a

f(x, c)g(x, d)dx +
1

b− a

b
∫

a

f(x, d)g(x, c)dx





By applying (1.2) to each term of right hand side of above inequality, we have

1

b− a

b
∫

a

f(x, c)g(x, c)dx ≤
1

s+ 2
[f(a, c)g(a, c) + f(b, c)g(b, c)]

+
1

(s+ 1)(s+ 2)
[f(a, c)g(b, c) + f(b, c)g(a, c)]

1

b− a

b
∫

a

f(x, d)g(x, d)dx ≤
1

s+ 2
[f(a, d)g(a, d) + f(b, d)g(b, d)]

+
1

(s+ 1)(s+ 2)
[f(a, d)g(b, d) + f(b, d)g(a, d)]

1

b− a

b
∫

a

f(x, c)g(x, d)dx ≤
1

s+ 2
[f(a, c)g(a, d) + f(b, c)g(b, d)]

+
1

(s+ 1)(s+ 2)
[f(a, c)g(b, d) + f(b, c)g(a, d)]

1

b− a

b
∫

a

f(x, d)g(x, c)dx ≤
1

s+ 2
[f(a, d)g(a, c) + f(b, d)g(b, c)]

+
1

(s+ 1)(s+ 2)
[f(a, d)g(b, c) + f(b, d)g(a, c)]
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Using these inequalities in (2.2), (2.1) is proved, that is

1

(d− c) (b − a)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy

≤
1

(s+ 2)
2
([f(a, c)g(a, c) + f(b, c)g(b, c)] + [f(a, d)g(a, d) + f(b, d)g(b, d)])

+
1

(s+ 1) (s+ 2)2
([f(a, c)g(b, c) + f(b, c)g(a, c)] + [f(a, d)g(b, d) + f(b, d)g(a, d)])

+
1

(s+ 1) (s+ 2)
2
([f(a, c)g(a, d) + f(b, c)g(b, d)] + [f(a, d)g(a, c) + f(b, d)g(b, c)])

+
1

(s+ 1)2(s+ 2)2
([f(a, c)g(b, d) + f(b, c)g(a, d)] + [f(a, d)g(b, c) + f(b, d)g(a, c)])

We can find the same result using by fy(x)gy(x). �

Remark 1. In (2.1), if we choose s = 1, (1.6) is obtained.

Remark 2. In (2.1), if we choose s = 1 and f(x) = 1 which is convex, we get the
second inequality in (1.5) :

1

(d− c) (b− a)

b
∫

a

d
∫

c

g(x, y)dxdy ≤
(g(a, c) + g(b, c) + g(a, d) + g(b, d))

4

In the next theorem we will also make use of the Beta function of Euler type,
which is for x, y > 0 defined as

B(x, y) =

1
∫

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x + y)

and the Gamma function is defined as

Γ(x) =

∞
∫

0

tx−1e−tdt, for x > 0.

Theorem 8. Let f : ∆ := [a, b]× [c, d] ⊂ [0,∞)2 → [0,∞) be s1−convex function
on the co-ordinates and g : ∆ := [a, b] × [c, d] ⊂ [0,∞)2 → [0,∞) be s2−convex
functions on the co-ordinates with a < b, c < d and fx(y)gx(y), fy(x)gy(x) ∈ L1[∆]
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for some fixed s1, s2 ∈ (0, 1). Then one has the inequality:

1

(d− c) (b− a)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy(2.3)

≤
1

(s1 + s2 + 1)
2
L(a, b, c, d) +

B(s1 + 1, s2 + 1)

s1 + s2 + 1
M(a, b, c, d)

+ [B(s1 + 1, s2 + 1)]
2
N(a, b, c, d)

=
1

(s1 + s2 + 1)
2

[

L(a, b, c, d) +
s1s2Γ(s1)Γ(s2)

Γ(s1 + s2 + 1)
M(a, b, c, d)

+

[

s1s2Γ(s1)Γ(s2)

Γ(s1 + s2 + 1)

]2

N(a, b, c, d)

]

where

L(a, b, c, d) = [f(a, c)g(a, c) + f(b, c)g(b, c) + f(a, d)g(a, d) + f(b, d)g(b, d)]

M(a, b, c, d) = [f(a, c)g(b, c) + f(b, c)g(a, c) + f(a, d)g(b, d) + f(b, d)g(a, d)]

+ [f(a, c)g(a, d) + f(b, c)g(b, d) + f(a, d)g(a, c) + f(b, d)g(b, c)]

N(a, b, c, d) = [f(a, c)g(b, d) + f(b, c)g(a, d) + f(a, d)g(b, c) + f(b, d)g(a, c)]

Proof. Since f is co-ordinated s1−convex and g is co-ordinated s2−convex, from
Lemma 2, the partial mappings

fy : [a, b] → [0,∞), fy(x) = f(x, y)

fx : [c, d] → [0,∞), fx(y) = f(x, y)

and

gy : [a, b] → [0,∞), gy(x) = g(x, y)

gx : [c, d] → [0,∞), gx(y) = g(x, y)

are convex on [a, b] and [c, d], where x ∈ [a, b], y ∈ [c, d].
Using (1.3), we get

1

d− c

d
∫

c

fx(y)gx(y)dy ≤
1

s1 + s2 + 1
[fx(c)gx(c) + fx(d)gx(d)]

+B(s1 + 1, s2 + 1) [fx(c)gx(d) + fx(d)gx(c)]

Therefore

1

d− c

d
∫

c

f(x, y)g(x, y)dy ≤
1

s1 + s2 + 1
[f(x, c)g(x, c) + f(x, d)g(x, d)]

+B(s1 + 1, s2 + 1) [f(x, c)g(x, d) + f(x, d)g(x, c)]
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Dividing both sides of the above inequality (b − a) and integrating over [a, b], we
have

1

(d− c) (b − a)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy(2.4)

≤
1

s1 + s2 + 1





1

b− a

b
∫

a

f(x, c)g(x, c)dx +
1

b− a

b
∫

a

f(x, d)g(x, d)dx





+B(s1 + 1, s2 + 1)





1

b− a

b
∫

a

f(x, c)g(x, d)dx +
1

b− a

b
∫

a

f(x, d)g(x, c)dx





By applying (1.3) to right side of (2.4), and we proceed similarly as in the proof of
Theorem 7, we can write

1

(d− c) (b − a)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy

≤
1

(s1 + s2 + 1)
2
[f(a, c)g(a, c) + f(b, c)g(b, c) + f(a, d)g(a, d) + f(b, d)g(b, d)]

+
B(s1 + 1, s2 + 1)

s1 + s2 + 1
[f(a, c)g(b, c) + f(b, c)g(a, c) + f(a, d)g(b, d) + f(b, d)g(a, d)]

+
B(s1 + 1, s2 + 1)

s1 + s2 + 1
[f(a, c)g(a, d) + f(b, c)g(b, d) + f(a, d)g(a, c) + f(b, d)g(b, c)]

+ [B(s1 + 1, s2 + 1)]2 [f(a, c)g(b, d) + f(b, c)g(a, d) + f(a, d)g(b, c) + f(b, d)g(a, c)]

That is;

1

(d− c) (b− a)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy

≤
1

(s1 + s2 + 1)
2
L(a, b, c, d) +

B(s1 + 1, s2 + 1)

s1 + s2 + 1
M(a, b, c, d)

+ [B(s1 + 1, s2 + 1)]
2
N(a, b, c, d)

=
1

(s1 + s2 + 1)
2

[

L(a, b, c, d) +
s1s2Γ(s1)Γ(s2)

Γ(s1 + s2 + 1)
M(a, b, c, d)

+

[

s1s2Γ(s1)Γ(s2)

Γ(s1 + s2 + 1)

]2

N(a, b, c, d)

]

which completes the proof. �

Remark 3. In (2.3) if we choose s1 = s2 = 1, (2.3) reduces to (1.6).

Theorem 9. Let f : ∆ := [a, b]× [c, d] ⊂ [0,∞)2 → [0,∞) be convex function on
the co-ordinates and g : ∆ := [a, b]× [c, d] ⊂ [0,∞)2 → [0,∞) be s−convex function
on the co-ordinates with a < b, c < d and fx(y)gx(y), fy(x)gy(x) ∈ L1[∆] for some
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fixed s ∈ (0, 1). Then one has the inequality:

22s+1f(
a+ b

2
,
c+ d

2
)g(

a+ b

2
,
c+ d

2
)(2.5)

≤
2

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy

+
5

(s+ 1)(s+ 2)2
L(a, b, c, d) +

2s2 + 6s+ 6

(s+ 1)2(s+ 2)2
M(a, b, c, d)

+
2s+ 6

(s+ 1)(s+ 2)2
N(a, b, c, d)

Proof. Since f is co-ordinated convex and g is co-ordinated s−convex, from Lemma
1 and Lemma 2, the partial mappings

fy : [a, b] → [0,∞), fy(x) = f(x, y)(2.6)

fx : [c, d] → [0,∞), fx(y) = f(x, y)

and

gy : [a, b] → [0,∞), gy(x) = g(x, y)

gx : [c, d] → [0,∞), gx(y) = g(x, y)

are convex on [a, b] and [c, d], where x ∈ [a, b], y ∈ [c, d].
Using (1.4) and multiplying both sides of the inequalities by 2s, we get

22sf(
a+ b

2
,
c+ d

2
)g(

a+ b

2
,
c+ d

2
)(2.7)

−
2s

b− a

b
∫

a

f(x,
c+ d

2
)g(x,

c+ d

2
)dx

≤
2s

(s+ 1)(s+ 2)

[

f(a,
c+ d

2
)g(a,

c+ d

2
) + f(b,

c+ d

2
)g(b,

c+ d

2
)

]

+
2s

s+ 2

[

f(a,
c+ d

2
)g(b,

c+ d

2
) + f(b,

c+ d

2
)g(a,

c+ d

2
)

]

and

22sf(
a+ b

2
,
c+ d

2
)g(

a+ b

2
,
c+ d

2
)(2.8)

−
2s

d− c

d
∫

c

f(
a+ b

2
, y)g(

a+ b

2
, y)dy

≤
2s

(s+ 1)(s+ 2)

[

f(
a+ b

2
, c)g(

a+ b

2
, c) + f(

a+ b

2
, d)g(

a+ b

2
, d)

]

+
2s

s+ 2

[

f(
a+ b

2
, c)g(

a+ b

2
, d) + f(

a+ b

2
, d)g(

a+ b

2
, c)

]
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Now, by addition (2.7) and (2.8), we get

22s+1f(
a+ b

2
,
c+ d

2
)g(

a+ b

2
,
c+ d

2
)(2.9)

−
2s

b− a

b
∫

a

f(x,
c+ d

2
)g(x,

c+ d

2
)dx −

2s

d− c

d
∫

c

f(
a+ b

2
, y)g(

a+ b

2
, y)dy

≤
1

(s+ 1)(s+ 2)

[

2sf(a,
c+ d

2
)g(a,

c+ d

2
) + 2sf(b,

c+ d

2
)g(b,

c+ d

2
)

]

+
1

s+ 2

[

2sf(a,
c+ d

2
)g(b,

c+ d

2
) + 2sf(b,

c+ d

2
)g(a,

c+ d

2
)

]

+
1

(s+ 1)(s+ 2)

[

2sf(
a+ b

2
, c)g(

a+ b

2
, c) + 2sf(

a+ b

2
, d)g(

a+ b

2
, d)

]

+
1

s+ 2

[

2sf(
a+ b

2
, c)g(

a+ b

2
, d) + 2sf(

a+ b

2
, d)g(

a+ b

2
, c)

]

Applying (1.4) to each term of right hand side of the above inequality, we have

2sf(a,
c+ d

2
)g(a,

c+ d

2
)

≤
1

d− c

d
∫

c

f(a, y)g(a, y)dy +
1

(s+ 1)(s+ 2)
[f(a, c)g(a, c) + f(a, d)g(a, d)]

+
1

s+ 2
[f(a, c)g(a, d) + f(a, d)g(a, c)]

2sf(b,
c+ d

2
)g(b,

c+ d

2
)

≤
1

d− c

d
∫

c

f(b, y)g(b, y)dy +
1

(s+ 1)(s+ 2)
[f(b, c)g(b, c) + f(b, d)g(b, d)]

+
1

s+ 2
[f(b, c)g(b, d) + f(b, d)g(b, c)]

2sf(a,
c+ d

2
)g(b,

c+ d

2
)

≤
1

d− c

d
∫

c

f(a, y)g(b, y)dy +
1

(s+ 1)(s+ 2)
[f(a, c)g(b, c) + f(a, d)g(b, d)]

+
1

s+ 2
[f(a, c)g(b, d) + f(a, d)g(b, c)]

2sf(b,
c+ d

2
)g(a,

c+ d

2
)

≤
1

d− c

d
∫

c

f(b, y)g(a, y)dy +
1

(s+ 1)(s+ 2)
[f(b, c)g(a, c) + f(b, d)g(a, d)]

+
1

s+ 2
[f(b, c)g(a, d) + f(b, d)g(a, c)]
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2sf(
a+ b

2
, c)g(

a+ b

2
, c)

≤
1

b− a

b
∫

a

f(x, c)g(x, c)dx +
1

(s+ 1)(s+ 2)
[f(a, c)g(a, c) + f(b, c)g(b, c)]

+
1

s+ 2
[f(a, c)g(b, c) + f(b, c)g(a, c)]

2sf(
a+ b

2
, d)g(

a+ b

2
, d)

≤
1

b− a

b
∫

a

f(x, d)g(x, d)dx +
1

(s+ 1)(s+ 2)
[f(a, d)g(a, d) + f(b, d)g(b, d)]

+
1

s+ 2
[f(a, d)g(b, d) + f(b, d)g(a, d)]

2sf(
a+ b

2
, c)g(

a+ b

2
, d)

≤
1

b− a

b
∫

a

f(x, c)g(x, d)dx +
1

(s+ 1)(s+ 2)
[f(a, c)g(a, d) + f(b, c)g(b, d)]

+
1

s+ 2
[f(a, c)g(b, d) + f(b, c)g(a, d)]

2sf(
a+ b

2
, d)g(

a+ b

2
, c)

≤
1

b− a

b
∫

a

f(x, d)g(x, c)dx +
1

(s+ 1)(s+ 2)
[f(a, d)g(a, c) + f(b, d)g(b, c)]

+
1

s+ 2
[f(a, d)g(b, c) + f(b, d)g(a, c)]
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Using these inequalities in (2.9), we have

22s+1f(
a+ b

2
,
c+ d

2
)g(

a+ b

2
,
c+ d

2
)(2.10)

−
2s

b− a

b
∫

a

f(x,
c+ d

2
)g(x,

c+ d

2
)dx −

2s

d− c

d
∫

c

f(
a+ b

2
, y)g(

a+ b

2
, y)dy

≤
1

(s+ 1)(s+ 2)

1

(d− c)





d
∫

c

f(a, y)g(a, y)dy +

d
∫

c

f(b, y)g(b, y)dy





+
1

(s+ 2)

1

(d− c)





d
∫

c

f(a, y)g(b, y)dy +

d
∫

c

f(b, y)g(a, y)dy





+
1

(s+ 1)(s+ 2)

1

(b− a)





b
∫

a

f(x, c)g(x, c)dx +

b
∫

a

f(x, d)g(x, d)dx





+
1

(s+ 2)

1

(b− a)





b
∫

a

f(x, c)g(x, d)dx +

b
∫

a

f(x, d)g(x, c)dx





+
2

(s+ 1)2(s+ 2)2
L(a, b, c, d) +

2

(s+ 1) (s+ 2)2
M(a, b, c, d)

+
2

(s+ 2)
2
N(a, b, c, d)

Now by applying (1.4) to 2sf(a+b
2

, y)g(a+b
2

, y), integrating over [c, d], dividing both
sides by (d− c), we get

2s

(d− c)

d
∫

c

f(
a+ b

2
, y)g(

a+ b

2
, y)dy(2.11)

−
1

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy

≤
1

(s+ 1)(s+ 2)





1

(d− c)

d
∫

c

f(a, y)g(a, y)dy +
1

(d− c)

d
∫

c

f(b, y)g(b, y)dy





+
1

s+ 2





1

(d− c)

d
∫

c

f(a, y)g(b, y)dy +
1

(d− c)

d
∫

c

f(b, y)g(a, y)dy
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Similarly by applying (1.4) to 2sf(x, c+d
2

)g(x, c+d
2

), integrating over [a, b], dividing
both sides by (b − a), we get

2s

(b− a)

b
∫

a

f(x,
c+ d

2
)g(x,

c+ d

2
)dx(2.12)

−
1

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy

≤
1

(s+ 1)(s+ 2)





1

(b− a)

b
∫

a

f(x, c)g(x, c)dx +
1

(b − a)

b
∫

a

f(x, d)g(x, d)dx





+
1

s+ 2





1

(b− a)

b
∫

a

f(x, c)g(x, d)dx +
1

(b− a)

b
∫

a

f(x, d)g(x, c)dx





By addition (2.11) and (2.12), we have

2s

(d− c)

d
∫

c

f(
a+ b

2
, y)g(

a+ b

2
, y)dy +

2s

(b− a)

b
∫

a

f(x,
c+ d

2
)g(x,

c+ d

2
)dx

−
2

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)g(x, y)dxdy(2.13)

≤
1

(s+ 1)(s+ 2)





1

(d− c)

d
∫

c

f(a, y)g(a, y)dy +
1

(d− c)

d
∫

c

f(b, y)g(b, y)dy

+
1

(b− a)

b
∫

a

f(x, c)g(x, c)dx +
1

(b− a)

b
∫

a

f(x, d)g(x, d)dx





+
1

s+ 2





1

(d− c)

d
∫

c

f(a, y)g(b, y)dy +
1

(d− c)

d
∫

c

f(b, y)g(a, y)dy

+
1

(b− a)

b
∫

a

f(x, c)g(x, d)dx +
1

(b− a)

b
∫

a

f(x, d)g(x, c)dx





From (2.10) and (2.13) and simplifying we get

22s+1f(
a+ b

2
,
c+ d

2
)g(

a+ b

2
,
c+ d

2
) ≤

2

(b− a) (d− c)

b
∫

a

d
∫

c

f(x, y)g(x, y)dx

+
4s+ 6

(s+ 1)2(s+ 2)2
L(a, b, c, d) +

2s2 + 6s+ 6

(s+ 1)2(s+ 2)2
M(a, b, c, d)

+
2s2 + 8s+ 6

(s+ 1)2(s+ 2)2
N(a, b, c, d)

�
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Remark 4. In (2.5), if we choose s = 1, we obtained (1.7).

Remark 5. In (2.5), if we choose s = 1 and f(x) = 1 which is convex, we have
the following Hadamard-type inequality like (1.5)

4g(
a+ b

2
,
c+ d

2
)−

1

(b− a) (d− c)

b
∫

a

d
∫

c

g(x, y)dx

≤
3 [g(a, c) + g(b, c) + g(a, d) + g(b, d)]

4
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