ON THE HADAMARD TYPE INEQUALITIES INVOLVING PRODUCT OF TWO CONVEX FUNCTIONS ON THE CO-ORDINATES

\author{

* M. EMIN ÖZDEMİR AND *AHMET OCAK AKDEMİR
}

Abstract

In this paper some Hadamard-type inequalities for product of convex funcitons of 2 -variables on the co-ordinates are given.

1. INTRODUCTION

The inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

where $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a convex function defined on the interval I of \mathbb{R}, the set of real numbers, and $a, b \in I$ with $a<b$, is well known in the literature as Hadamard's inequality.

For some recent results related to this classic inequality, see [1, [8, [10, [11, and [13], where further references are given.

In [2], Hudzik and Maligranda considered, among others, the class of functions which are s-convex in the second sense. This class is defined as following:
Definition 1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is said to be s-convex in the second sense if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda^{s} f(x)+(1-\lambda)^{s} f(y)
$$

holds for all $x, y \in[0, \infty), \lambda \in[0,1]$ and for some fixed $s \in(0,1]$.
The class of s-convex functions in the second sense is usually denoted with K_{s}^{2}. It is clear that if we choose $s=1$ we have ordinary convexity of functions defined on $[0, \infty)$.

In [14], Kırmacı et al., proved the following inequalities related to product of convex functions. They are given in the next theorems.
Theorem 1. Let $f, g:[a, b] \rightarrow \mathbb{R}, a, b \in[0, \infty), a<b$, be functions such that g and fg are in $L^{1}([a, b])$, If f is convex and nonnegative on $[a, b]$, and if g is s-convex on $[a, b]$ for some fixed $s \in(0,1)$, then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{1}{s+2} M(a, b)+\frac{1}{(s+1)(s+2)} N(a, b) \tag{1.2}
\end{equation*}
$$

[^0]where
$$
M(a, b)=f(a) g(a)+f(b) g(b) \text { and } N(a, b)=f(a) g(b)+f(b) g(a)
$$

Theorem 2. Let $f, g:[a, b] \rightarrow \mathbb{R}, a, b \in[0, \infty), a<b$, be functions such that g and fg are in $L^{1}([a, b])$, If f is s_{1}-convex and g is s_{2}-convex on $[a, b]$ for some fixed $s_{1}, s_{2} \in(0,1)$, then

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x & \leq \frac{1}{s_{1}+s_{2}+1} M(a, b)+B\left(s_{1}+1, s_{2}+1\right) N(a, b) \\
& =\frac{1}{s_{1}+s_{2}+1}\left[M(a, b)+s_{1} s_{2} \frac{\Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)}{\Gamma\left(s_{1}+s_{2}+1\right)} N(a, b)\right] \tag{1.3}
\end{align*}
$$

Theorem 3. Let $f, g:[a, b] \rightarrow \mathbb{R}, a, b \in[0, \infty), a<b$, be functions such that g and fg are in $L^{1}([a, b])$, If f is convex and nonnegative on $[a, b]$, and if g is s-convex on $[a, b]$ for some fixed $s \in(0,1)$, then

$$
\begin{align*}
& 2^{s} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \tag{1.4}\\
\leq & \frac{1}{(s+1)(s+2)} M(a, b)+\frac{1}{s+2} N(a, b)
\end{align*}
$$

For similar results, see the papers [2], [12].
In [11, Dragomir defined convex functions on the co-ordinates as following and proved lemma 1 related to this definiton:

Definition 2. Let us consider the bidimensional interval $\Delta:=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. A function $f: \Delta \rightarrow \mathbb{R}$ is convex on Δ if the following inequality

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w)
$$

holds for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
Lemma 1. Every convex mapping $f: \Delta \rightarrow \mathbb{R}$ is convex on the co-ordinates, but converse is not general true.

In [11], Dragomir established the following inequalities:
Theorem 4. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ. Then one has the inequalities:

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{aligned}
$$

Similar results, refinements and generalizations can be found in [3, [5], 6], [7] and 9].

In [7, M. Alomari and M. Darus defined s-convexity on Δ with the folllowing definition:

Definition 3. Consider the bidimensional interval $\Delta:=[a, b] \times[c, d]$ in $[0, \infty)^{2}$ with $a<b$ and $c<d$. The mapping $f: \Delta \rightarrow \mathbb{R}$ is $s-$ convex on Δ if

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda^{s} f(x, y)+(1-\lambda)^{s} f(z, w)
$$

holds for all $(x, y),(z, w) \in \Delta$ with $\lambda \in[0,1]$ and for some fixed $s \in(0,1]$.
In [7, M. Alomari and M. Darus proved the following lemma:
Lemma 2. Every s-convex mappings $f: \Delta:=[a, b] \times[c, d] \subset[0, \infty)^{2} \rightarrow[0, \infty)$ is s-convex on the co-ordinates, but converse is not general true.

In [4, M. A. Latif and M. Alomari established Hadamard-type inequalities for product of two convex functions on the co-ordinates as follow:

Theorem 5. Let $f, g: \Delta:=[a, b] \times[c, d] \subset \mathbb{R}^{2} \rightarrow[0, \infty)$ be convex functions on the co-ordinates on Δ with $a<b$ and $c<d$. Then

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \tag{1.6}\\
\leq & \frac{1}{9} L(a, b, c, d)+\frac{1}{18} M(a, b, c, d)+\frac{1}{36} N(a, b, c, d)
\end{align*}
$$

where

$$
\begin{aligned}
L(a, b, c, d)= & f(a, c) g(a, c)+f(b, c) g(b, c)+f(a, d) g(a, d)+f(b, d) g(b, d) \\
M(a, b, c, d)= & f(a, c) g(a, d)+f(a, d) g(a, c)+f(b, c) g(b, d)+f(b, d) g(b, c) \\
& +f(b, c) g(a, c)+f(b, d) g(a, d)+f(a, c) g(b, c)+f(a, d) g(b, d) \\
N(a, b, c, d)= & f(b, c) g(a, d)+f(b, d) g(a, c)+f(a, c) g(b, d)+f(a, d) g(b, c)
\end{aligned}
$$

Theorem 6. Let $f, g: \Delta:=[a, b] \times[c, d] \subset \mathbb{R}^{2} \rightarrow[0, \infty)$ be convex functions on the co-ordinates on Δ with $a<b$ and $c<d$. Then

$$
\begin{align*}
& 4 f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{1.7}\\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
& +\frac{5}{36} L(a, b, c, d)+\frac{7}{36} M(a, b, c, d)+\frac{2}{9} N(a, b, c, d)
\end{align*}
$$

where $L(a, b, c, d), M(a, b, c, d), N(a, b, c, d)$ as in (1.6).
The main purpose of this paper is to establish new inequalities like (1.6) and (1.7), but now for convex functions and s-convex functions of 2 -variables on the co-ordinates.

2. MAIN RESULTS

Theorem 7. Let $f: \Delta:=[a, b] \times[c, d] \subset[0, \infty)^{2} \rightarrow[0, \infty)$ be convex function on the co-ordinates and $g: \Delta:=[a, b] \times[c, d] \subset[0, \infty)^{2} \rightarrow[0, \infty)$ be s-convex function on the co-ordinates with $a<b, c<d$ and $f_{x}(y) g_{x}(y), f_{y}(x) g_{y}(x) \in L_{1}[\Delta]$ for some
fixed $s \in(0,1)$. Then one has the inequality:

$$
\begin{align*}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \tag{2.1}\\
\leq & \frac{1}{(s+2)^{2}} L(a, b, c, d)+\frac{1}{(s+1)(s+2)^{2}} M(a, b, c, d) \\
& +\frac{1}{(s+1)^{2}(s+2)^{2}} N(a, b, c, d)
\end{align*}
$$

where

$$
\begin{aligned}
L(a, b, c, d)= & \frac{1}{(s+2)^{2}}([f(a, c) g(a, c)+f(b, c) g(b, c)]+[f(a, d) g(a, d)+f(b, d) g(b, d)]) \\
M(a, b, c, d)= & \frac{1}{(s+1)(s+2)^{2}}([f(a, c) g(b, c)+f(b, c) g(a, c)]+[f(a, d) g(b, d)+f(b, d) g(a, d)]) \\
& +\frac{1}{(s+1)(s+2)^{2}}([f(a, c) g(a, d)+f(b, c) g(b, d)]+[f(a, d) g(a, c)+f(b, d) g(b, c)]) \\
N(a, b, c, d)= & \frac{1}{(s+1)^{2}(s+2)^{2}}([f(a, c) g(b, d)+f(b, c) g(a, d)]+[f(a, d) g(b, c)+f(b, d) g(a, c)])
\end{aligned}
$$

Proof. Since f is co-ordinated convex and g is co-ordinated s-convex, from Lemma 1 and Lemma 2, the partial mappings

$$
\begin{aligned}
& f_{y}: \quad[a, b] \rightarrow[0, \infty), f_{y}(x)=f(x, y) \\
& f_{x}:
\end{aligned} \quad[c, d] \rightarrow[0, \infty), f_{x}(y)=f(x, y)
$$

and

$$
\begin{aligned}
g_{y} & : \quad[a, b] \rightarrow[0, \infty), g_{y}(x)=g(x, y) \\
g_{x} & : \quad[c, d] \rightarrow[0, \infty), g_{x}(y)=g(x, y)
\end{aligned}
$$

are convex on $[a, b]$ and $[c, d]$, where $x \in[a, b], y \in[c, d]$.
Using (1.2), we can write

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} f_{x}(y) g_{x}(y) d y \leq & \frac{1}{s+2}\left[f_{x}(c) g_{x}(c)+f_{x}(d) g_{x}(d)\right] \\
& +\frac{1}{(s+1)(s+2)}\left[f_{x}(c) g_{x}(d)+f_{x}(d) g_{x}(c)\right]
\end{aligned}
$$

That is

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} f(x, y) g(x, y) d y \leq & \frac{1}{s+2}[f(x, c) g(x, c)+f(x, d) g(x, d)] \\
& +\frac{1}{(s+1)(s+2)}[f(x, c) g(x, d)+f(x, d) g(x, c)]
\end{aligned}
$$

Dividing both sides $(b-a)$ and integrating over $[a, b]$, we get

$$
\begin{align*}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \tag{2.2}\\
\leq & \frac{1}{s+2}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x\right] \\
& +\frac{1}{(s+1)(s+2)}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x\right]
\end{align*}
$$

By applying (1.2) to each term of right hand side of above inequality, we have

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x \leq & \frac{1}{s+2}[f(a, c) g(a, c)+f(b, c) g(b, c)] \\
& +\frac{1}{(s+1)(s+2)}[f(a, c) g(b, c)+f(b, c) g(a, c)]
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x \leq & \frac{1}{s+2}[f(a, d) g(a, d)+f(b, d) g(b, d)] \\
& +\frac{1}{(s+1)(s+2)}[f(a, d) g(b, d)+f(b, d) g(a, d)]
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x \leq & \frac{1}{s+2}[f(a, c) g(a, d)+f(b, c) g(b, d)] \\
& +\frac{1}{(s+1)(s+2)}[f(a, c) g(b, d)+f(b, c) g(a, d)]
\end{aligned}
$$

$$
\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x \leq \frac{1}{s+2}[f(a, d) g(a, c)+f(b, d) g(b, c)]
$$

$$
+\frac{1}{(s+1)(s+2)}[f(a, d) g(b, c)+f(b, d) g(a, c)]
$$

Using these inequalities in (2.2), (2.1) is proved, that is

$$
\begin{aligned}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
\leq & \frac{1}{(s+2)^{2}}([f(a, c) g(a, c)+f(b, c) g(b, c)]+[f(a, d) g(a, d)+f(b, d) g(b, d)]) \\
& +\frac{1}{(s+1)(s+2)^{2}}([f(a, c) g(b, c)+f(b, c) g(a, c)]+[f(a, d) g(b, d)+f(b, d) g(a, d)]) \\
& +\frac{1}{(s+1)(s+2)^{2}}([f(a, c) g(a, d)+f(b, c) g(b, d)]+[f(a, d) g(a, c)+f(b, d) g(b, c)]) \\
& +\frac{1}{(s+1)^{2}(s+2)^{2}}([f(a, c) g(b, d)+f(b, c) g(a, d)]+[f(a, d) g(b, c)+f(b, d) g(a, c)])
\end{aligned}
$$

We can find the same result using by $f_{y}(x) g_{y}(x)$.

Remark 1. In (2.1), if we choose $s=1$, (1.6) is obtained.

Remark 2. In (2.1), if we choose $s=1$ and $f(x)=1$ which is convex, we get the second inequality in (1.5) :

$$
\frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} g(x, y) d x d y \leq \frac{(g(a, c)+g(b, c)+g(a, d)+g(b, d))}{4}
$$

In the next theorem we will also make use of the Beta function of Euler type, which is for $x, y>0$ defined as

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

and the Gamma function is defined as

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t, \text { for } x>0
$$

Theorem 8. Let $f: \Delta:=[a, b] \times[c, d] \subset[0, \infty)^{2} \rightarrow[0, \infty)$ be s_{1}-convex function on the co-ordinates and $g: \Delta:=[a, b] \times[c, d] \subset[0, \infty)^{2} \rightarrow[0, \infty)$ be s_{2}-convex functions on the co-ordinates with $a<b, c<d$ and $f_{x}(y) g_{x}(y), f_{y}(x) g_{y}(x) \in L_{1}[\Delta]$
for some fixed $s_{1}, s_{2} \in(0,1)$. Then one has the inequality:

$$
\begin{align*}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \tag{2.3}\\
\leq & \frac{1}{\left(s_{1}+s_{2}+1\right)^{2}} L(a, b, c, d)+\frac{B\left(s_{1}+1, s_{2}+1\right)}{s_{1}+s_{2}+1} M(a, b, c, d) \\
& +\left[B\left(s_{1}+1, s_{2}+1\right)\right]^{2} N(a, b, c, d) \\
= & \frac{1}{\left(s_{1}+s_{2}+1\right)^{2}}\left[L(a, b, c, d)+\frac{s_{1} s_{2} \Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)}{\Gamma\left(s_{1}+s_{2}+1\right)} M(a, b, c, d)\right. \\
& \left.+\left[\frac{s_{1} s_{2} \Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)}{\Gamma\left(s_{1}+s_{2}+1\right)}\right]^{2} N(a, b, c, d)\right]
\end{align*}
$$

where

$$
\begin{aligned}
L(a, b, c, d)= & {[f(a, c) g(a, c)+f(b, c) g(b, c)+f(a, d) g(a, d)+f(b, d) g(b, d)] } \\
M(a, b, c, d)= & {[f(a, c) g(b, c)+f(b, c) g(a, c)+f(a, d) g(b, d)+f(b, d) g(a, d)] } \\
& +[f(a, c) g(a, d)+f(b, c) g(b, d)+f(a, d) g(a, c)+f(b, d) g(b, c)] \\
N(a, b, c, d)= & {[f(a, c) g(b, d)+f(b, c) g(a, d)+f(a, d) g(b, c)+f(b, d) g(a, c)] }
\end{aligned}
$$

Proof. Since f is co-ordinated s_{1}-convex and g is co-ordinated s_{2}-convex, from Lemma 2, the partial mappings

$$
\begin{aligned}
& f_{y}: \quad[a, b] \rightarrow[0, \infty), f_{y}(x)=f(x, y) \\
& f_{x}:
\end{aligned}:[c, d] \rightarrow[0, \infty), f_{x}(y)=f(x, y)
$$

and

$$
\begin{array}{lll}
g_{y}: & {[a, b] \rightarrow[0, \infty), g_{y}(x)=g(x, y)} \\
g_{x} & : & {[c, d] \rightarrow[0, \infty), g_{x}(y)=g(x, y)}
\end{array}
$$

are convex on $[a, b]$ and $[c, d]$, where $x \in[a, b], y \in[c, d]$.
Using (1.3), we get

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} f_{x}(y) g_{x}(y) d y \leq & \frac{1}{s_{1}+s_{2}+1}\left[f_{x}(c) g_{x}(c)+f_{x}(d) g_{x}(d)\right] \\
& +B\left(s_{1}+1, s_{2}+1\right)\left[f_{x}(c) g_{x}(d)+f_{x}(d) g_{x}(c)\right]
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} f(x, y) g(x, y) d y \leq & \frac{1}{s_{1}+s_{2}+1}[f(x, c) g(x, c)+f(x, d) g(x, d)] \\
& +B\left(s_{1}+1, s_{2}+1\right)[f(x, c) g(x, d)+f(x, d) g(x, c)]
\end{aligned}
$$

Dividing both sides of the above inequality $(b-a)$ and integrating over $[a, b]$, we have

$$
\begin{align*}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \tag{2.4}\\
& \leq \frac{1}{s_{1}+s_{2}+1}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x\right] \\
& +B\left(s_{1}+1, s_{2}+1\right)\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x\right]
\end{align*}
$$

By applying (1.3) to right side of (2.4), and we proceed similarly as in the proof of Theorem 7, we can write

$$
\begin{aligned}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
\leq & \frac{1}{\left(s_{1}+s_{2}+1\right)^{2}}[f(a, c) g(a, c)+f(b, c) g(b, c)+f(a, d) g(a, d)+f(b, d) g(b, d)] \\
& +\frac{B\left(s_{1}+1, s_{2}+1\right)}{s_{1}+s_{2}+1}[f(a, c) g(b, c)+f(b, c) g(a, c)+f(a, d) g(b, d)+f(b, d) g(a, d)] \\
& +\frac{B\left(s_{1}+1, s_{2}+1\right)}{s_{1}+s_{2}+1}[f(a, c) g(a, d)+f(b, c) g(b, d)+f(a, d) g(a, c)+f(b, d) g(b, c)] \\
& +\left[B\left(s_{1}+1, s_{2}+1\right)\right]^{2}[f(a, c) g(b, d)+f(b, c) g(a, d)+f(a, d) g(b, c)+f(b, d) g(a, c)]
\end{aligned}
$$

That is;

$$
\begin{aligned}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
\leq & \frac{1}{\left(s_{1}+s_{2}+1\right)^{2}} L(a, b, c, d)+\frac{B\left(s_{1}+1, s_{2}+1\right)}{s_{1}+s_{2}+1} M(a, b, c, d) \\
& +\left[B\left(s_{1}+1, s_{2}+1\right)\right]^{2} N(a, b, c, d) \\
= & \frac{1}{\left(s_{1}+s_{2}+1\right)^{2}}\left[L(a, b, c, d)+\frac{s_{1} s_{2} \Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)}{\Gamma\left(s_{1}+s_{2}+1\right)} M(a, b, c, d)\right. \\
& \left.+\left[\frac{s_{1} s_{2} \Gamma\left(s_{1}\right) \Gamma\left(s_{2}\right)}{\Gamma\left(s_{1}+s_{2}+1\right)}\right]^{2} N(a, b, c, d)\right]
\end{aligned}
$$

which completes the proof.
Remark 3. In (2.3) if we choose $s_{1}=s_{2}=1$, (2.3) reduces to (1.6).
Theorem 9. Let $f: \Delta:=[a, b] \times[c, d] \subset[0, \infty)^{2} \rightarrow[0, \infty)$ be convex function on the co-ordinates and $g: \Delta:=[a, b] \times[c, d] \subset[0, \infty)^{2} \rightarrow[0, \infty)$ be s-convex function on the co-ordinates with $a<b, c<d$ and $f_{x}(y) g_{x}(y), f_{y}(x) g_{y}(x) \in L_{1}[\Delta]$ for some
fixed $s \in(0,1)$. Then one has the inequality:

$$
\begin{align*}
& 2^{2 s+1} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.5}\\
\leq & \frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
& +\frac{5}{(s+1)(s+2)^{2}} L(a, b, c, d)+\frac{2 s^{2}+6 s+6}{(s+1)^{2}(s+2)^{2}} M(a, b, c, d) \\
& +\frac{2 s+6}{(s+1)(s+2)^{2}} N(a, b, c, d)
\end{align*}
$$

Proof. Since f is co-ordinated convex and g is co-ordinated s-convex, from Lemma 1 and Lemma 2, the partial mappings

$$
\begin{align*}
& f_{y}: \quad[a, b] \rightarrow[0, \infty), f_{y}(x)=f(x, y) \tag{2.6}\\
& f_{x}:
\end{align*}:[c, d] \rightarrow[0, \infty), f_{x}(y)=f(x, y)
$$

and

$$
\begin{array}{lll}
g_{y} & : & {[a, b] \rightarrow[0, \infty), g_{y}(x)=g(x, y)} \\
g_{x} & : & {[c, d] \rightarrow[0, \infty), g_{x}(y)=g(x, y)}
\end{array}
$$

are convex on $[a, b]$ and $[c, d]$, where $x \in[a, b], y \in[c, d]$.
Using (1.4) and multiplying both sides of the inequalities by 2^{s}, we get

$$
\begin{align*}
& 2^{2 s} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.7}\\
& -\frac{2^{s}}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \\
\leq & \frac{2^{s}}{(s+1)(s+2)}\left[f\left(a, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)+f\left(b, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right)\right] \\
& +\frac{2^{s}}{s+2}\left[f\left(a, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right)+f\left(b, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
& 2^{2 s} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.8}\\
& -\frac{2^{s}}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \\
\leq & \frac{2^{s}}{(s+1)(s+2)}\left[f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, d\right)\right] \\
& +\frac{2^{s}}{s+2}\left[f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, d\right)+f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, c\right)\right]
\end{align*}
$$

Now, by addition (2.7) and (2.8), we get

$$
\begin{align*}
& \quad 2^{2 s+1} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.9}\\
& -\frac{2^{s}}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x-\frac{2^{s}}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \\
& \leq \\
& (s+1)(s+2) \\
& \\
& \quad+\frac{1}{s+2}\left[2^{s} f\left(a, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)+2^{s} f\left(b, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right)+2^{s} f\left(b, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)\right] \\
& \\
& +\frac{1}{(s+1)(s+2)}\left[2^{s} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, c\right)+2^{s} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, d\right)\right] \\
& \quad+\frac{1}{s+2}\left[2^{s} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, d\right)+2^{s} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, c\right)\right]
\end{align*}
$$

Applying (1.4) to each term of right hand side of the above inequality, we have

$$
\begin{aligned}
& 2^{s} f\left(a, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right) \\
& \leq \frac{1}{d-c} \int_{c}^{d} f(a, y) g(a, y) d y+\frac{1}{(s+1)(s+2)}[f(a, c) g(a, c)+f(a, d) g(a, d)] \\
& +\frac{1}{s+2}[f(a, c) g(a, d)+f(a, d) g(a, c)] \\
& 2^{s} f\left(b, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right) \\
& \leq \frac{1}{d-c} \int_{c}^{d} f(b, y) g(b, y) d y+\frac{1}{(s+1)(s+2)}[f(b, c) g(b, c)+f(b, d) g(b, d)] \\
& +\frac{1}{s+2}[f(b, c) g(b, d)+f(b, d) g(b, c)] \\
& 2^{s} f\left(a, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right) \\
& \leq \frac{1}{d-c} \int_{c}^{d} f(a, y) g(b, y) d y+\frac{1}{(s+1)(s+2)}[f(a, c) g(b, c)+f(a, d) g(b, d)] \\
& +\frac{1}{s+2}[f(a, c) g(b, d)+f(a, d) g(b, c)] \\
& 2^{s} f\left(b, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right) \\
& \leq \frac{1}{d-c} \int_{c}^{d} f(b, y) g(a, y) d y+\frac{1}{(s+1)(s+2)}[f(b, c) g(a, c)+f(b, d) g(a, d)] \\
& +\frac{1}{s+2}[f(b, c) g(a, d)+f(b, d) g(a, c)]
\end{aligned}
$$

$$
\begin{aligned}
& 2^{s} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, c\right) \\
\leq & \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+\frac{1}{(s+1)(s+2)}[f(a, c) g(a, c)+f(b, c) g(b, c)] \\
& +\frac{1}{s+2}[f(a, c) g(b, c)+f(b, c) g(a, c)]
\end{aligned}
$$

$$
\begin{aligned}
& 2^{s} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, d\right) \\
\leq & \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x+\frac{1}{(s+1)(s+2)}[f(a, d) g(a, d)+f(b, d) g(b, d)] \\
& +\frac{1}{s+2}[f(a, d) g(b, d)+f(b, d) g(a, d)]
\end{aligned}
$$

$$
\begin{aligned}
& 2^{s} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, d\right) \\
\leq & \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+\frac{1}{(s+1)(s+2)}[f(a, c) g(a, d)+f(b, c) g(b, d)] \\
& +\frac{1}{s+2}[f(a, c) g(b, d)+f(b, c) g(a, d)]
\end{aligned}
$$

$$
\begin{aligned}
& 2^{s} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, c\right) \\
\leq & \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x+\frac{1}{(s+1)(s+2)}[f(a, d) g(a, c)+f(b, d) g(b, c)] \\
& +\frac{1}{s+2}[f(a, d) g(b, c)+f(b, d) g(a, c)]
\end{aligned}
$$

Using these inequalities in (2.9), we have

$$
\begin{align*}
& \quad 2^{2 s+1} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.10}\\
& -\frac{2^{s}}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x-\frac{2^{s}}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \\
& \leq \frac{1}{(s+1)(s+2)} \frac{1}{(d-c)}\left[\int_{c}^{d} f(a, y) g(a, y) d y+\int_{c}^{d} f(b, y) g(b, y) d y\right] \\
& \quad+\frac{1}{(s+2)} \frac{1}{(d-c)}\left[\int_{c}^{d} f(a, y) g(b, y) d y+\int_{c}^{d} f(b, y) g(a, y) d y\right] \\
& +\frac{1}{(s+1)(s+2)} \frac{1}{(b-a)}\left[\int_{a}^{b} f(x, c) g(x, c) d x+\int_{a}^{b} f(x, d) g(x, d) d x\right] \\
& \\
& +\frac{1}{(s+2)} \frac{1}{(b-a)}\left[\int_{a}^{b} f(x, c) g(x, d) d x+\int_{a}^{b} f(x, d) g(x, c) d x\right] \\
& \\
& +\frac{2}{(s+1)^{2}(s+2)^{2}} L(a, b, c, d)+\frac{2}{(s+1)(s+2)^{2}} M(a, b, c, d) \\
& +\frac{2}{(s+2)^{2}} N(a, b, c, d)
\end{align*}
$$

Now by applying (1.4) to $2^{s} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right)$, integrating over $[c, d]$, dividing both sides by $(d-c)$, we get

$$
\text { 1) } \begin{align*}
& \quad \frac{2^{s}}{(d-c)} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \tag{2.11}\\
& -\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
& \leq \\
& \quad \frac{1}{(s+1)(s+2)}\left[\frac{1}{(d-c)} \int_{c}^{d} f(a, y) g(a, y) d y+\frac{1}{(d-c)} \int_{c}^{d} f(b, y) g(b, y) d y\right] \\
& \\
& +\frac{1}{s+2}\left[\frac{1}{(d-c)} \int_{c}^{d} f(a, y) g(b, y) d y+\frac{1}{(d-c)} \int_{c}^{d} f(b, y) g(a, y) d y\right]
\end{align*}
$$

Similarly by applying (1.4) to $2^{s} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right)$, integrating over $[a, b]$, dividing both sides by $(b-a)$, we get

$$
\begin{align*}
& \text { 12) } \begin{array}{l}
\frac{2^{s}}{(b-a)} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \\
-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
\leq \\
\quad \frac{1}{(s+1)(s+2)}\left[\frac{1}{(b-a)} \int_{a}^{b} f(x, c) g(x, c) d x+\frac{1}{(b-a)} \int_{a}^{b} f(x, d) g(x, d) d x\right] \\
\\
+\frac{1}{s+2}\left[\frac{1}{(b-a)} \int_{a}^{b} f(x, c) g(x, d) d x+\frac{1}{(b-a)} \int_{a}^{b} f(x, d) g(x, c) d x\right]
\end{array} . \tag{2.12}
\end{align*}
$$

By addition (2.11) and (2.12), we have

$$
\begin{align*}
& \frac{2^{s}}{(d-c)} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y+\frac{2^{s}}{(b-a)} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \\
\leq & \frac{1}{(s+1)(s+2)}\left[\frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y\right. \tag{2.13}\\
& \left.+\frac{1}{(b-a)} \int_{a}^{b} f(x, c) g(x, c) d x+\frac{1}{(b-a)} \int_{a}^{b} f(x, d) g(x, d) d x\right] \\
& +\frac{1}{s+2}\left[\frac{1}{(d-c)} \int_{c}^{d} f(a, y) g(b, y) d y+\frac{1}{(d-c)} \int_{c}^{d} f(b, y) g(a, y) d y\right. \\
& \left.+\frac{1}{(b-a)} \int_{a}^{b} f(x, c) g(x, d) d x+\frac{1}{(b-a)} \int_{a}^{b} f(x, d) g(x, c) d x\right]
\end{align*}
$$

From (2.10) and (2.13) and simplifying we get

$$
\begin{aligned}
& 2^{2 s+1} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x \\
& +\frac{4 s+6}{(s+1)^{2}(s+2)^{2}} L(a, b, c, d)+\frac{2 s^{2}+6 s+6}{(s+1)^{2}(s+2)^{2}} M(a, b, c, d) \\
& +\frac{2 s^{2}+8 s+6}{(s+1)^{2}(s+2)^{2}} N(a, b, c, d)
\end{aligned}
$$

Remark 4. In (2.5), if we choose $s=1$, we obtained (1.7).
Remark 5. In (2.5), if we choose $s=1$ and $f(x)=1$ which is convex, we have the following Hadamard-type inequality like (1.5)

$$
\begin{aligned}
& 4 g\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} g(x, y) d x \\
\leq & \frac{3[g(a, c)+g(b, c)+g(a, d)+g(b, d)]}{4}
\end{aligned}
$$

References

[1] C. E. M. Pearce, J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett., 13 (2000), 51-55.
[2] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequations Math., 48 (1994), 100-111.
[3] M. A. Latif, M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, International Journal of Math. Analysis, 3 (2009), no. 33, 1645-1656.
[4] M. A. Latif, M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, International Mathematical Forum, 4 (2009), no. 47, 2327-2338.
[5] M. Alomari, M. Darus, Hadamard-type inequalities for s-convex functions, International Mathematical Forum, 3 (2008), no. 40, 1965-1975.
[6] M. Alomari, M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. Journal Contemp. Math. Sciences, 3 (2008), no. 32, 15571567.
[7] M. Alomari, M. Darus, The Hadamard's inequality for s-convex function of 2 -variables on the co-ordinates, International Journal of Math. Analysis, 2 (2008), no. 13, 629-638.
[8] M. E. Özdemir, A theorem on mappings with bounded derivatives with applications to quadrature rules and means, Applied Mathematics and Computation, 138 (2003), 425-434.
[9] M. E. Özdemir, E. Set, M. Z. Sarıkaya, Some new Hadamard's type inequalities for coordinated m-convex and (α, m)-convex functions, Submitted.
[10] M. E. Özdemir, U. S. Kırmacı, Two new theorems on mappings uniformly continuous and convex with applications to quadrature rules and means, Applied Mathematics and Computation, 143 (2003), 269-274.
[11] S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), no. 4, 775-788.
[12] S. S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4)(1999), 687-696.
[13] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 5 (1998), 91-95.
[14] U. S. Kırmacı, M. K. Bakula, M. E. Özdemir and J. Pecaric, Hadamard-type inequalities for s-convex functions, Applied Mathematics and Computation, 193 (2007), 26-35.
^ Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey

E-mail address: emos@atauni.edu.tr

- Ağri İbrahim Çeģen University,, Faculty of Science and Arts, Department of Mathematics, 04100, Ağri, Turkey

E-mail address: ahmetakdemir@agri.edu.tr

[^0]: Date: September 2010.
 1991 Mathematics Subject Classification. Primary 26D15, Secondary 26A51.
 Key words and phrases. Convex, s-convex, Co-ordinates, Product of functions, Hadamard's inequality, Beta function, Gamma function.
 ${ }^{*}$ Corresponding author.

