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Abstract

In the paper, the estimator for the spectral measure of multivariate
stable distributions introduced by Davydov and co-workers are extended
to the regularly varying distributions. The sampling method is modified
to optimize the rate of convergence of estimator. An estimator of the total
mass of spectral measure is proposed. The consistency and the asymptotic
normality of estimators are proved.
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1 Introduction
A random Rd-valued vector X has a regularly varying distribution with char-
acteristic exponent α > 0 if there exists a finite measure σ in the unit sphere
Sd−1 =

{
x
∣∣ ‖x‖ = 1, x ∈ Rd

}
such that ∀B ∈ B(Sd−1) with σ(∂B) = 0,

lim
x→∞

xα

L(x)
P

{
X

‖X‖
∈ B, ‖X‖ > x

}
= σ(B), (1.1)

where L is a slowly varying function, i.e., L(λx)
L(x) → 1 as x→∞, ∀λ > 0. Here the

notation ‖·‖ denotes Euclidean norm. The measure σ is called spectral measure,
and α is called simply tail index. The unit sphere Sd−1 will be simply denoted
by S. The fact that X has a regularly varying distribution with tail index α and
spectral measure σ will be noted later by "X ∈ RV(α, σ)". Regular variation
condition appears frequently in the studies of the limit theorem for normalized
sums of i.i.d. random terms, see e.g. [23] and [14], and the extreme value
theory, see e.g. [19]. Regular variation is necessary and sufficient conditions
for a random Rd-valued vector belongs to the domain of attraction of a strictly
α-stable distribution, if α ∈ (0, 2), see e.g. [1].

There are various characterizations of the property X ∈ RV(α, σ) (see e.g.
[15]). We give here an equivalent definition.

Definition 1.1. A random Rd-valued vector X ∈ RV(α, σ) if there exists a
slowly varying function L̃ such that for all r > 0 and B ∈ B(S) with σ(∂B) = 0

lim
n→∞

nP

{
X

‖X‖
∈ B, ‖X‖ > rbn

}
= σ(B)r−α, (1.2)

where bn = n1/αL̃(n).

It is well known that in Rd the convergence (1.2) are equivalent to the con-
vergence in distribution of binomial point processes βn =

∑n
k=1 δXk/bn to a

Poisson point process πα,σ whose intensity measure has a particular form [19].
This result is generalized to random elements in an abstract cone [6]. More-
over, in a cone which possesses the sub-invariant norm, the convergence (1.2)
with α ∈ (0, 1) implies that X belongs to the domain of attraction of a strictly
α-stable distribution (see Th. 4.7 [6]).

We are interested in the problem of estimation of the tail index α and the
spectral measure σ of a regularly varying distribution. By using the relation be-
tween the stable distributions and the point processes, Davydov and co-workers
(see [7], [8] and [17]) proposed a method to estimate the tail index α and the
normalized spectral measure σ of the stable distributions in Rd. The objec-
tive of this work is to extend this method to the multivariate regularly varying
distribution.

Suppose that we have a sample ξ1, ξ2, . . . , ξN , taken from a regularly varying
distribution in Rd with unknown tail index α and unknown spectral measure σ.
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We divide the sample into n groups Gm,1, . . . , Gm,n, each group containing m
random vectors. In practice, we choose

n = [Nr], r ∈ (0, 1), and then m = [N/n], (1.3)

where [a] stands for the integer part of a number a > 0. As N tends to infinity,
we have nm ∼ N . Let

M
(1)
m,i = max{‖ξ‖ | ξ ∈ Gm,i}, i = 1, . . . , n, (1.4)

that is, M (1)
m,i denote the largest norm in the group Gm,i. Let ξm,i = ξj = ξj(m,i)

where the index j(m, i) is such that

‖ξj(m,i)‖ = M
(1)
m,i. (1.5)

We set
M

(2)
m,i = max{‖ξ‖ | ξ ∈ Gm,i\{ξm,i}}, i = 1, . . . , n, (1.6)

that is, M (2)
m,i denote the second largest norm in the same group. Let us denote

κm,i =
M

(2)
m,i

M
(1)
m,i

, Sn =

n∑
i=1

κm,i

and
α̂N =

Sn
n− Sn

.

The regular variation condition (1.1) implies

P{‖ξ‖ > x} = x−ασ(S)L(x) + o(x−αL(x)) as x→∞. (1.7)

In the following we will need the stronger relation : for sufficiently large x and
for some β > α

P{‖ξ‖ > x} = C1x
−α + C2x

−β + o(x−β). (1.8)

Under the regular variation assumption and the second-order asymptotic
relation (1.8), the consistency and the asymptotic normality of the estimator
α̂N were proved firstly for n = m = [

√
N ] in [8] and then for more general

setting (1.3) in [17]. We resume these results in the following theorem.

Theorem A. ([17]) Let ξ, ξ1, . . . , ξN be i.i.d. random Rd-valued vectors with
a distribution satisfying (1.7) and let the numbers n and m satisfy the relation
(1.3), then

1

n
Sn

a.s.−−−−→
N→∞

α

1 + α
.

If the distribution of ξ satisfies (1.8) with 0 < α < β ≤ ∞ and we choose

n = N2ζ/(1+2ζ)−ε, m = N1/(1+2ζ)+ε,
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where ζ = (β − α)/α and ε→ 0 as N →∞, then as N →∞
√
n

(
1

n
Sn −

α

α+ 1

)
(

1

n

n∑
i=1

κ2
m,i −

(
1

n
Sn

)2
)1/2

⇒ N (0, 1).

This paper focus on the estimation of the spectral measure. In [8] an esti-
mator of normalized spectral measure σ̃(·) = σ(·)/σ(S) was proposed as follows.
We set

θm,i =
ξm,i
‖ξm,i‖

, i = 1, . . . , n (1.9)

where ξm,i is defined by (1.5). Let us denote

σ̂N (·) =
1

n

n∑
i=1

δθm,i(·). (1.10)

Random vectors θm,1, . . . , θm,n are i.i.d. and it is proved in [8] that σ̂N (·) is
consistent considering a fixed set B, that is, ∀B ∈ B(S) with σ(∂B) = 0,

σ̂N (B)
a.s.−−→ σ̃(B).

The asymptotic normality for σ̂N (B) was proved in [7]. All these relations were
obtained under the assumption that n = m. Inspired by the work in [17] we
modify the sampling method of regrouping and discuss the convergence rate of
the estimator of spectral measure for the general setting (1.3). By finding a
countable collection of the σ-continuity sets which is closed under the opera-
tion of finite intersection, we obtain σ̂N

a.s.⇒ σ̃ as N → ∞, where ⇒ indicate
convergence in distribution.

Since σ̂N in (1.10) gives the normalized spectral measure, it remains for us
to estimate the total mass σ(S). Note that the condition (1.1) implies

lim
x→∞

xαL(x)−1P{‖ξ‖ > x} = σ(S)

and therefore the value of σ(S) depends on the choice of slowly varying function
L(x). Estimation of this function is discussed in [20] and [21]. Here we assume
that the random vector ξ satisfies the condition (1.1) with L(x) = 1. That
means if α ∈ (0, 2), the law of ξ belongs to the normal domain of attraction of
an α-stable distribution. Let us denote

qm,i =
M

(1)
m,i

m1/α
(1.11)

where M (1)
m,i is defined by (1.4). The proposed estimator is defined by

σ̂(S)N =

(
1

nΓ(1− t
α )

n∑
i=1

qtm,i

)α
t

, t > 0. (1.12)
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Example 1. We generated samples from univariate stable distribution
with α = 1.75, σ(S) = 1 and ρ = σ(1)−σ(−1)

σ(S) = 0.5. The sample size is
100, 000. We calculated the estimators p̂ = p̂r as a function of r. This pro-
cedure was repeated 50 times on the independent sets of samples. Then we
plotted {(1− r, p̄r), 0 < r < 1} where p̄r is the mean of 50 estimated values p̂r.
Since the estimator of total mass depends on α, we present here the simulated
results of the parameters α and ρ in Figure 1. The horizontal line corresponds
to the true value of the parameter p. It seems that both plots have the opti-
mal value of 1− r which is around 0.4. In fact by Theorem A and the fact that
β = 2α for a stable random variable, the asymptotically optimal value of 1−r is
approximately 1/3 + ε. A similar result for the estimator σ̂ is given in Theorem
3.2.
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Figure 1: Estimation results of parameters α (left) and ρ (droite) in terms of r.
The x-axis represent 1− r. Horizontal line represent the true value.

Example 2. Consider the bivariate strictly stable distribution with α =
0.75, σ(S) = 1 and the density of spectral measure defined by f(θ) = 1

4 | cos(2θ)|,
θ ∈ (0, 2π). We calculated the estimators with r = 0.5. Simulated samples had
50, 000 data vectors. The estimated parameters are α̂ = 0.74, σ̂(S) = 0.99.
The confidence intervals with level 95% are respectively (α̂−0.07, α̂+ 0.07) and
(σ̂(S)−0.11, σ̂(S)+0.13). The result of estimation of the cumulative distribution
function (cdf) of spectral measure is shown in Figure 2.

The main results of the paper are contained in Section 2 and 3. The last
section contains the proof of results presented in the previous sections.

2 The consistency of estimators
We assume that ξ1, ξ2, . . . , ξN are i.i.d. random Rd- valued vectors with a regu-
larly varying distribution. Our aim is to estimate the spectral measure σ from
the sample. The estimators σ̂N (·) and σ̂(S)N are defined by (1.10) and (1.12).
To establish consistency of these estimators we need two auxiliary results.
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Figure 2: Estimates of the cdf of spectral measure in Example 2. The solid line
is the exact cdf, the dashed line is the estimated cdf.

Let X be a Rd-valued random vector, we denote G(x) = P{‖X‖ > x}. Let
Y1, Y2, . . . be the random variables i.i.d. with distribution function 1 − G and
Yn,1, Yn,2, · · · , Yn,n, Yn,1 ≥ Yn,2 ≥ · · · ≥ Yn,n, the corresponding order statistics.
Our first result extends a one-dimensional lemma in [13] (Lemma 1) to d > 1.
It says that, for a random variable X satisfying (1.1) with σ(S) = 1, the vector
b−1
n (Yn,1, . . . , Yn,n, 0, 0, . . .) converge in distribution to (Γ

−1/α
1 ,Γ

−1/α
2 , . . .). The

multivariate version of this lemma is as follows.

Lemma 2.1. If X ∈ RV(α, σ), then the vector b−1
n (Yn,1, . . . , Yn,n, 0, 0, . . .) con-

verge in distribution in R∞ to σ(S)1/α(Γ
−1/α
1 ,Γ

−1/α
2 , . . .), where Γi =

i∑
j=1

λj and

λ1, λ2, . . . are i.i.d. random variables with a standard exponential distribution,
i.e. E(λi) = 1.

The proof is given in Section 4.
The second result is a variant of the strong law of large numbers for a

triangular array.

Proposition 2.2. Let {Xm,i, 1 ≤ i ≤ n} be i.i.d. real random variables for
each m. Suppose that the indices n and m satisfy the following relations

n ∼ Nr, m ∼ N1−r as N →∞ (2.1)

where 0 < r < 1 is a constant and N ∈ N. If there exists a real number k > 2
r

and a constant M > 0 such that E|Xm,1|k ≤M <∞, then

1

n

n∑
i=1

Xm,i −EXm,1
a.s.−−−−→
N→∞

0. (2.2)
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Remark 1. The convergence (2.2) holds if we replace the conditionE|Xm,1|k ≤

M , k > 2
r by a less restrict hypothesis

∞∑
m=1

m−
kr

2(1−r)E|Xm,1|k <∞.

The proof is given in Section 4.

We consider at first the estimator of the total mass of spectral measure.

Theorem 2.3. Let ξ1, . . . , ξN be i.i.d. Rd-valued random vectors such that the
condition (1.2) is satisfied with bn = n1/α. If the condition (1.3) holds, then for
0 < t < αr

2 ,
σ̂(S)N − σ(S)

a.s.−−−−→
N→∞

0,

where σ̂(S)N is defined by (1.12).

Proof. It suffices to prove the following convergence

1

n

n∑
i=1

qtm,i − Γ

(
1− t

α

)
σ(S)

t
α

a.s.−−−−→
N→∞

0. (2.3)

It follows from Lemma 2.1 and the assumption bn = n1/α that for all i and t > 0

qtm,i ⇒
σ(S)t/α

Γ
t/α
1

as m→∞. (2.4)

Since bn = n1/α, the condition (1.2) can be wrote as

lim
x→∞

xαP{‖ξ‖ > x} = σ(S).

Therefore there exist δ > 0 and a constant M > 0 such that for x > δ we have

P{qtm,i ≥ x} = P{M (1)
m,i ≥ m

1/αx1/t}

= 1− (P{‖ξ‖ ≤ m1/αx1/t})m

≤ mP{‖ξ‖ > m1/αx1/t}
≤ Mx−α/t.

Taking x0 > δ and C = x0 +Mx
1−α/t
0

α
α−t we have for 0 < t < α

Eqtm,i =

∫
{x<x0}∪{x≥x0}

xdPqtm,i(x)

≤ x0 + x0P{qtm,i ≥ x0}+

∫ ∞
x0

P{qtm,i ≥ x}dx

≤ x0 +Mx
1−α/t
0 +

∫ ∞
x0

Mx−α/tdx

= C. (2.5)
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Now we choose a real number 0 < δ < 1 and 1 < δ′ < 1
δ . We set t = αrδ

2 and
k = 2δ′

r . Since 0 < tk < α, it follows from (2.5) that there exists a constant C
such that

Eqtkm,i ≤ C (2.6)

In combination (2.4) (2.6) and Proposition 2.2, we obtain the convergence (2.3).
�

Let us consider the estimator of the normalized spectral measure defined
by (1.10). Note that the random vectors θm,1, . . . , θm,n are i.i.d. in S. The
following lemma shows the asymptotic property for each θm,i, i = 1, . . . , n.

Lemma 2.4. Let ξ, ξ1, . . . , ξN be i.i.d. Rd-valued random vectors and ξ ∈
RV(α, σ). If θm,i is defined by (1.9), then

θm,i ⇒ σ̃ as m→∞

for each i.

Proof. For all Borel set B in unite sphere S such that σ(∂B) = 0, we have

P{θm,i ∈ B} = P{ξm,1/‖ξm,1‖ ∈ B}

=

m∑
k=1

P{ξm,1/‖ξm,1‖ ∈ B, ξm,1 = ξk}

= mP{ξm/‖ξm‖ ∈ B, ξm,1 = ξm}
= mP{ξm/‖ξm‖ ∈ B, ‖ξm‖ ≥ ‖ξk‖,∀k = 1, . . . ,m− 1}
= mP{ξm/‖ξm‖ ∈ B, ‖ξm‖ ≥ bmτm−1}

=

∫
mP{ξm/‖ξm‖ ∈ B, ‖ξm‖ ≥ bmx}Pτm−1

(dx).

where Pτm−1 is the distribution of τm−1 = max
1≤k≤m−1

(‖ξk‖b−1
m ).

By (1.2) and Lemma 2.1, the last term converges to∫
σ(B)x−αP

σ(S)1/αΓ
−1/α
1

(dx) =
σ(B)

σ(S)
E(Γ1) = σ̃(B).

�

Therefore for each Borel set B in unit sphere S such that σ(∂B) = 0, we
have

1IB(θm,i)⇒ 1IB(η) as m→∞,

where η is a random vector with distribution σ̃. This yields

E1IB(θm,i) −−−−→
m→∞

σ̃(B). (2.7)
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If there exists a constant r > 0 such that n ∼ Nr, applying Proposition 2.2
for the triangular array {1IB(θm,1), . . . , 1IB(θm,n)}, we have for each fixed set
B ∈ B(S) with σ(∂B) = 0,

1

n

n∑
i=1

1IB(θm,i)−E1IB(θm,1)
a.s.−−−−→
N→∞

0. (2.8)

Together (2.7) and (2.8) we have the following result.

Theorem 2.5. Let ξ, ξ1, . . . , ξN be i.i.d. Rd-valued random vectors and ξ ∈
RV(α, σ). If σ̂N (·) is defined by (1.10) and the condition (1.3) holds, then
∀B ∈ B(S) with σ(∂B) = 0,

σ̂N (B) =
1

n

n∑
i=1

1IB(θm,i)
a.s.−−−−→
N→∞

σ̃(B).

The result is for a fixed set. A stronger convergence can be proved by an
immediate application of the following proposition.

Proposition 2.6. Let (S,S) be a complete separable metric space. Let {σn} be
a sequence of random probability measures in S. If σ is a probability measure on
(S,S) such that for each set B ∈ B(S) with σ(∂B) = 0 we have the convergence
σn(B)

a.s.→ σ(B), then
σn

a.s.⇒ σ as n→∞.

The proof is given in Section 4.

Corollary 2.7. Under the same assumption of Theorem 2.5, we have

σ̂N
a.s.⇒ σ̃ as N →∞.

3 The asymptotic normality of estimators

In this section we consider the asymptotic normality of the estimators σ̂(S)N
and σ̂N .

Theorem 3.1. Suppose that random vector ξ satisfies the condition (1.8) with
β > α+ 1, the condition (1.3) holds. If we choose

r =
3α− 4(β − 1) +

√
16(β − 1)2 − 8α(β − 1)− 7α2

2α
− ε, if β ≤ 11

8
α+ 1,

r =
1

2
− ε, if β >

11

8
α+ 1, (3.1)

where ε is an arbitrarily small positive constant, then in the following two cases

a) 0 < t <
αr

4
∧ 1 if α+ 1 < β ≤ 11

8
α+ 1 or β ≥ 3

2
α+ 1,

b) 0 < t <
3α+ 2− 2β

2
∧ 1 if

11

8
α+ 1 < β <

3

2
α+ 1,

(3.2)
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we have, as N →∞,

√
n

(
1

n

n∑
i=1

qtm,i − Γ

(
1− t

α

)
σ(S)t/α

)
 1

n

n∑
i=1

q2t
m,i −

(
1

n

n∑
i=1

qtm,i

)2
1/2

⇒ N (0, 1). (3.3)

Remark 2. Fristedt, [9], proved an asymptotic expansion for the distribu-
tion of the norm of a strictly α-stable random vector in Rd

G(x) = c1x
−α + c2x

−2α +O(x−3α), as x→∞. (3.4)

That means β = 2α. Therefore the condition of this theorem is satisfied if
α > 1. If α > 8/5 the rate of convergence of estimator in L1 is close to N1/4.

The proof is given in Section 4.

Before considering the asymptotic normality of the estimator of normalized
spectral measure, we present a strong second-asymptotic relation : ∀B ∈ B(S)
with σ(∂B) = 0,

P

{
ξ

‖ξ‖
∈ B, ‖ξ‖ > x

}
= σ(B)x−α + Cx−β + o(x−β) as x→∞, (3.5)

where β > α > 0. Note that this condition implies the conditions (1.1) and
(1.8).

Let us denote σ̃(B) = b, 1IB(θm,i) = ηm,i, i = 1, 2, . . . , n. Then

Zn = σ̂N (B)− σ̃(B) =
1

n

n∑
i=1

(ηm,i − σ̃(B)),

√
nZn =

1√
n

n∑
i=1

(ηm,i − σ̃(B)) =
1√
n

n∑
i=1

(ηm,i −Eηm,1) +
√
n(Eηm,1 − σ̃(B)),

Un =
1√
n

n∑
i=1

(ηm,i −Eηm,1), rm = Eηm,1 − σ̃(B).

We set

TN =

√
nZn 1

n

n∑
i=1

η2
m,i −

(
1

n

n∑
i=1

ηm,i

)2
1/2

,

then the asymptotic property of σ̂N can be described as follows.

10



Theorem 3.2. Let ξ, ξ1, . . . , ξN be i.i.d. Rd-valued random vectors and the
distribution of ξ satisfies the condition (3.5). If we choose

n = N2ζ/(1+2ζ)−ε, m = N1/(1+2ζ)+ε,

where ζ = min(β−αα , 1) and ε is an arbitrarily small positive constant, then

TN ⇒ N (0, 1). (3.6)

Remark 3. We can get also asymptotic normality for
√
nZn, but the vari-

ance of the limit normal law is σ(B)(1− σ(B)) which we are estimating.
Remark 4. If ξ is a strictly α-stable random vector in Rd, by (3.4) we get

β = 2α, thus the asymptotically optimal value of n is approximately N2/3. The
rate of convergence of σ̂N (B) in L1 is close to N1/3.

The proof is given in Section 4.

4 Proofs
Preliminary remarks
We recall the definition of a regularly varying function. We say that L is a
regular varying function of index α at infinity (respectively at origin) and we
denote L ∈ Rα (respectively L ∈ Rα(0+)) if

L(λx)

L(x)
→ xα, as x→∞ (x→ 0) for all λ > 0.

Let X be Rd-valued random vector satisfying the regular variation condition
(1.2). We denote G(x) = P{‖X‖ > x}. Then

nG(bnx)→ σ(S)x−α, as n→∞, for all x > 0. (4.1)

For positive fixed x, we choose n the smallest integer such that bn+1 > x. Then
bn ≤ x < bn+1 and for a non-creasing function G we have

G(λbn+1)

G(bn)
≤ G(λx)

G(x)
≤ G(λbn)

G(bn+1)
, for all λ > 0.

By (4.1) we have nG(bn)→ σ(S), then

G(λx)

G(x)
→ λ−α, as x→∞ for all λ > 0.

We deduce that G ∈ R−α, which allow us write the following equivalence

G(x) ∼ x−αL(x), (4.2)

where L(x) is a slowly varying function.
We recall a well known result on the asymptotic inverse of a regular varying

function.
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Theorem 4.1. ([3] Th. 1.5.12) Let f ∈ Rα with α > 0, then ∃g(x) ∈ R1/α

such that the following relation holds

f(g(x)) ∼ g(f(x)) ∼ x as x→∞. (4.3)

Here g (the asymptotic inverse of f) is defined uniquely up to asymptotic equiv-
alence, and a version of g is

f←(x) = inf{y : f(y) ≤ x}.

We denote
f(x) =

1

G(x)
∼ xα 1

L(x)
, (4.4)

then f(x) ∈ Rα with α > 0. By applying the previous theorem, we obtain the
inverse g(x) of f(x) in the following form,

g(x) = x1/αL](x)

where the slowly varying function L] verifies the following relation

L(x)−1/αL](f(x))→ 1, (4.5)

and
L(g(x))−1L](x)α → 1, x→∞.

By (4.3) and (4.4) we have

G

(
g

(
1

x

))
∼ x, x→ 0. (4.6)

Defining the generalized inverse

G−1(x) := inf{y : G(y) < x},

we can prove that
G(G−1(x)) ∼ x, x→ 0. (4.7)

For this we choose λ > 1, A > 1, δ ∈ (0,∞), then by the theorem of Potter (Th.
1.5.6 [3] page 25) there exists u0 such that

A−1λ−α−δG(v) ≤ G(u) ≤ Aλα+δG(v), ∀v ∈ [λ−1u, λu], u ≥ u0.

We take x small enough such that G−1(x) ≥ u0, then by the definition of G−1

there exists y ∈ [λ−1G−1(x), G−1(x)] such that G(y) ≥ x, and there exists
y′ ∈ [G−1(x), λG−1(x)] such that G(y′) < x. Taking G−1(x) for u, y and y′ for
v, we get

A−1λ−α−δG(y) ≤ G(G−1(x)) ≤ Aλα+δG(y′).

Hence lim sup and lim inf of G(G−1(x))/x are between Aλα+δ and A−1λ−α−δ

as x→∞. Taking A, λ ↓ 1, we have G(G−1(x))/x→ 1.

12



The relations (4.6) and (4.7) give immediately

G−1(x) ∼ g(1/x), x→ 0.

Thus we have the equivalent expression of the inverse of G(x):

G−1(x) ∼ x−1/αL](1/x) ∈ R−1/α(0+). (4.8)

Lemma 4.2. Let X be a Rd-valued random vector, G(x) = P{‖X‖ > x}. If
X ∈ RV(α, σ), then for each i = 1, 2, . . . ,

b−1
n G−1

(
Γi

Γn+1

)
−−−−→
n→∞

σ(S)1/αΓ
−1/α
i with probability 1. (4.9)

Proof. We recall (4.1) nG(bnx)→ σ(S)x−α which implies

G(xn) ∼ σ(S)

n

(
bn
xn

)α
, n→∞

where xn = bnx, xn →∞, as n→∞. By replacing the left term in the previous
formula by (4.2), we get an equivalent expression of bn in terms of L(x):

bn ∼
(
nL(xn)

σ(S)

)1/α

, n→∞. (4.10)

Considering (4.8), we have an equivalent expression with probability 1 for
each i,

G−1

(
Γi

Γn+1

)
∼
(

Γi
Γn+1

)−1/α

L]
(

Γn+1

Γi

)
, n→∞ (4.11)

where L] satisfies (4.5) which means

L(xn)−1/αL]
(

Γn+1

Γi

)
→ 1, n→∞. (4.12)

Collecting (4.10)-(4.12) we deduce that with probability 1

b−1
n G−1

(
Γi

Γn+1

)
∼ σ(S)1/α

(
Γn+1

nΓi

)1/α

L(xn)−1/αL]
(

Γn+1

Γi

)
∼
(
σ(S)

Γi

)1/α

,

as n→∞, since Γn+1/n
a.s.−−−−→
n→∞

1; the lemma is proved. �

Proof of Lemma 2.1: It is well known that (see, e.g. [4] Section 13.6)

(Yn,1, . . . , Yn,n)
L
=

(
G−1

(
Γ1

Γn+1

)
, . . . , G−1

(
Γn

Γn+1

))
. (4.13)

The lemma follows from (4.9) and (4.13). �
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Proof of Proposition 2.2: Denote Ym,i = Xm,i − EXm,1, then the random
variables {Ym,i, 1 ≤ i ≤ n} are centered and i.i.d.. We have

E|Ym,1|k ≤ E(|Xm,1|+|EXm,1|)k ≤ E(2k−1(|Xm,1|k+|EXm,1|k)) ≤ 2kE|Xm,1|k.

It is well known (see [22]) that for k ≥ 2 we have

E

∣∣∣∣∣
n∑
i=1

Ym,i

∣∣∣∣∣
k

≤ c(k)nk/2E|Ym,1|k,

where c(k) is a positive constant depending only on k. It follows from the
condition (2.1) that there exists a constant C > 0 such that n ≥ CNr. Hence
for all ε > 0 we have

P

{∣∣∣∣∣ 1n
n∑
i=1

Ym,i

∣∣∣∣∣ > ε

}
≤

E

∣∣∣∣∣
n∑
i=1

Ym,i

∣∣∣∣∣
k

nkεk
≤ 2kc(k)E|Xm,1|k

C
k
2N

kr
2 εk

=
c0

N
kr
2 εk

,

where c0 = 2kc(k)M/C
k
2 . Since kr

2 > 1, we can find a small enough positive
number ε′ such that kr

2 − ε
′ > 1. Taking ε = εN = N−

ε′
k and applying the

Borel-Cantelli lemma, we have that with probability 1 and for N large enough∣∣∣∣∣ 1n
n∑
i=1

Xm,i −EXm,1

∣∣∣∣∣ ≤ N− ε′k ,
the proposition is proved. �

Proof of Proposition 2.6: We denote the collection of all σ-continuity sets
by

Dσ = {B | B ∈ B(S), σ(∂B) = 0}.

Since space S is separable, there exists a countable dense set in S, denoted by

W = {x1, x2, . . .}, xi ∈ S, i = 1, 2, . . . .

We denote the open ball with centre xi in W and radius r by

V (xi, r) = {x | x ∈ S, ‖x− xi‖ < r}.

Since for each xi ∈ W the boundaries ∂{V (xi, r)} ⊂ {x | ‖x − xi‖ = r} are
disjoints for different r, at most a countable number of them can have positive
σ-measure. Therefore, there exists a sequence of positive numbers rik ↓ 0 as
k →∞ for each xi such that

Li = {V (xi, r
i
k), k = 1, 2, . . .} ⊂ Dσ.
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The collection L =
⋃

xi∈W
Li is countable. It is clear that for each xi ∈ W , the

collection Li is a local base at point xi for la topology S. Since W is dense in
S, L is a base of S. The σ-algebra generated by L, denoted by σ(L), is the
Borel-field B(S).

Now we expand L by adding the finite intersections of members of L, we
denote

L = L ∪

{⋂
i∈I

Vi

∣∣∣∣∣ Vi ∈ L, I ⊂ N, card(I) <∞

}
.

It is clear that L is still countable and σ(L) = B(S), moreover L ⊂ Dσ. Since
σn(B)

a.s.→ σ(B) for all B ∈ B(S) and σ(∂B) = 0, then ∀V ∈ L, ∃ΛV ⊂ Ω and
P(ΛV ) = 0, such that ∀ω ∈ Λ{

V we have

σn(ω, V )→ σ(V ). (4.14)

If we denote Λ =
⋃
V ∈L

ΛV , then P(Λ) = 0. Moreover ∀ω ∈ Λ{ we have always the

convergence (4.14) for all V ∈ L. The collection L is closed under the operation
of finite intersection. By Theorem 2.2 in [2] (page 14) we have σn ⇒ σ, ∀ω ∈ Λ{,
which implies σn

a.s.⇒ σ. �

Proof of Theorem 3.1: We set Xm,i = qtm,i, µm = Eqtm,i, σ2
m = Var(Xm,i)

and rm = µm − Γ(1− t/α)σ(S)t/α. Therefore the convergence (3.3) holds if we
have the following three relations :

1√
n

n∑
i=1

(Xm,i − µm)⇒ N (0, σ2) (4.15)

1

n

n∑
i=1

X2
m,i −

(
1

n

n∑
i=1

Xm,i

)2

P−−−−→
N→∞

σ2. (4.16)

and √
nrm → 0 (4.17)

By the similar method to (2.6) we can prove the moments {EX4
m,i} are

uniformly bounded. Hence we have the following convergence

σ2
m := EX2

m,i−(EXm,i)
2 → σ2 = σ(S)2t/α(Γ(1−2t/α)−(Γ(1−t/α))2), (4.18)

and the Lindeberg’s condition, i.e. for all ε > 0

lim
n→∞

1

nσ2
m

n∑
i=1

∫
{|Xm,i−µm|>ε

√
nσm}

(Xm,i − µm)2dP

= lim
n→∞

1

σ2
m

∫
{|Xm,1−µm|>ε

√
nσm}

(Xm,1 − µm)2dP

≤ lim
n→∞

1

σ2
m

(E(Xm,1 − µm)4)1/2(P{|Xm,1 − µm| > ε
√
nσm})1/2

= 0.
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The convergence (4.15) follows from the central limit theorem applied to tri-
angular array {Xm,i, 1 ≤ i ≤ n}. By Proposition 2.2 and inequality (2.5), if
0 < t < αr

4 we have the following convergences

1

n

n∑
i=1

X2
m,i −EX2

m,i
a.s.−−−−→
N→∞

0

and
1

n

n∑
i=1

Xm,i − µm
a.s.−−−−→
N→∞

0.

It follows

1

n

n∑
i=1

X2
m,i −

(
1

n

n∑
i=1

Xm,i

)2

− (EX2
m,i − µ2

m)
a.s.−−−−→
N→∞

0,

considering (4.18) we obtain (4.16). Now it remains to verify(4.17).

Lemma 4.3. If ξ satisfies the condition (1.8) with β > α + 1 and 0 < t < 1,
then

|rm| ≤ Cm−ζ (4.19)

where ζ = min( 1
2 ,

t+β−α−1
α ) and C depending only on c1, c2, α, β and t.

Proof. By relation (1.8) if x is sufficiently large we have

G(x) = c1x
−α + c2x

−β + o(x−β),

where c1 = σ(S). It is possible to write the inverse function for small value of t,

G−1(t) = σ(S)1/αt−1/α + bts +O(ts+(β−α)/α)

with b = α−1c2σ(S)(1−β)/α et s = (β−α− 1)/α. It follows that for small δ > 0
and 0 < t < δ

G−1(t)− σ(S)1/αt−1/α = ts(b+O(t(β−α)/α)).

We choose δ such that |O(t(β−α)/α)| ≤ |b| (this gives us δ = o(|b|
α

β−α )), then we
can write

|G−1(t)− σ(S)1/αt−1/α| ≤ 2|b|ts. (4.20)

Let
Rm+1

+ = {x̄ = (x1, . . . , xm+1) : xi ≥ 0, i = 1, . . . ,m+ 1},

Σm = x1 + · · ·+ xm,

A =

{
x̄ ∈ Rm+1

+ :
x1

Σm+1
≥ δ
}
, A{ = Rm+1

+ \A,
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where δ is chosen for that (4.20) holds. By its definition and the relation (4.13)
the random variable qm,i = M

(1)
m,i/m

1/α have the distribution

G−1

(
Γ1

Γm+1

)/
m1/α

then

|rm| =

∣∣∣∣∣E
(
G−1

(
Γ1

Γm+1

))t/
mt/α −E

(
σ(S)

Γ1

)t/α∣∣∣∣∣ ≤ I1 +I2 +I3 +I4, (4.21)

where

I1 =

∫
A

m−t/α

∣∣∣∣∣
(
G−1

(
x1

Σm+1

))t∣∣∣∣∣ exp(−Σm+1)dx̄,

I2 =

∫
A{

m−t/α

∣∣∣∣∣
(
G−1

(
x1

Σm+1

))t
−
(

x1

Σm+1

)−t/α
σ(S)t/α

∣∣∣∣∣ exp(−Σm+1)dx̄,

I3 =

∫
A{

m−t/ασ(S)t/αx
−t/α
1

∣∣∣Σt/αm+1 −mt/α
∣∣∣ exp(−Σm+1)dx̄,

and

I4 =

∫
A

σ(S)t/αx
−t/α
1 exp(−Σm+1)dx̄.

Since in A we have G−1(x1/Σm+1) ≤ G−1(δ), for all τ1 > 0 (which will be
chosen later)

I1 ≤ m−t/α(G−1(δ))tP

{
Γ1

Γm+1
≥ δ
}
≤ m−t/αC1E

(
Γ1

Γm+1

)τ1
(4.22)

where C1 = (G−1(δ))tδ−τ1 . In a similar way we estimate I4, for all τ2 > 0,

I4 ≤ σ(S)t/α(EΓ
−2t/α
1 )1/2

(
P

{
Γ1

Γm+1
≥ δ
})1/2

≤ C2E

(
Γ1

Γm+1

)τ2
(4.23)

where C2 = σ(S)t/α(Γ(1− 2t/α))1/2δ−τ2 . The function f(x) = xt, 0 < t < 1 is
Lipschitz continuous on [0, δ). Considering (4.20) we have

I2 ≤
∫
A{

m−t/αC3

∣∣∣∣∣G−1

(
x1

Σm+1

)
−
(

x1

Σm+1

)−1/α

σ(S)1/α

∣∣∣∣∣ exp(−Σm+1)dx̄

≤ 2|b|C3m
−t/α

∫
A{

(
x1

Σm+1

)s
exp(−Σm+1)dx̄

≤ 2|b|C3m
−t/αE

(
Γ1

Γm+1

)s
(4.24)

where C3 = t(min(G−1(δ), δ−1/ασ(S)1/α))t−1. It is well known (see for example

[4]) that the m-dimensional random vector
(

Γ1

Γm+1
, . . . ,

Γm
Γm+1

)
has the same
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density as the order statistics vector of random variables uniformly distributed

on [0, 1). In particular the random variable
Γ1

Γm+1
has the following density

(suppose that m ≥ 2)

g(x) =

{
m(1− x)m−1, if 0 ≤ x ≤ 1,
0, otherwise.

Thus

E

(
Γ1

Γm+1

)s
= m

∫ 1

0

xs(1−x)m−1dx = mB(s+ 1,m) ≤ 4Γ(s+ 1)m−s. (4.25)

By Cauchy Schwarz’s inequality we have

I3 ≤ m−t/ασ(S)t/α(EΓ
−2t/α
1 )1/2(E(Γt/αm −mt/α)2)1/2. (4.26)

It remains to evaluate

E(Γt/αm −mt/α)2 =
Γ(m+ 1 + 2t/α)

Γ(m+ 1)
− 2mt/αΓ(m+ 1 + t/α)

Γ(m+ 1)
+m2t/α.

Using the approximation of Gamma-function

Γ(x) =
√

2πxx−1/2e−x
(

1 +
1

12x
+

1

288x2
+ o

(
1

x2

))
, x→∞,

we obtain

E(Γt/αm −mt/α)2 = Am(m+1+2t/α)2t/αH1−2Bmm
t/α(m+1+t/α)t/αH2+m2t/α,

(4.27)
where

Am =

(
1 +

2t/α

m+ 1

)m+1(
1 +

2t/α

m+ 1

)−1/2

e−2t/α,

Bm =

(
1 +

t/α

m+ 1

)m+1(
1 +

t/α

m+ 1

)−1/2

e−t/α,

H1 = 1− t

6αm2
+ o

(
1

m2

)
et H2 = 1− t

12αm2
+ o

(
1

m2

)
. (4.28)

By a simple calculation we obtain the following expansion

Am = 1−
(
t

α
+

2t2

α2

)
1

m+ 1
+ o

(
1

m

)
, (4.29)

Bm = 1−
(
t

2α
+

t2

2α2

)
1

m+ 1
+ o

(
1

m

)
. (4.30)

Considering (4.27)-(4.30) we have

E(Γt/αm −mt/α)2 =
t2

α2
m2t/α−1 + o(m2t/α−1).
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Therefore it follows from (4.26) that there exists a positive constant C4 such
that

I3 ≤ C4m
−1/2. (4.31)

Collecting estimates (4.21)-(4.25), (4.31) and choosing τ1 = (β − α− 1)/α and
τ2 = (t+ β − α− 1)/α in (4.22) and (4.23), we obtain the estimate (4.19) with
C = C(α, β, c1, c2, t). The lemma is proved. �

Having the estimate for rm, and taking n ∼ Nr with r < 2ζ
1+2ζ we obtain√

nrm → 0. By a simple calculation we have the relations (3.1) and (3.2). �

Proof of Theorem 3.2: We denote c2 = b(1− b). In order to prove (3.6) it
suffices to show the following relations,

Un
D−−−−→

N→∞
N (0, c2), (4.32)

√
nrm → 0, (4.33)

1

n

n∑
i=1

η2
m,i −

(
1

n

n∑
i=1

ηm,i

)2

P−−−−→
N→∞

c2. (4.34)

Since 0 < 1IB(θm,i) ≤ 1, the moments E|1IB(θm,i) − E1IB(θm,i)|k are uni-
formly bounded for all k > 0. The limit variance is

c2m := E(ηm,1 −Eηm,1)2 = Eη2
m,1 − (Eηm,1)2 = b+ rm − (b+ rm)2 → c2,

if we have (4.33). We consider the Lindeberg’s condition: for all ε > 0,

lim
n→∞

1

nc2m

n∑
i=1

∫
{|1IB(θm,i)−E1IB(θm,i)|>ε

√
ncm}

(1IB(θm,i)−E1IB(θm,i))
2dP

= lim
n→∞

1

c2m

∫
{|1IB(θm,1)−E1IB(θm,1)|>ε

√
ncm}

(1IB(θm,1)−E1IB(θm,1))2dP

≤ lim
n→∞

1

c2m
(E(1IB(θm,1)−E1IB(θm,1))4)1/2(P{|ηm,1 −Eηm,1| > ε

√
ncm})1/2

= 0. (4.35)

The relation (4.32) follows from the application of central limit theorem for the
triangular array {1IB(θm,i)−E1IB(θm,i)}.

It is easy to see that (4.34) follows from the application of Proposition 2.2
to triangular array {η2

m,i}. It remains to establish the relation (4.33). In fact,
we have |rm| ≤ C max(m−1,m−(β−α)/α) from the following lemma. Taking an
arbitrarily small positive constant ε and

n = N
2ζ

1+2ζ−ε, m = N
1

1+2ζ+ε,

we get
√
nrm → 0, the theorem is proved. �
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Lemma 4.4. If the condition (3.5) is satisfied, then

|rm| ≤ C max(m−1,m−(β−α)/α). (4.36)

Proof. In order to prove (4.36), we need to show that

P{θm,i ∈ B} = σ(B) +Rm, (4.37)

with the remainder term Rm = O(max(m−1,m−(β−α)/α)). Let us denote

Gm(x) = P

{
max

1≤i≤m−1
‖ξi‖ ≤ x

}
.

Using the definition of θm,i, it is not difficult to see that

P{θm,i ∈ B} = m

∫ ∞
0

P

{
ξ1
‖ξ1‖

∈ B, ‖ξ1‖ > r

}
Gm(dr).

Let G̃m(x) = Gm(xm1/α). Assumption (3.5) implies (we suppose that σ(S) = 1)
that for large s,

P{‖ξ‖ > s} = s−α + Cs−β + o(s−β).

Therefore, it is easy to get the relation

lim
m→∞

G̃m(x) = G0(x) =

{
exp(−x−α), x > 0,
0, x ≤ 0.

Using (3.5) and the fact that
∫∞

0
y−αdG0(y) = 1, we have (4.37) with Rm =∑4

i=1Rm,i, where

Rm,1 = m

∫ s

0

P

{
ξ1
‖ξ1‖

∈ B, ‖ξ1‖ > r

}
dGm(r),

Rm,2 = −σ(B)

∫ s′

o

y−αdG0(y),

Rm,3 = σ(B)

∫ ∞
s′

y−αd(G̃m(y)−G0(y)),

Rm,4 = Cm−(β−α)/α

∫ ∞
s′

y−βdG̃m(y).

Here s′ = sm−1/α and we shall choose s later. It is easy to see that

Rm,1 ≤ m(1−P{‖ξ1‖ > s})m = m(1− hm−1)m ≤ me− 1
2h,

where h = h(m, s) = mP{‖ξ1‖ > s} ≥ 1
2ms

−α. We have used (4) for the last
inequality. Thus, if we choose

s =
( m

K lnm

)1/α

,

20



with sufficiently large K, then we get

Rm,1 = o(m−1). (4.38)

Simple calculations show that

Rm,2 = o(m−1). (4.39)

The main remainder term is Rm,3 and to estimate it we must first estimate the
difference G̃m(y) − G0(y). A rather simple expansion of logarithmic function
gives the following estimates which are sufficient for our purposes.

Lemma 4.5. ([7] Lemma 2) Let ξi, i ≥ 1 be i.i.d. random vectors satisfying
(4). Then for y > cm−1/α

|G̃m(y)−G0(y)| ≤ C(α, β) exp(−y−α)(m−(β−α)/αy−β +m−1y−2α) (4.40)

and
sup
y
|G̃m(y)−G0(y)| = C(α, β) max(m−1,m−(β−α)/α).

Now we can estimate the term Rm,3. Integrating by parts, we get

|Rm,3| = σ(B)(R
(1)
m,3 +R

(2)
m,3), (4.41)

where
R

(1)
m,3 = s′−α|G̃m(s′)−G0(s′)|,

R
(2)
m,3 = α

∫ ∞
s′
|G̃m(y)−G0(y)|y−α−1dy.

Since s′ = (K lnm)−1/α > Cm−1/α, we can use (4.40) to estimate both quanti-
ties R(i)

m,3, i = 1, 2. After some simple calculations, we get

R
(1)
m,3 = o(m−1),

R
(2)
m,3 ≤ C(α, β) max(m−1,m−(β−α)/α).

In a similar way we estimate Rm,4:

Rm,4 = Cm−(β−α)/α

∫ ∞
s′

y−βdG̃m(y) = Cm−(β−α)/α(R
(1)
m,4 +R

(2)
m,4), (4.42)

where
R

(1)
m,4 =

∫ ∞
s′

y−βdG0(y),

R
(2)
m,4 =

∫ ∞
s

y−βd(G̃m(y)−G0(y)).

It is easy to see that
R

(1)
m,4 ≤ C(α, β) (4.43)
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and R(2)
m,4 can be estimated in a similar way to Rm,3:

R
(2)
m,4 ≤ C(α, β) max(m−1,m−(β−α)/α). (4.44)

Collecting (4.38), (4.39), and (4.41)-(4.44) we get (4.37). �
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