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KÄHLER IMMERSIONS OF HOMOGENEOUS KÄHLER
MANIFOLDS INTO COMPLEX SPACE FORMS

ANTONIO JOSE DI SCALA, HIDEYUKI ISHI, ANDREA LOI

Abstract. In this paper we study the homogeneous Kähler manifolds
(h.K.m.) which can be Kähler immersed into finite or infinite dimen-
sional complex space forms. On one hand we completely classify the
h.K.m. which can be Kähler immersed into a finite or infinite dimen-
sional complex Euclidean or hyperbolic space. Moreover, we extend
known results about Kähler immersions into the finite dimensional com-
plex projective space to the infinite dimensional setting.

1. Introduction and statements of the main results

In this paper we address the following problem: classify all homogeneous
Kähler manifolds ( h.K.m. for short) which admit a Kähler immersion into
a given finite or infinite dimensional complex space form.

A Kähler immersion f : (M,g) → (S, gS) from a Kähler manifold (M,g)
into a complex space form (S, gS) is a holomorphic map such that f∗gS = g
(here g and gS denote the Kähler metrics on M and S respectively).

Recall that there are three types, up to homotheties, of complex space
forms (S, gS) according to the sign of their constant holomorphic sectional
curvature:

• the complex Euclidean space C
N , N ≤ ∞, with the flat metric de-

noted by g0. Here C
∞ is the complex Hilbert space ℓ2(C) consisting

of sequences zj , j = 1 . . . , zj ∈ C such that
∑+∞

j=1 |zj |2 < +∞.

• the complex hyperbolic space CHN , N ≤ ∞, namely the unit ball

in C
N (

∑N
j=1 |zj |2 < 1) endowed with the hyperbolic metric ghyp of

holomorphic sectional curvature being −4, whose associated Kähler
form ωhyp is given by:

ωhyp = − i

2
∂∂̄ log(1−

N
∑

j=1

|zj |2). (1)

Date: September 21, 2010.
2000 Mathematics Subject Classification. 53D05; 53C55; 58F06.
Key words and phrases. Kähler metrics; infinite dimensional complex space forms; ho-

mogeneous space; Wallach set.
Research partially supported by GNSAGA (INdAM), KAKENHI (JSPS) and MIUR

(PRIN07, Differential Geometry and Global Analysis).

1

http://arxiv.org/abs/1009.4045v1


2 A. J. DI SCALA, H. ISHI, A. LOI

• the complex projective space CPN , N ≤ ∞, with the Fubini–Study
metric gFS of holomorphic sectional curvature being 4. If ωFS de-
notes the Kähler form associated to gFS then, in homogeneous coor-
dinates [Z0, . . . , ZN ], ωFS = i

2∂∂̄ log
∑N

j=0 |Zj |2.

Notation. When we speak about the Kähler manifold C
N (resp. CHN or

CPN) without mentioning the Kähler metric we will always mean C
N (resp.

CHN or CPN ) equipped with the metric g0 (resp. ghyp, gFS).

Note that, once that a Kähler immersion into a complex space form (S, gS)
is given, then all other Kähler immersions can be obtained by composing
it with a unitary transformation of (S, gS). This is due to the following
celebrated rigidity theorem due to E. Calabi [Ca53] which will be of constant
use throughout this paper.

Theorem (Calabi’s rigidity theorem) Let f : (M,g) → (S, gS) and

f̃ : (M,g) → (S, gS) be two Kähler immersions into the same complex space
form (S, gS). Then there exists a unitary transformation U of (S, gS) such

that f = U ◦ f̃ .

1.1. Immersions in C
N and CHN . In the following two theorems we give

a complete solution of our problem when the ambient space is C
N or CHN ,

N ≤ ∞. In order to state our result note that the map fn : CHn → l2(C)
given by:

z = (z1, . . . zn)
fn7→ (. . . ,

√

(|j| − 1)!

j!
zj11 · · · zjnn , . . . ) (2)

is a Kähler immersion of CHn into l2(C), i.e. f∗ng0 = ghyp, (see [Ca53]),
where |j| = j1 + · · ·+ jn and j! = j1! · · · jn!.

Theorem 1. Let (M,g) be a n-dimensional h.K.m..

(a) If (M,g) can be Kähler immersed into C
N , N < ∞, then (M,g) =

C
n;

(b) if (M,g) can be Kähler immersed into ℓ2(C), then (M,g) equals

C
k × CHn1

λ1
× · · · × CHnr

λr
,

where k+n1+ · · ·+nr = n, λj , j = 1, . . . , r are positive real numbers

and CH
nj

λj
= (CHnj , λjghyp), j = 1, . . . , r (hence CHn

1 = CHn).

Moreover, in case (a) (resp. case (b)) the immersion is given, up to a unitary
transformation of CN (resp. ℓ2(C)), by the linear inclusion C

n →֒ C
N (resp.

by (f0, f1, . . . , fr), where f0 the linear inclusion C
k →֒ ℓ2(C) and each fj :

CHnj → ℓ2(C) is
√

λj times the map (2)).

Theorem 2. Let (M,g) be a n-dimensional h.K.m.. Then if (M,g) can be
Kähler immersed into CHN , N ≤ ∞, then (M,g) = CHn and the immersion
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is given, up to a unitary transformation of CHN , by the linear inclusion
CHn →֒ CHN

Remark 1. Since a Kähler immersion is minimal, an alternative proof of
(1) in Theorem 1 when N <∞ follows by the work of A. J. Di Scala [DS02].

Remark 2. Assertion (2) in Theorem 1 is a generalization to arbitrary
h.K.m. of Theorem 3.3 in [DL07] where the first and the third authors
proved that a bounded symmetric domain which can be Kähler immersed
into ℓ2(C) has necessarily rank one. Actually, the method of the present
paper, when applied to bounded symmetric domains, provides us with an
alternative and more elegant proof of this result (cfr. Remark 5 below).

1.2. Immersion in CPN . There exists a large class (cfr. Conjecture 1
below) of h.K.m. which can be Kähler immersed into CPN . In this paper a
Kähler metric g on a complex manifold M will be called projectively induced
if there exists an immersion f : M → CPN , N ≤ ∞, such that f∗gFS = g.
An obvious necessary condition for g to be projectively induced is that its
associated Kähler form ω is integral i.e. it represents the first Chern class
c1(L) in H2(M,Z) of a holomorphic line bundle L → M . Indeed L can be
taken as the pull-back of the hyperplane line bundle on CPN whose first
Chern class is given by ωFS. Notice that if ω is an exact form (e.g. when
M is contractible) then ω is obviously integral since its second cohomology
class vanishes.

Other (less obvious) conditions are expressed by the following theorem
and its corollary which represent our first result about projectively induced
Kähler metrics.

Theorem 3. Assume that a h.K.m. (M,g) admits a Kähler immersion
f :M → CPN , N ≤ ∞. Then M is simply-connected and f is injective.

Corollary 3. Let (M,g) be a complete and locally h.K.m.. Assume that
f : (M,g) → CPN , N ≤ ∞, is a Kähler immersion. Then (M,g) is a
h.K.m..

When the dimension of the ambient space is finite, i.e. (S, gS) = CPN ,
N <∞, M is forced to be compact and a proof of Theorem 3 is well-known
by the work of M. Takeuchi [TA78]. In this case he also provides a complete
classification of all compact h.K.m. which can be Kähler immersed into
CPN by making use of the representation theory of semisimple Lie groups.
Viceversa, it is not hard to see that if a compact Kähler manifold can be
Kähler immersed into CP∞ then it can also be Kähler immersed into CPN

with N <∞.
We believe that, up to homotheties, any simply-connected h.K.m. such

that its associated Kähler form is integral can be Kähler immersed into CPN ,
with N ≤ ∞. This is expressed by the following conjecture.
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Conjecture 1: Let (M,g) be a simply-connected h.K.m. such that its asso-
ciated Kähler form ω is integral. Then there exists λ0 ∈ R

+ such that λ0g is
projectively induced.

The integrality of ω in the conjecture is important since there exist simply-
connected h.K.m. (M,ω) such that λω is not integral for any λ ∈ R

+ (take,
for example, (M,g) = (CP 1, gFS)× (CP 1,

√
2gFS)). Observe also that there

exist simply-connected (even contractible) h.K.m. (M,g) such that ω is an
integral form but g is not projectively induced. In order to describe such an
example we recall the following result (see Theorem 2 in [LZ09]).

Theorem A. Let gB be the Bergman metric of an irreducible Hermitian
symmetric space of noncompact type Ω. Then λgB is projectively induced
if and only λγ belongs to W (Ω) \ {0}, where γ denotes the genus of Ω and
W (Ω) its Wallach set.

It turns out (see Corollary 4.4 p. 27 in [AR95] and references therein)
that W (Ω) consists only of real numbers and depends on two of the domain’s
invariants, denoted by a (strictly positive natural number) and r (the rank
of Ω). More precisely we have

W (Ω) =
{

0,
a

2
, 2
a

2
, . . . , (r − 1)

a

2

}

∪
(

(r − 1)
a

2
, ∞

)

. (3)

The setWd =
{

0, a
2 , 2

a
2 , . . . , (r − 1)a2

}

and the intervalWc =
(

(r − 1)a2 , ∞
)

are called respectively the discrete and continuous part of the Wallach set
of the domain Ω. Observe that when r = 1, namely Ω is the complex
hyperbolic space CHn, then gB = (n+1)ghyp. In this case (and only in this
case) Wd = {0} and Wc = (0,∞). If rank(Ω) = r ≥ 2 and 0 < λ < a

2γ it

follows by Theorem A that λgB is not projectively induced and its associated
Kähler form λωB is integral (since Ω is contractible). This provides us with
the desired example.

Notice also that from Theorem A it follows that the only irreducible
bounded symmetric domain where λgB is projectively induced for all λ > 0
is the complex hyperbolic space. In the following theorem, which represents
our last result, we generalize this fact to any homogeneous bounded domain
(h.b.d. for short). This will be a key ingredient in the proof of Theorem 1.

Theorem 4. Let (Ω, g) be a n-dimensional h.b.d.. The metric λg is projec-
tively induced for all λ > 0 if and only if

(Ω, g) = CHn1

λ1
× · · · × CHnr

λr
, (4)

where n1 + · · · + nr = n, λj , j = 1, . . . , r are positive real numbers and

CH
nj

λj
= (CHnj , λjghyp), j = 1, . . . , r.

The paper contains another section dedicated to the proofs of our main
results.
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2. Proof of the main results

The basic ingredient for the proof of our results is the following solution
due to J. Dorfmeister and K. Nakajima [DN88] of the fundamental conjecture
on h.K.m..

Theorem FC A h.K.m. (M,g) is the total space of a holomorphic fiber
bundle over a h.b.d. Ω in which the fiber F = E × C is (with the induced
Kähler metric) the Kähler product of a flat homogeneous Kähler manifold E
and a compact simply-connected homogeneous Kähler manifold C.

In order to prove Theorem 1 recall that complete connected totally ge-
odesic submanifolds of R

n are affine subspaces p + W, where p ∈ R
n and

W ⊂ R
n is a vector subspace. We need the following result from [AD03]

which we include here for completeness.

Lemma 4. Let G be a connected Lie subgroup of isometries of the Euclidean
space R

n. Let G.p = p+V and G.q = q+W be two totally geodesic G-orbits.
Then V = W, i.e. G.p and G.q are parallel affine subspaces of Rn.

Proof. We can assume that p = 0 ∈ R
n and that p, q are the points

that realize the distance between both orbits G · p, G · q, i.e. dist(p, q) =
dist(G · p,G · q). Let γ(t) = tq be the geodesic that realizes the distance
between q and V. So the vector q is perpendicular to any G-orbit Gt =
G · γ(t) t ∈ R. Let X = x∗ be any Killing vector field of G and Exp(tX)
its associated one-parameter group of isometries. Define h : I × R → R

n by
hs(t) := Exp(sX) · γ(t). Note that X(hs(t)) = ∂h

∂s and that, for a fixed s,
hs(t) is a geodesic.

Let At be the shape operator at the point γ(t) of the orbit G·γ(t) in the di-
rection of γ̇(t). Define f(t) := −〈At(X(γ(t))),X(γ(t))〉 = 〈D∂s ∂h

∂t ,X(hs(t))〉 |s=0.
We have

d

dt
f(t) = 〈D

∂t

D

∂s

∂h

∂t
,X(hs(t))〉 |s=0 +〈D

∂s

∂h

∂t
,
D

∂t
X(hs(t))〉 |s=0

= 〈D
∂s

D

∂t

∂h

∂t
,X(hs(t))〉 |s=0 +〈D

∂t

∂h

∂s
,
D

∂t
X(hs(t))〉 |s=0

= ‖∇γ̇(t)(X(γ(t)))‖2 .
Since f(0) = 0 because G · p is totally geodesic, we get

f(1) = −〈At(X(q)),X(q)〉 ≥ 0 .

Hence A1 is negative definite and since G · q is totally geodesic, any Killing

vector field X is parallel along γ(t). We can write Exp(sX) ·p = esX(p−c)+
c+sd, where X is the projection of X into son, d ∈ ker(X) and c ∈ ker(X)⊥.
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Then a Killing vector field X is parallel along γ(t) if and only if q ∈ ker(X).
Thus Exp(sX) · q = q + Exp(sX) · p which implies that

V = Tp(G · p) ⊂ Tq(G · q) = W .

Reversing the role of V and W the same argument yields W ⊂ V. This
completes the proof of the lemma. �

Proof of Theorem 1. Assume that there exists a Kähler immersion f :
M → C

N . By Theorem FC and by the fact that a h.b.d. is contractible
we get that M = C

k × Ω as a complex manifold since, by the maximum
principle, the fiber F cannot contain a compact manifold. Let M = G/K
be the homogeneous realization of M (so the metric g is G-invariant). It
follows again by Theorem FC that there exists L ⊂ G such that the L-orbits
are the fibers of the fibration π : M = G/K → Ω = G/L. Let Fp, Fq

be the fibers over p, q ∈ Ω. We claim that f(Fp) and f(Fq) are parallel
affine subspaces of C

N . Indeed, by Calabi’s rigidity f(Fp) and f(Fq) are
affine subspaces of CN since both Fp and Fq are flat Kähler manifolds of Cn.
Moreover, Calabi rigidity theorem implies the existence of a morphism of
groups ρ : G → IsoC(C

N ) = U(CN )⋉ C
N such that f(g · x) = ρ(g)f(x) for

all g ∈ G,x ∈ M . Let Wp,q be the affine subspace generated by f(Fp) and
f(Fq). Since both f(Fp) and f(Fq) are ρ(L)-invariant it follows that Wp,q is
also ρ(L)-invariant. Indeed, for any g ∈ L the isometry ρ(g) is an affine map
and so must preserve the affine space generated by f(Fp) and f(Fq). Observe
that Wp,q is a finite dimensional complex Euclidean space, ρ(L) acts on Wp,q

and f(Fp) and f(Fq) are two complex totally geodesic orbits in Wp,q. Then,
by Lemma 4, we get that f(Fp) and f(Fq) are parallel affine subspaces of

Wp,q and hence of C
N . Since p, q ∈ Ω are two arbitrary points it follows

that f(M) is a Kähler product. Thus M = C
k × Ω is a Kähler product

of homogeneous Kähler manifolds. Using again the fact M can be Kähler
immersed into C

N it follows that the h.b.d. Ω can be Kähler immersed into
C
N . If one denotes by ϕ this immersion and by gΩ the homogeneous Kähler

metric of Ω, it follows that the map
√
λϕ is a Kähler immersion of (Ω, λgΩ)

into C
N . Therefore, by Theorem 14 in [Bo47], λgΩ is projectively induced

for all λ > 0 and Theorem 4 yields

(M,g) = C
k × CHn1

λ1
× · · · × CHnr

λr
,

where k+n1+ · · ·+nr = n and λj , j = 1, . . . , r are positive real numbers. If
the dimension N of the ambient space C

N is finite then M = C
n since there

cannot exist a Kähler immersion of (CHnj , λjghyp) into C
N , N < ∞ (see

[Ca53]) and this proves (a). The last part of Theorem 1 is a consequence of
Calabi’s rigidity theorem together with Lemma 3.1 in [DL07] which asserts
that a Kähler map f : M ×M ′ → C

N , N ≤ ∞, from a product M ×M ′

of two Kähler manifolds is a product, i.e. f(p, q) = (f1(p), f2(q)) where
f1 :M → C

N and f2 :M
′ → C

N are Kähler maps. �
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Remark 5. As we have already pointed, Theorem 4, which is an important
step in the proof of the Theorem 1, is a straightforward consequence of The-
orem A above when the h.K.m. is a bounded symmetric domain. Therefore
the last part of Theorem 1 provides an alternative proof of Theorem 3.3 in
[DL07] without the use of Calabi’s diastasis function (cfr. Remark 2).

In order to prove Theorem 2 we need the following lemma.

Lemma 6. If a Kähler manifold (M,g) can be Kähler immersed into CHN ,
N ≤ ∞, then it can also be Kähler immersed into ℓ2(C).

Proof. Let f be the Kähler immersion of (M,g) into CHN . If N < ∞
then the map fn ◦ f : (M,g) → ℓ2(C), where fn is given by (2), is a Kähler
immersion. IfN = ∞, it follows by (1) in the introduction that Φ = − log(1−
∑∞

j=1 |φj |2) =
∑∞

k=1(
∑∞

j=1 |φj|2)k is a Kähler potential for the metric g, i.e.
i
2∂∂̄Φ = ω, where ω is the Kähler form associated to the metric g and the φj ’s

are the components of f . Hence Φ =
∑∞

j=1 |hj |2 for suitable holomorphic

functions hj , j = 1, 2, . . . on M and the map h = (. . . , hj , . . . ) : (M,g) →
ℓ2(C) is the desired Kähler immersion. �

Proof of Theorem 2. If a h.K.m. (M,g) can be Kähler immersed into
CHN , N ≤ ∞, then, by Lemma 6 it can also be Kähler immersed into
ℓ2(C). By Theorem 1, (M,g) is then a Kähler product of complex space
forms, namely

(M,g) = C
k × CHn1

λ1
× · · · × CHnr

λr
.

Then the conclusion follows by the fact that C
k cannot be Kähler immersed

into CHN for all N ≤ ∞ (see [Ca53]), by Calabi’s rigidity theorem and by
Theorem 2.11 in [AD03] which shows that there are not Kähler maps from
a product M ×M ′ of Kähler manifolds into CHN , N ≤ ∞, (the proof in
[AD03] is given for N < ∞ but it extends without any substantial change
to the infinite dimensional case). �

Proof of Theorem 3. Theorem FC and the fact that a h.b.d. is contractible
imply that M is a complex product Ω × F , where F = E × C is a Kähler
product of a flat Kähler manifold E Kähler embedded into (M,g) and a
simply-connected h.K.m. C. We claim that E is simply-connected and hence
M = Ω×E ×C is simply-connected. In order to prove our claim notice that
E is the Kähler product C

k × T1 × · · · × Ts, where Tj are flat complex tori.
So one needs to show that each Tj reduces to a point. If, by a contradiction,
the dimension of one of this tori, say Tj0 is not zero, then by composing the
Kähler immersion of Tj0 in (M,g) with the immersion f : M → CPN we
would get a Kähler immersion of Tj0 into CPN in contrast with a well-known
result of Calabi [Ca53] (see also Lemma 2.2 in [TA78]). In order to prove
that f is injective we first observe that, by Calabi’s rigidity theorem, f(M)
is still a h.K.m.. Then, by the first part of the theorem, f(M) ⊂ CPN is
simply-connected. Moreover, since M is complete and f : M → f(M) is a
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local isometry, it is a covering map (see, e.g., Lemma 3.3 p. 150 in [DC92])
and hence injective.�

Proof of Corollary 3. Let π : M̃ → M be the universal covering map.
Then (M̃, g̃) is a h.K.m. and, by Theorem 3, f ◦ π : M̃ → CPn is injec-
tive. Therefore π is injective, and since it is a covering map, it defines a
holomorphic isometry between (M̃, g̃) and (M,g). �

Proof of Theorem 4. First we find a global potential of the homogeneous
Kähler metric g on the domain Ω following Dorfmeister [D85]. By [D85,
Theorem 2 (c)], there exists a split solvable Lie subgroup S ⊂ Aut(Ω, g)
acting simply transitively on the domain Ω. Taking a reference point z0 ∈ Ω,
we have a diffeomorphism S ∋ s

∼7→ s · z0 ∈ Ω, and by the differentiation, we
get the linear isomorphism s := Lie(S) ∋ X

∼7→ X · z0 ∈ Tz0Ω ≡ C
n. Then

the evaluation of the Kähler form ω on TzoΩ is given by ω(X · zo, Y · z0) =
β([X,Y ]) (X,Y ∈ s) with a certain linear form β ∈ s

∗. Let j : s → s

be the linear map defined in such a way that (jX) · z0 =
√
−1(X · z0)

for X ∈ s. We have ℜg(X · z0, Y · z0) = β([jX, Y ]) for X,Y ∈ s, and
the right-hand side defines a positive inner product on s. Let a be the
orthogonal complement of [s, s] in s with respect to the inner product. Then
a is a commutative Cartan subalgebra of s. Define γ ∈ a

∗ by γ(C) :=
−4β(jC) (C ∈ a), and we extended γ to s = a⊕ [s, s] by the zero-extension.
Keeping the diffeomorphism between S and Ω in mind, we define a positive
smooth function Ψ on Ω by

Ψ((expX) · z0) = e−γ(X) (X ∈ s).

From the argument in [D85, pp. 302–304], we see that

ω =
i

2
∂∂̄ logΨ. (5)

It is known that there exists a unique kernel function Ψ̃ : Ω × Ω → C such
that (1) Ψ̃(z, z) = Ψ(z) for z ∈ Ω and (2) Ψ̃(z, w) is holomorphic in z and
anti-holomorphic in w (cf. [I99, Proposition 4.6]). Let us observe that the

metric g is projectively induced if and only if Ψ̃ is a reproducing kernel of a
Hilbert space of holomorphic functions on Ω. Indeed, if f : Ω → CPN (N ≤
∞) is a Kähler immersion with f(z) = [ψ0(z) : ψ1(z) : · · · ] (z ∈ Ω) its

homogeneous coordinate expression, then we have ω = i
2∂∂̄ log

∑N
j=0 |ψj |2.

Comparing (5) with it, we see that there exists a holomorphic function φ

on Ω for which Ψ = |eφ|2
∑N

j=0 |ψj |2. By analytic continuation, we obtain

Ψ̃(z, w) = eφ(z)eφ(w)
∑N

j=0 ψj(z)ψj(w) for z, w ∈ Ω. For any z1, . . . , zm ∈ Ω
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and c1, . . . , cm ∈ C, we have

m
∑

p,q=1

cpc̄qΨ̃(zp, zq) =

m
∑

p,q=1

cpc̄qe
φ(zp)eφ(zq)

N
∑

j=0

ψj(zp)ψj(zq)

=
N
∑

j=0

|
m
∑

p=1

cpe
φ(zp)ψj(zp)|2 ≥ 0.

Thus the matrix (Ψ̃(zp, zq))p,q ∈ Mat(m,C) is always a positive Hermitian

matrix. Therefore Ψ̃ is a reproducing kernel of a Hilbert space (see [Ar50,
p. 344]).

On the other hand, if Ψ̃ is a reproducing kernel of a Hilbert space H ⊂
O(Ω), then by taking an orthonormal basis {ψj}Nj=0 of H, we have a Kähler

immersion f : M ∋ z 7→ [ψ0(z) : ψ1(z) : · · · ] ∈ CPN because we have

Ψ(z) = Ψ̃(z, z) =
∑N

j=0 |ψj(z)|2. Note that there exists no point a ∈ Ω

such that ψj(a) = 0 for all 1 ≤ j ≤ N since Ψ(z) =
∑N

j=0 |ψj(z)|2 is always
positive.

The condition for Ψ̃ to be a reproducing kernel is described in [I99]. In
order to apply the results, we need a fine description of the Lie algebra s with
j due to Piatetskii-Shapiro [PS69]. Indeed, it is shown in [PS69, Chapter 2]
that the correspondence between the h.b.d. Ω and the structure of (s, j) is
one-to-one up to natural equivalence. For a linear form α on the Cartan alge-
bra a, we denote by sα the root subspace {X ∈ s ; [C,X] = α(C)X (∀C ∈ a) }
of s. The number r := dim a is nothing but the rank of Ω. Thanks to
[PS69, Chapter 2, Section 3], there exists a basis {α1, . . . , αr} of a

∗ such
that s = s(0) ⊕ s(1/2) ⊕ s(1) with

s(0) = a⊕
∑⊕

1≤k<l≤r

s(αl−αk)/2, s(1/2) =
∑⊕

1≤k≤r

sαk/2,

s(1) =
∑⊕

1≤k≤r

sαk
⊕

∑⊕

1≤k<l≤r

s(αl+αk)/2.

If {A1, . . . , Ar} is the basis of a dual to {α1, . . . , αr}, then sαk
= RjAk. Thus

sαk
(k = 1, . . . , r) is always one dimensional, whereas other root spaces sαk/2

and s(αl±αk)/2 may be {0}. Since {α1, . . . , αr} is a basis of a
∗, the linear

form γ ∈ a
∗ is written as γ =

∑r
k=1 γkαk with unique γ1, . . . , γr ∈ R. Since

jAk ∈ sαk
, we have

γk = γ(Ak) = −4β(jAk) = −4β([Ak, jAk]) = 4β([jAk, Ak])

and the last term equals 4g(Ak · z0, Ak · z0). Thus we get γk > 0.
For ǫ = (ǫ1, . . . , ǫr) ∈ {0, 1}r , put qk(ǫ) :=

∑

l>k ǫl dim s(αl−αk)/2 (k =
1, . . . , r). Define

X(ǫ) :=

{

(σ1, . . . , σr) ∈ C
r ;

σk > qk(ǫ)/2 (ǫk = 1)

σk = qk(ǫ)/2 (ǫk = 0)

}

,
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and X :=
⊔

ǫ∈{0,1}r X(ǫ). By [I99, Theorem 4.8], Ψ̃ is a reproducing kernel

if and only if γ := (γ1, . . . , γr) belongs to X. We denote by W (g) the set of
λ > 0 for which λg is projectively induced. Since the metric λg corresponds
to the parameter λγ, we see that λg is projectively induced if and only if
λγ ∈ X. Namely we obtain

W (g) =
{

λ > 0 ; λγ ∈ X
}

,

and the right-hand side is considered in [I10]. Put qk =
∑

l>k dim s(αl−αk)/2

for k = 1, . . . , r. Then [I10, Theorem 15] tells us that

W (g) ∪ {0} ⊂
{

qk
2γk

; k = 1, . . . , r

}

∪ (c0,+∞),

where c0 := max
{

qk
2γk

; k = 1, . . . , r
}

.

Now assume that λg is projectively induced for all λ > 0. Then we have
c0 = 0, so that dim s(αl−αk)/2 = 0 for all 1 ≤ k < l ≤ r. In this case, we see
that s is a direct sum of ideals sk := jsαk

⊕ sαk/2⊕ sαk
(k = 1, . . . , r), which

correspond to the hyperbolic spaces CHnk with nk = 1+(dimαk/2)/2 ([PS69,
pp. 52–53]). Therefore the Lie algebra s corresponds to the direct product
CHn1 × · · · ×CHnr , which is biholomorphic to Ω because the homogeneous
domain Ω also corresponds to s. Hence (4) holds and Theorem 4 is verified.

�
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