
KEROV’S CENTRAL LIMIT THEOREM FOR SCHUR-WEYL
MEASURES OF PARAMETER α = 1/2

PIERRE-LOÏC MÉLIOT

Abstract. In this article, we show that Kerov’s central limit theorem related to the fluctuations of
Young diagrams under the Plancherel measure extends to the case of Schur-Weyl measures, which are
the probability measures on partitions associated to the representations of the symmetric groups Sn on
tensor products of vector spaces V ⊗n (see [Bia01]). The proof is inspired by the one given in [IO02] for
the Plancherel measure, and it relies on the combinatorics of the algebra of observables of diagrams; we
shall also use Śniady’s theory of cumulants of observables (cf. [Ś06]).

Given a finite groupG and a finite-dimensional complex linear representation V ofG, the decomposition
in irreducible components V =

⊕
λ∈Ĝmλ Vλ yields a probability measure on the set Ĝ of isomorphism

classes of irreducible representations of G:

PV

[
λ ∈ Ĝ

]
=
mλ dimVλ

dimV

In particular, when G = Sn is the symmetric group of permutations of [[1, n]], a reducible representation of
Sn yields a probability measure on the set Pn = Ŝn of integer partitions of size n. When V = CSn is the
(left) regular representation, one obtains the so-called Plancherel measure, which has been extensively
studied in the n → ∞ asymptotic; see for instance [IO02]. In this paper, we focus on the Schur-
Weyl measures that correspond to the representations (CN )n x Sn, where Sn acts on the right by
permutation of the letters of the simple tensors:

(v1 ⊗ v2 ⊗ · · · ⊗ vn) · σ = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

By Schur-Weyl reciprocity, the probability measure on partitions associated to this representation is
also a probability measure on irreducible representations of GL(N,C). The first order asymptotic of
these measures when n1/2 ' cN and n goes to infinity has been determined by P. Biane in [Bia01]; we
shall recall this in §1, and by using the Robinson-Schensted-Knuth correspondence, we will also give a
“combinatorial model” for these probability measures.

The asymptotics of the Plancherel measures on partitions correspond to the case c = 0, and for
Plancherel measures, S. Kerov has shown that Young diagrams deviate from their limit shape by a
(generalized) gaussian process ([Ker93], [IO02]). Consequently, it was natural to ask whether such a
result extends to the case of Schur-Weyl measures with parameter c > 0. We have found out that it is
indeed the case, and that the central limit theorem for Schur-Weyl measures is up to a translation on
the x-axis the same as for Plancherel measures. This is the main result of this paper, see Theorem 14
in §6. Notice that our result is the “Schur-Weyl dual” of a result of Lytova and Pastur related to the
deviation of the empirical spectral measure of Wishart matrices from the Marčenko-Pastur distribution,
cf. [LP09]. In order to prove Theorem 14, we shall follow the approach of V. Ivanov and G. Olshanski
([IO02]), and we shall therefore use the algebra O of observables of diagrams. These objects are in
some sense “polynomial functions on partitions” (see [KO94]), and in the setting of random partitions,
their expectations play the same role as the moments for real or complex random variables. Moreover, P.
Śniady has developed in [Ś06] a theory of cumulants of observables of diagrams that allow to prove
results of gaussian concentration. These facts are recalled in §2 and §4, and we will also compute certain
observables of the limit shapes Ωc of the Young diagrams under Schur-Weyl measures with parameters
α = 1/2, c > 0, cf. §3.
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The core of the proof of our central limit theorem is contained in §5, and it is shown that Chebyshev
polynomials of the second kind yield random variables related to the second order asymptotic of the
Schur-Weyl measures, and that are asymptotically centered independant gaussian variables. Our proof
is slightly different from the one given in [IO02, §7] for Plancherel measures, because in the setting of
Schur-Weyl measures, one cannot use the so-called Kerov degree on observables. Hence, one has to
use instead the weight filtration on observables, and the arguments of Ivanov and Olshanski that relie
on Kerov’s degree will be replaced by a somewhat nasty trick, see Lemma 12. Thus, our calculations
present quite miraculous simplifications, and these simplifications can be summarized by the following
fact: Chebyshev polynomials of the second kind do play a hidden and nethertheless prominent role in the
combinatorics of observables of diagrams. We ought to say that we do not understand completely the
reasons of the universality of Kerov’s central limit theorem; in this paper, we only show that calculations
can be performed in a more general setting than previously known, but as for now we do not know why.

1. Schur-Weyl measures of parameter α = 1/2

In the following, we fix two positive real numbers α and c. Recall that the irreducible representations
of the symmetric group Sn are labelled by partitions of size n, that is to say, non-increasing sequences

λ = (λ1, . . . , λr)

of positive integers that sum up to n; see for instance [Wey39, Chapter 4]. Such a sequence can be
represented by its Young diagram, which is an array of n boxes with λ1 boxes in the first line, λ2 boxes
in the second line, etc.

Figure 1. The Young diagram of the partition λ = (7, 5, 2, 2, 1).

We denote by Pn the set of integer partitions of size n, and if λ = (λ1, . . . , λr) is in Pn, we set |λ| = n
and `(λ) = r. We also denote by dimλ = dimVλ the dimension of the irreducible representation of Sn of
label λ; this dimension can be computed by using the hook length formula, cf. [Mac95, Chapter 1, §7].
Alternatively, by using the branching rules for the irreducible representations of the symmetric groups
Sn, it is easy to show that

dimλ = card
{
standard tableaux of shape λ

}
.

Here, a standard tableau of shape λ is a numbering of the cases of the Young diagram of λ by the
integers 1, 2, . . . , n, such that each row and each column is strictly increasing.

Example. The five standard tableaux of shape (3, 2) are drawn in figure 2. Hence, dim(3, 2) = 5.

4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 5
1 3 4

2 4
1 3 5

Figure 2. The standard tableaux of shape (3, 2).
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The Schur-Weyl measure of parameters α and c on partitions of size n is the probability measure
on Pn defined by:

SWn,α,c[λ] =
mλ dimλ

Nn

where nα ' cN and the multiplicities mλ are the one coming from the decomposition of the (right-side)
representation (CN )⊗n x Sn. Of course, these probability measures depend on the exact sizes N , but
for the asymptotic analysis, we shall see that the parameters α and c are sufficient.

The general linear group GL(N,C) acts on the left of the tensor product V = (CN )⊗n by

g · (v1 ⊗ v2 ⊗ · · · ⊗ vn) = g(v1)⊗ g(v2)⊗ · · · ⊗ g(vn),

and it is well-known that the algebras generated by the actions of GL(N,C) and Sn in End(V ) are full
mutual centralizers — this is the Schur-Weyl duality phenomenon, see [Wey39, Chapter 4]. Hence, V
can be decomposed as a direct sum of irreducible (GL(N,C),Sn)-bimodules:

GL(N,C)y
{

(CN )⊗n
}
xSn

=
⊕

λ

GL(N,C)y{Mλ} ⊗C {Vλ}xSn

The irreducible algebraic representations of GL(N,C) are labelled by the sequences λ = (λ1, . . . , λN ) of
non-negative integers, and consequently, the Schur-Weyl measure charges only the partitions of length
`(λ) ≤ N ; moreover, mλ = dimMλ. These dimensions can be given a combinatorial interpretation similar
to the one for the dimVλ’s, see [Mac95, Appendix A, §8]. Hence,

dimMλ = card
{
semistandard tableaux of shape λ with entries in [[1, N ]]

}
,

where a semistandard tableau of shape λ is a numbering of the cases of the Young diagram of λ that
is non-decreasing along the rows and strictly increasing along the columns.

Example. The two semistandard tableaux of shape (3, 2) and entries in [[1, 2]] are drawn in figure 3. As
a consequence, the dimension of the GL(2,C)-module M3,2 is 2.

2 2
1 1 1

2 2
1 1 2

Figure 3. The semistandard tableaux of shape (3, 2) and entries in [[1, 2]].

Given a word of length n over the alphabet [[1, N ]], one can associate to it two tableaux of size n and
same shape by using the Robinson-Schensted-Knuth algorithm, see [Ful97]. For instance, when
n = 9 and N = 5, the word m = 233154243 is associated to the two tableaux

5
2 3 4
1 2 3 3 4 and

7
4 6 9
1 2 3 5 8 .

The first tableau is semistandard with entries in [[1, N ]], and can be obtained by applying the jeu de
taquin algorithm to the ribbon of the word m; the second tableau is always a standard tableau. Hence,
there is a bijection

RSK :
{
words of length n over [[1, N ]]

}
→

⊔

λ∈Pn
ST (λ)× SST (λ,N),

and if one reminds only the shape RSKsh(m) of the tableaux associated to a word m by RSK, then the
Schur-Weyl measure is precisely the image of the uniform law on Nn by the map RSKsh. Hence, one
obtains a combinatorial model for the measures SWn,α,c, and moreover, it can be shown that the size
of the first part of RSKsh(m) is always equal to the length of a non-decreasing subsequence of maximal
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length in m; consequently, the study of Schur-Weyl measures is related to analogues of Ulam’s problem
([Ula61]).

If λ is a Young diagram, we turn it by 45 degrees and we consider the upper boundary of the new
drawing as a continuous function s 7→ λ(s), with by convention λ(s) = |s| if s is too big (see figure 4).
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This interpretation permits to rescale the Young diagrams, and in particular, we shall denote by λ∗ the

y = λ(x)

Figure 4. Function s !→ λ(s) associated to the Young diagram λ = (5, 4, 4, 1).

Young diagram λ rescaled by a factor 1/
√

|λ| in both directions:

λ∗(s) = λ(s
√

n)/
√

n

Then, P. Biane has shown that under Schur-Weyl measures with parameter α ≥ 1/2, rescaled Young
diagrams admit a limit form (see Theorem 3 in [Bia01]):

c = 0

c = 1

c = 1/2

c = 2

Figure 5. Limit shapes of the rescaled Young diagrams under Schur-Weyl measures of
parameter α = 1/2.

Theorem 1 (First order asymptotics of Schur-Weyl measures of parameter α = 1/2). We fix ε > 0, and
we suppose that α = 1/2. As n goes to infinity,

SWn,α,c[‖λ∗ − Ωc‖∞ ≥ ε] → 0,

Figure 4. Function s 7→ λ(s) associated to the Young diagram λ = (5, 4, 4, 1).
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where Ωc is defined by the following formulas:

Ω0(s) = Ω(s) =

{
2
π

(
s arcsin( s2 ) +

√
4− s2

)
if |s| ≤ 2,

|s| otherwise;

Ωc∈ ]0,1[(s) =





2
π

(
s arcsin( s+c

2
√

1+sc
) + 1

c arccos( 2+sc−c2
2
√

1+sc
) +

√
4−(s−c)2

2

)
if |s− c| ≤ 2,

|s| otherwise;

Ω1(s) =

{
s+1

2 + 1
π

(
(s− 1) arcsin( s−1

2 ) +
√

4− (s− 1)2
)

if |s− 1| ≤ 2,

|s| otherwise;

Ωc>1(s) =





s+ 2
c if s ∈ ]−1

c , c− 2[ ,

2
π

(
s arcsin( s+c

2
√

1+sc
) + 1

c arccos( 2+sc−c2
2
√

1+sc
) +

√
4−(s−c)2

2

)
if |s− c| ≤ 2,

|s| otherwise.

The case when c = 0 corresponds to the limit shape of rescaled Young diagrams under Schur-Weyl measures
with parameter α > 1/2.

When α < 1/2, the “isotropic” scaling by a factor 1/
√
n in both directions is no more adequate, and

in fact, it can be shown that the order of magnitude of the parts of λ under Schur-Weyl measures with
parameter α < 1/2 is a O(n1−α), see [FM10, §6]. On the other hand, the function Ω0 is also the limit
shape of rescaled Young diagram under the so-called Plancherel measure, and in this case, a central limit
theorem for the fluctuation √

n∆λ(s) =
√
n (λ∗(s)− Ω0(s))

has been proved by S. Kerov, see [Ker93] and [IO02]. Our paper is concerned with the analogue of this
result for Schur-Weyl measures with parameters α = 1/2 and c > 0. In the next sections, we shall start
by presenting the tools commonly used for the asymptotic study of representations of symmetric groups.

2. Observables of diagrams

In the setting of random partitions, the algebra of polynomial functions1 on Young diagrams and its
various bases play an extremely important role that can be compared to the one played by the moments
of a real random variable. Hence, the generating function of a Young diagram λ is defined by

Gλ(z) =

∏v−1
i=1 z − yi∏v
i=1 z − xi

,

where x1 < y1 < x2 < y2 < · · · < xv−1 < yv−1 < xv are the interlacing coordinates of λ, that
is to say, the sequences of local minima and local maxima of the function s 7→ λ(s). Alternatively, if
σ(s) = λ(s)−|s|

2 , then

Gλ(z) =
1

z
exp

(
−
∫

R

σ′(s)
z − s ds

)
.

This latter definition allows to consider the generating function of more general objects such as contin-
uous Young diagrams, i.e., functions s 7→ ω(s) that satisfy the two following properties:

(1) ω is Lipschitz with constant 1, i.e., |ω(s)− ω(t)| ≤ |s− t| for all s, t.
(2) ω(s) = |s| for s big enough.

1In the same setting, another fruitful approach relie on determinantal point processes, see e.g. [BO00] and [BO05].
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Given a (continuous) diagram λ, the coefficients h̃n(λ) of the power serie z−1Gλ(z−1) generate an algebra
O of observables of diagrams. One may also consider as an algebraic basis for O the coefficients p̃n(λ)
given by the formula

z−1Gλ(z−1) = 1 +

∞∑

n=1

h̃n(λ) zn = exp

( ∞∑

n=1

p̃n(λ)

n
zn

)
.

For a true Young diagram λ, p̃n(λ) =
∑v
i=1(xi)

n −∑v−1
i=1 (yi)

n is the n-th moment of the interlacing
coordinates, whereas for a continuous diagram, one can give the following formula:

p̃n(ω) =

∫

R

σ′′(s) sn ds =
1

(n+ 1)(n+ 2)

∫

R

σ(s) sn+2 ds

Notice that h̃1(λ) = p̃1(λ) = 0 for any (continuous) diagram λ; on the other hand, one can show that the
other coefficients are algebraically independant (viewed as functions on diagrams). So,

O = C[h̃2, h̃3, . . .] = C[p̃2, p̃3, . . .],

see [IO02, §2]. The weight grading on this algebra is then defined by setting wt(p̃k≥2) = k, and it
provides a filtration of algebra on O that is well-behaved with respect to scaling of continuous diagrams.
More precisely, if ω is a continuous diagram and if ωt is the scaled diagram defined by

ωt(s) =
ω(st)

t

(see figure 6), then for any homogeneous observable f of weight k, f(ωt) = tk f(ω). In particular, if λ is
a true Young diagram and if λ∗ = λ1/

√
|λ| = λ1/

√
n, then f(λ∗) = n−

k
2 f(λ).
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see [DNV92] for the uses of this notion in free probability. By Lagrange inversion, the free cumulants
also satisfy the formula

Rn+1(λ) = Rn+1(µλ) = − 1

n
[z−1](Gλ(z))−n,

and Rn+1 is therefore an observable of diagrams that is homogeneous with weight n + 1. R. Speicher
has given a simple combinatorial interpretation of the change of basis formulas between the h̃’s and the
R’s, see [NS06]. These formulas implie in particular that the Rk≥2’s are algebraically independant, so
O = C[R2, R3, . . .].

Finally, another algebraic basis comes from the so-called central characters, that allow to relie the
algebra O to the representation theory of the symmetric groups. If λ and µ are two partitions of same
size n, one denotes by χλ(µ) the value of the normalized irreducible character of Sn of label λ on a
permutation σµ of cycle type µ. Then, if λ and µ are two partitions of sizes n and k, one sets:

Σµ(λ) =

{
n↓k χλ(µ t 1n−k) if n ≥ k,
0 otherwise.

Here, µ t 1n−k is the completed partition obtained by adding parts of size 1 to µ, and n↓k is the falling
factorial n(n− 1) · · · (n− k + 1). It is true, although totally non trivial, that the Σµ’s are observables of
diagrams; cf. [IO02, §3-4]. More precisely, wt(Σµ) = |µ|+ `(µ), and the top homogeneous component of
Σµ is

Rµ+1 = Rµ1+1Rµ2+1 · · ·Rµr+1,

see [Bia98] and [IO02, §10]. As a consequence, O = C[Σ1, Σ2, . . .] is freely generated by the central
characters of cycles, and one has a factorization property of characters in top homogeneous component:

Σµ1
∗ Σµ2

= Σµ1tµ2
+
(
observable of weight less than µ1 + µ2 + `(µ1) + `(µ2)− 2

)

In fact, there exists multivariate polynomials with non-negative integer coefficients Kk such that Σk =
Kk(Rk+1, Rk, . . . , R2) for any k ≥ 1; these Kerov polynomials are studied for instance in [DFS08]. In
§5, we will rather have to exprime the p̃’s as polynomials in the Σ’s. We refer to [IO02, Proposition 3.7]
for a proof of the following result:

Proposition 2 (Change of basis formula between p̃’s and Σ’s). For k ≥ 2, p̃k is the top homogeneous
component of weight k of the observable

∑

µ=1m12m2 ···sms
|µ|+`(µ)=k

k↓`(µ)

∏
i≥1mi!

∏

i≥1

(Σi)
mi .

Examples. Let us write the first p̃k’s in the linear basis of central characters (Σµ)µ∈⊔n∈NPn :

p̃1 = 0 ; p̃2 = 2Σ1

p̃3 = 3Σ2 ; p̃4 = 4Σ3 + 6Σ1,1 + 2Σ1

p̃5 = 5Σ4 + 20Σ2,1 + 15Σ2

p̃6 = 6Σ5 + 30Σ3,1 + 15Σ2,2 + 20Σ1,1,1 + 30Σ1,1 + 60Σ3 + 2Σ1

Hence, one sees for instance that p̃6 is the top homogeneous component of 6Σ5+30Σ3,1+15Σ2,2+20Σ1,1,1,
and if one uses the factorization property of the central characters, one sees that these formulas agree
with Proposition 2.
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3. Some computations around the limit shapes Ωc

By using observables of diagrams, it is very easy to prove Theorem 1; let us recall briefly this proof.
If λ is a partition of size n picked randomly according to a Schur-Weyl measure, then any observable of
diagram f ∈ O yields a random variable f(λ). When f = Σµ, the expectation of the random variable
Σµ(λ) is easy to compute:

SWn,α,c[Σµ] =

{
n↓|µ| tr(CN )⊗n(σµt1n−|µ|) if n ≥ |µ|,
0 otherwise,

'n→∞ n|µ|N `(µ)−|µ| ' c|µ|−`(µ) n
|µ|+`(µ)

2 ,

assuming that α = 1/2 and c > 0. In particular, SWn,α,c[Σµ] is a O
(
n

wt(Σµ)

2

)
, and since the Σµ’s form a

linear basis of O, one concludes that for any observable f ,

SWn,α,c[f ] = O
(
n

wt(f)
2

)
.

Now, Σµ and Rµ+1 have the same top homogeneous component, so if Rµ = Rµ1
Rµ2
· · ·Rµr , then

SWn,α,c[Rµ] ' c|µ|−2`(µ) n
|µ|
2 ; SWn,α,c[Rµ(λ∗)] ' c|µ|−2`(µ)

for any partition µ without part of size 1. It implies the convergence in probability Rk(λ∗) → ck−2 for
any k ≥ 2, whence the existence of limit shapes Ωc with

RΩc(z) = Rc(z) =
1

z

(
1 +

∞∑

n=2

cn−2zn

)
=

1

z
+

z

1− cz

GΩc(z) = Gc(z) =
c+ z −

√
(z − c)2 − 4

2(1 + cz)
=

2

z + c+
√

(z − c)2 − 4

where the holomorphic square root is defined on C \ R− and chosen so that
√

1 = 1.

A careful analysis shows that these generating functions are indeed those of the continuous diagrams of
Theorem 1, cf. [Bia01, §3]. In the following, we are rather interested in the computation of the transition
measures µc = µΩc and of the observables h̃n(Ωc) and p̃n(Ωc). Let us begin with the transition measures:
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3. Some computations around the limit shapes Ωc

By using observables of diagrams, it is very easy to prove Theorem 1; let us recall briefly this proof.
If λ is a partition of size n picked randomly according to a Schur-Weyl measure, then any observable of
diagram f ∈ O yields a random variable f(λ). When f = Σµ, the expectation of the random variable
Σµ(λ) is easy to compute:

SWn,α,c[Σµ] =

{
n↓|µ| tr( N )⊗n(σµ"1n−|µ|) if n ≥ |µ|,
0 otherwise,

#n→∞ n|µ| N "(µ)−|µ| # c|µ|−"(µ) n
|µ|+!(µ)

2 ,

assuming that α = 1/2 and c > 0. In particular, SWn,α,c[Σµ] is a O
(
n

wt(Σµ)

2

)
, and since the Σµ’s form a

linear basis of O, one concludes that for any observable f ,

SWn,α,c[f ] = O
(
n

wt(f)
2

)
.

Now, Σµ and Rµ+1 have the same top homogeneous component, so if Rµ = Rµ1Rµ2 · · ·Rµr , then

SWn,α,c[Rµ] # c|µ|−2"(µ) n
|µ|
2 ; SWn,α,c[Rµ(λ∗)] # c|µ|−2"(µ)

for any partition µ without part of size 1. It implies the convergence in probability Rk(λ∗) → ck−2 for
any k ≥ 2, whence the existence of limit shapes Ωc with

RΩc(z) = Rc(z) =
1

z

(
1 +

∞∑

n=2

cn−2zn

)
=

1

z
+

z

1 − cz

GΩc(z) = Gc(z) =
c + z −

√
(z − c)2 − 4

2(1 + cz)
=

2

z + c +
√

(z − c)2 − 4

where the holomorphic square root is defined on \ − and chosen so that
√

1 = 1.

A careful analysis shows that these generating functions are indeed those of the continuous diagrams of
Theorem 1, cf. [Bia01, §3]. In the following, we are rather interested in the computation of the transition
measures µc = µΩc and of the observables h̃n(Ωc) and p̃n(Ωc). Let us begin with the transition measures:

c = 0

c = 1

c = 1/2

c = 2

Figure 7. Deformations of the Wigner semicircle law corresponding to Schur-Weyl mea-
sures with parameters α = 1/2, c > 0.

Figure 7. Deformations of the Wigner semicircle law corresponding to Schur-Weyl mea-
sures with parameters α = 1/2, c > 0.
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Proposition 3 (Limit shapes under Schur-Weyl measures and Marčenko-Pastur distributions). The tran-
sition measure µc is up to an homothetic transformation the Marčenko-Pastur distribution of parameter
c:

dµc≤1(s) = 1s∈[c−2,c+2]

√
4− (s− c)2

2π(1 + cs)
ds

dµc>1(s) = 1s∈[c−2,c+2]

√
4− (s− c)2

2π(1 + cs)
ds+

(
1− 1

c2

)
δ− 1

c
(s)

Notice that one recovers the Wigner semicircle law when c = 0.

These Marčenko-Pastur distributions are in fact well-known, since they play the same role for Wishart
ensembles as the Wigner semicircle law for the GUE, see [MP67].

Proof. One uses the Perron-Stieltjes inversion formula:

dµc(s)

ds
= lim
ε→0+

Gc(s− iε)−Gc(s+ iε)

2iπ

which comes essentially from the calculus of residue. This formula holds for any real number s such
that Gc stays bounded in the vicinity of s. Suppose first that c < 1. Then, the singularity of Gc(z) at
z = −1/c is removable, so the Perron-Stieltjes formula holds for any s. If s ∈ ]c−2, c+2[, then (s−c)2−4
is a negative real number, so

lim
ε→0±

√
(s+ iε)2 − 4 = ±i

√
4− (s− c)2.

The other terms in Gc(z) are continuous at z = s, so

dµc(s ∈ ]c− 2, c+ 2[)

ds
=

(i
√

4− (s− c)2)− (−i
√

4− (s− c)2)

4iπ(1 + cs)
=

√
4− (s− c)2

2π(1 + cs)
.

If |s−c| ≥ 2, then (s−c)2−4 is a non-negative real number, so the square root is continuous in a vicinity
of s. Consequently,

dµc(s /∈ ]c− 2, c+ 2[)

ds
= 0,

whence the formula for µc<1. Now, if c ≥ 1, then the Perron-Stieltjes formula do not hold anymore at
s = −1/c, and one has to add a Dirac to take account of the singularity of Gc(z) at this point. Since the
residue of Gc(z) at z = −1/c is

−1/c+ c−
√

(c+ 1/c)2 − 4

2c
=
−(c− 1/c)−

√
(c− 1/c)2

2c
= −

(
1− 1

c2

)
,

one obtains indeed the formula given by Proposition 3. �

Now, let us compute the observables h̃n(Ωc) and p̃n(Ωc). Of course, it amounts to expand in power
series the functions

Hc(z) = z−1Gc(z
−1) =

2

1 + cz +
√

(1− cz)2 − 4z2

and Pc(z) = zH ′c(z)/Hc(z), but the calculations are not at all trivial, and we shall need in particular the
following hypergeometric identity:

Lemma 4. For any non-negative integer m and k,
k∑

l=0

m∑

u=0

(2k + 2 + u− 2l) m+ 2l + 2− u! 2k − 2l + u!

(m− u+ l + 2)(m− u+ l + 1)m− u!u! l! l + 1! k − l! k − l + 1!
=
m+ 2k + 4

m+ k + 2
× m+ 2k + 2!

m! k! k + 2!
.
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Proof. For such (multivariate) hypergeometric identities, one can use the theory of Wilf-Zeilberger, see
[PWZ97], [WZ92a] and [WZ92b]. More precisely, there is an algorithm that provides recurrence relations
satisfied by both sides of the identity, and on the other hand, it is easy to show that the identity holds
for certain values of m and k. Consequently, the identity is indeed true for all m and k; we leave the
details of the computation of the recurrence relations to any computer algebra system. �

Proposition 5 (Observables of the limit shapes). The n-th moment of the law µc is

h̃n(Ωc) = µc(s
n) =

bn2 c∑

k=1

n↓2k

(n− k + 1)(n− k) k! k − 1!
cn−2k,

and the n-th moment of interlacing coordinates is

p̃n(Ωc) =

bn2 c∑

k=1

n↓2k

(n− k) k! k − 1!
cn−2k.

When c = 0, one recovers the fact that the even moments of the semicircle law are the Catalan numbers:
h̃2n(Ω0) = Cn.

Proof. The expansion of 2/Hc(z) gives

2

Hc(z)
= 1 + cz + (1− cz)

√
1− 4

(
z

1− cz

)2

= 1 + cz + (1− cz)
(

1− 2

∞∑

m=0

Cm

(
z

1− cz

)2(m+1)
)

= 2

(
1−

∞∑

m=0

Cm
z2m+2

(1− cz)2m+1

)

because
∑∞
m=0 Cm x

m = 1−√1−4x
2x . Then,

Hc(z) = 1 +

∞∑

m=0

∞∑

r=1

{ ∑

m1+m2+···+mr=m

Cm1
Cm2

· · ·Cmr

}
z2m+2r

(1− cz)2m+r
.

Let us denote by f(m, r) the sum between brackets. One has f(m, 0) = 0, f(m, 1) = Cm and f(m, r) =
f(m+ 1, r − 1)− f(m+ 1, r − 2) because of the recurrence relation satisfied by Catalan numbers. Con-
sequently, one can show by induction that

f(m, r) = r
2m+ r − 1!

m!m+ r!
.

Finally, one can use the expansion 1
(1−cz)2m+r =

∑∞
l=0

(
2m+r+l−1

l

)
clzl to obtain:

Hc(z) = 1 +

∞∑

m=0

∞∑

r=1

∞∑

l=0

r
2m+ r + l − 1!

l! 2m+ r − 1!

2m+ r − 1!

m!m+ r!
cl z2m+2r+l

= 1 +

∞∑

n=2

zn





bn2 c∑

k=1

(
k∑

r=1

r
(n− r − 1)↓2k−r−1

k! k − r!

)
cn−2k





For any positive integers a, b and c,
(
a+1
b+c+1

)
=
∑
j≥1

(
j
b

)(
a−j
c

)
— this identity can be obtained combi-

natorially by grouping the parts of size b + c + 1 of [[1, a+ 1]] according to the value of their (b + 1)-th
element. In particular,

∑

j≥1

j

(
n− j − 1

n− k − 1

)
=

(
n

n− k + 1

)
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if one takes a = n− 1, b = 1 and c = n− k − 1. As a consequence, the term between parentheses in the
previous expression is just n↓2k

(n−k+1)(n−k) k! k−1! , whence the formula for the h̃n(Ωc)’s.

As for the p̃n(Ωc)’s, one can use Newton relations between the power sums and the complete homoge-
neous functions in the algebra of symmetric functions, or expand in power serie the function Pc(z) — it
leads to the same computations. First, one sees that:

Pc(z) = − z

1 + cz +
√

(1− cz)2 − 4z2

(
c− c(1− cz) + 4z√

(1− cz)2 − 4z2

)

=
z Hc(z)

2

(
c(1− cz) + 4z√
(1− cz)2 − 4z2

− c
)

=
z Hc(z)

2

(
c

∞∑

n=1

(
2n

n

)(
z

1− cz

)2n

+ 4

∞∑

n=0

(
2n

n

)(
z

1− cz

)2n+1
)

=
z Hc(z)

2

( ∞∑

n=0

∞∑

r=0

{
cz

(
2n+ 1 + r

r

)(
2n+ 2

n+ 1

)
+ 4

(
2n+ r

r

)(
2n

n

)}
crz2n+1+r

)

If n1 ≥ 2, then the coefficient of zn1 in zHc(z) is h̃n−1(Ωc), that is to say:

bn1−1
2 c∑

k=1

n1 − 1!

(n1 − k)(n1 − k − 1) k! k − 1!n1 − 1− 2k!
cn1−2k−1

On the other hand, if n2 ≥ 1, then the coefficient of zn2 in the second term Tc(z) of the product Pc(z) is:

bn2
2 c−1∑

l=0

n2 − 1!

n2 − 2l − 2! l! l + 1!
cn2−2l−1+ 2

bn2−1
2 c∑

l=0

n2 − 1!

n2 − 2l − 1! l! l!
cn2−2l−1 =

1

n2

bn2−1
2 c∑

l=0

n2 + 1!

n2 − 2l − 1! l! l + 1!
cn2−2l−1

One also has to take account of the coefficient of z in zHc(z), that is equal to 1. So, for n ≥ 3, the
coefficient of zn in Pc(z) is equal to the sum of the following expressions:

A =
1

n− 1

bn2 c∑

k=1

n!

n− 2k! k! k − 1!
cn−2k

B =
∑

n1+n2=n
n1≥2, n2≥1
2≤2k1≤n1−1
0≤2k2≤n2−1

(n2 + 1)n1 − 1!n2 − 1!n1 − k1 − 2!

n1 − k1! k1! k1 − 1!n1 − 2k1 − 1!n2 − 2k2 − 1! k2! k2 + 1!
cn−2k1−2k2−2

=
∑

n1+n2=n−3
n1≥0, n2≥0
0≤2k1≤n1−1

0≤2k2≤n2

(n2 + 2)n1 + 1!n2!n1 − k1 − 1!

n1 − k1 + 1! k1! k1 + 1!n1 − 2k1 − 1!n2 − 2k2! k2! k2 + 1!
cn−2k1−2k2−4

=
∑

0≤u≤n−4−2k
0≤k=k1+k2

f(k1, k2, u, n)n− 2k2 − 2− u! 2k2 + u!

n− u− 2k − 4!u! k1! k1 + 1! k2! k2 + 1!
cn−2k−4

where f(k1, k2, u, n) = 2k2+2+u
(n−u−k1−2k2−2)(n−u−k1−2k2−3) . Consequently, p̃n(Ωc) is indeed a polynomial in c

with all terms of even degree or all terms of odd degree. The term of degree n− 2 comes exclusively from
A, and is

1

n− 1

n!

n− 2!
= n =

n↓2

n− 1 1! 0!
,
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so the formula of Proposition 5 is true for the coefficient of cn−2. For the other coefficients, one has to
show that if k ≥ 0 and n− 2k − 4 ≥ 0, then

∑

0≤u≤n−4−2k
k=k1+k2

f(k1, k2, u, n)n− 2k2 − 2− u! 2k2 + u!

n− u− 2k − 4!u! k1! k1 + 1! k2! k2 + 1!
=

n↓2k+4

(n− k − 2)(n− 1) k + 2! k!
.

Indeed, the left-hand side comes from B, and the right-hand side is the difference of the coefficient in the
formula of Proposition 5 and of the coefficient coming from A. Up to a change of index, this last identity
is exactly Lemma 4. Finally, it is easy to verify that the formula for the moments p̃n(Ωc) remains true
for n = 1, 2. �

These calculations are of course unessential, but we shall need the precise expression of the moments
p̃n(Ωc) in our study of the fluctuations ∆λ,c(s) = λ∗(s)− Ωc(s).

4. Gaussian concentration of measures on partitions

To establish the gaussian concentration of probability measures on partitions coming from reducible
representations of symmetric groups, P. Śniady has developed in [Ś06] a theory of cumulants of observables
that works in a very general setting, and in particular for Schur-Weyl measures. If X1, . . . , Xr are real
or complex random variables, we recall that the joint cumulant of X1, . . . , Xr is

k(X1, . . . , Xr) =
∂r

∂t1 · · · ∂tr

∣∣∣∣
t1=t2=···=tr=0

logE[exp(t1X1 + · · ·+ trXr)] .

In particular, gaussian vectors are characterized by the vanishing of joint cumulants of order r ≥ 3, and
the first and second joint cumulants give the expectation of the gaussian vector and its covariance matrix.
That said, if a1, . . . , ar commute in the group algebra CSn, and if P is a probability measure on Pn, then
one can consider the ai’s as commutative random variables by setting

ai = ai(λ) = χλ(ai)

with λ picked randomly according to P; as a consequence, the joint cumulant k(a1, . . . , ar) makes sense.
On the other hand, we have seen that observables of diagrams may also be considered as random variables,
and besides, any observable can be interpreted as an element of the center of the group algebra CSn, see
[Ś06, §2.1]; so, the joint cumulant of observables of diagrams also makes sense. Then, the major result of
[Ś06] is the following:

Theorem 6 (Sniady’s theory of cumulants of observables). Let (Pn)n∈N be a family a probability mea-
sures on the sets Pn of integer partitions, and let us denote by (En)n∈N and (kn)n∈N the corresponding
expectations and joint cumulants. The following assertions are equivalent:

(1) For all positive integers l1, . . . , lr,

kn(Σl1 , . . . , Σlr )n
− l1+···+lr−r+2

2 = O(1).

(2) For all integers l1, . . . , lr ≥ 2,

kn(Rl1 , . . . , Rlr )n
− l1+···+lr−2r+2

2 = O(1).

(3) If σl1 , . . . , σlr are disjoint cycles of respective lengths l1, . . . , lr, then

kn(σl1 , . . . , σlr )n
l1+···+lr+r−2

2 = O(1).
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Moreover, if these assertions hold, then the following limits are equal (assuming that they exist):

cl+1 = lim
n→∞

En[Σl]n
− l+1

2 = lim
n→∞

En[Rl+1]n−
l+1
2 = lim

n→∞
En[σl]n

l−1
2

vl+1,m+1 = lim
n→∞

kn(Σl, Σm)n−
l+m

2 = lim
n→∞

kn(Rl+1, Rm+1)n−
l+m

2

= lim
n→∞

kn(σl, σm)n
l+m

2 − lm cl+1 cm+1 +
∑

l=a1+···+ar
m=b1+···+br

lm

r
ca1+b1 · · · car+br

In this setting, the random processes(
n−

l
2

(
Rl+1 − En[Rl+1]

))
l≥1

and
(
n−

l
2

(
Σl − En[Σl]

))
l≥1

converge in finite-dimensional laws towards a gaussian process whose covariance matrix is (vl+1,m+1)l,m≥1.

Under a Schur-Weyl measure SWn,α,c with parameters α = 1/2 and c > 0, the expectation of a permu-
tation of cycle type µ is SWn,α,c[σµ] = N `(µ)−|µ| ' c|µ|−`(µ) n

`(µ)−|µ|
2 , and this expression is multiplicative

with respect to the lengths of the cycles of σµ. Consequently, given disjoint cycles of lengths l1, . . . , lr,
one has:

kn(σl1 , . . . , σlr ) =

{
N1−l1 if r = 1,

0 otherwise.
From this, one deduces that Schur-Weyl measures with parameters α = 1/2 and c > 0 satisfy the
hypotheses of Theorem 6, and the limit of the random process(

Xl =
Σl

n
l
2

− cl−1n
1
2

)

l≥2

is a centered gaussian process with covariance matrix

vl+1,m+1 = 0− lm cl+m−2 +
∑

r≥1

∑

l=a1+···+ar
m=b1+···+br

lm

r
cl+m−2r =

∑

r≥2

(
l

r

)(
m

r

)
r cl+m−2r,

see [Ś06, Example 6]. In particular, when c = 0, the random variables
√
nχλ(σl) converge in finite-

dimensional laws towards independent normal variables of variance l; this is a form of Kerov’s central
limit theorem. As we shall see in §6, the extension of Kerov’s theorem to the case of Schur-Weyl measures
stems from a very natural idea; namely, one wanted to produce independent gaussian variables from
the fluctuations Σl n−

l
2 − cl−1n

1
2 when c is not equal to 0 and the fluctuations are not asymptotically

independent. The obvious way to do this was to perform a Gram-Schmidt orthogonalisation in the
gaussian space of the limiting process, and we discovered that the orthogonalized basis is related to
translated versions of the Chebyshev polynomials of the second kind.

5. Moments of the deviations and Chebyshev polynomials of the second kind

To make appear the Chebyshev polynomials of the second type, we start by computing the moments
of the deviation ∆λ,c of a rescaled Young diagram from its limit shape. If λ is a partition of size n, let
us denote by q̃k,c(λ) the following quantity:

q̃k,c(λ) =
p̃k+1(λ)

(k + 1)nk/2
−
b k+1

2 c∑

l=1

k↓2l−1

(k + 1− l) l! l − 1!
ck+1−2l n1/2

Because of the factors n−k/2 and n1/2, q̃k,c is not contained in O, but is rather in the localized ring
O+ = O[Σ1

−1/2]. In [IO02], all the computations are done in this ring of generalized observables, and
using the so-called Kerov degree; as we shall see here, this complicated framework is not at all required
for the asymptotic analysis of fluctuations of Plancherel (c = 0) and Schur-Weyl (c > 0) measures.



14 PIERRE-LOÏC MÉLIOT

Lemma 7. Let λ be a partition of size n, and let us define the deviation ∆λ,c by ∆λ,c(s) = λ∗(s)−Ωc(s).
Then, for any k ≥ 1, √

n

2

∫

R

sk ∆λ,c(s) ds =
q̃k+1,c(λ)

k + 1
.

Proof. Notice that this lemma is the exact analogue of [IO02, Proposition 7.2]. Besides, the proof is
exactly the same. Hence, by using the second part of Proposition 5, one gets:

q̃k,c(λ) =

√
n

k + 1

(
p̃k+1(λ)

n
k+1
2

− p̃k+1(Ωc)

)
=
√
n

(
p̃k+1(λ∗)− p̃k+1(Ωc)

k + 1

)

Then, ∆λ,c(s) = λ∗(s)− Ωc(s) = (λ∗(s)− |s|)− (Ωc(s)− |s|), so:√
n

2

∫

R

sk ∆λ,c(s) ds =
√
n

(∫

R

sk σλ∗(s) ds−
∫

R

sk σΩc(s) ds

)

=

√
n

(k + 1)(k + 2)

(∫

R

sk+2 σ′′λ∗(s) ds−
∫

R

sk+2 σ′′Ωc(s) ds

)

=

√
n

(k + 1)(k + 2)

(
p̃k+2(λ∗)− p̃k+2(Ωc)

)
=
q̃k+1,c(λ)

k + 1

�

Proposition 8 (Asymptotic behaviour of linear functionals of the deviation). Let p(s) be a polynomial
in s. One chooses λ ∈ Pn randomly according to the Schur-Weyl measure with parameters α = 1/2 and
c > 0. Then,

√
n 〈p(s) | ∆λ,c(s)〉 =

√
n

∫

R

p(s) ∆λ,c(s) ds

converges in law towards a centered (gaussian) random variable.

Proof. The important part of Proposition 8 is actually the fact that the limit random variable exists and
is centered, see the proof of Theorem 10 hereafter. Because of Theorem 6, for any l ≥ 2,

√
n

(
Rl(λ)

n
l
2

− cl−2

)
=
√
n (Rl(λ

∗)−Rl(Ωc))

converges towards a centered gaussian variable, and the result is also true when l = 1 (in this case the
variables are null for all n). Now, if µ = (µ1, . . . , µr) is a partition, then

√
n (Rµ(λ∗)−Rµ(Ωc)) =

r−1∑

i=0

Rµ1...µr−i−1
(λ∗)

[√
n (Rµr−i(λ

∗)−Rµr−i(Ωc))
]
Rµr−i+1...µr (Ωc).

Because of Theorem 1, each Rµ1...µr−i−1
(λ∗) converges towards the constant variable Rµ1...µr−i−1

(Ωc), and
on the other hand, each difference

[√
n (Rµr−i(λ

∗)−Rµr−i(Ωc))
]
converges towards a centered gaussian

variable. Moreover, for these differences of free cumulants
√
n (Rl(λ

∗) − Rl(Ωc)), one has in fact joint
convergence in finite-dimensional laws towards a centered gaussian process. Consequently, the limit of√
n(Rµ(λ∗)−Rµ(Ωc)) is an element of a gaussian space whose variables are all centered:

∀µ, ∆n,c(Rµ) =
√
n (Rµ(λ∗)−Rµ(Ωc)) −→ N (0, (σµ,c)

2)

In fact, the same argument as before shows that given a vector (∆n,c(Rµ(1)), . . . ,∆n,c(Rµ(s))) of such
fluctuations, one has a joint convergence towards a gaussian vector. Since the Rµ’s form a linear basis of
O, the same result holds for any vector (∆n,c(f

(1)), . . . ,∆n,c(f
(s))) of scaled fluctuations of observables

of diagrams: it converges in law towards a centered gaussian vector. As Lemma 7 ensures that
√
n

2

〈
sk
∣∣ ∆λ,c(s)

〉
=

∆n,c(p̃k+2)

(k + 1)(k + 2)
,

our claim is proved. �
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Lemma 9. With the same notations as in Lemma 7,
√
n

2

∫

R

(s− c)k ∆λ,c(s) ds =

√
n

(k + 1)(k + 2)


 ∑

2≤l≤k+2

(
k + 2

l

)
(−c)k+2−l p̃l(λ)

nl/2
−

∑

2≤2m≤k+2

(
k + 2

m

)
(−c)k+2−2m




Proof. Of course, one applies Newton’s binomial theorem in order to expand the power (s− c)k:
√
n

2

〈
(s− c)k

∣∣ ∆λ,c(s)
〉

=

k∑

l=0

(
k

l

)
(−c)k−l

√
n

2

∫

R

sl ∆λ,c(s) ds =
1

k + 1

k∑

l=0

(
k + 1

l + 1

)
(−c)k−l q̃l+1,c(λ)

=
1

k + 1

k+1∑

l=1

(
k + 1

l

)
(−c)k+1−l q̃l,c(λ)

=

( √
n

(k + 1)(k + 2)

k+2∑

l=2

(
k + 2

l

)
(−c)k+2−l p̃l(λ)

nl/2

)
−√nA(c)

where A(c) is the following quantity (one just uses the definition of q̃l,c(λ)):

A(c) =

b k2 c+1∑

m=1

k+1∑

l=2m−1

k!

k + 1− l! l − 2m+ 1!m!m− 1! (l + 1−m)
(−1)k+1−lck+2−2m

=

b k2 c∑

m=0

k!

k − 2m!m!m+ 1!

{
k−2m∑

u=0

(
k − 2m

u

)
(−1)k−u−2m

u+m+ 1

}
ck−2m

The term between brackets can be computed by writing 1
u+m+1 =

∫ 1

0
xu+m dx. So,

k−2m∑

u=0

(
k − 2m

u

)
(−1)k−u−2m

u+m+ 1
=

∫ 1

0

k−2m∑

u=0

(
k − 2m

u

)
(−1)k−u−2m xu+m dx

=

∫ 1

0

xm (x− 1)k−2m dx = (−1)k−2m k − 2m!m!

k −m+ 1!

and consequently, A(c) =
∑b k2 c
m=0

k!
k−m+1!m+1! (−c)k−2m = 1

(k+1)(k+2)

∑b k2 c
m=0

(
k+2
m+1

)
(−c)k−2m, whence the

formula announced. �

In the following, we denote by Uk(s) the Chebyshev polynomial of the second kind renormalized so
that Uk(2 cos θ) = sin(k+1)θ

sin θ . These polynomials satisfy the relation

Uk+2(X) = X Uk+1(X)− Uk(X),

and the first values are U0(X) = 0, U1(X) = X, U2(X) = X2 − 1, U3(X) = X3 − 2X and U4(X) =
X4 − 3X2 + 1. The end of this paragraph is devoted to the proof of the following theorem:

Theorem 10 (Linear functionals of the deviation associated to translated Chebyshev polynomials). For
any non-negative integer k,

√
n

2 〈Uk(s− c) | ∆λ(s)〉 is equal to

1

k + 1

k−1∑

l=0

(
k + 1

l

)
(−c)lXk+1−l(λ),

plus some observables that under Schur-Weyl measures of parameter 1/2 converge towards 0 when n goes
to infinity.
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Examples. Since the proof is quite tricky, we have found useful to include in our paper the complete
computations for k = 0, 1, 2, 3, 4 (one has to go up to k = 4 to see all the tricks). In particular, this will
make Lemma 12 much more natural. One will use the relations between the p̃’s and the Σ’s presented
at the end of §2.
k = 0. Since ∆λ,c(s) is the difference between two normalized continuous Young diagrams,

〈U0(s− c) | ∆λ,c(s)〉 = 〈1 | ∆λ,c(s)〉 = 0,

and this agrees with the formula of Theorem 10.

k = 1. 〈U1(s− c) | ∆λ,c(s)〉 = 〈s− c | ∆λ,c(s)〉 = 〈s | ∆λ,c(s)〉 can be computed by using Lemma 7.
Thus,
√
n

2
〈U1(s− c) | ∆λ,c(s)〉 =

q̃2(λ)

2
=
p̃3(λ)

6n
− c
√
n

2
=

√
n

2

(
Σ2(λ)

n3/2
− c
)

=
X2(λ)

2
.

k = 2. 〈U2(s− c) | ∆λ,c(s)〉 =
〈
(s− c)2 − 1

∣∣ ∆λ,c(s)
〉

=
〈
(s− c)2

∣∣ ∆λ,c(s)
〉
is the second translated

moment of the deviation, so it can be computed thanks to Lemma 9.
√
n

2
〈U2(s− c) | ∆λ,c(s)〉 =

√
n

12

(
p̃4(λ)

n2
− 4c

p̃3(λ)

n3/2
+ 6c2

p̃2(λ)

n
− 6− 4c2

)

=

√
n

12

(
4Σ3(λ)

n2
+

6Σ1,1(λ)

n
+

2

n
− 12cΣ2(λ)

n3/2
+ 12c2 − 6− 4c2

)

=

√
n

3

(
Σ3(λ)

n2
− c2

)
− c√n

(
Σ2(λ)

n3/2
− c
)
− 1

3n1/2

=
X3(λ)

3
− cX2(λ)− 1

3
√
n

Here, we’ve used the relation2 Σ1,1 = (Σ1)2 − Σ1, and in general we shall use extensively the
factorization of symbols Σµ in top homogeneous component.

k = 3. 〈U3(s− c) | ∆λ,c(s)〉 =
〈
(s− c)3 − 2(s− c)

∣∣ ∆λ,c(s)
〉
is the difference of the third translated mo-

ment, minus two times the first translated moment; this latter term will bring a contribution of
−X2. Then, by using again Lemma 9, one sees that

√
n

2

〈
(s− c)3

∣∣ ∆λ,c(s)
〉
is equal to

√
n

20

(
p̃5(λ)

n5/2
− 5c

p̃4(λ)

n2
+ 10c2

p̃3(λ)

n3/2
− 10c3

p̃2(λ)

n
+ 10c+ 5c3

)

=

√
n

20

(
5Σ4(λ)

n5/2
+

20Σ2(λ)

n3/2
− 25Σ2(λ)

n5/2
− 20cΣ3(λ)

n2
+

20c

n
+

30c2Σ2(λ)

n3/2
− 20c− 15c3

)

=

√
n

4

(
Σ4(λ)

n5/2
− c3

)
− c√n

(
Σ3(λ)

n2
− c2

)
+

(
3c2
√
n

2
+
√
n

)(
Σ2(λ)

n3/2
− c
)

+
c√
n
− 5Σ2(λ)

4n2

=
X4(λ)

4
− cX3(λ) +

3c2X2(λ)

2
+X2(λ) +

c√
n
− 5Σ2(λ)

4n2
.

Again, we have used the relation Σ2,1 = Σ2Σ1−2Σ2. By adding the contribution −X2(λ), one re-
covers the formula of Proposition 10, because Σ2(λ) = O(n3/2) under a Schur-Weyl measure, and
as a consequence −5Σ2(λ)/4n2 = O(n−1/2)→ 0. In the general case, we shall use the weight fil-
tration on observables to neglict some terms: indeed, for any observable f , the order of magnitude
is a O(nwt(f)/2), so one can for instance neglict terms of the kind f/nk/2 with k > wt(f). Notice
that there are some other simplifications in the calculation of

〈
(s− c)3

∣∣ ∆λ,c(s)
〉
; essentially, they

are due to Lemma 8 that ensures that the mean of a scaled fluctuation is asymptotically equal
to zero.

2Such a relation can be obtained if one considers the symbols Σµ as elements of the algebra of partial permutations,
see [IK99]. As a consequence, any product of terms Σµ is a sum over certain partial matchings M of symbols Σρ(M), see
[FM10, §3.3] for a precise statement.
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k = 4. Finally, another kind of trick has to be used in order to compute 〈U4(s− c) | ∆λ,c(s)〉, and this
is due to the appearance of a term Σ2,2 in the expansion of p̃6 in the basis of central characters.
Because of Lemma 9,

√
n

2

〈
(s− c)4

∣∣ ∆λ,c(s)
〉
is equal to

√
n

30

(
p̃6(λ)

n3
− 6c

p̃5(λ)

n5/2
+ 15c2

p̃4(λ)

n2
− 20c3

p̃3(λ)

n3/2
+ 15c4

p̃2(λ)

n
− 20− 15c2 − 6c4

)

=

√
n

30

(
6Σ5(λ)

n3
+

30Σ3(λ)

n2
− 90Σ3(λ)

n3
+

15(Σ2(λ))2

n3
− 60

n
+

42

n2

−30cΣ4(λ)

n5/2
− 120cΣ2(λ)

n3/2
+

150cΣ2(λ)

n5/2
+

60c2Σ3(λ)

n2
− 60c2

n
− 60c3Σ2(λ)

n3/2
+ 75c2 + 24c4

)

In order to simplify the calculations, we have used the relations Σ1,1,1 = (Σ1)3 − 3(Σ1)2 + 2Σ1,
Σ3,1 = Σ3Σ1 − 3Σ3 and Σ2,2 = (Σ2)2 − 4Σ3 − 2(Σ1)2 + 2Σ1. Now, the new trick consists in
writing:

(Σ2(λ))2

n3
=

(
Σ2(λ)

n3/2

)2

=

(
Σ2(λ)

n3/2
− c
)2

+ 2c

(
Σ2(λ)

n3/2
− c
)

+ c2 =
(X2(λ))2

n
+ 2c

X2(λ)√
n

+ c2

Multiplying by the factor
√
n, one sees that the term (X2(λ))2/

√
n will disappear in the limit

n→∞, because X2(λ) = O(1). So, the previous expression may be written as:

X5(λ)

5
− cX4(λ) +

(
2c2 + 1

)
X3(λ)− (3c+ 2c3)X2(λ)

+
(X2(λ))2

2
√
n

+
5cΣ2(λ)

n2
− 3Σ3(λ)

n5/2
− 2 + 2c2√

n
+

7

5n3/2

If one adds
√
n

2

〈
−3(s− c)2 + 1

∣∣ ∆λ,c(s)
〉
in order to obtain

√
n

2 〈U4(s− c) | ∆λ,c(s)〉, one finally
gets

X5(λ)

5
− cX4(λ) + 2c2X3(λ)− 2c3X2(λ)

+
(X2(λ))2

2
√
n

+
5cΣ2(λ)

n2
− 3Σ3(λ)

n5/2
− 1 + 2c2√

n
+

7

5n3/2

and every term on the second line can be neglicted when n goes to infinity; on the other hand,
the first line is precisely the formula of Theorem 10.

Now, we certainly have enough numerical evidences in order to believe in Theorem 10, and on the other
hand, we also have a precise idea of the technicities needed for a general proof.

Lemma 11. For any positive integers s ≥ l,
∑

|µ|=s
`(µ)=l

1∏
i≥1mi(µ)!

=
1

l!

(
s− 1

l − 1

)
.

Similarly, given (random) variables Yp≥1, one has

∑

|µ|=s
`(µ)=l

1∏
i≥1mi(µ)!

(∑

p∈µ
Yp

)
=

1

l − 1!

s−l∑

u=0

(
l − 2 + u

u

)
Ys−l+1−u.

Proof. The first formula is equivalent to
∑

|µ|=s
`(µ)=l

(
l

m1(µ), . . . ,ms(µ)

)
=

(
s− 1

l − 1

)
,
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and both sides of this equation correspond to the number of l-uplets of positive integers (s1, . . . , sl) such
that s1 + · · ·+ sl = s, so this is indeed true. As for the second formula, one sees that:

S2 =
∑

|µ|=s
`(µ)=l

1∏
i≥1mi(µ)!

(∑

p∈µ
Yp

)
=
∑

|µ|=s
`(µ)=l

1∏
i≥1mi(µ)!

(
s−l+1∑

i=1

mi(µ)Yi

)

=
∑

|µ|=s
`(µ)=l

s−l+1∑

i=1

1(∏
j≥1
j 6=i

mj(µ)!

)
(max(0,mi(µ)− 1))!

Yi

because the biggest possible part of a partition of length l and size s is s− l+ 1. Then, by reverting the
order of summation, one obtains:

S2 =

s−l+1∑

i=1

Yi




∑

|µ|=s−i
`(µ)=l−1

1∏
i≥1mi(µ)!


 =

1

l − 1!

s−l+1∑

i=1

(
s− i− 1

l − 2

)
Yi,

and this is exactly the second formula up to the change of index u = s− l + 1− i. �

Lemma 12. Fix a parameter c > 0, and a positive integer k. The scaled observable p̃k(λ)/n
k−1
2 is equal

to

√
n



b k2 c∑

l=1

k!

(k − l) k − 2l! l − 1! l!
ck−2l


+

b k2 c∑

l=1

k!

k − l! l − 1!

(
k−2l∑

u=0

(
l − 2 + u

u

)
cuX1+k−2l−u

)
,

plus a random variable Vk(c) that under the Schur-Weyl measures SWn,1/2,c converges in probability
towards a constant Lk(c) as n goes to infinity.

Proof. Because of Proposition 2, one can write

p̃k =


 ∑

|µ|+`(µ)=k

k↓`(µ)

∏
i≥1mi(µ)!

∏

i≥1

(Σi)
mi


+Dk−1,

where Dk−1 is an observable of weight k − 1. Let us decompose Dk−1 in the basis of free cumulants:

Dk−1 =
∑

|µ|≤k−1
m1(µ)=0

dµ,k Rµ

Then, one knows that Rµ/n|µ|/2 converges in probability towards c|µ|−2`(µ), so Vk(c) = Dk−1/n
k−1
2

converges in probability to
Lk(c) =

∑

|µ|=k−1
m1(µ)=0

dµ,k c
|µ|−2`(µ).

We won’t need the precise value of Lk(c), so let us focus on the remaining part p̃k −Dk−1. One uses the
same trick as for the term (Σ2)2 in the expansion of p̃6/n

5/2:

p̃k −Dk−1

n
k−1
2

=
√
n


 ∑

|µ|+`(µ)=k

k↓`(µ)

∏
i≥1mi(µ)!

∏

i≥1

(
Σi

n
i+1
2

)mi(µ)



=
√
n


 ∑

|µ|+`(µ)=k

k↓`(µ)

∏
i≥1mi(µ)!

∏

i≥1

(
Xi√
n

+ ci−1

)mi(µ)


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With µ fixed, one expands the product
∏
i≥1

(
Xi√
n

+ ci−1
)mi(µ)

; the two leading terms are

A(µ) +
B(µ)√
n

= c|µ|−`(µ) +
1√
n

∑

p∈µ
Xp c

|µ|−`(µ)−p+1,

and the remainder is a O(n−1). So,

p̃k −Dk−1

n
k−1
2

=
√
n


 ∑

|µ|+`(µ)=k

k↓`(µ)A(µ)∏
i≥1mi(µ)!


+


 ∑

|µ|+`(µ)=k

k↓`(µ)B(µ)∏
i≥1mi(µ)!


+O(n−1/2).

The first part is equal to

√
n



b k2 c∑

l=1

∑

µ∈Pk−l
|µ|=l

k!

k − l!
ck−2l

∏
i≥1mi(µ)!


 =

√
n



b k2 c∑

l=1

k!

(k − l) k − 2l! l − 1! l!
ck−2l




because of the first part of Lemma 11. As for the second part, we set Yp = Xp/c
p−1 and we apply the

second part of Lemma 11, so we obtain

b k2 c∑

l=1

∑

µ∈Pk−l
`(µ)=l

∑

p∈µ

k!

k − l!
ck−2l Yp∏
i≥1mi(µ)!

=

b k2 c∑

l=1

k!

k − l! l − 1!

(
k−2l∑

u=0

(
l − 2 + u

u

)
Y1+k−2l−u

)
ck−2l.

Since Y1+k−2l−u ck−2l = X1+k−2l−u cu, the proof is achieved. �

Lemma 13. Up to a random variable that converges in probability to zero under the Schur-Weyl measures
SWn,1/2,c, the translated k-th moment of the deviation

√
n

2

∫
R
(s− c)k ∆λ,c(s) ds is equal to

1

k + 1

k−1∑

l=0



b l2 c∑

m=0

(
k + 1

m

)(
k + 1− 2m

l − 2m

)
(−c)l−2m


Xk+1−l(λ).

Proof. Because of Lemma 9 and Lemma 12, the translated k-th moment of the deviation is the combi-
nation of the following terms:

A =
√
n


 ∑

2≤l≤k+2

b l2 c∑

m=1

k!

(l −m) k + 2− l! l − 2m!m− 1!m!
(−1)k+2−l ck+2−2m




B =
∑

2≤l≤k+2

b l2 c∑

m=1

l−2m∑

u=0

k!

k + 2− l! l −m!m− 1!

(
m− 2 + u

u

)
(−1)k+2−l ck+2−l+uX1+l−2m−u

C =
∑

2≤l≤k+2

k!

l! k + 2− l! (−c)k+2−l Vl(c)

D = −√n


 ∑

2≤2m≤k+2

k!

m! k + 2−m!
(−c)k+2−2m




In A, we revert the order of summation:

A√
n

=
∑

2≤2m≤k+2

k!

m! k + 2− 2m!m− 1!
(−c)k+2−2m

{
k+2∑

l=2m

(−1)l
k + 2− 2m!

(l −m) k + 2− l! l − 2m!

}
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The sum between brackets can be written as:
k+2−2m∑

u=0

(
k + 2− 2m

u

)
(−1)u

u+m
=

∫ 1

0

(
k+2−2m∑

u=0

(
k + 2− 2m

u

)
(−x)u

)
xm−1 dx

=

∫ 1

0

(1− x)k+2−2m xm−1 dx =
k + 2− 2m!m− 1!

k + 2−m!

Hence, A + D = 0. Then, B is asymptotically a centered gaussian variable, and C converges towards∑
2≤l≤k+2

k!
l! k+2−l! (−c)k+2−l Ll(c). But because of Proposition 8, the translated k-th moment of the

deviation converges in law towards a centered gaussian variable, so
∑

2≤l≤k+2

k!

l! k + 2− l! (−c)k+2−l Ll(c) = 0

(this is why we did not need the precise values of the Ll(c)’s). Finally, one can simplify B as follows. The
index 1+ l−2m−u takes its values in the interval [[1, k + 1]], so B can be written as a linear combination∑k+1
v=1 f(v, c)Xv. Since X1 = 0, one can actually take v in [[2, k + 1]], so let us make the change of index

1 + l − 2m− u = k + 1− x with x ∈ [[0, k − 1]]. Then,

B =

k−1∑

x=0

Xk+1−x




∑

k+2≥l≥2m≥2
l−2m≥k−x

(−1)k+2−l cx−2m+2 k! l −m− k + x− 2!

k + 2− l! l −m!m− 1!m− 2! l − 2m− k + x!




=

k−1∑

x=0

Xk+1−x



b x2 c∑

y=0

x−2y∑

z=0

(−1)x−2y−z cx−2y k! y + z − 1!

y! y − 1! z! k + 1− x+ y + z!x− 2y − z!




with y = m− 1 and z = l − 2m− k + x. Then we use another hypergeometric identity

Z∑

z=0

α+ z!

β + z!

(
Z

z

)
(−1)z =

α!β − α+ Z − 1!

β − α− 1!β + Z!

that holds for any β > α, and that can again be shown by using methods à la Wilf-Zeilberger, see
[PWZ97]. It implies that:

B =

k−1∑

x=0

Xk+1−x



b x2 c∑

y=0

(−c)x−2y k!

y! y − 1!x− 2y!

Z=x−2y∑

z=0

y − 1 + z!

y + k + 1− x+ z!

(
Z

z

)
(−1)z




=

k−1∑

x=0

Xk+1−x



b x2 c∑

y=0

(−c)x−2y k! k + 1− 2y!

y!x− 2y! k + 1− x! k + 1− y!




=
1

k + 1

k−1∑

x=0

Xk+1−x



b x2 c∑

y=0

(
k + 1

y

)(
k + 1− 2y

x− 2y

)
(−c)x−2y




Notice that a slight abuse of notation has been made when considering expressions such as y − 1! with
y = 0; nethertheless, it can be checked that in the end our formal computation does give the exact
result. �

Proof of Theorem 10. The explicit expansion of Uk(X) is

Uk(X) =

b k2 c∑

m=0

(−1)m
(
k −m
m

)
Xk−2m
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see [IO02, p. 33]. Moreover, given two set of variables a0, a1, . . . and b0, b1, . . ., the following set of
relations are equivalent



bk =

b k2 c∑

m=0

(
k

m

)
ak−2m




k≥0

⇐⇒



ak =

b k2 c∑

m=0

(−1)m
k

k −m

(
k −m
m

)
bk−2m




k≥0

see [IO02, p. 36]. We denote by Bk+1

k+1 the random variable computed in the previous lemma. Then, the
linear functional of the deviation associated to the translated Chebyshev polynomial Uk(s− c) is:

√
n

2
〈Uk(s− c) | ∆λ,c(s)〉 =

b k2 c∑

m=0

(−1)m
(
k −m
m

)
Bk+1−2m

k + 1− 2m
=

b k2 c∑

m=0

(−1)m
(
k + 1−m

m

)
Bk+1−2m

k + 1−m

Since B0 = B1 = 0, the index m can in fact be taken up to bk+1
2 c, so the expression is exactly Ak+1

k+1 ,
where the A’s and the B’s are related as mentioned before. Consequently, it is sufficient to identify the
random variables Ak such that:

∀k,
k−1∑

l=0



b l2 c∑

m=0

(
k + 1

m

)(
k + 1− 2m

l − 2m

)
(−c)l−2m


Xk+1−l =

b k+1
2 c∑

m=0

(
k + 1

m

)
Ak+1−2m

In the left-hand side, we revert the order of summation and thus obtain:

Bk+1 =

b k−1
2 c∑

m=0

(
k + 1

m

)( k−1∑

l=2m

(
k + 1− 2m

l − 2m

)
(−c)l−2mXk+1−l

)

=

b k−1
2 c∑

m=0

(
k + 1

m

)(k−1−2m∑

l=0

(
k + 1− 2m

l

)
(−c)lXk+1−2m−l

)

=

b k+1
2 c∑

m=0

(
k + 1

m

)(k−1−2m∑

l=0

(
k + 1− 2m

l

)
(−c)lXk+1−2m−l

)
because X0 = X1 = 0.

As a consequence,

Ak+1 =

k−1∑

l=0

(
k + 1

l

)
(−c)lXk+1−l,

and since Ak+1

k+1 =
√
n

2 〈Uk(s− c) | ∆λ,c(s)〉, the proof of Theorem 10 is completed. �

6. An extension of Kerov’s central limit theorem

Let us denote by (Xk,∞)k≥2 the limit in law of the random process (Xk)k≥2 under the Schur-Weyl
measures SWn,1/2,c; the covariance matrix of this centered gaussian process has been computed in §4.
One sees easily that in the gaussian space generated by the process (Xk,∞)k≥2, the orthogonal basis
deduced from (Xk,∞)k≥2 by performing the Gram-Schmidt orthogonalisation procedure is:

Yk,∞ =

k−2∑

l=0

(
k

l

)
(−c)lXk−l,∞

As a consequence, the joint limit in law of the random variables (
√
n

2 〈Uk(s− c) | ∆λ,c(s)〉)k≥1 is simply
(
Yk+1,∞
k+1 )k≥1. So, Theorem 10 can be restated in the following way:
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Theorem 14 (Central limit theorem for Schur-Weyl measures). Under the measures SWn,1/2,c, the
random process of scaled deviations

(√
n

2
〈Uk(s− c) | ∆λ,c(s)〉

)

k≥1

converges in finite dimensional laws towards a gaussian process (ξk+1)k≥1 whose coordinates ξk+1 are
independant normal variables of mean 0 and variance 1/(k+1). Consequently, in the interval [c−2, c+2],
the scaled deviation

√
n

2 ∆λ,c(s) converges in distribution towards the generalized gaussian process

∆c(s) = ∆c(c+ 2 cos θ) =
1

π

∞∑

k=2

ξk
k

sin(kθ).

Hence, Kerov’s central limit theorem as enounced in [IO02] for Plancherel measures also holds for Schur-
Weyl measures, with exactly the same limit up to a translation on the x-axis. In other words, Kerov’s
gaussian process has a universality property. It would be very interesting to extend this universality
property further; as for now, it looks more as a miracle of computations than as a profound result about
random partitions.

Figure 8. Partial sum of the 5000 first terms of the random serie that defines the
limiting gaussian process associated to the deviations ∆λ,c(s).

Notice that the random serie ∆c(s) does not converge ponctually — this is the same phenomenon as
for the well-known free gaussian field, see [She07] and also our figure 8. However, it makes sense as a
distribution, meaning that for any function f ∈ C∞([c− 2, c+ 2]),

√
n

2
〈f(s) | ∆λ,c(s)〉 →

1

π

∞∑

k=2

ξk
k

(∫ c+2

c−2

f(s) sin(kθ(s)) ds

)
,

where the right-hand side converges with probability 1.
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Proof. The first part has just been proved (set ξk+1 =
Yk+1,∞
k+1 ), and for the second part, it is exactly the

same discussion as in [IO02, §9]. �
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