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THE GAUSS IMAGE OF ENTIRE GRAPHS OF HIGHER

CODIMENSION AND BERNSTEIN TYPE THEOREMS

J. JOST, Y. L. XIN AND LING YANG

Abstract. Under suitable conditions on the range of the Gauss map of a com-
plete submanifold of Euclidean space with parallel mean curvature, we construct
a strongly subharmonic function and derive a-priori estimates for the harmonic
Gauss map. The required conditions here are more general than in previous work
and they therefore enable us to improve substantially previous results for the
Lawson-Osseman problem concerning the regularity of minimal submanifolds in
higher codimension and to derive Bernstein type results.

1. Introduction

We consider an oriented n-dimensional submanifoldM in R
n+m with n ≥ 3, m ≥

2. The Gauss map γ : M → Gn,m maps M into a Grassmann manifold. In fact,
for codimension m = 1, this Grassmann manifold Gn,1 is the unit sphere Sn. In
this paper, however, we are interested in the case m ≥ 2 where the geometry of this
Grassmann manifold is more complicated. By the theorem of Ruh-Vilms [16], γ is
harmonic if and only if M has parallel mean curvature. This result applies thus in
particular to the case where M is a minimal submanifold of Euclidean space.

Now, the Bernstein problem for entire minimal graphs is one of the central prob-
lems in geometric analysis. Let us summarize the status of this problem, first for
the case of codimension 1. The central result is that an entire minimal graph M of
dimension n ≤ 7 and codimension 1 has to be planar, but there are counterexam-
ples to such a Bernstein type theorem in dimension 8 or higher. However, when the
additional condition is imposed that the slope of the graph be uniformly bounded,
then a theorem of Moser [15], called a weak Bernstein theorem, asserts that such
an M in arbitrary dimension has to be planar. Thus, the counterexamples arise
from a non-uniform behavior at infinity. In fact, by a general scaling argument, the
Bernstein theorems are intimately related to the regularity question for the minimal
hypersurface equation.

A natural and important question then is to what extent such Bernstein type
theorems generalize to entire minimal graphs of codimension m ≥ 2. Moser’s result
has been extended to higher codimension by Chern-Osserman for dimension n = 2
[3] and Barbosa [2] and Fisher-Colbrie [5] for dimension n = 3. For dimension n = 4
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and codimension m = 3, however, there is a counterexample given by Lawson-
Osserman [14]. In fact, their paper emphasizes the stark contrast between the
cases of codimension 1 and greater than 1 for the minimal submanifold system,
concerning regularity, uniqueness, and existence. The Lawson-Osserman problem
then is concerned with a systematic understanding of the analytic aspects of the
minimal submanifold system in higher codimension. As in the case of codimension
1, the Bernstein problem provides a key towards this aim.

While the work of Lawson-Osserman produced a counterexample for a general
Bernstein theorem, there are also some positive results in this direction which we
shall now summarize. Hildebrandt-Jost-Widman [10] started a systematic approach
on the basis of the aforementioned Ruh-Vilms theorem. That is, they developed and
employed the theory of harmonic maps and the convex geometry of Grassmann man-
ifolds, and obtained Bernstein type results in general dimension and codimension.
Their main result says that a Bernstein result holds if the image of the Gauss map
is contained in a strictly convex distance ball. Since the Riemannian sectional cur-
vature of Gn,m is nonnegative, the maximal radius of such a convex ball is bounded.
In codimension 1, this in particular reproduces Moser’s theorem, and in this sense,
their result is optimal. For higher codimension, their result can be improved, for
the following reason. Since the sectional curvature of Gn,m for n,m ≥ 2 is not con-
stant, there exist larger convex sets than geodesic distance balls, and it turns out
that harmonic (e.g. Gauss) maps with values in such convex sets can still be well
enough controlled. In this sense, the results of [10] could be improved by Jost-Xin
[12], Wang [18] and Xin-Yang [21]. In [12], the largest such geodesically convex set
in a Grassmann manifold was found.

Formulating it somewhat differently, the harmonic map approach is based on the
fact that the composition of a harmonic map with a convex function is a subhar-
monic function, and by using quantitative estimates for such subharmonic functions,
regularity and Liouville type results for harmonic maps can be obtained. The most
natural such convex function is the squared distance from some point, when its do-
main is restricted to a suitably small ball. As mentioned, the largest such ball on
which a squared distance function is convex was utilized in [10]. As also mentioned,
however, this result is not yet optimal, and other convex functions were system-
atically utilized in [21]. In that paper, also the fundamental connection between
estimates for the second fundamental form of minimal submanifolds and estimates
for their Gauss maps was systematically explored. On this basis, the fundamental
curvature estimate technique, as developed by Schoen-Simon-Yau [17] and Ecker-
Huisken [4], could be used in [21].

Still, there remains a large quantitative gap between those positive results and
the counterexample of Lawson-Osserman. In this situation, it could either be that
Bernstein theorems can be found under more general conditions, or that there exist
other counterexamples in the so far unexplored range.

In the present paper, we make a step towards closing this gap in the positive
direction. We identify a geometrically natural function v on a Grassmann mani-
fold and a natural quantitative condition under which the precomposition of this



THE GAUSS IMAGE AND BERNSTEIN TYPE THEOREMS 3

function with a harmonic (Gauss) map is (strongly) subharmonic (Theorem 3.1).
When the precomposition of v with the Gauss map of a complete minimal subman-
ifold is bounded, then that submanifold is an entire graph of bounded slope. On
one hand, this is the first systematic example in harmonic map regularity theory
where this auxiliary function is not necessarily convex. On the other hand, the
Lawson-Osserman’s counterexample can also be readily characterized in terms of
this function. Still, the range of values for v where we can apply our scheme is
strictly separated from the value of v in that example. Therefore, still some gap
remains which should be explored in future work.

Our work also finds its natural position in the general regularity theory for har-
monic maps. Also, once we have a strongly subharmonic function, we could derive
Bernstein type results within the frame work of geometric measure theory, by the
standard blow-down procedure and appeal to Allard’s regularity theorem [1]. By
building upon the work of many people on harmonic map regularity, we can obtain
more insight, however. In particular, we shall use the iteration method of [10], we
can explore the relation with curvature estimates, and we shall utilize a version
of the telescoping trick (Theorem 4.1) to finally obtain a quantitatively controlled
Gauss image shrinking process (Theorem 5.1 and Theorem 6.1). In this way, we can
understand why the submanifold is flat as the Bernstein result asserts. More pre-
cisely, we obtain the following Bernstein type result, which substantially improves
our previous results.

Theorem 1.1. Let zα = fα(x1, · · · , xn), α = 1, · · · , m, be smooth functions de-
fined everywhere in R

n (n ≥ 3, m ≥ 2). Suppose their graph M = (x, f(x)) is
a submanifold with parallel mean curvature in R

n+m. Suppose that there exists a
number β0 < 3 such that

(1.1) ∆f =
[

det
(

δij +
∑

α

∂fα

∂xi
∂fα

∂xj

)]
1

2 ≤ β0.

Then f 1, · · · , fm has to be affine linear, i.e., it represents an affine n-plane.

The essential point is to show that v := ∆f is subharmonic when < 3. In fact,
when v ≤ β0 < 3, then ∆v ≥ K0|B|2 where K0 is a positive constant and B is the
second fundamental form of M in R

n+m. This principle is not new. Wang [18] has
given conditions under which log v is subharmonic and has derived Bernstein results
from this, as indicated above. He only needs that v be uniformly bounded by some
constant, not necessarily < 3, but in addition that there exist some δ > 0 such
that for any two eigenvalues λi, λj with i 6= j, the inequality |λiλj | ≤ 1 − δ holds
(the latter condition means in geometric terms that df is strictly area decreasing on
any two-dimensional subspace). Since subharmonicity of log v is a weaker property
than subharmonicity of v itself, his computation is substantially easier than ours,
and our results cannot be deduced from his. In fact, v2 =

∏

(1 + λ2i ), and while the
condition of [12] which can be reformulated as v2 being bounded away from 4 implies
the condition of [18] so that the latter result generalizes the former, the condition
needed in the present paper is only the weaker one that v2 be bounded away from
9.
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In fact, somewhat more refined results can be obtained, as will be pointed out in
the final remarks of this paper.

2. Geometry of Grassmann manifolds

Let Rn+m be an (n +m)-dimensional Euclidean space. Its oriented n-subspaces
constitute the Grassmann manifold Gn,m, which is the Riemannian symmetric space
of compact type SO(n+m)/SO(n)× SO(m).

Gn,m can be viewed as a submanifold of some Euclidean space via the Plücker
embedding. The restriction of the Euclidean inner product on M is denoted by
w : Gn,m ×Gn,m → R

w(P,Q) = 〈e1 ∧ · · · ∧ en, f1 ∧ · · · ∧ fn〉 = detW

where P is spanned by a unit n-vector e1 ∧ · · · ∧ en, Q is spanned by another unit
n-vector f1 ∧ · · · ∧ fn, and W =

(

〈ei, fj〉
)

. It is well-known that

W TW = OTΛO

with O an orthogonal matrix and

Λ =





µ2
1

. . .
µ2
n



 .

Here each 0 ≤ µ2
i ≤ 1. Putting p := min{m,n}, then at most p elements in

{µ2
1, · · · , µ2

n} are not equal to 1. Without loss of generality, we can assume µ2
i = 1

whenever i > p. We also note that the µ2
i can be expressed as

(2.1) µ2
i =

1

1 + λ2i
.

The Jordan angles between P and Q are defined by

θi = arccos(µi) 1 ≤ i ≤ p.

The distance between P and Q is defined by

(2.2) d(P,Q) =
√

∑

θ2i .

Thus, (2.1) becomes

(2.3) λi = tan θi.

In the sequel, we shall assume n ≥ m without loss of generality. We use the
summation convention and agree on the ranges of indices:

1 ≤ i, j, k, l ≤ n, 1 ≤ α, β, γ ≤ m, a, b, · · · = 1, · · · , n+m.

Now we fix P0 ∈ Gn,m. We represent it by n vectors ǫi,, which are complemented
by m vectors ǫn+α, such that {ǫi, ǫn+α} form an orthonormal base of Rm+n.
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Denote
U := {P ∈ Gn,m, w(P, P0) > 0}.

We can span an arbitrary P ∈ U by n-vectors fi:

fi = ǫi + Ziαǫn+α.

The canonical metric in U can be described as

(2.4) ds2 = tr((In + ZZT )−1dZ(Im + ZTZ)−1dZT ),

where Z = (Ziα) is an (n×m)-matrix and In (res. Im) denotes the (n× n)-identity
(res. m×m) matrix. It is shown that (2.4) can be derived from (2.2) in [20].

For any P ∈ U, the Jordan angles between P and P0 are defined by {θi}. Let
Eiα be the matrix with 1 in the intersection of row i and column α and 0 otherwise.
Then, sec θi sec θαEiα form an orthonormal basis of TPGn,m with respect to (2.4).
Denote its dual frame by ωiα.

Our fundamental quantity will be

(2.5) v(·, P0) := w−1(·, P0) on U.

For arbitrary P ∈ U determined by an n×m matrix Z, it is easily seen that

(2.6) v(P, P0) =
[

det(In + ZZT )
]

1

2 =

m
∏

α=1

sec θα =

m
∏

α=1

1

µα

.

where θ1, · · · , θm denote the Jordan angles between P and P0.

In this terminology, Hess(v(·, P0) has been estimated in [21]. By (3.8) in [21], we
have

Hess(v(·, P0)) =
∑

i 6=α

v ω2
iα +

∑

α

(1 + 2λ2α)v ω
2
αα +

∑

α6=β

λαλβv(ωαα ⊗ ωββ + ωαβ ⊗ ωβα)

=
∑

m+1≤i≤n,α

v ω2
iα +

∑

α

(1 + 2λ2α)v ω
2
αα +

∑

α6=β

λαλβv ωαα ⊗ ωββ

+
∑

α<β

[

(1 + λαλβ)v
(

√
2

2
(ωαβ + ωβα)

)2

+ (1− λαλβ)v
(

√
2

2
(ωαβ − ωβα)

)2]

.

(2.7)

It follows that

(2.8) v(·, P0)
−1Hess(v(·, P0)) = g+

∑

α

2λ2αω
2
αα+

∑

α6=β

λαλβ(ωαα⊗ωββ +ωαβ ⊗ωβα).

The canonical Riemannian metric on Gn,m derived from (2.2) can also be de-
scribed by the moving frame method. This will be useful for understanding some of
the sequel. Let {ei, en+α} be a local orthonormal frame field in R

n+m. Let {ωi, ωn+α}
be its dual frame field so that the Euclidean metric is

g =
∑

i

ω2
i +

∑

α

ω2
n+α.
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The Levi-Civita connection forms ωab of R
n+m are uniquely determined by the equa-

tions
dωa = ωab ∧ ωb,

ωab + ωba = 0.

It is shown in [20] that the canonical Riemannian metric on Gn,m can be written as

(2.9) ds2 =
∑

i, α

ω2
i n+α.

3. Subharmonic functions

Let Mm → R
n+m be an isometric immersion with second fundamental form B.

Around any point p ∈ M , we choose an orthonormal frame field ei, · · · , en+m in
R

n+m, such that {ei} are tangent to M and {en+α} normal to M. The metric on M
is g =

∑

i ω
2
i . We have the structure equations

(3.1) ωi n+α = hαijωj ,

where hαij are the coefficients of second fundamental form B of M in R
n+m.

Let 0 be the origin of Rn+m, SO(m + n) be the Lie group consisting of all or-
thonormal frames (0; ei, en+α), TF =

{

(p; e1, · · · , en) : p ∈ M, ei ∈ TpM, 〈ei, ej〉 =

δij
}

be the principle bundle of orthonormal tangent frames over M , and NF =
{

(p; en+1, · · · , en+m) : p ∈ M, en+α ∈ NpM
}

be the principle bundle of orthonormal
normal frames over M . Then π̄ : TF ⊕ NF → M is the projection with fiber
SO(n)× SO(m).

The Gauss map γ :M → Gn,m is defined by

γ(p) = TpM ∈ Gn,m

via the parallel translation in R
n+m for every p ∈ M . Then the following diagram

commutes

TF ⊕NF
i−−−→ SO(n+m)

π̄





y





y

π

M
γ−−−→ Gn,m

where i denotes the inclusion map and π : SO(n+m) → Gn,m is defined by

(0; ei, en+α) 7→ e1 ∧ · · · ∧ en.

It follows that

(3.2) |dγ|2 =
∑

α,i,j

h2αij = |B|2.

(2.8) was computed for the metric (2.4) whose corresponding coframe field is ωiα.
Since (2.4) and (2.9) are equivalent to each other, at any fixed point P ∈ Gn,m

there exists an isotropic group action, i.e., an SO(n)×SO(m) action, such that ωiα
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is transformed to ωi n+α, namely, there are a local tangent frame field and a local
normal frame field such that at the point under consideration,

(3.3) ωi n+α = γ∗ωiα.

In conjunction with (3.1) and (3.3) we obtain

(3.4) γ∗ωiα = hαijωj.

By the Ruh-Vilms theorem [16], the mean curvature of M is parallel if and only
if its Gauss map is a harmonic map. Now, we assume that M has parallel mean
curvature.

We define

(3.5) v := v(·, P0) ◦ γ,
This function v on M will be the source of the basic inequality for this paper. Its
geometric significance is seen from the following observation. If the v− function
has an upper bound (or the w−function has a positive lower bound), M can be
described as an entire graph on R

n by f : Rn → R
m, provided M is complete. In

this situation, λi is the singular values of df and

(3.6) v =
[

det
(

δij +
∑

α

∂fα

∂xi
∂fα

∂xj

)]
1

2

Using the composition formula, in conjunction with (2.8), (3.2) and (3.4), and the
fact that τ(γ) = 0 (the tension field of the Gauss map vanishes [16]), we deduce the
important formula of Lemma 1.1 in [5] and Prop. 2.1 in [18].

Proposition 3.1. Let M be an n−submanifold in R
n+m with parallel mean curva-

ture. Then

(3.7) ∆v = v|B|2 + v
∑

α,j

2λ2αh
2
α,αj + v

∑

α6=β,j

λαλβ(hα,αjhβ,βj + hα,βjhβ,αj),

where hα,ij are the coefficients of the second fundamental form of M in R
n+m (see

(3.1).

A crucial step in this paper is to find a condition which guarantees the strong
subharmonicity of the v− function on M . More precisely, under a condition on v,
we shall bound its Laplacian from below by a positive constant times squared norm
of the second fundamental form.

Looking at the expression (3.7), we group its terms according to the different
types of the indices of the coefficients of the second fundamental form as follows.

(3.8) v−1∆v =
∑

α

∑

i,j>m

h2α,ij +
∑

j>m

Ij +
∑

j>m,α<β

IIjαβ +
∑

α<β<γ

IIIαβγ +
∑

α

IVα

where

(3.9) Ij =
∑

α

(2 + 2λ2α)h
2
α,αj +

∑

α6=β

λαλβhα,αjhβ,βj,
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(3.10) IIjαβ = 2h2α,βj + 2h2β,αj + 2λαλβhα,βjhβ,αj ,

(3.11)
IIIαβγ =2h2α,βγ + 2h2β,γα + 2h2γ,αβ

+ 2λαλβhα,βγhβ,γα + 2λβλγhβ,γαhγ,αβ + 2λγλαhγ,αβhα,βγ

and

(3.12)

IVα =(1 + 2λ2α)h
2
α,αα +

∑

β 6=α

(

h2α,ββ + (2 + 2λ2β)h
2
β,βα

)

+
∑

β 6=γ

λβλγhβ,βαhγ,γα + 2
∑

β 6=α

λαλβhα,ββhβ,βα.

It is easily seen that

(3.13) Ij = (
∑

α

λαhα,αj)
2 +

∑

α

(2 + λ2α)h
2
α,αj ≥ 2

∑

α

h2α,αj .

Obviously

(3.14) IIjαβ = λαλβ(hα,βj + hβ,αj)
2 + (2− λαλβ)(h

2
α,βj + h2β,αj).

v =
(

∏

α(1+λ
2
α)
) 1

2

implies (1+λ2α)(1+λ
2
β) ≤ v2. Assume (1+λ2α)(1+λ

2
β) ≡ C ≤ v2,

then differentiating both sides implies

λαdλα
1 + λ2α

+
λβdλβ
1 + λ2β

= 0.

Therefore

(3.15)

d(λαλβ) = λβdλα + λαdλβ

=
[

λ2β(1 + λ2α)− λ2α(1 + λ2β)
] dλα
λβ(1 + λ2α)

= (λ2β − λ2α)
dλα

λβ(1 + λ2α)
.

It follows that (λα, λβ) 7→ λαλβ attains its maximum at the point satisfying λα = λβ,

which is hence ((C
1

2 − 1)
1

2 , (C
1

2 − 1)
1

2 ). Thus λαλβ ≤ C
1

2 − 1 ≤ v − 1 and moreover

(3.16) IIjαβ ≥ (3− v)(h2α,βj + h2β,αj).

Lemma 3.1. IIIαβγ ≥ (3− v)(h2α,βγ + h2β,γα + h2γ,αβ).

Proof. It is easily seen that

IIIαβγ−(3− v)(h2α,βγ + h2β,γα + h2γ,αβ)

=(λαhα,βγ + λβhβ,γα + λγhγ,αβ)
2 + (v − 1− λ2α)h

2
α,βγ

+ (v − 1− λ2β)h
2
β,γα + (v − 1− λ2γ)h

2
γ,αβ .
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If λ2α, λ
2
β, λ

2
γ ≤ v − 1, then IIIαβγ − (3 − v)(h2α,βγ + h2β,γα + h2γ,αβ) is obviously

nonnegative definite. Otherwise, we can assume λ2γ > v−1 without loss of generality,

then (1 + λ2α)(1 + λ2β)(1 + λ2γ) ≤ v2 implies λ2α < v − 1, λ2β < v − 1.

Denote s = λαhα,βγ + λβhβ,γα, then by the Cauchy-Schwarz inequality,

s2 = (λαhα,βγ + λβhβ,γα)
2

=
( λα
√

v − 1− λ2α

√

v − 1− λ2αhα,βγ +
λβ

√

v − 1− λ2β

√

v − 1− λ2βhβ,γα

)2

≤
( λ2α
v − 1− λ2α

+
λ2β

v − 1− λ2β

)

(

(v − 1− λ2α)h
2
α,βγ + (v − 1− λ2β)h

2
β,γα

)

i.e.

(3.17) (v − 1− λ2α)h
2
α,βγ + (v − 1− λ2β)h

2
β,γα ≥

( λ2α
v − 1− λ2α

+
λ2β

v − 1− λ2β

)−1

s2.

Hence

(3.18)

IIIαβγ − (3− v)(h2α,βγ + h2β,γα + h2γ,αβ)

≥(s+ λγhγ,αβ)
2 +

( λ2α
v − 1− λ2α

+
λ2β

v − 1− λ2β

)−1

s2 + (v − 1− λ2γ)h
2
γ,αβ

=
[

1 +
( λ2α
v − 1− λ2α

+
λ2β

v − 1− λ2β

)−1]

s2 + (v − 1)h2γ,αβ + 2λγshγ,αβ.

It is well known that ax2 + 2bxy + cy2 is nonnegative definite if and only if a, c ≥ 0
and ac − b2 ≥ 0. Hence the right hand side of (3.18) is nonnegative definite if and
only if

(3.19) (v − 1)
[

1 +
( λ2α
v − 1− λ2α

+
λ2β

v − 1− λ2β

)−1]

− λ2γ ≥ 0

i.e.

(3.20)
1

v − 1− λ2α
+

1

v − 1− λ2β
+

1

v − 1− λ2γ
≤ 2

v − 1
.

Denote x = 1 + λ2α, y = 1 + λ2β, z = 1 + λ2γ . Let C be a constant ≤ v2, denote

Ω =
{

(x, y, z) ∈ R
3 : 1 ≤ x, y < v, z > v, xyz = C

}

and f : Ω → R

(x, y, z) 7→ 1

v − x
+

1

v − y
+

1

v − z
.

We claim f ≤ 2
v−1

on Ω. Then (3.20) follows and hence

IIIαβγ − (3− v)(h2α,βγ + h2β,γα + h2γ,αβ)

is nonnegative definite.
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We now verify the claim. For arbitrary ε > 0, denote

fε =
1

v + ε− x
+

1

v + ε− y
+

1

v + ε− z
,

then fε is obviously a smooth function on

Ωε =
{

(x, y, z) ∈ R
3 : 1 ≤ x, y ≤ v, z ≥ v + 2ε, xyz = C

}

.

The compactness of Ωε implies the existence of (x0, y0, z0) ∈ Ωε satisfying

(3.21) fε(x0, y0, z0) = sup
Ωε

fε.

Fix x0, then (3.21) implies that for arbitrary (y, z) ∈ R
2 satisfying 1 ≤ y ≤ v, z ≥

v + 2ε and yz = C
x0
, we have

fε,x0
(y, z) =

1

v + ε− y
+

1

v + ε− z
≤ 1

v + ε− y0
+

1

v + ε− z0
.

Differentiating both sides of yz = C
x0

yields dy

y
+ dz

z
= 0. Hence

(3.22)

d
( 1

v + ε− y
+

1

v + ε− z

)

=
dy

(v + ε− y)2
+

dz

(v + ε− z)2

=
[ y

(v + ε− y)2
− z

(v + ε− z)2

]dy

y
=

((v + ε)2 − yz)(y − z)

(v + ε− y)2(v + ε− z)2
dy

y
.

It implies that fε,x0

(

y, C
yx0

)

is decreasing in y and y0 = 1. Similarly, one can derive

x0 = 1. Therefore

sup
Ωε

fε = fε(1, 1, C) =
2

v + ε− 1
+

1

v + ε− C
<

2

v + ε− 1
.

Note that fε → f and Ω ⊂ limε→0+ Ωε. Hence by letting ε → 0 one can obtain
f ≤ 2

v−1
.

�

Lemma 3.2. There exists a positive constant ε0, such that if v ≤ 3, then

IVα ≥ ε0
(

h2α,αα +
∑

β 6=α

(h2α,ββ + 2h2β,βα)
)

.

Proof. For arbitrary ε0 ∈ [0, 1), denote C = 1− ε0, then
(3.23)

IVα − ε0
(

h2α,αα +
∑

β 6=α

(h2α,ββ + 2h2β,βα)
)

=(
∑

β

λβhβ,βα)
2 + (C + λ2α)h

2
α,αα +

∑

β 6=α

[

Ch2α,ββ + (2C + λ2β)h
2
β,βα + 2λαλβhα,ββhβ,βα

]

.

Obviously
C h2α,ββ + C−1λ2αλ

2
βh

2
β,βα + 2λαλβhα,ββhβ,βα

≥ (C
1

2hα,ββ + C− 1

2λαλβhβ,βα)
2 ≥ 0,



THE GAUSS IMAGE AND BERNSTEIN TYPE THEOREMS 11

hence, the third term of the right hand side of (3.23) satisfies

(3.24) Ch2α,ββ + (2C + λ2β)h
2
β,βα + 2λαλβhα,ββhβ,βα ≥ (2C + λ2β − C−1λ2αλ

2
β)h

2
β,βα

If there exist 2 distinct indices β, γ 6= α satisfying

2C + λ2β − C−1λ2αλ
2
β ≤ 0

and

2C + λ2γ − C−1λ2αλ
2
γ ≤ 0,

then λ2α > C and

λ2β ≥ 2C2

λ2α − C
, λ2γ ≥ 2C2

λ2α − C
.

It implies

(1 + λ2α)(1 + λ2β)(1 + λ2γ) ≥
(λ2α + 1)(λ2α + 2C2 − C)2

(λ2α − C)2
.

Define f : x ∈ (C,+∞) 7→ (x+1)(x+2C2−C)2

(x−C)2
, then a direct calculation shows

(log f)′ =
1

x+ 1
+

2

x+ 2C2 − C
− 2

x− C
=

(x− C(2C + 3))(x+ C)

(x+ 1)(x+ 2C2 − C)(x− C)
.

It follows that f(x) ≥ f(C(2C + 3)) = (2C+1)3

C+1
, i.e.

(3.25) v2 ≥ (1 + λ2α)(1 + λ2β)(1 + λ2γ) ≥
(2C + 1)3

C + 1
.

If C = 1, then (2C+1)3

C+1
= 27

2
> 9; hence there is ε1 > 0, once ε0 ≤ ε1, then C = 1−ε0

satisfies (2C+1)3

C+1
> 9, which causes a contradiction to v2 ≤ 9.

Hence, one can find an index γ 6= α, such that

(3.26) 2C + λ2β − C−1λ2αλ
2
β > 0 for arbitrary β 6= α, γ.

Denote s =
∑

β 6=γ λβhβ,βα, then by using the Cauchy-Schwarz inequality,

(3.27)

(C + λ2α)h
2
α,αα +

∑

β 6=α,γ

(2C + λ2β − C−1λ2αλ
2
β)h

2
β,βα

≥
( λ2α
C + λ2α

+
∑

β 6=α,γ

λ2β
2C + λ2β − C−1λ2αλ

2
β

)−1

s2.
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Substituting (3.27) and (3.24) into (3.23) yields

(3.28)

IVα − ε0
(

h2α,αα +
∑

β 6=α

(h2α,ββ + 2h2β,βα)
)

≥ (s+ λγhγ,γα)
2 +

( λ2α
C + λ2α

+
∑

β 6=α,γ

λ2β
2C + λ2β − C−1λ2αλ

2
β

)−1

s2

+ (2C + λ2γ − C−1λ2αλ
2
γ)h

2
γ,γα

≥
[

1 +
( λ2α
C + λ2α

+
∑

β 6=α,γ

λ2β
2C + λ2β − C−1λ2αλ

2
β

)−1]

s2

+ (2C + 2λ2γ − C−1λ2αλ
2
γ)h

2
γ,γα + 2λγshγ,γα.

Note that when m = 2, s = λαhα,αα and
∑

β 6=α,γ

λ2
β

2C+λ2
β
−C−1λ2

αλ
2
β

= 0.

The right hand side of (3.28) is nonnegative definite if and only if

(3.29) 2C + 2λ2γ − C−1λ2αλ
2
γ ≥ 0

and
(3.30)
[

1 +
( λ2α
C + λ2α

+
∑

β 6=α,γ

λ2β
2C + λ2β − C−1λ2αλ

2
β

)−1]

(2C + 2λ2γ − C−1λ2αλ
2
γ)− λ2γ ≥ 0.

Assume 2C + 2λ2γ − C−1λ2αλ
2
γ < 0, then λ2α > 2C and λ2γ >

2C2

λ2
α−2C

, which implies

(1 + λ2α)(1 + λ2γ) ≥ (λ2
α+1)(λ2

α+2C(C−1))
λ2
α−2C

. Define f : x ∈ (2C,+∞) 7→ (x+1)(x+2C(C−1))
x−2C

,

then

(log f)′ =
1

x+ 1
+

1

x+ 2C(C − 1)
− 1

x− 2C
=

x2 − 4Cx− 2C2(2C − 1)

(x+ 1)(x+ 2C(C − 1))(x− 2C)
.

and hence

min f = f
(

C(2 +
√
4C + 2)

)

= 2C2 + 2C + 1 + 2C
√
4C + 2.

In particular, when C = 1, min f = 5 + 2
√
6 > 9. There exists ε2 > 0, such that

once ε0 ≤ ε2, one can derive min f > 9 and moreover v2 ≥ (1 + λ2α)(1 + λ2γ) > 9,
which contradicts v ≤ 3. Therefore (3.29) holds.

If 2C + λ2γ − C−1λ2αλ
2
γ ≥ 0, (3.30) trivially holds.

At last, we consider the situation when there exists γ, γ 6= α, such that

2C + λ2γ − C−1λ2αλ
2
γ < 0.

In this case, (3.30) is equivalent to

(3.31)
λ2α

C + λ2α
+
∑

β 6=α

λ2β
2C + λ2β − C−1λ2αλ

2
β

≤ −1.
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Noting that

λ2β
2C + λ2β − C−1λ2αλ

2
β

=
C

C − λ2α
− 2C3

(C − λ2α)
2

1

1 + λ2β +
λ2
α+C(2C−1)

C−λ2
α

and let xβ = 1 + λ2β , then (3.31) is equivalent to

(3.32)
xα − 1

xα + C − 1
+
∑

β 6=α

[ C

C + 1− xα
− 2C3

(C + 1− xα)2
1

xβ − xα+2C2−C−1
xα−C−1

]

≤ −1.

Denote

ψ(xα) =
xα − 1

xα + C − 1
, ϕ(xα) =

xα + 2C2 − C − 1

xα − C − 1
,

ζ(xα) =
C

C + 1− xα
, ξ(xα) =

2C3

(C + 1− xα)2
.

Let

(3.33)

Ω =
{

(x1, · · · , xm) ∈ R
m : xα > C + 1, 1 ≤ xβ < ϕ(xα) for all β 6= α, γ,

xγ > ϕ(xα),
∏

β

xβ = v2
}

and define f : Ω → R

(x1, · · · , xm) 7→ ψ(xα) +
∑

β 6=α

[

ζ(xα)−
ξ(xα)

xβ − ϕ(xα)

]

.

We point out that in (3.33), α and γ are fixed indices.

Now we claim

(3.34) sup
Ω
f = sup

Γ
f

where

(3.35)

Γ =
{

(x1, · · · , xm) ∈ R
m : xα ≥ C + 1, xβ = 1 for all β 6= α, γ,

xγ ≥ ϕ(xα),
∏

β

xβ = v2
}

⊂ Ω.

When m = 2, obviously Γ = Ω and (3.34) is trivial. We put

ϕε(xα) = ϕ(xα + ε), ζε(xα) = ζ(xα + ε), ξε(xα) = ξ(xα + ε)

for arbitrary ε > 0. If m ≥ 3, as in the proof of Lemma 3.1, we define

fε = ψ(xα) +
∑

β 6=α

[

ζε(xα)−
ξε(xα)

xβ − ϕε(xα)

]

,

then fε is well-defined on

Ωε =
{

(x1, · · · , xm) ∈ R
m : xα ≥ C + 1, 1 ≤ xβ ≤ ϕ2ε(xα) for all β 6= α, γ,

xγ ≥ ϕ ε
2
(xα),

∏

β

xβ = v2
}

.
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The compactness of Ωε enables us to find (y1, · · · , ym) ∈ Ωε, such that

(3.36) fε(y1, · · · , ym) = sup
Ωε

fε.

Denote b = ϕε(yα), then (3.36) implies for arbitrary β 6= α, γ that

1

xβ − b
+

1

xγ − b
≥ 1

yβ − b
+

1

yγ − b

holds whenever xβxγ = yβyγ, 1 ≤ xβ ≤ ϕ2ε(yα) and xγ ≥ ϕ ε
2
(yα). Differentiating

both sides yields
dxβ

xβ
+ dxγ

xγ
= 0, thus

(3.37)

d
( 1

xβ − b
+

1

xγ − b

)

= − dxβ
(xβ − b)2

− dxγ
(xγ − b)2

=
(b2 − xβxγ)(xγ − xβ)

(xβ − b)2(xγ − b)2
dxβ
xβ

.

Similarly to (3.25), one can prove yαb
2 = yα(yα+ε+2C2−C−1)2

(yα+ε−C−1)2
> 9 when ε0 ≤ ε1 (note

that C = 1−ε0) and ε1 is sufficiently small. In conjunction with yαxβxγ = yαyβyγ ≤
v2 < 9, we have b2 − xβxγ > 0. Hence (3.37) implies yβ = 1 for all β 6= α, γ. In
other words, if we put

Γε =
{

(x1, · · · , xm) ∈ R
m : xα ≥ C + 1, xβ = 1 for all β 6= α, γ,

xγ ≥ ϕ ε
2
(xα),

∏

β

xβ = v2
}

,

then maxΩε
fε = maxΓε

fε. Therefore, (3.34) follows from Ω ⊂ ⋃

ε>0Ωε, Γ ⊂ ⋃

ε>0 Γε

and limε→0 fε = f .

To prove (3.30), i.e. f ≤ −1 , it is sufficient to show on Γ,

(3.38) ψ(xα) + ζ(xα)−
ξ(xα)

v2

xα
− ϕ(xα)

≤ −1

whenever xα > C + 1 and v2

xα
> ϕ(xα). After a straightforward calculation, the

above inequality is equivalent to
(3.39)
x3α+(2C2−C−2)x2α+(C3−3C2+C+1)xα−v2(x2α−(C+2)xα−(C2−C−1)) ≥ 0.

It is easily seen that if

(3.40) inf
t2−(C+2)t−(C2−C−1)>0

t3 + (2C2 − C − 2)t2 + (C3 − 3C2 + C + 1)t

t2 − (C + 2)t− (C2 − C − 1)
> 9.

then (3.39) naturally holds and furthermore one can deduce that IVα − ε0
(

h2α,αα +
∑

β 6=α(h
2
α,ββ + 2h2β,βα)

)

is nonnegative definite.

When C = 1, (3.40) becomes

(3.41) inf
t> 3+

√

5

2

t2(t− 1)

t2 − 3t + 1
> 9.
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If this is true, one can find a positive constant ε3 to ensure (3.40) holds true whenever
ε0 ≤ ε3. Finally,, by taking ε0 = min{ε1, ε2, ε3} we obtain the final conclusion.

(3.41) is equivalent to the property that h(t) = t2(t − 1) − 9(t2 − 3t + 1) =

t3 − 10t2 + 27t − 9 has no zeros on
(

3+
√
5

2
,+∞

)

. h′(t) = 3t2 − 20t + 27 implies

h′(t) < 0 on
(

3+
√
5

2
, 10+

√
19

3

)

and h′(t) > 0 on
(

10+
√
19

3
,+∞

)

, hence

inf
t> 3+

√

5

2

h = h
(10 +

√
19

3

)

=
187− 38

√
19

27
> 0

and (3.41) follows.

�

In conjunction with (3.13), (3.16), Lemma 3.1 and 3.2, we can arrive at

Theorem 3.1. LetMn be a submanifold in R
n+m with parallel mean curvature, then

for arbitrary p ∈ M and P0 ∈ Gn,m, once v(γ(p), P0) ≤ 3, then ∆
(

v(·, P0) ◦ γ
)

≥ 0
at p. Moreover, if v(γ(p), P0) ≤ qβ0 < 3, then there exists a positive constant K0,
depending only on β0, such that

(3.42) ∆
(

v(·, P0) ◦ γ
)

≥ K0|B|2

at p.

We also express this result by saying that the function v satisfying (3.42) is
strongly subharmonic under the condition v(γ(p), P0) ≤ β0 < 3.

Remark 3.1. If log v is a strongly subharmonic function, then v is certainly strongly
subharmonic, but the converse is not necessarily true. Therefore, the above result
does not seem to follow from Theorem 1.2 in [18].

4. Curvature estimates

Let zα = fα(x1, · · · , xn), α = 1, · · · , m be smooth functions defined onDR0
⊂ R

n.
Their graph M = (x, f(x)) is a submanifold with parallel mean curvature in R

n+m.
Suppose there is β0 ∈ [1, 3), such that

(4.1) ∆f =
[

det
(

δij +
∑

α

∂fα

∂xi
∂fα

∂xj

)]
1

2 ≤ β0.

Denote by ǫ1, · · · , ǫn+m the canonical basis of Rn+m and put P0 = ǫ1 ∧ · · · ∧ ǫn.
Then by (4.1)

v(·, P0) ◦ γ ≤ β0

holds everywhere on M . Putting v = v(·, P0) ◦ γ, Theorem 3.1 tells us

(4.2) ∆v ≥ K0(β0)|B|2.
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Let η be a nonnegative smooth function on M with compact support. Multiplying
both sides of (4.2) by η and integrating on M gives

(4.3) K0

∫

M

|B|2η ∗ 1 ≤ −
∫

M

∇η · ∇v ∗ 1.

F : DR0
7→M defined by

x = (x1, · · · , xn) 7→ (x, f(x))

is obviously a diffeomorphism. F∗
∂
∂xi = ǫi +

∂fα

∂xi ǫn+α implies

〈

F∗
∂

∂xi
, F∗

∂

∂xj
〉

= δij +
∑

α

∂fα

∂xi
∂fα

∂xj
.

Hence

(4.4) F ∗g =
(

δij +
∑

α

∂fα

∂xi
∂fα

∂xj

)

dxidxj

where g is the metric tensor on M . In other words, M is isometric to the Euclidean
ball DR0

equipped with the metric gijdx
idxj (gij = δij +

∑

α
∂fα

∂xi

∂fα

∂xj ). It is easily
seen that for arbitrary ξ ∈ R

n,

(4.5) ξigijξ
j = |ξ|2 +

∑

α

(

∑

i

∂fα

∂xi
ξi
)2

≥ |ξ|2.

On the other hand, ∆f ≤ β0 implies
∏n

i=1 µi ≤ β2
0 , with µ1, · · · , µn the eigenvalues

of (gij), thus

(4.6) ξigijξ
j ≤ β2

0 |ξ|2 ≤ 9|ξ|2.
In local coordinates, the Laplace-Beltrami operator is

∆ =
1√
G

∂

∂xi

(√
Ggij

∂

∂xj

)

.

Here (gij) is the inverse matrix of (gij), and G = det(gij) = ∆2
f . From (4.1), (4.5)

and (4.6) it is easily seen that

(4.7)
1

3
|ξ|2 ≤ β−1

0 |ξ|2 ≤ ξi(
√
Ggij)ξj ≤ β0|ξ|2 ≤ 3|ξ|2.

Following [11] and [13] we shall make use of the following abbreviations: For
arbitrary R ∈ (0, R0), let

(4.8) BR =
{

(x, f(x)) : x ∈ DR

}

⊂M.

And for arbitrary h ∈ L∞(BR) denote

(4.9)

h+,R
def.
= sup

BR

h, h−,R
def.
= = inf

BR

h, h̄R
def.
= −
∫

BR

h =

∫

BR
h ∗ 1

|Vol(BR)|

|h̄|p,R def.
=

(

−
∫

BR

|h|p
)

1

p

(p ∈ (−∞,+∞).
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(4.7) shows that ∆ is a uniform elliptic operator. Moser’s Harnack inequality [15]
for supersolutions of elliptic PDEs in divergence form gives

Lemma 4.1. For a positive superharmonic function h on BR with R ∈ (0, R0],
p ∈ (0, n

n−2
) and θ ∈ [1

2
, 1), we have the following estimate

|h̄|p,θR ≤ γ1h−,θR.

Here γ1 is a positive constant only depending on n, p and θ, but not on h and R.

(4.2) shows the subharmonicity of v, and therefore v+,R − v + ε is a positive
superharmonic function on BR for arbitrary ε > 0. With the aid of Lemma 4.1, one
can follow [11] to get

Corollary 4.1. There is a constant δ0 ∈ (0, 1), depending only on n, such that

v+,R
2

≤ (1− δ0)v+,R + δ0v̄R
2

.

Denote by Gρ the mollified Green function for the Laplace-Beltrami operator on
BR. Then for arbitrary p = (y, f(y)) ∈ BR, once

Bρ(p) =
{

(x, f(x)) ∈M : x ∈ DR(y)
}

⊂ BR

we have
∫

BR

∇Gρ(·, p) · ∇φ ∗ 1 = −
∫

Bρ(p)

φ

for every φ ∈ H1,2
0 (BR). The apriori estimates for mollified Green functions of [8]

tell us

Lemma 4.2. With o := (0, f(0)), we have

(4.10)
0 ≤ G

R
2 (·, o) ≤ c2(n)R

2−n on BR

G
R
2 (·, o) ≥ c1(n)R

2−n on BR
2

.

For arbitrary p ∈ BR
4

,

(4.11) Gρ(·, p) ≤ C(n)R2−n on BR\B̄R
2

.

Moreover if ρ ≤ R
8
,

(4.12)

∫

BR\B̄R
2

∣

∣∇Gρ(·, p)
∣

∣

2 ∗ 1 ≤ C(n)R2−n.

Based on (4.3), Corollary 4.1 and Lemma 4.2, we can use the method of [11] to
derive a telescoping lemma a la Giaquinta-Giusti [6] and Giaquita-Hildebrandt [7].
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Theorem 4.1. There exists a positive constant C1, only depending on n and β0,
such that for arbitrary R ≤ R0,

(4.13) R2−n

∫

BR
2

|B|2 ∗ 1 ≤ C1(v+,R − v+,R
2

)

Moreover, there exists a positive constnat C2, only depending on n and β0, such that
for arbitrary ε > 0, we can find R ∈ [exp(−C2ε

−1)R0, R0], such that

(4.14) R2−n

∫

BR
2

|B|2 ∗ 1 ≤ ε.

Proof. With

ωR = R−2Vol(BR
2

)G
R
2 (·, o) where o = (0, f(0)),

then
∫

BR

∇ωR · ∇φ ∗ 1 = R−2

∫

BR
2

φ ∗ 1.

Choosing (ωR)2 ∈ H1,2
0 (BR) as a test function in (4.3), we obtain

K0

∫

BR

|B|2(ωR)2 ∗ 1 ≤ −
∫

BR

∇(ωR)2 · ∇v ∗ 1 = −2

∫

BR

∇ωR · ωR∇(v − v+,R) ∗ 1

= −2

∫

BR

∇ωR ·
(

∇(ωR(v − v+,R))− (v − v+,R)∇ωR
)

∗ 1

≤ −2

∫

BR

∇ωR · ∇
(

ωR(v − v+,R)
)

∗ 1

= −2R−2

∫

BR
2

ωR(v − v+,R) ∗ 1.

By (4.10), there exist positive constants c3, c4, depending only on n, such that

0 ≤ ωR ≤ c4 on BR,

ωR ≥ c3 on BR
2

.

Hence

(4.15)

∫

BR
2

|B|2 ∗ 1 ≤ −2K−1
0 c−1

4 c23R
−2

∫

BR
2

(v − v+,R) ∗ 1

≤ c5(n, β0)R
n−2(v+,R − v̄R

2

).

By Corollary 4.1, v+,R − v̄R
2

≤ δ−1
0 (v+,R − v+,R

2

); substituting it into (4.15) yields

(4.13).
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For arbitrary k ∈ Z
+, (4.13) gives

(4.16)

k
∑

i=0

(2−iR0)
2−n

∫

B
2−i−1R0

|B|2 ∗ 1 ≤ C1

k
∑

i=0

(v+,2−iR0
− v+,2−i−1R0

)

= C1(v+,R0
− v+,2−k−1R0

)

≤ C1(β0 − 1) ≤ 2C1

For arbitrary ε > 0, we take

k = [2C1ε
−1],

then we can find 1 ≤ j ≤ k, such that

(2−jR0)
2−n

∫

B
2−j−1R0

|B|2 ∗ 1 ≤ 2

k + 1
C1 ≤ ε.

Since 2−j ≥ 2−k ≥ 2−2C1ε
−1

= exp
[

− 2(log 2)C1ε
−1
]

, it is sufficient to choose
C2 = −2(log 2)C1.

�

5. A Gauss image shrinking property

Lemma 5.1. For arbitrary a > 1 and β0 ∈ [1, a), there exists a positive constant
ε1 = ε1(a, β0) with the following property. If P1, Q ∈ Gn,m satisfies v(Q,P1) ≤
b ≤ β0, then we can find P2 ∈ Gn,m, such that v(P, P2) ≤ a for every P ∈ Gn,m

satisfying v(P, P1) ≤ b, and

(5.1) 1 ≤ v(Q,P2) ≤
{

1 if b <
√
2(1 + a−1)−

1

2

b− ε1 otherwise.

Proof. Obviously w(P, P ) = 1 for every P ∈ Gn,m, which shows Gn,m is a sub-
manifold in a Euclidean sphere via the Plücker embedding. Denote by r(·, ·) the
restriction of the spherical distance on Gn,m, then by spherical geometry, w = cos r
and hence v = sec r.

Denote α = arccos(a−1) and β = arccos(b−1). Now we put γ = α− β and

(5.2) c = sec γ = (a−1b−1 + (1− a−2)
1

2 (1− b−2)
1

2 )−1.

Once v(P2, P1) ≤ c, the triangle inequality implies

r(P, P2) ≤ r(P, P1) + r(P2, P1) ≤ arccos(b−1) + arccos(c−1) = α

for every P satisfying v(P, P1) ≤ b, and thus v(P, P2) ≤ a follows.

If b <
√
2(1 + a−1)−

1

2 , then a direct calculation shows β < α
2
, hence γ > β and

moreover v(Q,P1) ≤ b < c. Thereby P2 = Q is the required point.

Otherwise b ≥
√
2(1 + a−1)−

1

2 and hence c ≤ b. Obviously one of the following
two cases has to occur:
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Case I. v(Q,P1) < c. One can take P2 = Q to ensure v(·, P2) ≤ a whenever
v(·, P1) ≤ b. In this case

(5.3) b− v(Q,P2) = b− 1 ≥
√
2(1 + a−1)−

1

2 − 1.

Case II. v(Q,P1) ≥ c. Denote by θ1, · · · , θm the Jordan angles between Q and
P1, and put L2 =

∑

1≤α≤m θ
2
α, then as shown in [19], if we denote the shortest

normal geodesic from Q to P1 by γ, then the Jordan angles between Q and γ(t) are
θ1
L
t, · · · , θm

L
t, while the Jordan angles between γ(t) and P1 are

θ1
L
(L−t), · · · , θm

L
(L−t).

Hence

v(Q, γ(t)) =
∏

α

sec
(θα
L
t
)

,

v(γ(t), P1) =
∏

α

sec
(θα
L
(L− t)

)

.

Since t 7→ ∏

α sec
(

θα
L
(L− t)

)

is a strictly decreasing function, there exists a unique

t0 ∈ [0, L), such that
∏

α sec
(

θα
L
(L − t0)

)

= c. Now we choose P2 = γ(t0), then
v(P2, P1) = c and

(5.4) b− v(Q,P2) = b−
∏

α

sec
(θα
L
t0
)

.

It remains to show b−∏

α sec
(

θα
L
t0
)

is bounded from below by a universal positive
constant ε2. Once this holds true, in conjunction with (5.3) and (5.4),

(5.5) ε1 = min{
√
2(1 + a−1)−

1

2 − 1, ε2}
is the required constant.

t0 can be regarded as a smooth function on

Ω =
{

(b, θ1, · · · , θm) ∈ R
m+1,

√
2(1+a−1)−

1

2 ≤ b ≤ β0, 0 ≤ θα ≤ π

2
, c ≤

∏

α

sec(θα) ≤ b
}

which is the unique one satisfying
∏

α

sec
(θα
L
(L− t0)

)

= c.

(By (5.2), c can be viewed as a function of b.) The smoothness of t0 follows from
the implicit function theorem. Therefore F : Ω → R

(θ1, · · · , θm) 7→ b−
∏

α

sec
(θα
L
t0
)

is a smooth function on Ω. t0 < L implies F > 0; then the compactness of Ω gives
infΩ F > 0, and ε2 = infΩ F is the required constant.

�

Remark 5.1. ε1 is only depending on a and β0, non-decreasingly during the iteration
process in Theorem 6.1.
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Theorem 5.1. Let M =
{

(x, f(x)) : x ∈ DR0
⊂ R

n
}

be a graph with parallel mean
curvature, and ∆f ≤ β0 with β0 ∈ [1, 3). Assume there exists P0 ∈ Gn,m, such that

v(·, P0) ◦ γ ≤ b on M with 1 ≤ b ≤ β0. If b <
√
6
2
, then for arbitrary ε > 0, one can

find a constant δ ∈ (0, 1) depending only on n, β0 and ε such that

(5.6) 1 ≤ v(·, P1) ◦ γ ≤ 1 + ε on BδR0

for a point P1 ∈ Gn,m. If b ≥
√
6
2
, then there are two constants δ0 ∈ (0, 1) and

ε1 > 0, only depending on n and β0, such that

(5.7) 1 ≤ v(·, P1) ◦ γ ≤ b− ε1
2

on Bδ0R0

for a point P1 ∈ Gn,m.

Proof. Let H be a smooth function on Gn,m, then h = H ◦γ gives a smooth function
on M . Let η be a nonnegative smooth function on M with compact support and ϕ
be a H1,2-function on M , then by Stokes’ Theorem,

0 =

∫

M

div(ϕη∇h) ∗ 1

=

∫

M

ϕ∇η · ∇h ∗ 1 +
∫

M

η∇ϕ · ∇h ∗ 1 +
∫

M

ϕη∆h ∗ 1

=

∫

M

ϕ∇η · ∇h ∗ 1 +
∫

M

∇ϕ · ∇(ηh) ∗ 1−
∫

M

h∇ϕ · ∇η ∗ 1 +
∫

M

ϕη∆h ∗ 1.

Hence

(5.8)

∫

M

∇ϕ · ∇(ηh) ∗ 1 = −
∫

M

ϕ∇η · ∇h ∗ 1 +
∫

M

h∇ϕ · ∇η ∗ 1−
∫

M

ϕη∆h ∗ 1.

For arbitrary R ≤ R0, we take a cut-off function η supported in the interior of BR,
0 ≤ η ≤ 1, η ≡ 1 on BR

2

and |∇η| ≤ c0R
−1. For every ρ ≤ R

8
, denote by Gρ the

mollified Green function on BR. For arbitrary p ∈ BR
4

, inserting ϕ = Gρ(·, p) into
(5.8) gives
(5.9)

∫

BR

∇Gρ(·, p) · ∇(ηh) ∗ 1

=−
∫

BR

Gρ(·, p)∇η · ∇h ∗ 1 +
∫

BR

h∇Gρ(·, p) · ∇η ∗ 1−
∫

BR

Gρ(·, p)η∆h ∗ 1.

We write (5.9) as

Iρ = IIρ + IIIρ + IVρ.

By the definition of mollified Green functions,

(5.10) Iρ = −
∫

Bρ(p)

ηh = −
∫

Bρ(p)

h.

Hence

(5.11) lim
ρ→0+

Iρ = h(p).
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Noting that |dγ|2 = |B|2, we have |∇h| ≤ |∇GH||dγ| = |∇GH||B|. Here and in
the sequel, ∇G denotes the Levi-Civita connection on Gn,m. In conjunction with
(4.11), we have

(5.12)

|IIρ| ≤
∫

TR

Gρ(·, p)|∇η||∇h| ∗ 1

≤ sup
TR

Gρ(·, p) sup
TR

|∇η| sup
V

|∇GH|
∫

BR

|B| ∗ 1

≤ C(n)R1−n sup
V

|∇GH|
(

∫

BR

|B|2 ∗ 1
)

1

2

Vol(BR)
1

2

≤ c1(n) sup
V

|∇GH|
(

R2−n

∫

BR

|B|2 ∗ 1
)

1

2

.

Here TR
def.
= BR\B̄R

2

and

V = {P ∈ Gn,m : v(P, P0) ≤ 3},
which is a compact subset of U.

As shown in Section 2, there is a one-to-one correspondence between the points in
U and the n×m-matrices. And each n×m-matrix can be viewed as a corresponding
vector in R

nm. Define T : U → R
nm

Z 7→
(

det(I + ZZT )
1

2 − 1
) Z
(

tr(ZZT )
) 1

2

Note that
(

tr(ZZT )
)

1

2 = (
∑

i,α Z
2
iα)

1

2 equals |Z| when Z is treated as a vector in R
nm.

Since t ∈ [0,+∞) 7→
[

det
(

I + (tZ)(tZ)T
)]

1

2 is a strictly increasing function and
maps [0,+∞) onto [1,+∞), T is a diffeomorphism. By (2.6), |T (Z)| = v(P, P0)−1.
Via T , we can define the mean value of γ on BR by

(5.13) γ̄R = T−1
[

∫

BR
(T ◦ γ) ∗ 1
Vol(BR)

]

.

Note that T maps sublevel sets of v(·, P0) onto Euclidean balls centered at the origin.
Hence the convexity of Euclidean balls gives

(5.14) v(γ̄R, P0) ≤ sup
BR

v(·, P0) ◦ γ ≤ b.

The compactness of V ensures the existence of positive constants K1 and K2, such
that for arbitrary X ∈ TV,

K1|X| ≤ |T∗X| ≤ K2|X|.

The classical Neumann-Poincaré inequality says
∫

DR

|φ− φ̄|2 ≤ C(n)R2

∫

DR

|Dφ|2.
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As shown above, BR can be regarded as DR equipped with the metric g = gijdx
idxj,

and the eigenvalues of (gij) are bounded. Hence it is easy to get

∫

BR

|φ− φ̄|2 ∗ 1 ≤ C(n)R2

∫

BR

|∇φ|2 ∗ 1.

Here φ can be a vector-valued function.

Denote by dG the distance function on Gn,m. Then, by using the above Neumann-
Poincarè inequality we have

(5.15)

∫

BR

d2G(γ, γ̄R) ∗ 1 ≤ K−2
1

∫

BR

∣

∣T ◦ γ − T (γ̄R)
∣

∣

2 ∗ 1

≤ C(n)K−2
1 R2

∫

BR

∣

∣d(T ◦ γ)
∣

∣

2 ∗ 1

≤ C(n)K−2
1 K2

2R
2

∫

BR

|dγ|2 ∗ 1

= C(n)K−2
1 K2

2R
2

∫

BR

|B|2 ∗ 1.

Now we write

h = H ◦ γ = H(γ̄R) +
(

H ◦ γ −H(γ̄R)
)

,

then

(5.16) IIIρ = H(γ̄R)

∫

BR

∇Gρ(·, p) ·∇η ∗1+
∫

TR

(

H ◦γ−H(γ̄R)
)

∇Gρ(·, p) ·∇η ∗1.

Similar to (5.10),

(5.17) lim
ρ→0+

H(γ̄R)

∫

BR

∇Gρ(·, p) · ∇η ∗ 1 = lim
ρ→0+

H(γ̄R)−
∫

Bρ(p)

η = H(γ̄R).

The second term can be controlled by

(5.18)

∫

TR

(

H ◦ γ −H(γ̄R)
)

∇Gρ(·, p) · ∇η ∗ 1

≤ sup
V

|∇GH| sup
TR

|∇η|
∫

TR

dG(γ, γ̄R)|∇Gρ(·, p)| ∗ 1

≤c0R−1 sup
V

|∇GH|
(

∫

BR

d2G(γ, γ̄R)
)

1

2
(

∫

TR

|∇Gρ(·, p)|2 ∗ 1
)

1

2

Substituting (4.12) and (5.15) into (5.18) yields

(5.19)

∫

TR

(

H◦γ−H(γ̄R)
)

∇Gρ(·, p)·∇η∗1 ≤ c2(n) sup
V

|∇GH|
(

R2−n

∫

BR

|B|2∗1
)

1

2

.
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From (5.9), (5.11), (5.12), (5.16), (5.17) and (5.19), letting ρ→ 0 we arrive at

(5.20)

h(p) ≤H(γ̄R) + c3(n) sup
V

|∇GH|
(

R2−n

∫

BR

|B|2 ∗ 1
)

1

2

− lim sup
ρ→0+

∫

BR

Gρ(·, p)η∆h ∗ 1.

for every p ∈ BR
4

.

The compactness of Gn,m implies the existence of a positive constant K3, such
that

(5.21)
∣

∣∇Gv(·, P )
∣

∣ ≤ K3 whenever 1 ≤ v(·, P ) ≤ 3

for arbitrary P ∈ Gn,m. Hence by inserting H = v(·, P ) into (5.20) one can obtain

(5.22)

v(γ(p), P ) ≤v(γ̄R, P ) + c3K3

(

R2−n

∫

BR

|B|2 ∗ 1
)

1

2

− lim sup
ρ→0+

∫

BR

Gρ(·, p)η∆
(

v(·, P ) ◦ γ
)

∗ 1.

By Lemma 5.1, if we put P1 = γ̄R, then 1 ≤ v(·, P1) ≤ 3 whenever 1 ≤ v(·, P0)) ≤
b provided that b <

√
6
2
, which implies v(·, γ̄R) ◦ γ is a subharmonic function on BR.

Letting P = γ̄R in (5.22) yields

(5.23) v(γ(p), γ̄R) ≤ 1 + c3K3

(

R2−n

∫

BR

|B|2 ∗ 1
)

1

2

for all p ∈ BR
4

. By Theorem 4.1, for every ε > 0, there is δ ∈ (0, 1), depending only

on n, β0 and ε, such that

(5.24) R2−n

∫

BR

|B|2 ∗ 1 ≤ c−2
3 K−2

3 ε2

for some R ∈ [4δR0, R0]. Substituting (5.24) into (5.23) gives (5.6).

If b ≥
√
6
2
, we put ε1 = ε1(3, β0) as given in Lemma 5.1. Then Theorem 4.1

enables us to find R ∈ [4δ0R0, R0] such that

(5.25) R2−n

∫

BR

|B|2 ∗ 1 ≤ 1

4
c−2
3 K−2

3 ε21,

where δ0 only depends on n and β0. Applying Lemma 5.1, one can find P1 ∈ Gn,m,
such that

(5.26) v(γ̄R, P1) ≤ b− ε1

and 1 ≤ v(·, P1) ≤ 3 whenever 1 ≤ v(·, P0) ≤ b. Theorem 3.1 ensures that v(·, P1)◦γ
is a subharmonic function on BR. Taking P = P1 in (5.22) yields

(5.27) v
(

γ(p), P1

)

≤ v(γ̄R, P1) + c3K3(
1

4
c−2
3 K−1

3 ε21)
1

2 ≤ b− ε1
2

for all p ∈ BR
4

. Here we have used (5.25) and (5.26). From the above inequality

(5.7) immediately follows.
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�

6. Bernstein type results

Now we can start an iteration as in [10] and [9] to get the following estimates:

Theorem 6.1. Let M =
{

(x, f(x)) : x ∈ DR0
⊂ R

n
}

be a graph with parallel
mean curvature, and ∆f ≤ β0 with β0 ∈ [1, 3), then for arbitrary ε > 0, there exists
δ ∈ (0, 1), only depending on n, β0 and ε, not depending on f and R0, such that

1 ≤ v(·, γ(o)) ◦ γ ≤ 1 + ε on BδR0
,

where o = (0, f(0)). In particular, if |Df |(0) = 0, then

∆f ≤ 1 + ε on DδR0
.

Proof. Let {ǫ1, · · · , ǫn+m} be canonical orthonormal basis of Rn+m and put P0 =

ǫ1 ∧ · · · ∧ ǫn. Then ∆f ≤ β0 implies v(·, P0) ≤ β0 on BR0
. If β0 <

√
6
2
, we put

Q0 = P0. Otherwise by Theorem 5.1, one can find P1 ∈ Gn,m, such that

(6.1) v(·, P1) ◦ γ ≤ β0 − ε1 on Bδ0R0

with constants δ0 and ε1 depending only on n and β0. Similarly for each j ≥ 1,

if β0 − jε1 <
√
6
2
, then we put Q0 = Pj ; otherwise Theorem 5.1 enables us to find

Pj+1 ∈ Gn,m satisfying

(6.2) v(·, Pj+1) ◦ γ ≤ β0 − (j + 1)ε1 on B
δ
j+1

0
R0
.

Denoting

k =
[

(3−
√
6

2
)ε−1

1

]

+ 1,

then obviously β0 − kε1 <
√
6
2
. Hence there exists Q0 ∈ Gn,m, such that

(6.3) v(·, Q0) ◦ γ ≤ b <

√
6

2
on Bδk

0
R0
.

Again using Theorem 5.1, for arbitrary ε > 0, there exists δ1 ∈ (0, 1), depending
only on n, β0 and ε, such that

(6.4) v(·, Q1) ◦ γ ≤
√
2(1 + (1 + ε)−1)−

1

2 on Bδ1δ
k
0
R0

for a point Q1 ∈ Gn,m. With r(·, ·) as in the proof of Lemma 5.1, then

r(·, Q1) ◦ γ = arccos v(·, Q1)
−1 ◦ γ ≤ 1

2
arccos(1 + ε)−1.

Using the triangle inequality we get

r(·, γ(0)) ◦ γ ≤ r(·, Q1) ◦ γ + r(γ(0), Q1) ◦ γ ≤ arccos(1 + ε)−1.

Thus v(·, γ(0)) ◦ γ ≤ 1 + ε on Bδ1δ
k
0
R0
. It is sufficient to put δ = δ1δ

k
0 .

�



26 J. JOST, Y. L. XIN AND LING YANG

Letting R0 → +∞ we can arrive at a Bernstein-type theorem:

Theorem 6.2. Let zα = fα(x1, · · · , xn), α = 1, · · · , m, be smooth functions de-
fined everywhere in R

n (n ≥ 3, m ≥ 2). Suppose their graph M = (x, f(x)) is
a submanifold with parallel mean curvature in R

n+m. Suppose that there exists a
number β0 < 3 with

(6.5) ∆f =
[

det
(

δij +
∑

α

∂fα

∂xi
∂fα

∂xj

)]
1

2 ≤ β0.

Then f 1, · · · , fm has to be affine linear (representing an affine n-plane).

Final remarks

For any P0 ∈ Gn,m, denote by r the distance function from P0 in Gn,m. The
eigenvalues of Hess(r) were computed in [12]. Then define

BJX(P0) =
{

P ∈ Gn,m : sum of any two Jordan angles between P and P0 <
π

2

}

in the geodesic polar coordinate neighborhood around P0 on the Grassmann mani-
fold. From (3.2), (3.7) and (3.9) in [12] it turns out that Hess(r) > 0 on BJX(P0).
Moreover, let Σ ⊂ BJX(P0) be a closed subset, then θα + θβ ≤ β0 <

π
2
and

Hess(r) ≥ cotβ0 g,

where g is the metric tensor onGn,m. Hence, the composition of the distance function
with the Gauss map is a strongly subharmonic function on M , provided the Gauss
image of the submanifoldM with parallel mean curvature in R

n+m is contained in Σ.
The largest sub-level set of v(·, P0) in BJX(P0) were studied in [12]. The Theorem
3.2 in [12] shows that

max{w(P, P0); P ∈ ∂BJX(P0)} =
1

2
.

Therefore,

{P ∈ Gn,m, v(·, P0) < 2} ⊂ BJX(P0),

and

{P ∈ Gn,m; v(·, P0) = 2}
⋂

∂BJX(P0) 6= ∅.

On the other hand, we can compute directly. From (2.7) we also have

Hess(v(·, P0)) =
∑

m+1≤i≤n,α

v ω2
iα +

∑

α

(1 + 2λ2α)v ω
2
αα +

∑

α6=β

λαλβv ωαα ⊗ ωββ

+
∑

α<β

[

(1 + λαλβ)v
(

√
2

2
(ωαβ + ωβα)

)2

+ (1− λαλβ)v
(

√
2

2
(ωαβ − ωβα)

)2]

.
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It follows that v(·, P0) is strictly convex on BJX(P0). Moreover, if θα + θβ ≤ β0 <
π
2
,

then

Hess(v(·, P0)) ≥ (1− tan θα tan θβ)v g =
cos(θα + θβ)

cos θα cos θβ
v g ≥ cos β0v g

where g is the metric tensor of Gn,m and

∆v(γ(·), P0) ≥ cos β0v|B|2 ≥ cos β0|B|2.
Now, we define

Σ(P0) = BJX(P0)
⋃

{P ∈ Gn,m; v(·, P0) < 3} ⊂ Gn,m.

The function v(·, P0) is not convex on all of Σ(P0). But, its precomposition with
the Gauss map could be a strongly subharmonic function on M under suitable
conditions.

Therefore, we could obtain a more general result: Let M be a complete subman-
ifold in R

n+m with parallel mean curvature. If its image under the Gauss map is
contained in a closed subset of Σ(P0) for some P0 ∈ Gn,m, then M has to be an
affine linear subspace.
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