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Abstract

We introduce a more general discrete fractional operator, given by convex linear combination of the delta and nabla

fractional sums. Fundamental properties of the new fractional operator are proved. As particular cases, results on delta

and nabla discrete fractional calculus are obtained.
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1 Introduction

The main goal of this note is to introduce a new and more general fractional sum operator that unify

and extend the discrete fractional operators used in fractional calculus. Looking to the literature of discrete

fractional difference operators, two approaches are found (see, e.g., [1, 2]): one using the ∆ point of view

(sometimes called the forward fractional difference approach), another using the ∇ perspective (sometimes

called the backward fractional difference approach). Here we introduce a new operator, making use of the

symbol γ♦ (cf. Definition 3.1). When γ = 1 the γ♦ operator is reduced to the ∆ one; when γ = 0 the γ♦

operator coincides with the corresponding ∇ fractional sum.

The work is organized as follows. In Section 2 we review the basic definitions of the discrete fractional

calculus. Our results are then given in Section 3: we introduce the fractional diamond sum (Definition 3.1)

and prove its main properties. We end with Section 4 of conclusions and future perspectives.

2 Preliminaries

Here we only give a very short introduction to the basic definitions in discrete fractional calculus. For more

on the subject we refer the reader to [3–5].

We begin by introducing some notation used throughout. Let a be an arbitrary real number and b= a+k

for a certain k ∈N with k≥ 2. Let T= {a,a+1, . . . , b}. According with [6], we define the factorial function

t(n) = t(t−1)(t−2) . . . (t−n+1), n∈N.

Also in agreement with the same authors [7], we define

tn = t(t+1)(t+2) . . . (t+n−1), n∈N,

and t0 =1. Extending the two above definitions from an integer n to an arbitrary real number α, we have

t(α) =
Γ(t+1)

Γ(t+1−α)
and tα =

Γ(t+α)

Γ(t)
,

∗Corresponding author.
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where Γ is the Euler gamma function. Throughout the text we shall use the standard notations σ(s) = s+1

and ρ(s)= s−1 of the time scale calculus in Z [6, 7].

Definition 2.1 ([8]). The discrete delta fractional sum operator is defined by

(∆−α
a f)(t)=

1

Γ(α)

t−α
∑

s=a

(t−σ(s))(α−1)f(s),

where α> 0. Here f is defined for s= a mod (1) and ∆−α
a f is defined for t=(a+α) mod (1).

Remark 2.2. Given a real number a and b= a+k, k∈N,
∑b

s=a
g(s)= g(a)+g(a+1)+ · · ·+g(b).

Remark 2.3. Let Nt = {t, t+1, t+2, . . .}. We note that ∆−α
a maps functions defined on Na to functions defined

on Na+α.

Analogously to Definition 2.1, one considers the discrete nabla fractional sum operator:

Definition 2.4 ([1]). The discrete nabla fractional sum operator is defined by

(∇−β
a f)(t)=

1

Γ(β)

t
∑

s=a

(t−ρ(s))β−1f(s),

where β > 0. Here f is defined for s= a mod (1) and ∇−β
a f is defined for t= a mod (1).

Remark 2.5. Let Na = {a,a+1,a+2, . . .}. The operator ∇−β
a maps functions defined on Na to functions defined

on Na. The fact that f and ∇−β
a f have the same domain, while f and ∆−α

a f do not, explains why some authors

prefer the nabla approach.

The next result gives a relation between the delta fractional sum and the nabla fractional sum operators.

Lemma 2.6 ([1]). Let 0≤m−1<ν≤m, where m denotes an integer. Let a be a positive integer, and y(t) be

defined on t∈Na = {a,a+1,a+2, . . .}. The following statement holds: (∆−ν
a y)(t+ν)= (∇−ν

a y)(t), t∈Na.

3 Main Results

We introduce a general discrete diamond-gamma fractional sum operator by using a convex combination of

the delta and nabla fractional sum operators.

Definition 3.1. The diamond-γ fractional operator of order (α,β) is given, when applied to a function f at

point t, by
(

γ♦
−α,−β
a f

)

(t)= γ (∆−α
a f)(t+α)+(1−γ)

(

∇−β
a f

)

(t),

where α> 0, β > 0, and γ ∈ [0,1]. Here, both f and γ♦
−α,−β
a f are defined for t= a mod (1).

Remark 3.2. Similarly to the nabla fractional operator, our operator γ♦
−α,−β
a maps functions defined on Na to

functions defined on Na, Na = {a,a+1,a+2, . . .} for a a given real number.

Remark 3.3. The new diamond fractional operator of Definition 3.1 gives, as particular cases, the operator of

Definition 2.1 for γ=1,
(

1♦
−α,−β
a f

)

(t)= (∆−α
a f)(t+α), t≡ a mod (1),

and the operator of Definition 2.4 for γ=0,

(

0♦
−α,−β
a f

)

(t)=
(

∇−β
a f

)

(t), t≡ a mod (1).

The next theorems give important properties of the new, more general, discrete fractional operator γ♦
−α,−β
a .

Theorem 3.4. Let f and g be real functions defined on Na, Na = {a,a+1,a+2, . . .} for a a given real number.

The following equality holds:

(

γ♦
−α,−β
a (f+g)

)

(t)=
(

γ♦
−α,−β

a
f
)

(t)+
(

γ♦
−α,−β

a
g
)

(t).
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Proof. The intended equality follows from the definition of diamond-γ fractional sum of order (α,β):

(γ♦
−α,−β
a (f+g))(t)= γ(∆−α

a (f+g))(t+α)+(1−γ)(∇−β
a (f +g))(t)

=
γ

Γ(α)

t
∑

s=a

(t+α−σ(s))(α−1)(f(s)+g(s))+
1−γ

Γ(β)

t
∑

s=a

(t−ρ(s))β−1(f(s)+g(s))

=
γ

Γ(α)

t
∑

s=a

(t+α−σ(s))(α−1)f(s)+
γ

Γ(α)

t
∑

s=a

(t+α−σ(s))(α−1)g(s)

+
1−γ

Γ(β)

t
∑

s=a

(t−ρ(s))β−1f(s)+
1−γ

Γ(β)

t
∑

s=a

(t−ρ(s))β−1g(s)

=

[

γ

Γ(α)

t
∑

s=a

(t+α−σ(s))(α−1)f(s)+
1−γ

Γ(β)

t
∑

s=a

(t−ρ(s))β−1f(s)

]

+

[

γ

Γ(α)

t
∑

s=a

(t+α−σ(s))(α−1)g(s)+
1−γ

Γ(β)

t
∑

s=a

(t−ρ(s))β−1g(s)

]

=(γ♦
−α,−β
a f)(t)+(γ♦

−α,−β
a g)(t).

Theorem 3.5. Let f(t)= k on Na, k a constant. The following equality holds:

(γ♦
−α,−β
a f)(t)= γ

Γ(t−a+1+α)k

Γ(α+1)Γ(t−a+1)
+(1−γ)

Γ(t−a+1+β)k

Γ(β+1)Γ(t−a+1)
.

Proof. By definition of diamond-γ fractional sum of order (α,β), we have

(γ♦
−α,−β
a k)(t)= γ(∆−α

a k)(t+α)+(1−γ)(∇−β
a k)(t)=

γ

Γ(α)

t
∑

s=0

k(t+α−σ(s))(α−1)+
1−γ

Γ(β)

t
∑

s=0

k(t−ρ(s))β−1

= γ
Γ(t−a+1+α)

αΓ(α)Γ(t−a+1)
k+(1−γ)

Γ(t−a+1+β)

βΓ(β)Γ(t−a+1)
k= γ

Γ(t−a+1+α)

Γ(α+1)Γ(t−a+1)
k+(1−γ)

Γ(t−a+1+β)

Γ(β+1)Γ(t−a+1)
k.

Corollary 3.6. Let f(t)≡ k for a certain constant k. Then,

(∆−α
a f)(t+α)=

Γ(t−a+1+α)

Γ(α+1)Γ(t−a+1)
k. (1)

Proof. The result follows from Theorem 3.5 choosing γ=1 and recalling that (1♦
−α,−β
a k)(t)= (∆−α

a k)(t+α).

Remark 3.7. In the particular case when a=0, equality (1) coincides with the result of [8, Sect. 5].

The fractional nabla result analogous to Corollary 3.6 is easily obtained:

Corollary 3.8. If k is a constant, then

(∇−β
a k)(t)=

Γ(t−a+1+β)

Γ(β+1)Γ(t−a+1)
k.

Proof. The result follows from Theorem 3.5 choosing γ=0 and recalling that (0♦
−α,−β
a k)(t)= (∇−β

a k)(t).

Theorem 3.9. Let f be a real valued function and α1, α2, β1, β2 > 0. Then,

(

γ♦
−α1,−β1

a

(

γ♦
−α2,−β2

a f
))

(t)= γ
(

γ♦
−(α1+α2),−(β1+α2)
a f

)

(t)+(1−γ)
(

γ♦
−(α1+β2),−(β1+β2)
a f

)

(t).
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Proof. Direct calculations show the intended relation:

(γ♦
−α1,−β1

a (γ♦
−α2,−β2

a f))(t)= γ(∆−α1

a (γ♦
−α2,−β2

a f))(t+α1)+(1−γ)(∇−β1

a (γ♦
−α2,−β2

a f))(t)

= γ2(∆−α1

a (∆−α2

a f))(t+α1+α2)+γ(1−γ)
(

∆−α1

a

(

∇−β2

a f
))

(t+α1)+(1−γ)γ
(

∇−β1

a (∆−α2

a f)
)

(t+α2)

+(1−γ)2
(

∇−β1

a

(

∇−β2

a f
))

(t)

= γ2
(

∆−(α1+α2)
a f

)

(t+α1+α2)+γ(1−γ)
(

∆−α1

a

(

∆−β2

a f
))

(t+α1+β2)

+(1−γ)γ
(

∇−β1

a (∇−α2

a f)
)

(t)+(1−γ)2
(

∇−(β1+β2)
a f

)

(t)

= γ2
(

∆−(α1+α2)
a f

)

(t+α1+α2)+γ(1−γ)
(

∆−(α1+β2)
a f

)

(t+α1+β2)

+(1−γ)γ
(

∇−(β1+α2)
a f

)

(t)+(1−γ)2
(

∇−(β1+β2)
a f

)

(t)

= γ
[

γ
(

∆−(α1+α2)
a f

)

(t+α1+α2)+(1−γ)
(

∇−(β1+α2)
a f

)

(t)
]

+(1−γ)
[

γ
(

∆−(α1+β2)
a f

)

(t+α1+β2)+(1−γ)
(

∇−(β1+β2)
a f

)

(t)
]

.

Remark 3.10. If γ=0, then (γ♦
−α1,−β1

a (γ♦
−α2,−β2

a f)) (t)=
(

∇−(β1+β2)
a f

)

(t).

Remark 3.11. If γ=1, then (γ♦
−α1,−β1

a (γ♦
−α2,−β2

a f)) (t)=
(

∆−(α1+α2)
a f

)

(t+α1+α2).

Remark 3.12. If α1 =α2 =α and β1 = β2 = β, then (γ♦
−α,−β
a (γ♦

−α,−β
a f))(t)= (γ♦

−α,−β
a f)(t).

We now prove a general Leibniz formula.

Theorem 3.13 (Leibniz formula). Let f and g be real valued functions, 0<α, β < 1. For all t such that t= a

mod (1), the following equality holds:

(

γ♦
−α,−β
a (fg)

)

(t)= γ

∞
∑

k=0

(

−α

k

)

[(

∇kg
)

(t)
]

·
[(

∆−(α+k)
a f

)

(t+α+k)
]

+(1−γ)

∞
∑

k=0

(

−β

k

)

[(

∇kg
)

(t)
] [(

∆−(β+k)
a f

)

(t+β+k)
]

, (2)

where
(

u

v

)

=
Γ(u+1)

Γ(v+1)Γ(u−v+1)
.

Proof. By definition of the diamond fractional sum,

(

γ♦
−α,−β
a (fg)

)

(t)= γ (∆−α
a (fg))(t+α)+(1−γ)

(

∇−β
a (fg)

)

(t)

=
γ

Γ(α)

t
∑

s=a

(t+α−σ(s))(α−1)f(s)g(s)+
1−γ

Γ(β)

t
∑

s=a

(t−ρ(s))β−1f(s)g(s).

By Taylor’s expansion of g(s) [9],

g(s)=

∞
∑

k=0

(s− t)k

k!
(∇kg)(t)=

∞
∑

k=0

(−1)k
(t−s)(k)

k!
(∇kg)(t).

Substituting the Taylor series of g(s) at t,

(

γ♦
−α,−β
a (fg)

)

(t)=
γ

Γ(α)

t
∑

s=a

(t+α−σ(s))(α−1)f(s)

[

∞
∑

k=0

(−1)k(t−s)(k)
(∇kg)(t)

k!

]

+
1−γ

Γ(β)

t
∑

s=a

(t−ρ(s))β−1f(s)

[

∞
∑

k=0

(−1)k(t−s)(k)
(∇kg)(t)

k!

]

.

Since

(t+α−σ(s))(α−1)(t−s)(k) =(t+α−σ(s))(α+k+1),

(t−ρ(s))β−1(t−s)(k) =(t+β−σ(s))(β+k+1),
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and
t

∑

s=t−k+1

(t−s)(k) =0, we have

(

γ♦
−α,−β
a (fg)

)

(t)=
γ

Γ(α)

∞
∑

k=0

(−1)k
(∇kg)(t)

k!

t−k
∑

s=a

(t+α−σ(s))(α+k−1)f(s)

+
1−γ

Γ(β)

∞
∑

k=0

(−1)k
(∇kg)(t)

k!

t−k
∑

s=a

(t+β−σ(s))(β+k−1)f(s).

Because

(−1)k =
Γ(−α+1)Γ(α)

Γ(−α+k+1)Γ(k+α)
=

Γ(−β+1)Γ(β)

Γ(−β+k+1)Γ(k+β)

and k! = Γ(k+1), the above expression becomes

(

γ♦
−α,−β
a (fg)

)

(t)=
γ

Γ(α)

∞
∑

k=0

(∇kg)(t)

(

−α

k

)

·

[

1

Γ(k+α)

t−k
∑

s=a

(t+α−σ(s))(α+k−1)f(s)

]

+
1−γ

Γ(β)

∞
∑

k=0

(∇kg)(t)

(

−β

k

)

[

1

Γ(k+β)

t−k
∑

s=a

(t+β−σ(s))(β+k−1)f(s)

]

= γ

∞
∑

k=0

(

−α

k

)

(∇kg)(t)(∆−(α+k)
a f)(t+α+k)

+(1−γ)

∞
∑

k=0

(

−β

k

)

(∇kg)(t)(∆−(β+k)
a f)(t+β+k).

Remark 3.14. Choosing γ=0 in our Leibniz formula (2), we obtain that

(∇−β
a (fg))(t)=

∞
∑

k=0

(

−β

k

)

[

(∇kg)(t)
][

(∆−(β+k)
a f)(t+β+k)

]

.

Remark 3.15. Choosing γ=1 in our Leibniz formula (2), we obtain that

(∆−α
a (fg))(t+α)=

∞
∑

k=0

(

−α

k

)

[

(∇kg)(t)
][

(∆−(α+k)
a f)(t+α+k)

]

. (3)

As a particular case of (3), let a=0. Then, recalling Lemma 2.6, we obtain the Leibniz formulas of [10].

4 Conclusion

The discrete fractional calculus is a subject under strong current research (see, e.g., [5, 11–14] and references

therein). Two versions of the discrete fractional calculus, the delta and the nabla, are now standard in the

fractional theory. Motivated by the diamond-alpha dynamic derivative on time scales [15–17] and the fractional

derivative of [18], we introduce here a combined diamond-gamma fractional sum of order (alpha, beta), as a

linear combination of the delta and nabla fractional sum operators of order alpha and beta, respectively. The

new operator interpolates between the delta and nabla cases, reducing to the standard fractional delta operator

when γ=1 and to the fractional nabla sum when γ=0.

Using the discrete fractional diamond sum here proposed, one can now introduce the discrete fractional

diamond difference in the usual way. It is our intention to generalize the new discrete diamond fractional

operator to an arbitrary time scale T (i.e., to an arbitrary nonempty closed set of the real numbers). Another

line of research, to be addressed elsewhere, consists to investigate the usefulness of modeling with fractional

diamond equations and study corresponding fractional variational principles.
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7 M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2003.
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