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TILTING MUTATION OF BRAUER TREE ALGEBRAS

TAKUMA AIHARA

Abstract. We define tilting mutations of symmetric algebras as the endomorphism algebras of
Okuyama-Rickard complexes. For Brauer tree algebras, we give an explicit description of the change of
Brauer trees under mutation.

In representation theory of algebras, derived and stable equivalences play a crucial role. Rickard [Ri]

proved that derived equivalent classes of Brauer tree algebras are determined by the same numerical

invariants. Okuyama and Rickard [Ok, Ri2] introduced tilting mutation for tilting complexes in the case

of symmetric algebras, and their tilting mutation plays a crucial role for the study of Broué’s abelian

defect group conjecture. In this paper, we will show tilting mutations of Brauer trees using their tilting

mutation.

1. Main theorem

In this paper, let A be a finite dimensional k-algebra for an algebraically closed field k and we assume

that A is basic and indecomposable as A-A-bimodules. Let {e1, e2, · · · , en} be a basic set of orthogonal

local idempotents in A and put E = {1, 2, · · · , n}. For any i ∈ E, we set Pi = eiA and Si = Pi/radPi.

We denote by mod-A the category of finitely generated right A-modules, by proj-A the full subcate-

gory of mod-A consisting of finitely generated projective right A-modules, by mod-A the stable module

category of mod-A and by K
b(proj-A) the homotopy category of bounded complexes over proj-A.

In [Ok], Okuyama constructed a tilting complex induced by a subset of E for a symmetric algebra.

Let us start with the following definition.

Definition 1.1. Let E0 be a subset of E and put e =
∑

i∈E0
ei. For any i ∈ E, we set a complex by

Ti =



























(0th) (1st)

Pi
// 0 (i ∈ E0)

Qi πi

// Pi (i 6∈ E0)

where Qi
πi−→ Pi is a minimal projective presentation of eiA/eiAeA. Now we define T = ⊕i∈ETi and call

it the Okuyama-Rickard complex with respect to E0.

Note that this is a special case of silting mutation defined in [AI].

We have the following observation.

Proposition 1.2. [Ok, Proposition 1.1] If A is symmetric, then any Okuyama-Rickard complex T is a

tilting complex. In particular EndKb(proj-A)(T ) is derived equivalent to A.

Note that an Okuyama-Rickard complex is not necessarily a tilting complex if we drop the assumption

that A is symmetric.
1
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Definition 1.3. Let B be a finite dimensional k-algebra. For any i ∈ E, we say that B is the mutation

of A with respect to i and write A
i
−→ B or B = µi(A) if B is the endomorphism algebra of the Okuyama-

Rickard complex with respect to E0 = E\{i}.

The aim of this paper is to give an explicit description of the change of Brauer trees under mutation.

Let us recall the definitions of Brauer trees and Brauer tree algebras

Definition 1.4. [Alp, GR] A Brauer graph G is a finite connected graph, together with the following

data:

(i) There exists a cyclic ordering of the edges adjacent to each vertex, usually described by the clockwise

ordering given by a fixed planar representation of G;

(ii) For each vertex v, there exists a positive integer mv assigned to v, called the multiplicity. We call

a vertex v exceptional if mv > 1.

A Brauer tree G is a Brauer graph which is a tree and having at most one exceptional vertex.

A Brauer tree algebra A is a basic algebra given by a Brauer tree G as follows:

(i) There exists a one-to-one correspondence between the simple A-modules Si and the edges i of G;

(ii) For any edges i of G, the projective indecomposable A-module Pi has soc(Pi) ≃ Pi/rad(Pi) and

rad(Pi)/soc(Pi) is the direct sum of two uniserial modules whose composition factors are, for the

cyclic ordering (i, i1, · · · , ia, i) of the edges adjacent to a vertex v, Si1 , · · · , Sia , Si, Si1 , · · · , Sia (from

the top to the socle) where Si appears mv − 1 times.

Any Brauer tree algebra is a symmetric algebra which is uniquely determined by the Brauer tree up

to isomorphism.

Now we state main theorem in this paper.

Theorem 1.5. Let A be a Brauer tree algebra and B the mutation of A with respect to the edge 1. Then

B is a Brauer tree algebra, and the Brauer tree of B is given by the following rule, where the multiplicities

of vertices do not change:

(1) the case of which the edge 1 is not at the end;

◦

@@
@@

@@
@ ◦

3

��
��

��
�

◦
1

◦

◦
2

�������
◦

@@@@@@@

◦

@@
@@

@@
@ ◦

3
��

��
��

�

1

oooooooooooooooooooooooooooo

◦ ◦

◦

2
�������

◦

@@@@@@@

1 //

(2) the case of which the edge 1 is at the end;

◦

��
��

��
�

◦
1

◦

◦

@@@@@@@

◦

��
��

��
�

1

jjjjjjjjjjjjjjjjjjj

◦ ◦

◦

@@@@@@@

1 //
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2. Proof of main theorem

We define an (n×n)-matrix CA as CA
ij = dimkHomA(Pi, Pj) for any i, j ∈ E, called the Cartan matrix

of A. Note that if A is symmetric, then we have CA
ij = CA

ji for any i, j ∈ E.

We have the following property.

Lemma 2.1. Let A be a Brauer tree algebra. Then the following hold:

(1) If the Brauer tree of A is given, then the Cartan matrix CA of A is determined as follows:

CA
ij =











(the sum of the multiplicities of the ends of the edge i) if i = j;

(the multiplicity of v) if i 6= j and the edges i and j have the common vertex v;

0 otherwise.

(2) If the Cartan matrix CA of A and dimkExt
1
A(Si, Sj) for any i, j ∈ E are given, then we can determine

the Brauer tree of A explicitly.

Proof. The assertion (1) can be checked easily. We show the assertion (2). To prove the assertion (2), we

shall give the cyclic ordering of the edges. Fix i ∈ E. We define a subset I of E by I = {j ∈ E | CA
ij 6= 0}.

Since G is a Brauer tree, we have a disjoint union I = {i} ∪ I0 ∪ I1 satisfying the following:

If i0 ∈ I0 and i1 ∈ I1, then CA
i0i1

= 0.

Since G is a Brauer tree, for any j ∈ I0 there uniquely exists j′ ∈ {i} ∪ I0 such that Ext1A(Sj , Sj′) 6= 0.

Therefore there exist sequences

i = i0, i1, · · · , ia, ia+1 = i in {i} ∪ I0

i = j0, j1, · · · , jb, jb+1 = i in {i} ∪ I1

such that Ext1A(Six , Six+1) 6= 0 for any 0 ≤ x ≤ a and Ext1A(Sjy , Sjy+1) 6= 0 for any 0 ≤ y ≤ b. Hence we

can explicitly determine the Brauer tree of A

◦
ia

@@
@@

@@
@ ◦

j0

��
��

��
�

◦
i

◦

◦
i0

�������
◦

jb

@@@@@@@

�

The following result was proved by [Ri].

Theorem 2.2. [Ri, Theorem 4.2] For any Brauer tree algebras A, there exists a tilting complex P in

K
b(proj-A) such that the endomorphism algebra EndKb(proj-A)(P ) of P is a Brauer tree algebra for a star

with exceptional vertex in the center. In particular, up to derived equivalence, a Brauer tree algebra is

determined by the number of the edges and the multiplicity of the Brauer tree.

We show the following easy observation.

Proposition 2.3. Let A and B be derived equivalent symmetric k-algebras. If A is a Brauer tree algebra,

then so is B.

Proof. By Theorem 2.2, A is derived equivalent to a Brauer tree algebra C for a star with the exceptional

vertex in the center. This implies that B is stable equivalent to C. Note that C is a symmetric Nakayama

algebra. Hence the assertion follows from [ARS, X, Theorem 3.14]. �
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We also need the following result.

Lemma 2.4. [Ok, Lemma 2.1] Let E0 be a subset of E and put e =
∑

i∈E0
ei. Suppose that A is

symmetric and T is the Okuyama-Rickard complex with respect to E0. Now the endomorphism algebra

B = EndKb(proj-A)(T ) of T is stable equivalent to A and we denote the stable equivalence by F : mod-A
∼
→

mod-B. Then the following hold:

(1) If i 6∈ E0, then F (Ω(Si)) is a simple B-module;

(2) If i ∈ E0, then F (Ω(Xi)) is a simple B-module where an A-module Xi satisfies the following condi-

tions:

(i) top(Xi) ≃ Si;

(ii) soc(Xi)e ≃ soc(Xi);

(iii) Ω(Xi)e ≃ Si.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let T be the Okuyama-Rickard complex with respect to E0 = {2, 3, · · · , n}.

Then T is defined as the direct sum of the following complexes:

(0th) (1st)

T1 : P2 ⊕ P3
// P1

Ti : Pi
// 0 (i 6= 1)

(If the edge 1 is at the end, then replace the above first complex with P2 → P1 or P3 → P1.) Put

B = EndKb(proj-A)(T ). Since T is tilting by Proposition 1.2, B is a Brauer tree algebra by Proposition

2.3. To determine the Brauer tree of B, we shall calculate the Cartan matrix of B and the extensions

among simple B-modules.

Let CA, CB be Cartan matrices of A,B. We calculate CB
ij . For any i ∈ E, we denote by PB

i a

projective indecomposable B-module corresponding to Ti.

(i) We show CB
ij = CA

ij for any i 6= 1 and j 6= 1. Assume i 6= 1 and j 6= 1. We can calculate as follows:

CB
ij = dimkHomB(P

B
i , PB

j )

= dimkHomKb(proj-A)(Ti, Tj)

= dimkHomA(Pi, Pj)

= CA
ij .

Assume i 6∈ {1, 2, 3}.

(ii) We show CB
1i = 0 if CA

1i 6= 0 and CA
2i 6= 0. Assume CA

1i 6= 0 and CA
2i 6= 0. Then we have CA

1i = CA
2i

and CA
3i = 0. Therefore we obtain an equation

CB
1i = dimkHomB(P

B
1 , PB

i )

= dimkHomKb(proj-A)(T1, Ti)

= dimkHomA(P2, Pi) + dimkHomA(P3, Pi)− dimkHomA(P1, Pi)

= CA
2i + CA

3i − CA
1i

= 0.

Similary, we have CB
1i = 0 if CA

1i 6= 0 and CA
3i 6= 0.
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(iii) We show CB
1i 6= 0 if CA

1i = 0 and CA
2i 6= 0. Assume CA

1i = 0 and CA
2i 6= 0. Then we have CA

3i = 0.

Therefore we obtain an equation

CB
1i = dimkHomB(P

B
1 , PB

i )

= dimkHomKb(proj-A)(T1, Ti)

= dimkHomA(P2, Pi) + dimkHomA(P3, Pi)− dimkHomA(P1, Pi)

= CA
2i + CA

3i − CA
1i

= CA
2i,

which implies CB
1i 6= 0. Similary, we have CB

1i 6= 0 if CA
1i = 0 and CA

3i 6= 0.

(iv) We can easily show CB
1i = 0 if CB

1i = CB
2i = CB

3i = 0.

For any i ∈ E, we put SB
i = PB

i /radPB
i . We calculate dimkExt

1
B(S

B
i , SB

j ). We denote by F :

mod-A → mod-B the stable equivalence between A and B given by T .

(a) We show Ext1B(S
B
i , SB

j ) ≃ Ext1A(Si, Sj) for any i, j 6∈ {1, 2, 3}. Let i 6∈ {1, 2, 3}. Since Ext1A(S1, Si) =

0, by Lemma 2.4 we have F (Si) ≃ SB
i . Therefore for any i, j 6∈ {1, 2, 3}, we have Ext1B(S

B
i , SB

j ) ≃

Ext1A(Si, Sj).

(b) We show Ext1B(S
B
2 , SB

1 ) 6= 0. We define Y2 as a maximal submodule of P2 satisfying (Y2)e ≃ soc(P2)

and put X2 = P2/Y2. By Lemma 2.4, F (Ω(X2)) is isomorphic to a simple B-module SB
2 and

F (Ω(S1)) is isomorphic to a simple B-module SB
1 . Therefore we have an isomorphism

Ext1B(S
B
2 , SB

1 ) ≃ Ext1A(X2, S1)

≃ HomA(Y2, S1).

Since Ext1A(S1, S2) 6= 0, we have Ext1B(S
B
2 , SB

1 ) 6= 0. Similary, we have Ext1B(S
B
3 , SB

1 ) 6= 0.

(c) Let (1, 2, i1, · · · , ih, 1) be the cyclic ordering of the edges in the Brauer tree of A. We show that the

Brauer tree of B has the cyclic ordering (2, i1, · · · , ih, 2) of the edges. By (i) and (ii), we have CB
2i 6= 0

and CB
1i = 0 for any i ∈ {i1, · · · , ih}. If j ∈ E satisfies CB

ji 6= 0 for any i ∈ {i1, · · · , ih}, then we

have j ∈ {2, i1, · · · , ih}. Therefore our assertion follows from (a). Similary, for the cyclic ordering

(1, 3, j1, · · · , jℓ, 1) of the edges in the Brauer tree of A, the Brauer tree of B has the cyclic ordering

(3, j1, · · · , jℓ, 3) of the edges.

(d) Let (2, i′1, · · · , i
′

h′ , 2) (i′h′ 6= 1) be the cyclic ordering of the edges in the Brauer tree of A. We show

that the Brauer tree of B has the cyclic ordering (2, 1, i′1, · · · , i
′

h′ , 2) of the edges. By (i) and (iii), we

have CB
2i 6= 0 and CB

1i 6= 0 for any i ∈ {i′1, · · · , i
′

h′}. If j ∈ E satisfies CB
ji 6= 0 for any i ∈ {i′1, · · · , i

′

h′},

then we have j ∈ {2, 1, i′1, · · · , i
′

h′}. By (b), the next edge of the edge 2 is the edge 1. Therefore our

assertion follows from (a). Similary, for the cyclic ordering (3, j′1, · · · , j
′

ℓ′ , 3) (j
′

ℓ′ 6= 1) of the edges in

the Brauer tree of A, the Brauer tree of B has the cyclic ordering (3, 1, j′1, · · · , j
′

ℓ′ , 3) of the edges.

Hence the assertion (1) and (2) follow from Lemma 2.1 and its proof.

We shall show that the position of the exceptional vertex does not change. Assume that the edge 1

does not have the exceptional vertex. By the above argument of the Cartan matrix of B, we have our

assertion. Assume that the common vertex of the edges 1 and 2 of the Brauer tree of A is the exceptional

vertex. Since CB
22 = CA

22, the edge 2 of the Brauer tree of B must have the exceptional vertex. We have
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an equation

CB
12 = dimkHomB(P

B
1 , PB

2 )

= dimkHomKb(proj-A)(T1, T2)

= dimkHomA(P2, P2) + dimkHomA(P3, P2)− dimkHomA(P1, P2)

= CA
22 + CA

32 − CA
12

= 1.

This implies our assertion. Assume that the edge 1 of the Brauer tree of A has the exceptional vetex

which is at the end. Since CB
ij = CA

ij for any i, j ∈ E0, the edge 1 of the Brauer tree of B must have the

exceptional vertex and the edges except the edge 1 do not have it. This implies our assertion. �

3. Applications of main theorem

In this section, we give some applications of Theorem 1.5.

We can prove the following stronger statement than Theorem 2.2.

Corollary 3.1. Let A be a Brauer tree algebra. Then there exists a tilting complex T ∈ K
b(proj-A) of

length 2 such that the Brauer tree of the endomorphism algebra of T is a star with exceptional vertex in

the center.

Proof. Take the edge i whose next edge has the exceptional vetex;

◦
i

◦ •

Let B be the mutation of A with respect to i. By Theorem 1.5, the edge i of the Brauer tree of B has the

exceptional vertex. In applying this mutation to each edge at most once, we can mutate A to a Brauer

tree algebra for a star with exceptional vertex in the center.

For any edges i, we denote by Fi : Kb(proj-µi(A)) → K
b(proj-A) the derived equivalence between

A and µi(A) induced by the Okuyama-Rickard complex of A with respect to i. Take distinct edges

1, 2, · · · , ℓ. Put Bℓ = µℓ · · ·µ1(A), Tℓ = F1 · · ·Fℓ(Bℓ) and T0 = A. Then Pℓ is a direct summand of Tℓ−1

and terms of Tℓ−1\Pℓ are 0 unless 0th and 1st. Since Tℓ is an extension of Pℓ[−1] and Tℓ−1\Pℓ, we have

that Tℓ is of length 2. This implies the assertion. �

The corollary below is an immediate consequence of Corollary 3.1 and its proof.

Corollary 3.2. Let A be a Brauer tree algebra. Any basic algebra which is derived equivalent to A is

obtained from A by successive mutation.

The corresponding statement is shown for representation-finite symmetric algebras in [A].

Using Theorem 1.5, we can also show the following result.

Corollary 3.3. Let A be a Brauer tree algebra. Then for any edges i, j of the Brauer tree of A, we have

the following relations:

(1) (µi)
s(A) ≃ A for some positive integer s;

(2) µjµi(A) ≃ µiµj(A) if i and j are not mutually the next edges in the cyclic ordering;

(3) µiµjµi(A) ≃ µiµj(A) if j is the next edge of i in the cyclic ordering.

Proof. (1) We denote by Br(n,m) the set of labeled Brauer trees which have n edges and multiplicity m

of the exceptional vertex. We can regard mutation as group action to Br(n,m). Since Br(n,m) is a

finite set, the order of mutation is finite.
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(2) This assertion can be checked easily from Theorem 1.5.

(3) Let j′ be the next edge of i being not j and j1, j2 the next edges of j. By Theorem 1.5, we have a

mutation of the Brauer tree of A

◦
j′

◦

i

◦
j1

@@
@@

@@
@

◦
j

j2 @@
@@

@@
@ ◦

◦

◦
j′

i

UUUUUUUUUUUUUUUUUUUU ◦ ◦
j1

@@
@@

@@
@

◦
j

j2 @@
@@

@@
@ ◦

◦

◦
j′

i

UUUUUUUUUUUUUUUUUUUU

j

◦ ◦
j1

@@
@@

@@
@

◦

j2 @@
@@

@@
@ ◦

◦

◦
j′

◦

i

◦
j1

@@
@@

@@
@

j◦

j2 @@
@@

@@
@ ◦

◦

◦
j′

i

◦ ◦
j1

@@
@@

@@
@

j◦

j2 @@
@@

@@
@ ◦

◦

◦
j′

j

◦ ◦
j1

@@
@@

@@
@

i◦

j2 @@
@@

@@
@ ◦

◦

i

����
��

��
��

��
��

��
��

�

j

��

j

��?
??

??
??

??
??

??

i

��

i

!!B
BB

BB
BB

BB
BB

BB
BB

relabel

}}{{
{{{

{{
{{

{{{
{{

{{
{{

{{
{{

Therefore we have µiµjµi(A) ≃ µiµj(A).

�

We close this paper by giving an example of Theorem 1.5.
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Example 3.4. Let A be a Brauer tree algebra with the following Brauer tree:

◦

1

•
3

��
��

��
�

2 @@
@@

@@
@

◦ ◦

where the vertex • is the exceptional vertex. Then we have the following diagram of mutations of A up

to Morita equivalence:

◦

1

•
3

��
��

��
�

2 @@
@@

@@
@

◦ ◦

◦
3

•
2

◦
1

◦

•
3

◦
2

◦
1

◦

◦

3

◦
2

��
��

��
�

1 @@
@@

@@
@

• ◦

1,2,3

��
1

OO

2

{{vvvvvvvvvvv

2

;;vvvvvvvvvvv
3

%%KKKKKKKKKKKKK

1

eeKKKKKKKKKKKKK

2,3oo

1,3
//

where for each Brauer tree, we relabel the edges. These are all finite dimensional k-algebras which are

derived equivalent to A, up to Morita equivalence.
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