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A note on Hardy’s inequalities with boundary

singularities

Mouhamed Moustapha Fall ∗

Abstract. Let Ω be a smooth bounded domain in R
N with N ≥ 1. In this paper we study the

Hardy-Poincaré inequalities with weight function singular at the boundary of Ω. In particular we

give sufficient conditions so that the best constant is achieved.

Key Words: Hardy inequality, extremals, p-Laplacian.

1 Introduction

Let Ω be a domain in R
N , N ≥ 1, with 0 ∈ ∂Ω and p > 1 a real number. In this

note, we are interested in finding minima to the following quotient

(1.1) µλ,p(Ω) := inf
u∈W 1,p

0 (Ω)

∫

Ω
|∇u|p dx− λ

∫

Ω
|u|p dx

∫

Ω
|x|−p|u|p dx

,

in terms of λ ∈ R and Ω. If λ = 0, we have the Ω-Hardy constant

(1.2) µ0,p(Ω) = inf
u∈W 1,p

0 (Ω)

∫

Ω
|∇u|p dx

∫

Ω
|x|−p|u|p dx
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which is the best constant in the Hardy inequality for maps supported by Ω. The

existence of extremals for µλ,2(Ω) was studied in [10] while for µ0,2(Ω), one can see

for instance [6], [5], [21] and [19] for µ0,N (Ω).

Given a unit vector ν of RN , we consider the half-space H := {x ∈ R
N : x · ν ≥ 0}.

For N = 1, the following Hardy inequality is well known

(1.3)

(

p− 1

p

)p ∫ ∞

0
t−p|u|p dt ≤

∫ ∞

0
|u′|p dt ∀u ∈W

1,p
0 (0,∞).

Moreover µ0,p(H) =
(

p−1
p

)p
is the H-Hardy constant and it is not achieved, see [15]

for historical comments also.

For N ≥ 2, it was recently proved by Nazarov [20] that the H-Hardy constant is not

achieved and

(1.4) µ0,p(H) := inf
V ∈W 1,p

0 (SN−1
+ )

∫

S
N−1
+

(

(

N − p

p

)2

|V |2 + |∇σV |2

)
p
2

dσ

∫

S
N−1
+

|V |pdσ

,

where SN−1
+ is an (N − 1)-dimensional hemisphere. Notice that this problem always

has a minimizer by the compact embedding Lp(SN−1
+ ) →֒ W

1,p
0 (SN−1

+ ). The quan-

tity µ0,p(H) is explicitly known only in some special cases. Indeed, µ0,2(H) = N2

4

while for p = N then µN,N (H) is the first Dirichlet eigenvalue of the operator

−div(|∇u|N−2∇u) in W 1,N
0 (SN−1

+ ) with the standard metric.

Problem (1.1) carries some similarities with the questions studied by Brezis and Mar-

cus in [2], where the weight is the inverse-square of the distance from the boundary

of Ω and p = 2. We also deal with this problem in the present paper for all p > 1

in Appendix A. We generalize here the existence result obtained by R.Musina and

the author in [10] for any p > 1 and N ≥ 1.

Theorem 1.1 Let p > 1 and Ω be a smooth bounded domain in R
N , N ≥ 1, with

0 ∈ ∂Ω. There exits λ∗(p,Ω) ∈ [−∞,+∞) such that

(1.5) µλ,p(Ω) < µ0,p(H), ∀λ > λ∗(p,Ω).

The infinimum in (1.1) is attained for any λ > λ∗(p,Ω).
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The existence of λ∗(p,Ω) comes from the fact that

sup
λ∈R

µλ,p(Ω) = µ0,p(H),

see Lemma 2.2. Now observe that the mapping λ 7→ µλ,p is non-increasing. More-

over, for bounded domains Ω, letting λ1 be the first Dirichlet eigenvalue of the p-

Laplace operator −div(|∇u|p−2∇u) in W 1,p
0 (Ω), it is plain that µλ1,p(Ω) = 0. Then

we define

λ∗(p,Ω) := inf{λ ∈ R : µλ,p(Ω) < µ0,p(H)}

so that µλ,p < µ0,p(H) for all λ > λ∗(p,Ω). In particular λ∗(p,Ω) ≤ λ1. On the

other hand there are various bounded smooth domains Ω with 0 ∈ ∂Ω such that

λ∗(p,Ω) ∈ [−∞, 0), see Proposition 2.5 and Proposition 2.6. Furthermore if N = 1

then µ0,p(R \ {0}) =
(

p−1
p

)p
= µ0,p(H) thus λ∗(p,Ω) ≥ 0.

It is obvious that if Ω is contained in a half-ball centered at the origin then

µ0,p(Ω) = µ0,p(H) thus λ∗(p,Ω) ≥ 0 and in addition

λ∗(p,Ω) = inf
u∈W 1,p

0 (Ω)

∫

Ω
|∇u|p dx− µ0,p(H)

∫

Ω
|x|−p|u|p dx

∫

Ω
|u|p dx

.

We have obtained the following result.

Theorem 1.2 If Ω is contained in a half-ball centered at the origin then there exists

a constant c(N, p) > 0 such that

(1.6) λ∗(p,Ω) ≥
c(N, p)

diam(Ω)p
.

The constant c(N, p) appearing in (1.6) has the property that c(N, 2) is the first

Dirichlet eigenvalue of −∆ in the unit disc of R2. This type of estimates was first

proved by Brezis-Vàzquez in [3] when p = 2, N ≥ 2 and later on, extended to the case

1 < p < N by Gazzola-Grunau-Mitidieri in [13] when dealing with µ0,p(R
N \{0}) :=

∣

∣

∣

N−p
p

∣

∣

∣

p
. More precisely they proved the existence of a positive constant C(N, p)

such that for any open subset Ω of RN , there holds

(1.7)
∫

Ω
|∇u|p − µ0,p

(

R
N \ {0}

)

∫

Ω
|x|−p|u|p ≥ C(N, p)

(

ωN

|Ω|

)
p

N
∫

Ω
|u|p ∀u ∈W

1,p
0 (Ω),
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where |Ω| is the measure of Ω and ωN the measure of the unit ball of RN . The

constant C(N, p) was explicitly given and C(N, 2) = c(N, 2) as was obtained in [3].

The main ingredients to prove (1.7) is the Schwarz symmetrization and a ”dimension

reduction” via the transformation x 7→ u
ω , where ω(x) = |x|

p−N

p satisfies

div(|∇ω|p−2∇ω) + µ0,p
(

R
N \ {0}

)

|x|−pωp−1 = 0 in R
N \ {0}.

For p = 2, the lower bound in (1.6) was obtained in [10] by a similar transformation

and using the Poincaré inequality on S
N−1
+ . However, in view of (1.4), such argument

do not apply here when p 6= 2 and p 6= N . By analogy, to reduce the dimension, we

will consider the mapping x 7→ u
v , where v(x) := |x|

p−N

p V
(

x
|x|

)

is a weak solution

to the equation

div(|∇v|p−2∇v) + µ0,p(H) |x|−p|v|p−2v = 0 in D′(H)

whenever V is a minimizer of (1.4). Then exploiting the strict convexity of the

mapping a 7→ |a|p, estimate (1.6), for p ≥ 2, follows immediately while the case

p ∈ (1, 2) carries further difficulties as it can be seen in Section 2.2.

The argument to prove the attainability of µλ,p(Ω) is taken from de Valeriola-

Willem [7]. It allows to show that, up to a subsequence, the gradient of the Palais-

Smale sequences converges point-wise almost every where. Therefore an application

of the Brezis-Lieb lemma with some simples arguments yields the existence of ex-

tremals.

2 Hardy inequality with one point singularity

Let C be a proper cone in R
N , N ≥ 2 and put Σ := C ∩ S

N−1. It was shown in [20]

that the C-Hardy constant is not achieved and it is given by

(2.1) µ0,p(C) = inf
V ∈W 1,p

0 (Σ)

∫

Σ

(

(

N − p

p

)2

|V |2 + |∇σV |2

)
p
2

dσ

∫

Σ
|V |pdσ

.
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Letting V ∈W
1,p
0 (Σ) be the positive minimizer to this quotient then the function

(2.2) v(x) := |x|
p−N

p V

(

x

|x|

)

satisfies

(2.3)

∫

C
|∇v|p−2∇v · ∇h = µ0,p(C)

∫

C
|x|−pvp−1h ∀h ∈ C1

c (C).

Notice that µ0,2(C) =
(

N−2
2

)2
+λ1(Σ), where λ1(Σ) is the first Dirichlet eigenfunction

of the Laplace operator on Σ endowed with the standard metric on S
N−1. This was

obtained in [21], [19] and [10].

2.1 Existence

In this Section we show that the condition µλ,p(Ω) < µ0,p(H) is sufficient to guaranty

the existence of a minimizer for µλ,p(Ω).

We emphasize that throughout this section, Ω can to be taken to be an open set

satisfying the uniform sphere condition at 0 ∈ ∂Ω. Namely there are balls B+ ⊂ Ω

and B− ⊂ R
N \ Ω such that ∂B+ ∩ ∂B− = {0}. This holds if ∂Ω is of class C2 at

0, see [[16] 14.6 Appendix]. We start with the following approximate local Hardy

inequality.

Lemma 2.1 Let Ω be a smooth domain in R
N , N ≥ 1, with 0 ∈ ∂Ω and let p > 1.

Then for any ε > 0 there exits rε > 0 such that

(2.4) µ0,p(Ω ∩Brε(0)) ≥ µ0,p(H)− ε,

where Br(0) is a ball of radius r centered at 0.

Proof. If N = 1 then (2.4) is an immediate consequence of (1.3). From now on we

can assume that N ≥ 2. We denote by N∂Ω the unit normal vector-field on ∂Ω. Up

to a rotation, we can assume that N∂Ω(0) = EN , so that the tangent plane of ∂Ω at

0 coincides with R
N−1 = span{E1, . . . , EN−1}. Denote by B+

r = {y ∈ Br(0) : yN >

0}. For r > 0 small, we introduce the following system of coordinates centered at 0

(see [9]) via the mapping F : B+
r → Ω given by

F (y) = Exp0(ỹ) + yN N∂Ω (Exp0(ỹ)) ,

5



where ỹ = (y1, . . . , yN−1) and ỹ 7→ Exp0(ỹ) ∈ ∂Ω is the exponential mapping of ∂Ω

endowed with the metric induced by R
N . This coordinates induces a metric on R

N

given by gij(y) = 〈∂iF (y), ∂jF (y)〉 for i, j = 1, . . . , N . Let u ∈ C∞
c (F (B+

r )) and put

v(y) = u(F (y)) then

(2.5)
∫

F (B+
r )

|∇u|p dx =

∫

B+
r

|∇v|pg
√

|g| dy,

∫

F (B+
r )

|x|−p|u|p dx =

∫

B+
r

|F (y)|−p|v|p
√

|g| dy,

with |g| stands for the determinant of the g while |∇v|pg = g(∇v,∇v)
p

2 . Since

|F (y)| = |y|+O(|y|2) and gij(y) = δij +O(|y|), we infer that

∫

B+
r

|∇v|pg
√

|g| dy

∫

B+
r

|F (y)|−p|v|p
√

|g| dy

≥ (1−Cr)

∫

B+
r

|∇v|p dy

∫

B+
r

|y|−p|v|p dy

,

for some constant C > 0 depending only on Ω and p. Furthermore since µ0,p(B
+
r ) ≥

µ0,p(H), using (2.5) we conclude that

µ0,p(F (B
+
r )) ≥ (1− Cr)µ0,p(H).

We are in position to prove (1.5) in the following

Lemma 2.2 Let Ω be a smooth domain in R
N , N ≥ 1, with 0 ∈ ∂Ω and let p > 1.

Then there exists λ∗(p,Ω) ∈ [−∞,+∞) such that

µλ,p(Ω) < µ0,p(H) ∀λ > λ∗(p,Ω).

Proof. We first show that

(2.6) sup
λ∈R

µλ,p(Ω) = µ0,p(H).

Step 1: We claim that supλ∈R µλ,p(Ω) ≥ µ0,p(H).

For r > 0 small, we let ψ ∈ C∞(Br(0)) with 0 ≤ ψ ≤ 1, ψ ≡ 0 in R
N \ B r

2
(0) and
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ψ ≡ 1 in B r
4
(0). For a fixed ε > 0 small, there holds

∫

Ω
|x|−p|u|p =

∫

Ω
|x|−p|ψu+ (1− ψ)u|p

≤ (1 + ε)

∫

Ω
|x|−p|ψu|p + c(ε)

∫

Ω
|x|−p(1− ψ)p|u|p

≤ (1 + ε)

∫

Ω
|x|−p|ψu|p + c(ε)

∫

Ω
|u|p.

Now by (2.4)

(µ0,p(H)− ε)

∫

Ω
|x|−p|ψu|p ≤

∫

Ω
|∇(ψu)|p

and hence

(2.7) (µ0,p(H)− ε)

∫

Ω
|x|−p|u|p ≤ (1 + ε)

∫

Ω
|∇(ψu)|p + c(ε)

∫

Ω
|u|p.

Since |∇(ψu)|p ≤ (ψ|∇u|+ |u||∇ψ|)p we deduce that

|∇(ψu)|p ≤ (1 + ε)ψp|∇u|p + c|u|p|∇ψ|p ≤ (1 + ε)|∇u|p + c|u|p.

Using (2.7), we conclude that

(2.8) (µ0,p(H)− ε)

∫

Ω
|x|−p|u|p ≤ (1 + ε)2

∫

Ω
|∇u|p + c(ε)

∫

Ω
|u|p.

This implies that µ0,p(H) ≤ supλ∈R µλ,p(Ω) and the claim follows.

Step 2: We claim that supλ∈R µλ,p(Ω) ≤ µ0,p(H).

Denote by ν the unit interior normal of ∂Ω. For δ ≥ 0 we consider the cone

Cδ
+ :=

{

x ∈ R
N | x · ν > δ|x|

}

and put Σδ = Cδ
+ ∩ S

N−1. For every η > 0, let V ∈ C∞
c (Σ0) such that

∫

Σ0

(

(

N − p

p

)2

|V |2 + |∇σV |2

)
p

2

dσ

∫

Σ0

|V |pdσ
≤ µ0,p(H) + η.

On the other hand, there exists δ > 0 small such that supp V ⊂ Σδ. From this we

conclude that

(2.9) µ0,p(H) ≤ µ0,p(C
δ
+) ≤ µ0,p(H) + η.

7



Since ∂Ω is smooth at 0, for every δ > 0, there exists rδ > 0 such that Cδ
+∩Br(0) ⊂ Ω

for all r ∈ (0, rδ). Clearly by scale invariance, µ0,p(C
δ
+∩Br(0)) = µ0,p(C

δ
+). For ε > 0,

we let φ ∈W
1,p
0 (Cδ

+ ∩Br(0)) such that

∫

Cδ
+∩Br(0)

|∇φ|p dx

∫

Cδ
+∩Br(0)

|x|−p|φ|p dx

≤ µ0,p(C
δ
+) + ε.

From this we deduce that

µλ,p(Ω) ≤

∫

Cδ
+∩Br(0)

|∇φ|p dx− λ

∫

Cδ
+∩Br(0)

|φ|p dx

∫

Cδ
+∩Br(0)

|x|−p|φ|p dx

≤ µ0(C
δ
+) + ε+ |λ|

∫

Cδ
+∩Br(0)

|φ|p dx

∫

Cδ
+∩Br(0)

|x|−p|φ|p dx

.

Since

∫

Cδ
+∩Br(0)

|x|−p|φ|p dx ≥ r−p

∫

Cδ
+∩Br(0)

|φ|p dx, we get

µλ,p(Ω) ≤ µ0,p(C
δ
+) + ε+ rp|λ|.

The claim follows immediately by (2.9). Therefore (2.6) is proved.

Finally as the map λ 7→ µλ,p(Ω) is non increasing while µλ1,p(Ω) = 0 < µ0,p(H), we

can set

λ∗(p,Ω) := inf{λ ∈ R : µλ,p(Ω) < µ0,p(H)}

so that λ∗(p,Ω) < µ0,p(H) for any λ > λ∗(p,Ω).

Remark 2.3 Observe that the proof of Lemma 2.2 highlights that

lim
r→0

µ0,p(Ω ∩Br(0)) = µ0,p(H) = lim
λ→−∞

µλ,p(Ω).

Proof of Theorem 1.1

Let λ > λ∗(p,Ω) so that µλ,p(Ω) < µ0,p(H). We define the mappings F, G :

8



W
1,p
0 (Ω) → R by

F (u) =

∫

Ω
|∇u|p − λ

∫

Ω
|u|p

and

G(u) =

∫

Ω
|x|p|u|p.

By Ekeland variational principal, there is a minimizing sequence un ∈ W
1,p
0 (Ω)

normalized so that

G(un) = 1, ∀n ∈ N

and with the properties that

F (un) → µλ,p(Ω),

(2.10) J(un) = F ′(un)− µλ,p(Ω)G
′(un) → 0 in (W 1,p

0 (Ω))′.

Up to a subsequence, we can assume that there exists u ∈W
1,p
0 (Ω) such that

(2.11) ∇un ⇀ ∇u in Lp(Ω),

un → u in Lp(Ω) and un → u a.e. in Ω. Moreover by (2.8), we may assume that

|x|−1un ⇀ |x|−1u in Lp(Ω). We set θn = un − u and

T (s) =

{

s if |s| ≤ 1
s
|s| if |s| > 1.

It follows that for every r ≥ 1

(2.12)

∫

Ω
|T (θn)|

r → 0.

Moreover notice that
∫

Ω

(

|∇un|
p−2∇un − |∇u|p−2∇u

)

· ∇T (θn) = 〈J(un), T (θn)〉+ µλ,p(Ω)

∫

Ω
|x|−p|u|p−2

n unT (θn)

+λ

∫

Ω
|u|p−2

n unT (θn)−

∫

Ω
|∇u|p−2∇u · ∇T (θn).

Therefore by (2.10), (2.11) and (2.12) we infer that
∫

Ω

(

|∇un|
p−2∇un − |∇u|p−2∇u

)

· ∇T (θn) → 0.

9



Consequently by [7]-Theorem 1.1,

(2.13) lim
n→∞

(
∫

Ω
|∇un|

p −

∫

Ω
|∇θn|

p

)

=

∫

Ω
|∇u|p.

By Brezis-Lieb Lemma [4]

(2.14) 1− lim
n→∞

∫

Ω
|x|−p|θn|

p =

∫

Ω
|x|−p|u|p.

Fix ε > 0 small. By (2.8) and Rellich, there exists λε such that

(µ0,p(H)− ε)

∫

Ω
|x|−p|θn|

p ≤

∫

Ω
|∇θn|

p − λε

∫

Ω
|θn|

p =

∫

Ω
|∇θn|

p + o(1).

Using this together with (2.13) and (2.14) we get

µλ,p(Ω)

∫

Ω
|x|−p|u|p ≤

∫

Ω
|∇u|p − λ

∫

Ω
|u|p ≤

∫

Ω
|∇un|

p −

∫

Ω
|∇θn|

p − λ

∫

Ω
|un|

p + o(1)

≤ F (un)− (µ0,p(H)− ε)

∫

Ω
|x|−p|θn|

p + o(1)

≤ µλ,p(Ω)− (µ0,p(H)− ε)

(

1−

∫

Ω
|x|−p|u|p

)

+ o(1)

≤ µλ,p(Ω)− µ0,p(H) + ε+ (µ0,p(H)− ε)

∫

Ω
|x|−p|u|p + o(1).

Send n→ ∞ and then ε→ 0 to get

(µλ,p(Ω)− µ0,p(H))

∫

Ω
|x|−p|u|p ≤ µλ,p(Ω)− µ0,p(H).

Hence
∫

Ω |x|−p|u|p ≥ 1 because µλ,p(Ω)− µ0,p(H) < 0 and the proof is complete.

As a consequence of the existence theorem, we have

Corollary 2.4 Let Ω be a smooth bounded domain of RN , N ≥ 2, with 0 ∈ ∂Ω.

Then

µ0,p
(

R
N \ {0}

)

=

∣

∣

∣

∣

N − p

p

∣

∣

∣

∣

p

< µ0,p(Ω) ≤ µ0,p(H) .

Proof. By (2.6) 0 < µ0,p(Ω) ≤ µ0,p(H). If the strict inequality holds, then there

exists a positive minimizer u ∈ W
1,p
0 (Ω) for µ0,p(Ω) by Theorem 1.1. But then

µ0,p
(

R
N \ {0}

)

< µ0,p(Ω), because otherwise a null extension of u outside Ω would

achieve the Hardy constant in R
N \ {0} which is not possible.

10



As mentioned earlier, we shall show that there are smooth bounded domains in

R
N such that λ∗(p,Ω) ∈ [−∞, 0). These domains might be taken to be convex or

even flat at 0. For that we let ν ∈ S
N−1 and δ, r,R > 0. We consider the sector

(2.15) Cδ
r,R :=

{

x ∈ R
N | x · ν > −δ|x| , r < |x| < R

}

.

Proposition 2.5 Let N ≥ 2 and p > 1. Then for all δ ∈ (0, 1), there exist r,R > 0

such that if a domain Ω contains Cδ
r,R then µ0,p(Ω) < µ0,p(H).

Proof. Consider the cone

Cδ :=
{

x ∈ R
N | x · ν > −δ|x|

}

Notice that by Harnack inequality µ(Cδ) < µ(Cδ′) for any 0 ≤ δ′ < δ < 1. Thus for

any δ ∈ (0, 1), we can find u ∈ C∞
c (Cδ) such that
∫

Cδ

|∇u|p

∫

Cδ

|x|−p|u|p
< µ0,p(H).

Hence we choose r,R > 0 so that supp u ⊂ Cδ
r,R.

By Corollary 2.4, starting from exterior domains, one can also build various ex-

ample of (possibly annular) domains for which λ∗(p,Ω) < 0. The following argument

is taken in [Ghoussoub-Kang [14] Proposition 2.4]. If U ⊂ R
N , N ≥ 2, is a smooth

exterior domain (the complement of a smooth bounded domain) with 0 ∈ ∂U then

by scale invariance µ0,p(U) = µ0,p(R
N \{0}). We let Br(0) a ball of radius r centered

at the 0 and define Ωr := Br(0) ∩ U then clearly the map r 7→ µ(Ωr) is decreasing

with

(2.16) µ0,p
(

R
N \ {0}

)

= inf
r>0

µ0,p(Ωr) and µ0,p(H) = sup
r>0

µ0,p(Ωr).

We have the following result for which the proof is similar to the one given in [14]

by Corollary 2.4 and Harnack inequality.

Proposition 2.6 There exists r0 > 0 such that the mapping r 7→ µ0,p(Ωr) is left-

continuous and strictly decreasing on (r0,+∞). In particular

µ0,p(R
N \ {0}) < µ0,p(Ωr) < µ0,p(H), ∀r ∈ (r0,+∞).
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2.2 Remainder term

We know that for domains Ω contained in a half-ball λ∗(p,Ω) ≥ 0. Our aim in this

section is to obtain positive lower bound for λ∗(p,Ω) by providing a remainder term

for Hard’s inequality in these domains. In [13], Gazzola-Grunau-Mitidieri proved

the following improved Hardy inequality for 1 < p < N :

(2.17)

∫

Ω
|∇u|p − µ0,p

(

R
N \ {0}

)

∫

Ω
|x|−p|u|p ≥ C(N, p)

(

ωN

|Ω|

)
p
N
∫

Ω
|u|p ,

that holds for any bonded domain Ω of RN and u ∈ W
1,p
0 (Ω). Here the constant

C(N, p) > 0 is explicitly given while C(N, 2) is the first Dirichlet eigenvalue of −∆

of the unit disc in R
2.

We shall show that such type of inequality holds in the case where the singularity

is placed at the boundary of the domain. To this end, we will use the function

v(x) := |x|
p−N

p V
(

x
|x|

)

defined in (2.2) to ”reduce the dimension”.

Throughout this section, we assume that N ≥ 2 since the case N = 1 was already

proved by Tibodolm [22] Theorem 1.1. Indeed, he showed that

∫ 1

0
|u′(r)|pdr−µ0,p(H)

∫ 1

0
r−p|u(r)|pdr ≥ (p− 1)2p

∫ 1

0
|u(r)|pdr, ∀u ∈W

1,p
0 (0, 1).

We start with conic domains

CΣ = {x = rσ ∈ R
N | r ∈ (0, 1), σ ∈ Σ },

where Σ is a domain properly contained in S
N−1 and having a Lipschitz boundary.

We will denote by V the positive minimizer of (2.1) in Σ while v(x) := |x|
p−N

p V
(

x
|x|

)

satisfies (2.3) in the infinite cone {x = rσ ∈ R
N | r ∈ (0,+∞), σ ∈ Σ }. Finally we

remember that by Harnack inequality 1
v ∈ L∞

loc(CΣ).

Recall the following inequalities (see [17] Lemma 4.2) which will be useful in the

remaining of the paper. Let p ∈ [2,∞) then for any a, b ∈ R
N

(2.18) |a+ b|p ≥ |a|p +
1

2p−1 − 1
|b|p + p|a|p−2a · b.

If p ∈ (1, 2) then for any a, b ∈ R
N

(2.19) |a+ b|p ≥ |a|p + c(p)
|b|2

(|a|+ |b|)2−p + p|a|p−2a · b.

We first make the following observation.
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Lemma 2.7 Let u ∈ C∞
c (CΣ), u ≥ 0. Set ψ = u

v then

If p ≥ 2

(2.20)

∫

CΣ

|∇u|p − µ0,p(CΣ)

∫

CΣ

|x|−p|u|p ≥
1

2p−1 − 1

∫

CΣ

|v∇ψ|p,

If 1 < p < 2

(2.21)

∫

CΣ

|∇u|p − µ0,p(CΣ)

∫

CΣ

|x|−p|u|p ≥ c(p)

∫

CΣ

|v∇ψ|2

(|v∇ψ|+ |ψ∇v|)2−p ,

Proof. We prove only the case p ≥ 2 as the case p ∈ (1, 2) goes similarly. Notice

that ∇u = v∇ψ+ψ∇v then we use the inequality (2.18) with a = v∇ψ and b = ψ∇v

to get

∫

CΣ

|∇u|p ≥

∫

CΣ

|ψ∇v|p + p

∫

CΣ

|ψ∇v|p−2ψ∇v · (v∇ψ) +
1

2p−1 − 1

∫

CΣ

|v∇ψ|p.

It is plain that

p|ψ∇v|p−2ψ∇v · (v∇ψ) = |∇v|p−2∇v · (v∇ψp) = |∇v|p−2∇v · ∇(vψp)− |ψ∇v|p.

Inserting this in the first inequality and using (2.3) we deduce that

∫

CΣ

|∇u|p ≥
1

2p−1 − 1

∫

CΣ

|v∇ψ|p +

∫

CΣ

|∇v|p−2∇v · ∇(vψp)

≥
1

2p−1 − 1

∫

CΣ

|v∇ψ|p + µ0,p(CΣ)

∫

CΣ

|x|−pup.

The improvement in the case p ≥ 2 is an immediate consequence of the above

lemma.

Lemma 2.8 For all p ≥ 2

∫

CΣ

|∇u|p − µ0,p(CΣ)

∫

CΣ

|x|−p|u|p ≥
Λp

2p−1 − 1

∫

CΣ

|u|p, ∀u ∈ C∞
c (CΣ),

where Λp := inff∈C1
c (0,1)

∫ 1
0 rp−1|f ′|pdr
∫ 1
0
rp−1|f |pdr

.
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Proof. Since |∇|u|| ≤ |∇u|, we may assume that u ≥ 0. We only need to estimate

the right hand side in (2.20). We use polar coordinates x 7→ (|x|, x
|x|) = (r, σ) and

denote by ∂r the radial direction. Then using (2.18),

∫

CΣ

|v∇ψ|p =

∫

Σ

∫ 1

0
rp−1V p|ψr∂r +∇σψ|

p

≥

∫

Σ
V p

∫ 1

0
rp−1|ψr|

p ≥ Λp

∫

Σ
V p

∫ 1

0
rp−1|ψ|p

≥ Λp

∫

Σ

∫ 1

0
uprN−1 = Λp

∫

CΣ

|u|p.

The lemma readily follows from (2.20).

It is easy to see that by integration by parts Λp ≥ 1 while for integer p ∈ N then

Λp corresponds to the first Dirichlet eigenvalue of −∆ in the unit ball of Rp.

We now turn to the case p ∈ (1, 2) which carries more difficulties. We shall need the

following intermediate result.

Lemma 2.9 Let p ∈ (1, 2) and u ∈ C∞
c (CΣ), u ≥ 0. Setting ψ = u

v then there exists

a constant c = c(p,Σ) > 0 such that

c

∫

CΣ

r|ψ∇v|p ≤

∫

CΣ

r(2−p)/2|v∇ψ|p.

Proof. Let ψ̃ := r
1
pψ and use ψ̃pv as a test function in the weak equation (2.3).

Then by Hölder

∫

CΣ

|ψ̃∇v|p ≤ µ0,p(CΣ)

∫

CΣ

r−pvpψ̃p + p

∫

CΣ

|ψ̃∇v|p−1|v∇ψ̃|

≤ µ0,p(CΣ)

∫

CΣ

r−pvpψ̃p + p

(
∫

CΣ

|ψ̃∇v|p
)

p−1
p
(
∫

CΣ

|v∇ψ̃|p
)

1
p

.

Therefore by Young’s inequality, for ε > 0 small there exists a constant Cε > 0

depending on p and Σ such that

(1− εc(p))

∫

CΣ

|ψ̃∇v|p ≤ Cε

∫

CΣ

r−pvpψ̃p + Cε

∫

CΣ

|v∇ψ̃|p.
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Recall that ψ̃ = r
1
pψ. Then since

|∇ψ̃|p ≤ c(p)
(

r1−pψp + r|∇ψ|p
)

,

we conclude that there exists a constant c = c(p,Σ) such that

(2.22) c

∫

CΣ

r|ψ∇v|p ≤

∫

CΣ

r1−pvpψp +

∫

CΣ

r(2−p)/p|v∇ψ|p,

we have used the fact that r ≤ r(2−p)/p for all r ∈ (0, 1). To estimate the first

term in the right hand side in (2.22) we will use the 2-dimensional Hardy inequality.

Through the polar coordinates x 7→ (r, σ)

∫

CΣ

r1−pvpψp =

∫

Σ
V p

∫ 1

0
rp−1

(

ψ

r

)p

r

≤

∫

Σ
V p

∫ 1

0

(

ψ

r

)p

r

≤

∣

∣

∣

∣

p

p− 2

∣

∣

∣

∣

−p ∫

Σ
V p

∫ 1

0
|ψr|

pr

=

∣

∣

∣

∣

p

p− 2

∣

∣

∣

∣

−p ∫ 1

0

∫

Σ
V pv−p|v∇ψ|pr =

∣

∣

∣

∣

p

p− 2

∣

∣

∣

∣

−p ∫ 1

0

∫

Σ
rN−p+1|v∇ψ|p.

To conclude, we notice that rN−p+1 = rN− p
2 r(2−p)/p ≤ rN−1r(2−p)/p as p ∈ (1, 2) so

that
∫

CΣ

r1−pvpψp ≤

∣

∣

∣

∣

p

p− 2

∣

∣

∣

∣

−p ∫

CΣ

r(2−p)/p|v∇ψ|p.

Inserting this in (2.22) the lemma follows immediately.

We are now in position to prove the improved Hardy inequality for p ∈ (1, 2).

Lemma 2.10 Let p ∈ (1, 2). Then there exists a constant c = c(p,Σ) > 0 such that

∫

CΣ

|∇u|p − µ0,p(CΣ)

∫

CΣ

|x|−p|u|p ≥ c

∫

CΣ

|u|p, ∀u ∈ C∞
c (CΣ).

Proof. Here also we may assume that u ≥ 0. We need to estimate the right hand
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side of (2.21). Let r = |x| then by Hölder and Lemma 2.9, we have

∫

CΣ

r
2−p

2 |v∇ψ|p =

∫

CΣ

|v∇ψ|2

(|v∇ψ| + |ψ∇v|)(2−p)p/2
r

2−p

2 (|v∇ψ| + |ψ∇v|)(2−p)p/2

≤

(
∫

CΣ

|v∇ψ|2

(|v∇ψ| + |ψ∇v|)2−p

)p/2(∫

CΣ

r ||v∇ψ|+ |ψ∇v||p
)(2−p)/2

≤

(
∫

CΣ

|v∇ψ|2

(|v∇ψ| + |ψ∇v|)2−p

)p/2

×

(

2p−1

∫

CΣ

r|v∇ψ|p + 2p−1

∫

CΣ

r|ψ∇v|p
)(2−p)/2

≤ c

(
∫

CΣ

|v∇ψ|2

(|v∇ψ|+ |ψ∇v|)2−p

)p/2(∫

CΣ

r
2−p

2 |v∇ψ|p
)(2−p)/2

,

where c a positive constant depending only on p and Σ and we have used once more

the fact that r ≤ r(2−p)/p for all r ∈ (0, 1). Consequently by (2.21), we deduce that

(2.23)

∫

CΣ

|∇u|p − µ0,p(CΣ)

∫

CΣ

|x|−p|u|p ≥ c

∫

CΣ

r
2−p

2 |v∇ψ|p.

To proceed we estimate

∫

Σ

∫ 1

0
uprN−1 =

∫

Σ
V p

∫ 1

0
rp−1|ψ|p ≤ c(p)

∫

Σ
V p

∫ 1

0
r|ψr|

p

≤ c(p)

∫

Σ
V p

∫ 1

0
r

p

2 |ψr|
p

≤ c(p)

∫

CΣ

r
2−p
2 |v∇ψ|p.

The first inequality comes from the 2-dimensional embedding W 1,p
0 ⊂ L

2p
2−p ⊂ L

p

3−p ,

one can see [[13] page 2155] for the proof. Putting this in (2.23) we conclude that

there exists a positive constant c = c(p,Σ) such that

∫

CΣ

|∇u|p − µ0,p(CΣ)

∫

CΣ

|x|−p|u|p ≥ c

∫

CΣ

|u|p

which was the purpose of the lemma.
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The main result in this section is contained in the next theorem.

Theorem 2.11 Let Ω be a domain in R
N with 0 ∈ ∂Ω. If Ω is contained in a

half-ball centered at 0 then there exists a constant c(N, p) > 0 such that
∫

Ω
|∇u|p − µ0,p(H)

∫

Ω
|x|−p|u|p ≥

c(N, p)

diam(Ω)p

∫

Ω
|u|p ∀u ∈W 1,p

0 (Ω).

Proof. Let R = diam(Ω) be the diameter of Ω. Then Ω is contained in a half ball

B+
R of radius R centered at the origin. From Lemma 2.8 and Lemma 2.10 we infer

that
∫

B+
R

|∇u|p − µ0,p(H)

∫

B+
R

|x|−p|u|p ≥
c(N, p)

Rp

∫

B+
R

|u|p ∀u ∈ C∞
c (Ω)

by homogeneity. The theorem readily follows by density.

We do not know whether diam(Ω) might be replaced with ωN |Ω|
1
N as in [13] at

least when Ω is convex and p ≥ 2. There might exists also ”logarithmic” improve-

ment as was recently obtained in [11] inside cones and p = 2. One can see also the

work of Barbatis-Filippas-Tertikas in [1] for domains containing the origin or when

|x| is replaced by the distance to the boundary.

A Hardy’s inequality

We denote by d the distance function of Ω:

d(x) := inf{|x− σ| : σ ∈ ∂Ω}.

In this section, we study the problem of finding minima to the following quotient

(A.1) νλ,p(Ω) := inf
u∈W 1,p

0 (Ω)

∫

Ω
|∇u|p dx− λ

∫

Ω
|u|p dx

∫

Ω
d−p|u|p dx

,

where p > 1 and λ ∈ R is a varying parameter. Existence of extremals to this

problem was studied in [2] when p = 2 and in [18] with λ = 0. It is known (see for

instance [18]) that ν0,p(Ω) ≤ cp for any smooth bounded domain Ω while for convex

domain Ω, the Hardy constant ν0,p(Ω) is not achieved and ν0,p(Ω) =
(

p−1
p

)p
=: cp.

The main result in this section is contained in the following
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Theorem A.1 Let Ω be a smooth bounded domain in R
N and p > 1, there exits

λ̃(p,Ω) ∈ [−∞,+∞) such that

(A.2) νλ,p(Ω) <

(

p− 1

p

)p

, ∀λ > λ̃(p,Ω).

The infinimum in (A.1) is attained if λ > λ̃(p,Ω).

We start with the following result which is stronger than needed. It was proved

in [2] for p = 2 and in [12] when 2 ≤ p < N as the authors were dealing with

Hardy-Sobolev inequalities.

Lemma A.2 Let Ω be a smooth bounded domain in R
N and p ∈ (1,∞). Then there

exists β = β(p,Ω) > 0 small such that

(A.3)

∫

Ωβ

|∇u|p ≥ cp

∫

Ωβ

d−p|u|p ∀u ∈ H1
0 (Ω),

where Ωβ := {x ∈ Ω : d(x) < β}.

Proof. Since |∇|u|| ≤ |∇u|, we may assume that u ≥ 0. Let u ∈ C∞
c (Ω) and put

v = d
1−p
p u. Using (2.18) and (2.19), we get

(A.4) |∇u|p − cpd
−p|u|p ≥ c(p)dp−1|∇v|p +

∣

∣

∣

∣

p− 1

p

∣

∣

∣

∣

p−1

∇d · ∇(vp) if p ≥ 2,

(A.5)

|∇u|p− cpd
−p|u|p ≥ c(p)

d|∇v|2
(

c
1
p
p |v|+ d|∇v|

)2−p +

∣

∣

∣

∣

p− 1

p

∣

∣

∣

∣

p−1

∇d ·∇(vp) if p ∈ (1, 2).

By integration by parts, we have

∫

Ωβ

∇d · ∇(vp) = −

∫

Ωβ

∆d|v|p +

∫

∂Ωβ

|v|p ≥ −c

∫

Ωβ

|v|p +

∫

∂Ωβ

|v|p,

for a positive constant depending only on Ω. Multiply the identity div(d∇d) =

1 + d∆d by v in integrate by parts to get

(1 + o(1))

∫

Ωβ

|v|p = −p

∫

Ωβ

d|v|p−1∇d·∇v+

∫

∂Ωβ

d|v|p ≤ c(p)

∫

Ωβ

d|v|p−1|∇v|+

∫

∂Ωβ

d|v|p.
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By Hölder and Young’s inequalities

(A.6) (1 + o(1) − cε)

∫

Ωβ

|v|p ≤ cε

∫

Ωβ

dp|∇v|p +

∫

∂Ωβ

d|v|p.

Case p ≥ 2. Using (A.6) we infer that

(1 + o(1) − cε)

∫

Ωβ

|v|p ≤ cεβ

∫

Ωβ

dp−1|∇v|p + β

∫

∂Ωβ

|v|p.

It follows from (A.4) that for ε, β > 0 small

∫

Ωβ

|∇u|p − cp

∫

Ωβ

d−p|u|p ≥ c

(

∫

Ωβ

dp−1|∇v|p +

∫

∂Ωβ

|v|p

)

as desired.

Case p ∈ (1, 2). By Hölder and Young’s inequalities

∫

Ωβ

dp|∇v|p =

∫

Ωβ

dp|∇v|p

(

c
1
p
p |v|+ d|∇v|

)

p(2−p)
2

(

c
1
p
p |v|+ d|∇v|

)

p(2−p)
2

≤ cε

∫

Ωβ

d2|∇v|2
(

c
1
p
p |v|+ d|∇v|

)2−p + εc

∫

Ωβ

|v|p + εc

∫

Ωβ

dp|∇v|p

and thus

(1− cε)

∫

Ωβ

dp|∇v|p ≤ cε

∫

Ωβ

d2|∇v|2
(

c
1
p
p |v|+ d|∇v|

)2−p + εc

∫

Ωβ

|v|p.

Using this in (A.6) we obtain

(1 + o(1)− cε)

∫

Ωβ

|v|p ≤ cβ

∫

Ωβ

d|∇v|2
(

c
1
p
p |v|+ d|∇v|

)2−p + cβ

∫

∂Ωβ

|v|p.

By (A.5), we conclude that for ε, β > 0 small
∫

Ωβ

|∇u|p − cp

∫

Ωβ

d−p|u|p ≥ c

∫

Ωβ

d|∇v|2
(

c
1
p
p |v|+ d|∇v|

)2−p + c

∫

∂Ωβ

|v|p.

This ends the proof of the lemma.
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Lemma A.3 Let Ω be a bounded domain of class C2 in R
N . Then there exists

λ̃(p,Ω) ∈ [−∞,+∞) such that

νλ,p(Ω) < cp ∀λ > λ̃(p,Ω).

Proof. The proof will be carried out in 2 steps.

Step 1: We claim that supλ∈R νλ,p(Ω) ≥ cp.

For β > 0 we define

Ωβ := {x ∈ Ω : d(x) < β}.

Let ψ ∈ C∞(Ωβ) with 0 ≤ ψ ≤ 1, ψ ≡ 0 in R
N \ Ωβ

2
and ψ ≡ 1 in Ωβ

4
. For ε > 0

small, there holds

∫

Ω
d−p|u|p =

∫

Ω
d−p|ψu+ (1− ψ)u|p

≤ (1 + ε)

∫

Ω
d−p|ψu|p + C

∫

Ω
d−p(1− ψ)p|u|p

≤ (1 + ε)

∫

Ω
d−p|ψu|p + C

∫

Ω
|u|p.

By (A.3), we infer that

cp

∫

Ω
d−p|ψu|p ≤

∫

Ω
|∇(ψu)|p

and hence

(A.7) cp

∫

Ω
d−p|u|p ≤ (1 + ε)

∫

Ω
|∇(ψu)|p + C

∫

Ω
|u|p.

Since |∇(ψu)|p ≤ (ψ|∇u|+ |u||∇ψ|)p we deduce that

|∇(ψu)|p ≤ (1 + ε)ψp|∇u|p + C|u|p|∇ψ|p ≤ (1 + ε)|∇u|p + C|u|p.

Using (A.7), we conclude that

cp

∫

Ω
d−p|u|p ≤ (1 + ε)2

∫

Ω
|∇u|p + C(ε, β)

∫

Ω
|u|p.

This means that cp ≤ supλ∈R νλ,p(Ω).

Step 2: We claim that supλ∈R νλ,p(Ω) ≤ cp.
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Let β > 0 then by (1.3) and scale invariance we have µ0,p(0, β) = cp. Hence for

ε > 0 there exits a function φ ∈W 1,p
0 (0, β) such that

(A.8) cp + ε ≥

∫ β
0 |φ′|p ds

∫ β
0 s

−pφp ds
.

Letting u(x) = φ(d(x)), there exists a positive constant C depending only on Ω such

that
∫

Ωβ

|∇u|p =

∫ β

0

∫

∂Ωs

|φ′(s)|p dσs ≤ (1 + Cβ) |∂Ω|

∫ β

0
|φ′(s)|p ds.

Furthermore

∫

Ωβ

d−p|u|p =

∫ β

0

∫

∂Ωs

s−p|φ(s)|p dσs ≥ (1− Cβ) |∂Ω|

∫ β

0
|φ(s)|p ds.

By (A.8) we conclude that

νλ,p(Ω) ≤

∫

Ωβ

|∇u|p dx− λ

∫

Ωβ

up dx

∫

Ωβ

d−p|u|p dx

≤ (cp + ε)
1 + Cβ

1− Cβ
+ |λ|

∫

Ωβ

|u|p dx

∫

Ωβ

d−p|u|p dx

.

Since
∫

Ω d
−p|u|2 dx ≥ β−p

∫

Ωβ
|u|p dx, we get

νλ,p(Ω) ≤ (cp + ε)
1 + Cβ

1− Cβ
+ βp|λ|,

sending β to 0 we get the desired result.

Clearly the proof of Theorem A.1 goes similarly as the one of Theorem 1.1 and

we skip it.

It was shown in [2] that λ̃(2,Ω) ∈ R and that νλ,p(Ω) is not achieved for any

λ ≥ λ̃(2,Ω). On the other hand by [8], there are domains for which λ̃(2,Ω) < 0, see

also [18].

We point out that if Ω is convex then by [22] there exists a constant a(N, p) > 0

(explicitly given) such that

λ̃(p,Ω) ≥
a(N, p)

|Ω|
p

N

.
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We finish this section by showing that there are smooth bounded domains in R
N

such that λ̃(p,Ω) ∈ [−∞, 0). We let U ⊂ R
N , N ≥ 2 with 0 ∈ ∂U be an exterior

domain and set Ωr = Br(0) ∩ U .

Proposition A.4 Assume that p > N+1
2 then there exists r > 0 such that ν0,p(Ωr) <

(

p−1
p

)p
.

Proof. Clearly µ0,p(R
N \ {0}) =

∣

∣

∣

N−p
p

∣

∣

∣

p
<
(

p−1
p

)p
provided p > N+1

2 . Let ε > 0

such that
(

p−1
p

)p
>
∣

∣

∣

N−p
p

∣

∣

∣

p
+ ε so by (2.16), there exits r > 0 such that

µ0,p(Ωr) <

∣

∣

∣

∣

N − p

p

∣

∣

∣

∣

p

+ ε <

(

p− 1

p

)p

.

The conclusion readily follows since ν0,p(Ωr) ≤ µ0,p(Ωr) because 0 ∈ ∂Ωr.
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