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A note on Hardy’s inequalities with boundary

singularities

Mouhamed Moustapha Fall *

Abstract. Let Q be a smooth bounded domain in RY with N > 1. In this paper we study the
Hardy-Poincaré inequalities with weight function singular at the boundary of €). In particular we

give sufficient conditions so that the best constant is achieved.
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1 Introduction

Let © be a domain in RY, N > 1, with 0 € 9Q and p > 1 a real number. In this

note, we are interested in finding minima to the following quotient

/ |VulP d:v—)\/ |ulP dx
(1.1) pap(2) ;= inf

)
ueWy P (Q) /|$| Pyl da
Q

in terms of A € R and Q. If A\ =0, we have the Q2-Hardy constant

(1.2) pop(Q) = inf S —
ueWyP () /|x‘—p‘u|p dx
Q
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which is the best constant in the Hardy inequality for maps supported by €2. The
existence of extremals for py 2(€2) was studied in [10] while for p92(€2), one can see
for instance [6], [5], [21] and [19] for po N (€2).

Given a unit vector v of R, we consider the half-space H := {x € RY : x-v > 0}.

For N =1, the following Hardy inequality is well known

_ p o) [e%]
(1.3) <pTl> /0 t7P|ulP dt §/0 WP dt Yu e Wy (0,00).

P
Moreover p,(H) = (%) is the H-Hardy constant and it is not achieved, see [15]
for historical comments also.

For N > 2, it was recently proved by Nazarov [20] that the H-Hardy constant is not

p
2 2
/N 1 ((Np p) |V|2+|VUV|2> do
N
(1.4) pop(H) == inf +

)
1, N-1
Vewy sy / \V]pda
SNfl

+

achieved and

where Sﬂ\: ~is an (N — 1)-dimensional hemisphere. Notice that this problem always

has a minimizer by the compact embedding LP (Sﬂ\: 1 VVO1 P (Sﬂ\: 1. The quan-

N2
4

while for p = N then py n(H) is the first Dirichlet eigenvalue of the operator
—div(|Vu|N2Vu) in W()I’N(Sf_l) with the standard metric.

Problem (1.1) carries some similarities with the questions studied by Brezis and Mar-

tity pop(H) is explicitly known only in some special cases. Indeed, g 2(H) =

cus in [2], where the weight is the inverse-square of the distance from the boundary
of Q and p = 2. We also deal with this problem in the present paper for all p > 1
in Appendix A. We generalize here the existence result obtained by R.Musina and
the author in [10] for any p > 1 and N > 1.

Theorem 1.1 Let p > 1 and Q be a smooth bounded domain in RN, N > 1, with
0 € 9Q. There exits \*(p,2) € [—o0,+00) such that

(1.5) ap(2) < pop(H), VA>A(p, Q).

The infinimum in (1.1) is attained for any A > X*(p, ).



The existence of A*(p,2) comes from the fact that

sup ,u)\,p(Q) = /‘O,p(H)a
AER

see Lemma 2.2. Now observe that the mapping A — p, , is non-increasing. More-
over, for bounded domains €2, letting A1 be the first Dirichlet eigenvalue of the p-
Laplace operator —div(|Vu[P~2Vu) in Wol’p(Q), it is plain that py, ,(©2) = 0. Then
we define

X (p, Q) :==inf{A € R 1 pyp(Q) < pop(H)}

so that py, < pop(H) for all A > A*(p,2). In particular \*(p,§2) < A;. On the
other hand there are various bounded smooth domains €2 with 0 € 9 such that
A*(p, Q) € [—0,0), see Proposition 2.5 and Proposition 2.6. Furthermore if N = 1
then o ,(R\ {0}) = <pT?1>p = o p(H) thus A*(p,Q) > 0.

It is obvious that if 2 is contained in a half-ball centered at the origin then

1o.p(2) = po,p(H) thus X*(p, Q) > 0 and in addition

[Vl do = o) [ ol Pl do
X (p, Q)= inf Q2 Q2 .

ue€Wy* () / u|P dz
)

We have obtained the following result.

Theorem 1.2 If ) is contained in a half-ball centered at the origin then there exists
a constant ¢(N,p) > 0 such that
(N, p)

1.6 N(p, Q) > ——.

(1.6) (p, ) 2 diam(Q2)P

The constant ¢(N,p) appearing in (1.6) has the property that c(V,2) is the first
Dirichlet eigenvalue of —A in the unit disc of R2. This type of estimates was first
proved by Brezis-Vazquez in [3] when p = 2, N > 2 and later on, extended to the case
1 < p < N by Gazzola-Grunau-Mitidieri in [13] when dealing with yg,(RY\ {0}) :=

P

‘%‘ . More precisely they proved the existence of a positive constant C(N,p)
such that for any open subset € of R, there holds

(1.7)

L 190P = 0y @\ 1) [ 17l = C¥p) (j‘%)ﬁ [ e win,

3



where |Q] is the measure of Q and wy the measure of the unit ball of RY. The
constant C'(V,p) was explicitly given and C(N,2) = ¢(N,2) as was obtained in [3].
The main ingredients to prove (1.7) is the Schwarz symmetrization and a ”dimension

-N
reduction” via the transformation x — %, where w(z) = ]a:\pT satisfies
div (VP V) + o, RV {0}) 2] 7w~ =0 in BV \ {0}.

For p = 2, the lower bound in (1.6) was obtained in [10] by a similar transformation
and using the Poincaré inequality on Sﬂ\: ~1. However, in view of (1.4), such argument
do not apply here when p # 2 and p # N. By analogy, to reduce the dimension, we
will consider the mapping = +— %, where v(z) := ]w\%v <ﬁ) is a weak solution

to the equation
div(|Vv|p_2Vv) + pop(H) |$|_p|v|p_2v =0 inD'(H)

whenever V' is a minimizer of (1.4). Then exploiting the strict convexity of the
mapping a +— |alP, estimate (1.6), for p > 2, follows immediately while the case

p € (1,2) carries further difficulties as it can be seen in Section 2.2.

The argument to prove the attainability of juy ,(€2) is taken from de Valeriola-
Willem [7]. It allows to show that, up to a subsequence, the gradient of the Palais-
Smale sequences converges point-wise almost every where. Therefore an application
of the Brezis-Lieb lemma with some simples arguments yields the existence of ex-

tremals.

2 Hardy inequality with one point singularity

Let C be a proper cone in RV, N > 2 and put ¥ := CNSV~!. It was shown in [20]
that the C-Hardy constant is not achieved and it is given by

(2.1) pop(C) = inf /E<<¥>2|V|2+|VUV|2)QCM.

Vew, P () / V|Pdo
b




Letting V' € VVO1 P(3) be the positive minimizer to this quotient then the function
-N

(2.2) o(z) = |z|F V (,”“’—O

x

satisfies

(2.3) / IVo[P~2Vv - Vh = p10,,(C) / lz|"PvP~th  Vh € CL(C).
C C

Notice that pp2(C) = (%)2—1—)\1(2), where A\;(X) is the first Dirichlet eigenfunction
of the Laplace operator on ¥ endowed with the standard metric on SV ~!. This was
obtained in [21], [19] and [10].

2.1 Existence

In this Section we show that the condition py , () < pop(H) is sufficient to guaranty
the existence of a minimizer for yy ,(€2).

We emphasize that throughout this section, 2 can to be taken to be an open set
satisfying the uniform sphere condition at 0 € 9Q2. Namely there are balls B, C €2
and B_ C RV \ Q such that 9B, N dB_ = {0}. This holds if 9 is of class C? at
0, see [[16] 14.6 Appendix]. We start with the following approximate local Hardy

inequality.

Lemma 2.1 Let Q be a smooth domain in RN, N > 1, with 0 € 092 and let p > 1.
Then for any € > 0 there exits v > 0 such that

(2.4) 10p(2N By (0)) = pop(H) — e,
where B(0) is a ball of radius r centered at 0.

Proof. If N =1 then (2.4) is an immediate consequence of (1.3). From now on we
can assume that N > 2. We denote by Nyq the unit normal vector-field on 992. Up
to a rotation, we can assume that Ny (0) = Ey, so that the tangent plane of 9 at
0 coincides with RV~! = span{F},..., Ex_1}. Denote by B = {y € B,(0) : y" >
0}. For r > 0 small, we introduce the following system of coordinates centered at 0

(see [9]) via the mapping F' : B;F — Q given by

F(y) = Expy () + y" Noq (Expy (7)),



where § = (y',...,yV 1)

and ¢ — Exp(g) € 02 is the exponential mapping of OS2
endowed with the metric induced by RY. This coordinates induces a metric on RY
given by gi;(y) = (0;F (y),0;F(y)) for i,j =1,...,N. Let u € CX(F(B;)) and put
v(y) = u(F(y)) then

(2.5)

/ Vul? dr = / Vo2 /gl dy, /
F(B]) Bt F(B

with |g| stands for the determinant of the g while |Vol) = g(Vv,Vu)2. Since
[E(y)] = |yl + O(ly[*) and gi;(y) = 6i; + O([yl), we infer that

| 1velgIgldy [ velray
2 > (1 - Cr)—2

/ () "lol?v/Tg] dy / gl Plol? dy
+ B;F

r

|z Plul? dz = / [F () lPV/ gl dy,
+) B+

T T

for some constant C' > 0 depending only on Q and p. Furthermore since yg,(B;") >

pop(H), using (2.5) we conclude that

pop(F(B)) = (1= Cr)pop(H).

We are in position to prove (1.5) in the following

Lemma 2.2 Let Q be a smooth domain in RN, N > 1, with 0 € 092 and let p > 1.
Then there exists \*(p, Q) € [—00, +00) such that

1ap(Q) < pop(H) YA > N (p, Q).

Proof. We first show that

(2.6) Sup fi,p($2) = pio.p(H).
AER

Step 1: We claim that supycg peap(2) > pop(H).
For 7 > 0 small, we let ¢ € C°°(B,(0)) with 0 < < 1,9 =0 in RV \ B:(0) and



¢ =1 in Bz(0). For a fixed € > 0 small, there holds

/ 2| Pl = / 2Pl + (1 — P)uf?
Q Q

< (1+9) /Q 2] Pl + cfe) /Q 2 P(1 — P)Plul?
< (1+e) /Q 2] Plpul? + ce) /Q ul?.
Now by (2.4)
(0, (H) — ) /Q 2] Plypul? < /Q IV (u)?
and hence

@7 (uop(H) — <) /Q 2] Plul? < (1+¢) /Q V)P + c(e) /Q ufP.
Since |V (¢u)|P < (¢|Vu| + |u][Ve])? we deduce that
VP < (1+ )P |VulP + cful|VYP < (1+¢)|Vul + cluf?,
Using (2.7), we conclude that
_ =P, |P 2 p 2
28)  (uopH) —¢) /Q 2| PlufP < (1+¢) /Q Vup? + ee) /Q ul?.

This implies that g ,(H) < supycg pap(€2) and the claim follows.
Step 2: We claim that supycg A p(2) < pop(H).

Denote by v the unit interior normal of 9€2. For § > 0 we consider the cone
C’i = {:UGRN |z v >z }

and put X5 = CL NSN~1. For every n > 0, let V € C2°(Xg) such that

p
N— 2 2
/ (( p) |V|2+|VUV|2> do
o p

|V |Pdo
Yo

< MO,p(H) +n.

On the other hand, there exists § > 0 small such that suppV C Xs5. From this we

conclude that
(2.9) tiop(H) < pop(CY) < pop(H) + 1.
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Since OS2 is smooth at 0, for every § > 0, there exists 75 > 0 such that CiﬂBr(O) cQ
for all 7 € (0,75). Clearly by scale invariance, ug,(CS.NB,(0)) = 19 ,(CS.). Fore > 0,
we let ¢ € Wol’p(Ci N B,(0)) such that

/ VP da
C4.NB-(0)

/ 2| P|oP de
C4NB-(0)

From this we deduce that

< pop(CY) + .

/ VP dr — A / o da
€3NB-(0) C4NB-(0)

/ 2| P|fP da

C3.NB(0)
/ 61" da
C3NB(0)

/ 2| PP da
C% NB-(0)

+

NA,p(Q) <

IN

io(CY) +e+ |

Since / |z|7P|p|P dx > T_p/ |o|P dx, we get
3NB-(0 c

C4NB-(0) 4 NB.(0)
pap() < p0,p(CL) + € + 17|

The claim follows immediately by (2.9). Therefore (2.6) is proved.
Finally as the map X — py ,(€2) is non increasing while py, ,(Q2) =0 < pop(H), we
can set

A(p, Q) :=inf{A € R+ pxp(Q) < pop(H)}
so that \*(p, Q) < pop(H) for any A > X*(p, Q). O

Remark 2.3 Observe that the proof of Lemma 2.2 highlights that

}1_% 10,p(2 N B(0)) = pop(H) = )\EI_HOO fixp(82).

Proof of Theorem 1.1
Let A > X(p,Q) so that py,(Q) < pop(H). We define the mappings F, G :

8



W,P(9) — R by

F(u):/Q\Vu]p—)\/Q\u]p

Gw) = [ laPlup.

By Ekeland variational principal, there is a minimizing sequence u, € VVO1 P(Q)

and

normalized so that
G(u,) =1, ¥YneN

and with the properties that

F(un) - M)MP(Q)v

(2.10) J () = F'(tn) — pirp(Q)G (un) — 0 in (WyP(Q)).
Up to a subsequence, we can assume that there exists u € WO1 P(Q) such that
(2.11) Vu, — Vu in LP(Q),

Up, — uwin LP(Q) and u, — w a.e. in ). Moreover by (2.8), we may assume that

||~ u, — |z|~tu in LP(Q). We set 6,, = u,, — u and

if |s] <1
-, KM

o if |s| > 1.

It follows that for every r > 1
(2.12) / T(6,)]" 0.
Q
Moreover notice that
(90l = [96P2V0) - VT(6,) = () T6)) + 0@ [ ] Plul 0,76,
Q Q
4 / (P2, T(6) — / VulP 2V - VT(6,).
Q Q
Therefore by (2.10), (2.11) and (2.12) we infer that

/ (IVun P>V, — [Vul[P~?Vu) - VT'(6,) — 0.
Q

9



Consequently by [7]-Theorem 1.1,

(2.13) lim </ yvunyp—/ \ven\p> :/ VP

By Brezis-Lieb Lemma [4]

(2.14) |~ lim /\xy—l’yenv’:/ 2P JulP.

Fix € > 0 small. By (2.8) and Rellich, there exists A. such that

(10 (H) — ) / 2| P 6, < / V6,17 — A, / 6, = / V0,07 + of1).
Q Q Q Q

Using this together with (2.13) and (2.14) we get

/|vu|p—x/ |u|p§/ |vun|p—/ |V9n|p—>\/ funl? + o(1)
Q Q Q Q Q

F(un) = (pop(H) —6)/QI<E|_”I9n|p+0(1)

IN

() /Q 2|7 uf?

IN

< ap(Q) = (pop(H) —¢) <1—/Q!w\_p\u]p> + o(1)
< ap(Q) — piop(H) + & + (pop(H) —¢) /Q 2] Pluf? + o(1).

Send n — oo and then € — 0 to get
(1) — 10 (H) /Q 2P uf? < pr p(©) — piop ().

Hence [, [|7P|u[’ > 1 because iy () — pop(H) < 0 and the proof is complete. []

As a consequence of the existence theorem, we have

Corollary 2.4 Let Q be a smooth bounded domain of RN, N > 2, with 0 € 5.

Then p

g (RN 100) = |22 < (@) < o)

Proof. By (2.6) 0 < p0,(2) < pop(H). If the strict inequality holds, then there
exists a positive minimizer u € VVO1 P(Q) for p9,(2) by Theorem 1.1. But then
top (RM\ {0}) < pop(92), because otherwise a null extension of u outside €2 would
achieve the Hardy constant in RY \ {0} which is not possible. O

10



As mentioned earlier, we shall show that there are smooth bounded domains in
RN such that \*(p,Q) € [~00,0). These domains might be taken to be convex or
even flat at 0. For that we let v € S¥~! and 4,7, R > 0. We consider the sector

(2.15) CiR = {a:E]RN\a:-u>—(5]a:\ 7 < |z| < R}.

Proposition 2.5 Let N > 2 and p > 1. Then for all 6 € (0,1), there exist r,R > 0
such that if a domain 2 contains CjiR then pop(2) < pop(H).

Proof. Consider the cone
Co = {xGRN | z-v>—6lz| }

Notice that by Harnack inequality p(C%) < u(C%) for any 0 < & < & < 1. Thus for
any § € (0,1), we can find u € C2°(C°%) such that

[Vul?
5
€ (H).

— < Uop
/ 2| P luf?
Cé

Hence we choose r, R > 0 so that supp u C C;iR. I

By Corollary 2.4, starting from exterior domains, one can also build various ex-
ample of (possibly annular) domains for which A\*(p, Q) < 0. The following argument
is taken in [Ghoussoub-Kang [14] Proposition 2.4]. If U ¢ RY, N > 2, is a smooth
exterior domain (the complement of a smooth bounded domain) with 0 € U then
by scale invariance g ,(U) = p10,,(RY\{0}). We let B,.(0) a ball of radius 7 centered
at the 0 and define Q, := B,(0) N U then clearly the map r — u(£2,) is decreasing
with

(2.16) pop (RY\ {0}) = inf () and  pop(H) = Sglguo,p(ﬁr)-

We have the following result for which the proof is similar to the one given in [14]

by Corollary 2.4 and Harnack inequality.

Proposition 2.6 There exists o > 0 such that the mapping r — pio ,(€2) is left-

continuous and strictly decreasing on (rg,+00). In particular

p0,p(RY N\ {0}) < p0p() < prop(H), Vr € (rg, +00).

11



2.2 Remainder term

We know that for domains  contained in a half-ball \*(p, ) > 0. Our aim in this
section is to obtain positive lower bound for A*(p, ) by providing a remainder term
for Hard’s inequality in these domains. In [13], Gazzola-Grunau-Mitidieri proved

the following improved Hardy inequality for 1 < p < N:

) [ 9l = oy, RYA(OY) [ lal Tl > V) (rm) [

that holds for any bonded domain Q of RY and u € VV0 P(Q1). Here the constant
C(N,p) > 0 is explicitly given while C(NV,2) is the first Dirichlet eigenvalue of —A
of the unit disc in R2.

We shall show that such type of inequality holds in the case where the singularity
is placed at the boundary of the domain. To this end, we will use the function

v(z) = |:17| P V <‘ ‘> defined in (2.2) to ”reduce the dimension”.

Throughout this section, we assume that N > 2 since the case N = 1 was already
proved by Tibodolm [22] Theorem 1.1. Indeed, he showed that

1 1 1
/0 |u/ (r)[Pdr — Mo’p(H)/o rPlu(r)Pdr > (p— 1)2p/0 lu(r)|Pdr, Yu € Wol’p(O, 1).
We start with conic domains

Ces={z=rccRY |re(0,1),0eX},

SNV=1 and having a Llpschltz boundary

where 3 is a domain properly contained in
We will denote by V' the positive minimizer of (2.1) in ¥ while v(z) := ]a:\ PV (le)
satisfies (2.3) in the infinite cone {x = rc € RY | r € (0,+00), 0 € ¥ }. Finally we
remember that by Harnack mequahty € L2 (Cx).

Recall the following inequalities (see [17] Lemma 4.2) which will be useful in the

remaining of the paper. Let p € [2,00) then for any a,b € RV

1 -
(2.18) ja+ 0" 2 |af” + S [bP + plaf’ “a-b.

op
If p € (1,2) then for any a,b € RN
[b]?
(lal + [b])*7

We first make the following observation.

(2.19) la+ 0" = |al’ + ¢(p) +plaff"a-b.

12



Lemma 2.7 Let u € C°(Cx), u > 0. Set ¢ =2 then

Ifp>2
1

@200 [ VP = pap(Cs) [ el P 2 g [ v,

Cx Cx 2 -1 Cx
Ifl<p<?2

_ ]szMz

(2.21) Vul? — 10,(Cx) / 2| Pl > c(p) / _

Cs P Cs es ([oVY] + |9 Vo])* 7P

Proof. We prove only the case p > 2 as the case p € (1,2) goes similarly. Notice
that Vu = vV +1Vv then we use the inequality (2.18) with a = vV and b = Vv
to get

1
Vul? > / WVl 4 p / VP29V (07) + = [ oV,
Cs, Cs, Cs, 2p

—1 Jes,

It is plain that
plYVuP 2V - (vVY) = |VolP 2V - (vVyYP) = |[VolP 2V - V(ugP) — | VolP.

Inserting this in the first inequality and using (2.3) we deduce that

1
Ry N2 I R
Cx 2 -1 Cx Cx

- p —Pp, P
> e [ T sl [ el

O

The improvement in the case p > 2 is an immediate consequence of the above
lemma.
Lemma 2.8 For allp > 2
- Ap 0
(Vul? = pop(Cs) [ [a[Pluf’ > —=— [ [ul’, Vue CX(Cx),
Cs Cs 2070 =1 Jeg,

Lpp—1 | £/ |Pdr

where Ay i= inf recao Sy

13



Proof. Since |V|u|| < |Vu|, we may assume that u > 0. We only need to estimate
the right hand side in (2.20). We use polar coordinates x +— (||, %) = (r,0) and
denote by 0, the radial direction. Then using (2.18),

1
|owwer = [ [ e, s vour
Cs; = Jo
1 1
/Vp/ rp—lwr‘pzAp/Vp/ Tp—l‘wp
b3 0 by 0
1
> A, / / PPN Z A, / .
> Jo Cs

The lemma readily follows from (2.20). O

v

It is easy to see that by integration by parts A, > 1 while for integer p € N then
A, corresponds to the first Dirichlet eigenvalue of —A in the unit ball of R?.
We now turn to the case p € (1,2) which carries more difficulties. We shall need the

following intermediate result.

Lemma 2.9 Letp € (1,2) andu € CX(Cx), u > 0. Setting 1) = & then there exists
a constant ¢ = ¢(p,X) > 0 such that

c/ 7‘|¢Vv|p§/ r=P)2|y P
Cs Cs

Proof. Let ¢ := r%ﬂ) and use ¢Pv as a test function in the weak equation (2.3).
Then by Holder

/ WNJVU\” < uom(Cz)/ T_pvpl/;p—kp/ WZVv]p_llqu@
CE CE CE
p—1

=P, P,),P 7 P B ~p%
Czr P —|—p</cz|1/)Vv|> (/CE|UV¢|> .

< pop(Cx) /

Therefore by Young’s inequality, for € > 0 small there exists a constant C; > 0

depending on p and ¥ such that

(1 - ce(p)) / vep <c. [ rrwir o [ pvip.
Cx Cy Cs

14



Recall that ¢ = r%¢. Then since
VO < ep) (r' PP +r|Vo[P)
we conclude that there exists a constant ¢ = ¢(p, 3) such that

(2.22) c/ 7‘|¢Vv|p§/ rl_pv‘”¢p—|—/ rCP)Ply P,
Cx Cx Cx

we have used the fact that r < r(2=P)/? for all r € (0,1). To estimate the first
term in the right hand side in (2.22) we will use the 2-dimensional Hardy inequality.
Through the polar coordinates z — (r,0)

e = [ ()

L[ G)

T v [

_p/ol/zvpv_p\vvw\pr: _p/Ol/ETN_pH\UVdJ\p.

To conclude, we notice that »V =P = PN=5pCP)/p < pN-1p2-P)/p 44 p € (1,2) so

that

IN

IN

P
—2

P
—2

_pr
p—2

/ rl—pqu/}p < ‘ p
Cx p—- 2

-p
/ rC=P)P TP,
Cs
Inserting this in (2.22) the lemma follows immediately. O

We are now in position to prove the improved Hardy inequality for p € (1, 2).

Lemma 2.10 Letp € (1,2). Then there exists a constant ¢ = c¢(p,>) > 0 such that

/ Vul? — iop(Cx) / 2| PP > ¢ / P, Vu e OF(Cy).
Cs

Cz CZ

Proof. Here also we may assume that u > 0. We need to estimate the right hand

15



side of (2.21). Let r = |x| then by Holder and Lemma 2.9, we have

— 2 _
| ever = | e T (W] + [Tl PP
cs s (V] + W) &

vy >p/ ? < ,,) (2-p)/2
\ v
</Cg (|oVY| + [ Vo])2 7P /C2 7|V + [ V|
(st
¢ ([oV] 4 [ Vo) P
(2—p)/2
" <2p_1/ rloVel + 277 / rlwvlp>
Cs Cs

|oVap|? >p/2< 2 p>(2—p)/2
< ([ mmoriems) (L ’

where c a positive constant depending only on p and ¥ and we have used once more
the fact that r < r(2=P)/? for all r € (0,1). Consequently by (2.21), we deduce that

(2:23) | vl ogics) [ ol Pl z e [ o v,
Cx Cx Cx

To proceed we estimate

/Z/O1UPTN—1 _ /Evp/olrp—1|¢|pSc(p)/zvp/;rwrw
C(p)évp/lrgwm
0

«(p) /C 3 V.

IN

IN

2
The first inequality comes from the 2-dimensional embedding VVO1 P L2 C L’o‘%),
one can see [[13] page 2155] for the proof. Putting this in (2.23) we conclude that

there exists a positive constant ¢ = ¢(p, X) such that

/ Vul? — o, (Cx) / PRIUEY / uf?
Cx Cx Cx

which was the purpose of the lemma. ]
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The main result in this section is contained in the next theorem.

Theorem 2.11 Let Q be a domain in RN with 0 € Q. If Q is contained in a
half-ball centered at 0 then there exists a constant ¢(N,p) > 0 such that

- c(N,p) / 1
P _ Plglp >~ 777 p P
190 = gy [ fal > LB [ e @),

Proof. Let R = diam(Q2) be the diameter of Q. Then (2 is contained in a half ball
BE of radius R centered at the origin. From Lemma 2.8 and Lemma 2.10 we infer
that

N
/ Vulp - uop(H)/ PRI M/ P Vu € C2(Q)
B+ ? B+ RP B+
R R R
by homogeneity. The theorem readily follows by density. U

We do not know whether diam(€2) might be replaced with wN|Q|% as in [13] at
least when € is convex and p > 2. There might exists also ”logarithmic” improve-
ment as was recently obtained in [11] inside cones and p = 2. One can see also the
work of Barbatis-Filippas-Tertikas in [1] for domains containing the origin or when

|z| is replaced by the distance to the boundary.
A Hardy’s inequality
We denote by d the distance function of €2:
d(z) := inf{|lx — o] : 0 € ON}.
In this section, we study the problem of finding minima to the following quotient

/ |Vul? de — /\/ |ulP dx
(A1) vyp(2):=  inf

ueWy P (Q /d PlulP d ’
Q

where p > 1 and A € R is a varying parameter. Existence of extremals to this
problem was studied in [2] when p = 2 and in [18] with A = 0. It is known (see for
instance [18]) that vy ,(2) < ¢, for any smooth bounded domain 2 while for convex
domain €2, the Hardy constant 1 ,(£2) is not achieved and v ,(2) = (p—_l)p =: Cp.

P
The main result in this section is contained in the following
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Theorem A.1 Let Q be a smooth bounded domain in RN and p > 1, there exits

A(p, ) € [—o0,+00) such that
p—1\" <
(A.2) xp()) < (T) . VA> Ap, Q).

The infinimum in (A.1) is attained if X > \(p, Q).

We start with the following result which is stronger than needed. It was proved
in [2] for p = 2 and in [12] when 2 < p < N as the authors were dealing with
Hardy-Sobolev inequalities.

Lemma A.2 Let ) be a smooth bounded domain in RN and p € (1,00). Then there
exists 8= [(p, Q) > 0 small such that

(A3) / IVl > cp/ APl Yu e HY(Q),
Q6 g
where Qg :={x € Q : d(x) < B}.
Proof. Since |V]u|| < |Vul|, we may assume that u > 0. Let v € C°(Q) and put
1—
v=d7 u Using (2.18) and (2.19), we get

_ 1Pt
(Ad)  |VulP —cpd PlulP > c(p)dP~ | VulP + ‘pTl Vd-V(@P) ifp>2,
(A.5)
2 _1|p—1
[Vul? —cpd ™ |ulP = c(p) AV + ‘p ! Vd-V(P) ifpe(1,2).

1 2-p
(c{,’ lv] + d|Vv|>

By integration by parts, we have

/ Vd V(?) = - / AdJol? + / P > —c / fol? + / of?,
Qg Qg 09 Qs 09

for a positive constant depending only on Q. Multiply the identity div(dVd) =
1+ dAd by v in integrate by parts to get

(1+0(1))/ yvyp:—p/ d]v]p_1Vd~Vv+/ dolP gc(p)/ d\v\p_l\VvH—/ dof.
Q5 Q5 095 Q5 095

18



By Holder and Young’s inequalities
(A6) (140(1) — cs)/ ofp < ce/ 4| Vol? +/ doP.
Qp Qp o0
Case p > 2. Using (A.6) we infer that
(1+0(1) —cs)/ e <ep [ e vepr+s [ [P
Qp Qp 09

It follows from (A.4) that for e, 5 > 0 small
/ Vul? cp/ P > ¢ / PP +/ [of?
Q5 Q5 Q5 GIoP

Case p € (1,2). By Hélder and Young’s inequalities

as desired.

p(2—p)

dP|VulP 1
/ dp’VU’p = / | U| p(2—p) <CIZ; ’U’ + d’VUD
Qg Q T2

8 1
(c{; lv| + d|Vv|>

d?|Vv|?
ca/ Vel g —i—&?c/ ]v]p—i-sc/ dP|Vul?
Q2 < > Q25 Q25

IN

1
cp |v| + d| V|

and thus
d?|Vv|?

(1—ce) dP|VulP < cg/
Qs % (&
cp |v| + d| V|

>2_p —I—sc/ﬂﬁ [vlP.

Using this in (A.6) we obtain

d|Vvl|?

(+o)—co) [ pp<es [ — B [ o
g g (c},’\v\—kd\VU\) g

By (A.5), we conclude that for ¢, 8 > 0 small

d 2
| owur =, [ avrse | e [l
Qs Qs QB< > P 095

1
cplv| + d| V|
This ends the proof of the lemma.
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Lemma A.3 Let Q be a bounded domain of class C? in RN. Then there exists

A(p, ) € [—o0,+00) such that
np(Q) < e YA> A, Q).

Proof. The proof will be carried out in 2 steps.
Step 1: We claim that supycg vx »(€2) > c,.
For 8 > 0 we define
Qp:={x e :dx) < S}

Let ¢ € C®(Qp) with 0 < ¢ <1, =0in RV \ Qs and ¢y =11in Qp. Fore >0
2 4
small, there holds

/ aPufp = / dPlpu + (1 — B)ul?
Q Q

(1+e) /Q dPlul? + C /Q dP(1— )P luf?

(1+z—:)/ﬂd_p|1,bu|p+0/g|u|p.

IN

IA

By (A.3), we infer that

& [ v < [ V@)
Q Q
and hence
(A7) cp/ dPlup < (1+e)/ |V(¢u)|p+0/ uf?.
Q Q Q
Since |V (yu)|P < (¢|Vu| + |u||VY])? we deduce that
IV@u)lP < (14 )¢ |Vul? + Cluf[Vy [P < (1 +¢)[Vul” + Clul?.
Using (A.7), we conclude that
& [ drlur <@+ [ Vulr+Ced) [ Jup
Q Q Q

This means that ¢, < supycg Vxp(£2).
Step 2: We claim that supycg vx () < c,.
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Let 8 > 0 then by (1.3) and scale invariance we have pg,(0,5) = cp.

€ > 0 there exits a function ¢ € VVO1 P(0,8) such that

I 1P ds

AR c,+e> .
(A.8) » 5 o ron ds

Hence for

Letting u(z) = ¢(d(x)), there exists a positive constant C' depending only on 2 such

/Qﬁ’wp_// s)IP dos < (14 CB) \am/ 16/(5)|P ds.

that

Furthermore

B B
—p P —-p P _ P
/Q Al = /O /m ()P dos > (1— CB) |09 /0 ()P ds.

By (A.8) we conclude that

/ |VulP de — A uf dz
s Qs

/ |ulP dx
s

1+Cp
vy p(0) < <(cp+e) el + | Al )
/ d”PlulP dx / dPlulP dx
Qs Qp
Since [, d"Plu|? dz > 7P fQ,B |ulP dz, we get
1+C
0l < (e + )i + 7

sending S to 0 we get the desired result.

O

Clearly the proof of Theorem A.1 goes similarly as the one of Theorem 1.1 and

we skip it.

It was shown in [2] that \(2,Q) € R and that vy ,(Q) is not achieved for any
A > A(2,9). On the other hand by [8], there are domains for which A(2,Q) < 0, see

also [18].

We point out that if Q is convex then by [22] there exists a constant a(N,p)

(explicitly given) such that

Y a’(N7p)
Ap, Q) > o
(p,2) e

>0



We finish this section by showing that there are smooth bounded domains in RY
such that A(p,Q) € [-00,0). We let U ¢ RN, N > 2 with 0 € OU be an exterior
domain and set Q, = B, (0) N U.

Proposition A.4 Assume thatp > % then there exists r > 0 such that vp ,(€,) <

()
= -
P P
Proof. Clearly po,(RY \ {0}) = ‘%‘ < <’%1> provided p > Y. Let ¢ > 0
p—1 p N—p P :
such that <T> > ‘T‘ + & so by (2.16), there exits r > 0 such that

p -1 p
+e<<p—> .
p

The conclusion readily follows since vg,(£2r) < pop(€2-) because 0 € 09,.. O

N-—p

op() < \
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