# A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients 

Serge Nicaise and Juliette Venel *

September 17, 2010


#### Abstract

We perform the a posteriori error analysis of residual type of a transmission problem with sign changing coefficients. According to [6] if the contrast is large enough, the continuous problem can be transformed into a coercive one. We further show that a similar property holds for the discrete problem for any regular meshes, extending the framework from [6]. The reliability and efficiency of the proposed estimator is confirmed by some numerical tests.


Key Words A posteriori estimator, non positive definite diffusion problems.
AMS (MOS) subject classification 65N30; 65N15, 65N50,

## 1 Introduction

Recent years have witnessed a growing interest in the study of diffusion problems with a sign changing coefficient. These problems appear in several areas of physics, for example in electromagnetism [12, $15,16,18,19$. Thus some mathematical investigations have been performed and concern existence results [7, 19] and numerical approximations by the finite element methods [19, 4, 5, 6], with some a priori error analyses. But for such problems the regularity of the solution may be poor and/or unknown and consequently an a posteriori error analysis would be more appropriate. This analysis is the aim of the present paper.

For continuous Galerkin finite element methods, there now exists a large amount of literature on a posteriori error estimations for (positive definite) problems in mechanics or electromagnetism. Usually locally defined a posteriori error estimators are designed. We refer the reader to the monographs [2, 3, 17, 21] for a good overview on this topic.

[^0]

Figure 1: The domain $\Omega$

In contrast to the recent paper [6] we will not use quasi-uniform meshes that are not realistic for an a posteriori error analysis. That is why we improve their finite element analysis in order to allow only regular meshes in Ciarlet's sense [8].

The paper is structured as follows: We recall in Section 2 the "diffusion" problem and the technique from [6] that allows to establish its well-posedness for sufficiently large contrast. In Section 3, we prove that the discrete approximation is well-posed by introducing an ad-hoc discrete lifting operator. The a posteriori error analysis is performed in Section 4, where upper and lower bounds are obtained. Finally in Section 5 some numerical tests are presented that confirm the reliability and efficiency of our estimator.

Let us finish this introduction with some notations used in the remainder of the paper: On $D$, the $L^{2}(D)$-norm will be denoted by $\|\cdot\|_{D}$. The usual norm and semi-norm of $H^{s}(D)$ $(s \geq 0)$ are denoted by $\|\cdot\|_{s, D}$ and $|\cdot|_{s, D}$, respectively. In the case $D=\Omega$, the index $\Omega$ will be omitted. Finally, the notations $a \lesssim b$ and $a \sim b$ mean the existence of positive constants $C_{1}$ and $C_{2}$, which are independent of the mesh size and of the considered quantities $a$ and $b$ such that $a \leq C_{2} b$ and $C_{1} b \leq a \leq C_{2} b$, respectively. In other words, the constants may depend on the aspect ratio of the mesh and the diffusion coefficient (see below).

## 2 The boundary value problem

Let $\Omega$ be a bounded open domain of $\mathbb{R}^{2}$ with boundary $\Gamma$. We suppose that $\Omega$ is split up into two sub-domains $\Omega_{+}$and $\Omega_{-}$with a Lipschitz boundary that we suppose to be polygonal in such a way that

$$
\bar{\Omega}=\bar{\Omega}_{+} \cup \bar{\Omega}_{-}, \quad \Omega_{+} \cap \Omega_{-}=\emptyset
$$

see Figure 1 for an example.
We now assume that the diffusion coefficient $a$ belongs to $L^{\infty}(\Omega)$ and is positive (resp. negative) on $\Omega_{+}$(resp. $\Omega_{-}$). Namely there exists $\epsilon_{0}>0$ such that

$$
\begin{array}{r}
a(x) \geq \epsilon_{0}, \text { for a. e. } x \in \Omega_{+}, \\
a(x) \leq-\epsilon_{0}, \text { for a. e. } x \in \Omega_{-} . \tag{2}
\end{array}
$$

In this situation we consider the following second order boundary value problem with Dirichlet boundary conditions:

$$
\left\{\begin{array}{rll}
-\operatorname{div}(a \nabla u) & =f & \text { in } \Omega  \tag{3}\\
u & =0 & \text { on } \Gamma
\end{array}\right.
$$

The variational formulation of (3) involves the bilinear form

$$
B(u, v)=\int_{\Omega} a \nabla u \cdot \nabla v
$$

and the Hilbert space

$$
H_{0}^{1}(\Omega)=\left\{u \in H^{1}(\Omega): u=0 \text { on } \Gamma\right\} .
$$

Due to the lack of coercivity of $B$ on $H_{0}^{1}(\Omega)$ (see [7, 5, 6]), this problem does not fit into a standard framework. In [5, 6], the proposed approach is to use a bijective and continuous linear mapping $\mathbb{T}$ from $H_{0}^{1}(\Omega)$ into itself that allows to come back to the coercive framework. Namely these authors assume that $B(u, \mathbb{T} v)$ is coercive in the sense that there exists $\alpha>0$ such that

$$
\begin{equation*}
B(u, \mathbb{T} u) \geq \alpha\|u\|_{1, \Omega}^{2} \quad \forall u \in H_{0}^{1}(\Omega) . \tag{4}
\end{equation*}
$$

Hence given $f \in L^{2}(\Omega)$, by the Lax-Milgram theorem the problem

$$
\begin{equation*}
B(u, \mathbb{T} v)=\int_{\Omega} f \mathbb{T} v \quad \forall v \in H_{0}^{1}(\Omega) \tag{5}
\end{equation*}
$$

has a unique solution $u \in H_{0}^{1}(\Omega)$. Since $\mathbb{T}$ is an isomorphism, the original problem

$$
\begin{equation*}
B(u, v)=\int_{\Omega} f v \quad \forall v \in H_{0}^{1}(\Omega) \tag{6}
\end{equation*}
$$

has also a unique solution $u \in H_{0}^{1}(\Omega)$.
In [6], the mapping $\mathbb{T}$ is built by using a trace lifting operator $\mathcal{R}$ from $H_{00}^{1 / 2}(\Sigma)$ into $H_{-}^{1}\left(\Omega_{-}\right)$, where $\Sigma=\partial \Omega_{-} \cap \partial \Omega_{+}$is the interface between $\Omega_{-}$and $\Omega_{+}$,

$$
H_{ \pm}^{1}\left(\Omega_{ \pm}\right)=\left\{u \in H^{1}\left(\Omega_{ \pm}\right): u=0 \text { on } \partial \Omega_{ \pm} \backslash \Sigma\right\}
$$

and

$$
H_{00}^{1 / 2}(\Sigma)=\left\{u_{\mid \Sigma}: u \in H_{-}^{1}\left(\Omega_{-}\right)\right\}=\left\{u_{\mid \Sigma}: u \in H_{+}^{1}\left(\Omega_{+}\right)\right\}
$$

is the space of the restrictions to $\Sigma$ of functions in $H_{-}^{1}\left(\Omega_{-}\right)$(or in $H_{+}^{1}\left(\Omega_{+}\right)$). This last space may be equipped with the norms

$$
\|p\|_{1 / 2, \pm}=\inf _{\substack{u \in H_{ \pm}^{1}\left(\Omega_{ \pm}\right) \\ p=u_{\mid \Sigma}}}|u|_{1, \Omega_{ \pm}}
$$

With the help of such a lifting, a possible mapping $\mathbb{T}$ is given by (see [6])

$$
\mathbb{T} v=\left\{\begin{array}{l}
v_{+} \text {in } \Omega_{+}, \\
-v_{-}+2 \mathcal{R}\left(v_{+\mid \Sigma}\right) \text { in } \Omega_{-}
\end{array}\right.
$$

where $v_{ \pm}$denotes the restriction of $v$ to $\Omega_{ \pm}$. With this choice, it is shown in Proposition 3.1 of [6] that (4) holds if

$$
\begin{equation*}
K_{\mathcal{R}}=\sup _{\substack{v \in H_{+}^{1}\left(\Omega_{+}\right) \\ v \neq 0}} \frac{\left|B_{-}\left(\mathcal{R}\left(v_{\mid \Sigma}\right), \mathcal{R}\left(v_{\mid \Sigma}\right)\right)\right|}{B_{+}(v, v)}<1 \tag{7}
\end{equation*}
$$

where $B_{ \pm}(u, v)=\int_{\Omega_{ \pm}} a \nabla u \cdot \nabla v$.
For concrete applications, one can make the following particular choice for $\mathcal{R}$, that we denote by $\mathcal{R}_{p}$ : for any $\varphi \in H_{00}^{1 / 2}(\Sigma)$ we define $\mathcal{R}_{p}(\varphi)=w$ as the unique solution $w \in H_{-}^{1}\left(\Omega_{-}\right)$of

$$
\Delta w=0 \text { in } \Omega_{-}, \quad w=\varphi \text { on } \Sigma .
$$

With this choice, one obtains that $K_{\mathcal{R}_{p}}<1$ if the contrast

$$
\frac{\min _{\Omega_{-}}|a|}{\max _{\Omega_{+}} a}
$$

is large enough, we refer to Section 3 of [6] for more details.

Remark 2.1 Note that in [5, 6] the authors consider sub-domains $\Omega_{+}$and $\Omega_{-}$with a pseudo-Lipschitz boundary. However the previous arguments from [6] (shortly summarized above) are not valid in this case since the space $H^{1}\left(\Omega_{+}\right)$equipped with the norm $|\cdot|_{1, \Omega_{+}}$is not complete.

## 3 The discrete approximated problem

Here we consider the following standard Galerkin approximation of our continuous problem. We consider a triangulation $\mathcal{T}$ of $\Omega$, that is a "partition" of $\Omega$ made of triangles $T$ (closed subsets of $\bar{\Omega}$ ) whose edges are denoted by $e$. We assume that this triangulation is regular, i.e., for any element $T$, the ratio $h_{T} / \rho_{T}$ is bounded by a constant $\sigma>0$ independent of $T$ and of the mesh size $h=\max _{T \in \mathcal{T}} h_{T}$, where $h_{T}$ is the diameter of $T$ and $\rho_{T}$ the diameter of its largest inscribed ball. We further assume that $\mathcal{T}$ is conforming with the partition of $\Omega$, i.e., each triangle is assumed to be either included into $\bar{\Omega}_{+}$or into $\bar{\Omega}_{-}$. With each edge $e$ of the triangulation, we denote by $h_{e}$ its length and $n_{e}$ a unit normal vector (whose orientation can be arbitrary chosen) and the so-called patch $\omega_{e}=\cup_{e \subset T} T$, the union of triangles having $e$ as edge. We similarly associate with each vertex $x$, a patch $\omega_{x}=\cup_{x \in T} T$. For a triangle $T, n_{T}$ stands for the outer unit normal vector of $T . \mathcal{E}$ (resp. $\mathcal{N}$ ) represents the set of edges (resp. vertices) of the triangulation. In the sequel, we need to distinguish between edges (or vertices) included into $\Omega$ or into $\Gamma$, in other words, we set

$$
\begin{aligned}
\mathcal{E}_{\text {int }} & =\{e \in \mathcal{E}: e \subset \Omega\} \\
\mathcal{E}_{\Gamma} & =\{e \in \mathcal{E}: e \subset \Gamma\} \\
\mathcal{N}_{\text {int }} & =\{x \in \mathcal{N}: x \in \Omega\} .
\end{aligned}
$$

Problem (6) is approximated by the continuous finite element space:

$$
\begin{equation*}
V_{h}=\left\{v_{h} \in H_{0}^{1}(\Omega): v_{h \mid T} \in \mathbb{P}_{\ell}(T), \forall T \in \mathcal{T}\right\} \tag{8}
\end{equation*}
$$

where $\ell$ is a fixed positive integer and the space $\mathbb{P}_{\ell}(T)$ consists of polynomials of degree at most $\ell$.
The Galerkin approximation of problem (6) reads now: Find $u_{h} \in V_{h}$, such that

$$
\begin{equation*}
B\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h} \tag{9}
\end{equation*}
$$

Since there is no reason that the bilinear form would be coercive on $V_{h}$, as in [6] we need to use a discrete mapping $\mathbb{T}_{h}$ from $V_{h}$ into itself defined by (see [6])

$$
\mathbb{T}_{h} v_{h}=\left\{\begin{array}{l}
v_{h+} \text { in } \Omega_{+}, \\
-v_{h-}+2 \mathcal{R}_{h}\left(v_{h+\mid \Sigma}\right) \text { in } \Omega_{-},
\end{array}\right.
$$

where $\mathcal{R}_{h}$ is a discrete version of the operator $\mathcal{R}$. Here contrary to [6] and in order to avoid the use of quasi-uniform meshes (meaningless in an a posteriori error analysis), we take

$$
\begin{equation*}
\mathcal{R}_{h}=I_{h} \mathcal{R}, \tag{10}
\end{equation*}
$$

where $I_{h}$ is a sort of Clément interpolation operator [9] and $\mathcal{R}$ is any trace lifting operator from $H_{00}^{1 / 2}(\Sigma)$ into $H_{-}^{1}\left(\Omega_{-}\right)$(see the previous section). More precisely for $\varphi_{h} \in H_{h}(\Sigma)=$ $\left\{v_{h \mid \Sigma}: v_{h} \in V_{h}\right\}$, we set

$$
I_{h} \mathcal{R}\left(\varphi_{h}\right)=\sum_{x \in \mathcal{N}_{-}} \alpha_{x} \lambda_{x}
$$

where $\mathcal{N}_{-}=\mathcal{N}_{\text {int }} \cap \bar{\Omega}_{-}, \lambda_{x}$ is the standard hat function (defined by $\lambda_{x} \in V_{h}$ and satisfying $\left.\lambda_{x}(y)=\delta_{x y}\right)$ and $\alpha_{x} \in \mathbb{R}$ are defined by

$$
\alpha_{x}= \begin{cases}\left|\omega_{x}\right|^{-1} \int_{\omega_{x}} \mathcal{R}\left(\varphi_{h}\right) & \text { if } x \in \mathcal{N}_{i n t} \cap \Omega_{-}, \\ \varphi_{h}(x) & \text { if } x \in \mathcal{N}_{i n t} \cap \Sigma,\end{cases}
$$

where we recall that $\omega_{x}$ is the patch associated with $x$, which is simply the support of $\lambda_{x}$. Note that $I_{h}$ coincides with the Clément interpolation operator $I_{\mathrm{Cl}}$ for the nodes in $\Omega_{-}$ and only differs on the nodes on $\Sigma$. Indeed let us recall the definition of $I_{\mathrm{Cl}} \mathcal{R}\left(\varphi_{h}\right)$ (defined in a Scott-Zhang manner [20] for the points belonging to $\Sigma$ ):

$$
I_{\mathrm{Cl}} \mathcal{R}\left(\varphi_{h}\right)=\sum_{x \in \mathcal{N}_{-}} \beta_{x} \lambda_{x}
$$

with

$$
\beta_{x}= \begin{cases}\left|\omega_{x}\right|^{-1} \int_{\omega_{x}} \mathcal{R}\left(\varphi_{h}\right) & \text { if } x \in \mathcal{N}_{\text {int }} \cap \Omega_{-}, \\ \left|e_{x}\right|^{-1} \int_{e_{x}} \mathcal{R}\left(\varphi_{h}\right) d \sigma & \text { if } x \in \mathcal{N}_{i n t} \cap \Sigma \text { with } e_{x}=\omega_{x} \cap \Sigma .\end{cases}
$$

The definition of $I_{h}$ aims at ensuring that

$$
I_{h} \mathcal{R}\left(\varphi_{h}\right)=\varphi_{h} \text { on } \Sigma
$$

Let us now prove that $\mathcal{R}_{h}$ is uniformly bounded.

Theorem 3.1 For all $h>0$ and $\varphi_{h} \in H_{h}(\Sigma)$, one has

$$
\left|\mathcal{R}_{h}\left(\varphi_{h}\right)\right|_{1, \Omega_{-}} \lesssim\left\|\varphi_{h}\right\|_{1 / 2,-} .
$$

Proof: For the sake of simplicity we make the proof in the case $\ell=1$, the general case is treated in the same manner by using modified Clément interpolation operator. Since $\mathcal{R}$ is bounded from $H_{00}^{1 / 2}(\Sigma)$ into $H_{-}^{1}\left(\Omega_{-}\right)$, one has

$$
\begin{equation*}
\left|\mathcal{R}\left(\varphi_{h}\right)\right|_{1, \Omega_{-}} \lesssim\left\|\varphi_{h}\right\|_{1 / 2,-} \tag{11}
\end{equation*}
$$

Hence it suffices to show that

$$
\begin{equation*}
\left|\left(I-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, \Omega_{-}} \lesssim\left\|\varphi_{h}\right\|_{1 / 2,-} \tag{12}
\end{equation*}
$$

For that purpose, we distinguish the triangles $T$ that have no nodes in $\mathcal{N}_{\text {int }} \cap \Sigma$ to the other ones:

1. If $T$ has no nodes in $\mathcal{N}_{\text {int }} \cap \Sigma$, then $I_{h} \mathcal{R}\left(\varphi_{h}\right)$ coincides with $I_{\mathrm{Cl}} \mathcal{R}\left(\varphi_{h}\right)$ on $T$ and therefore by a standard property of the Clément interpolation operator, we have

$$
\begin{equation*}
\left|\left(I-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, T}=\left|\left(I-I_{\mathrm{Cl}}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, T} \lesssim\left\|\mathcal{R}\left(\varphi_{h}\right)\right\|_{1, \omega_{T}}, \tag{13}
\end{equation*}
$$

where the patch $\omega_{T}$ is given by $\omega_{T}=\bigcup_{T^{\prime} \cap T \neq \emptyset} T^{\prime}$.
2. If $T$ has at least one node in $\mathcal{N}_{\text {int }} \cap \Sigma$, by the triangle inequality we may write

$$
\left|\left(I-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, T} \leq\left|\left(I-I_{\mathrm{Cl}}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, T}+\left|\left(I_{\mathrm{Cl}}-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, T}
$$

For the first term of this right-hand side we can still use (13) and therefore it remains to estimate the second term. For that one, we notice that

$$
\left(I_{\mathrm{Cl}}-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)=\sum_{x \in T \cap \Sigma}\left(\alpha_{x}-\beta_{x}\right) \lambda_{x} \text { on } T .
$$

Hence

$$
\left|\left(I_{\mathrm{C} 1}-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, T} \lesssim \sum_{x \in T \cap \Sigma}\left|\alpha_{x}-\beta_{x}\right|
$$

Since $\mathcal{R}\left(\varphi_{h}\right)=\varphi_{h}$ on $\Sigma$ and due to the definition of $I_{\mathrm{C}}$, it follows that for $x \in T \cap \Sigma$,

$$
\left|\alpha_{x}-\beta_{x}\right|=\left|\varphi_{h}(x)-\left|e_{x}\right|^{-1} \int_{e_{x}} \varphi_{h} d \sigma\right| .
$$

Since all norms are equivalent in finite dimensional spaces, we have for all $v_{h} \in \mathbb{P}_{1}\left(e_{x}\right)$,

$$
\begin{equation*}
\left|v_{h}(x)\right| \lesssim\left|e_{x}\right|^{-1 / 2}\left\|v_{h}\right\|_{e_{x}} \tag{14}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|e_{x}\right|^{-1 / 2}\left\|\varphi_{h}-\left|e_{x}\right|^{-1} \int_{e_{x}} \varphi_{h} d \sigma\right\|_{e_{x}} \lesssim\left|\varphi_{h}\right|_{1 / 2, e_{x}} \tag{15}
\end{equation*}
$$

where here $|\cdot|_{1 / 2, e_{x}}$ means the standard $H^{1 / 2}\left(e_{x}\right)$-seminorm. Thus Inequalities (14) with $v_{h}=\varphi_{h}-\left|e_{x}\right|^{-1} \int_{e_{x}} \varphi_{h} d \sigma$ and (15) imply that

$$
\left|\alpha_{x}-\beta_{x}\right| \lesssim\left|\varphi_{h}\right|_{1 / 2, e_{x}} .
$$

All together we have shown that

$$
\begin{equation*}
\left|\left(I-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, T} \lesssim\left\|\mathcal{R}\left(\varphi_{h}\right)\right\|_{1, \omega_{T} \cap \bar{\Omega}_{-}}+\left|\varphi_{h}\right|_{1 / 2, \omega_{T} \cap \Sigma} \tag{16}
\end{equation*}
$$

Taking the sum of the square of (13) and of (16), we obtain that

$$
\left|\left(I-I_{h}\right) \mathcal{R}\left(\varphi_{h}\right)\right|_{1, \Omega_{-}}^{2} \lesssim\left\|\mathcal{R}\left(\varphi_{h}\right)\right\|_{1, \Omega_{-}}^{2}+\left|\varphi_{h}\right|_{1 / 2, \Sigma}^{2}
$$

We conclude thanks to (11) and to the fact that

$$
\left|\varphi_{h}\right|_{1 / 2, \Sigma} \lesssim\left\|\varphi_{h}\right\|_{1 / 2,-}
$$

This Theorem and Proposition 4.2 of [6] allow to conclude that (9) has a unique solution provided that (7) holds, in particular if the contrast is large enough.
Note that the advantage of our construction of $\mathcal{R}_{h}$ is that we no more need the quasiuniform property of the meshes imposed in [6].

## 4 The a posteriori error analysis

Error estimators can be constructed in many different ways as, for example, using residual type error estimators which measure locally the jump of the discrete flux [21]. A different method, based on equilibrated fluxes, consists in solving local Neumann boundary value problems [2] or in using Raviart-Thomas interpolant [1, 10, 13, 14]. Here since the coercivity constant is not explicitly known, we chose the simplest approach of residual type.

The residual estimators are denoted by

$$
\begin{equation*}
\eta_{R}^{2}=\sum_{T \in \mathcal{T}} \eta_{R, T}^{2}, \quad \eta_{J}^{2}=\sum_{T \in \mathcal{T}} \eta_{J, T}^{2}, \tag{17}
\end{equation*}
$$

where the indicators $\eta_{R, T}$ and $\eta_{J, T}$ are defined by

$$
\begin{aligned}
\eta_{R, T} & =h_{T}\left\|f_{T}+\operatorname{div}\left(a \nabla u_{h}\right)\right\|_{T} \\
\eta_{J, T} & =\sum_{e \in \mathcal{E}_{i n t}: e \subset T} h_{e}^{1 / 2}\left\|\llbracket a \nabla u_{h} \cdot n_{e} \rrbracket\right\|_{e},
\end{aligned}
$$

when $f_{T}$ is an approximation of $f$, for instance

$$
f_{T}=|T|^{-1} \int_{T} f
$$

Note that $\eta_{R, T}^{2}$ is meaningful if $a_{\mid T} \in W^{1,1}(T)$, for all $T \in \mathcal{T}$.

### 4.1 Upper bound

Theorem 4.1 Assume that $a \in L^{\infty}(\Omega)$ satisfies (1)-(图) and that $a_{\mid T} \in W^{1,1}(T)$, for all $T \in \mathcal{T}$. Assume further that (7) holds. Let $u \in H_{0}^{1}(\Omega)$ be the unique solution of Problem (6) and let $u_{h}$ be its Galerkin approximation, i.e. $u_{h} \in V_{h}$ a solution of (9). Then one has

$$
\begin{equation*}
\left\|\nabla\left(u-u_{h}\right)\right\| \lesssim \eta_{R}+\eta_{J}+\operatorname{osc}(f) \tag{18}
\end{equation*}
$$

where

$$
\operatorname{osc}(f)=\left(\sum_{T \in \mathcal{T}} h_{T}^{2}\left\|f-f_{T}\right\|^{2}\right)^{\frac{1}{2}}
$$

Proof: By the coerciveness assumption (4), we may write

$$
\begin{equation*}
\left\|\nabla\left(u-u_{h}\right)\right\|^{2} \lesssim B\left(u-u_{h}, \mathbb{T}\left(u-u_{h}\right)\right) \tag{19}
\end{equation*}
$$

But we notice that the Galerkin relation

$$
B\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h}
$$

holds. Hence by taking $v_{h}=I_{C l} \mathbb{T}\left(u-u_{h}\right)$, (19) may be written

$$
\begin{equation*}
\left\|\nabla\left(u-u_{h}\right)\right\|^{2} \lesssim B\left(u-u_{h},\left(I-I_{C l}\right) \mathbb{T}\left(u-u_{h}\right)\right) \tag{20}
\end{equation*}
$$

Now we apply standard arguments, see for instance [21]. Namely applying element-wise Green's formula and writing for shortness $w=\left(I-I_{C l}\right) \mathbb{T}\left(u-u_{h}\right)$, we get

$$
\begin{aligned}
\left\|\nabla\left(u-u_{h}\right)\right\|^{2} & \lesssim-\sum_{T \in \mathcal{T}} \int_{T} \operatorname{div}\left(a \nabla\left(u-u_{h}\right)\right) w \\
& +\sum_{e \in \mathcal{E}_{\text {int }}} \int_{e} \llbracket a \nabla\left(u-u_{h}\right) \cdot n \rrbracket w d \sigma
\end{aligned}
$$

reminding that $w=0$ on $\Gamma$. By Cauchy-Schwarz's inequality we directly obtain

$$
\begin{aligned}
\left\|\nabla\left(u-u_{h}\right)\right\|^{2} \lesssim & \sum_{T \in \mathcal{T}}\left\|f+\operatorname{div}\left(a \nabla u_{h}\right)\right\|_{T}\|w\|_{T} \\
& +\sum_{e \in \mathcal{E}_{\text {int }}}\left\|\llbracket a \nabla u_{h} \cdot n \rrbracket\right\|_{e}\|w\|_{e} .
\end{aligned}
$$

By standard interpolation error estimates, we get

$$
\begin{aligned}
& \left\|\nabla\left(u-u_{h}\right)\right\|^{2} \lesssim\left(\sum_{T \in \mathcal{T}} h_{T}^{2}\left\|f+\operatorname{div}\left(a \nabla u_{h}\right)\right\|_{T}^{2}\right. \\
& \left.\quad+\sum_{e \in \mathcal{E}_{\text {int }}} h_{e}\left\|\llbracket a \nabla u_{h} \cdot n \rrbracket\right\|_{e}^{2}\right)^{1 / 2}\left|\mathbb{T}\left(u-u_{h}\right)\right|_{1, \Omega} .
\end{aligned}
$$

Since $\mathbb{T}$ is an isomorphism, we conclude that

$$
\begin{aligned}
\left\|\nabla\left(u-u_{h}\right)\right\| \lesssim & \left(\sum_{T \in \mathcal{T}} h_{T}^{2}\left\|f+\operatorname{div}\left(a \nabla u_{h}\right)\right\|_{T}^{2}\right. \\
& \left.+\sum_{e \in \mathcal{E}_{\text {int }}} h_{e}\left\|\llbracket a \nabla u_{h} \cdot n \rrbracket\right\|_{e}^{2}\right)^{1 / 2} .
\end{aligned}
$$

This leads to the conclusion due to the triangle inequality.

### 4.2 Lower bound

The lower bound is fully standard since by a careful reading of the proof of Proposition 1.5 of [21], we see that it does not use the positiveness of the diffusion coefficient $a$. Hence we can state the

Theorem 4.2 Let the assumptions of Theorems 4.1 be satisfied. Assume furthermore that $a_{\mid T}$ is constant for all $T \in \mathcal{T}$. Then for each element $T \in \mathcal{T}$ the following estimate holds

$$
\eta_{R, T}+\eta_{J, T} \lesssim\left|u-u_{h}\right|_{1, \omega_{T}}+\operatorname{osc}\left(f, \omega_{T}\right),
$$

where

$$
\operatorname{osc}\left(f, \omega_{T}\right)^{2}=\sum_{T^{\prime} \subset \omega_{T}} h_{T^{\prime}}^{2}\left\|f-f_{T}^{\prime}\right\|_{T^{\prime}}^{2}
$$

## 5 Numerical results

### 5.1 The polynomial solution

In order to illustrate our theoretical predictions, this first numerical test consists in validating our computations on a simple case, using an uniform refinement process. Let $\Omega$ be the square $(-1,1)^{2}, \Omega_{+}=(0,1) \times(-1,1)$ and $\Omega_{-}=(-1,0) \times(-1,1)$. We assume that $a=1$ on $\Omega_{+}$and $a=\mu<0$ on $\Omega_{-}$. In such a situation we can take

$$
\mathcal{R}\left(v_{+}\right)(x, y)=v_{+}(-x, y) \quad \forall(x, y) \in \Omega_{-} .
$$

With this choice we see that

$$
K_{\mathcal{R}}=|\mu|,
$$

and therefore for $|\mu|<1$, (4) holds and Problem (6) has a unique solution. We further easily check that the corresponding mapping $\mathbb{T}$ is an isomorphism since $(\mathbb{T})^{2}=\mathbb{T}$. Similarly by exchanging the role of $\Omega_{+}$and $\Omega_{-}$, (4) will also hold if $|\mu|>1$.
Now we take as exact solution

$$
\begin{array}{ll}
u(x, y)=\mu x(x+1)(x-1)(y+1)(y-1) & \forall(x, y) \in \Omega_{+} \\
u(x, y)=x(x+1)(x-1)(y+1)(y-1) & \forall(x, y) \in \Omega_{-}
\end{array}
$$

$f$ being fixed accordingly.
Let us recall that $u_{h}$ is the finite element solution, and set $e_{L^{2}}\left(u_{h}\right)=\left\|u-u_{h}\right\|$ and $e_{H^{1}}\left(u_{h}\right)=\left\|u-u_{h}\right\|_{1}$ the $L^{2}$ and $H^{1}$ errors. Moreover let us define $\eta\left(u_{h}\right)=\eta_{R}+\eta_{J}$ the estimator and $C V_{L^{2}}$ (resp. $C V_{H^{1}}$ ) as the experimental convergence rate of the error $e_{L^{2}}\left(u_{h}\right)$ (resp. $e_{H^{1}}\left(u_{h}\right)$ ) with respect to the mesh size defined by $D o F^{-1 / 2}$, where the number of degrees of freedom is $D o F$, computed from one line of the table to the following one. Computations are performed with $\mu=-3$ using a global mesh refinement process from an initial cartesian grid. First, it can be seen from Table 1 that the convergence rate of the $H^{1}$ error norm is equal to one, as theoretically expected (see [6]). Furthermore the convergence rate of the $L^{2}$ error norm is 2 , which is a consequence of the Aubin-Nitsche trick and regularity results for Problem (3). Finally, the reliability of the estimator is ensured since the ratio in the last column (the so-called effectivity index), converges towards a constant close to 6.5.

| $k$ | $D o F$ | $e_{L^{2}}\left(u_{h}\right)$ | $C V_{L^{2}}$ | $e_{H^{1}}\left(u_{h}\right)$ | $C V_{H^{1}}$ | $\frac{\eta\left(u_{h}\right)}{e_{H^{1}}\left(u_{h}\right)}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | 289 | $2.37 \mathrm{E}-02$ |  | $5.33 \mathrm{E}-01$ |  | 6.70 |
| 2 | 1089 | $5.95 \mathrm{E}-03$ | 2.08 | $2.67 \mathrm{E}-01$ | 1.04 | 6.59 |
| 3 | 4225 | $1.49 \mathrm{E}-03$ | 2.04 | $1.34 \mathrm{E}-01$ | 1.02 | 6.53 |
| 4 | 16641 | $3.73 \mathrm{E}-04$ | 2.02 | $6.68 \mathrm{E}-02$ | 1.01 | 6.49 |
| 5 | 32761 | $1.89 \mathrm{E}-04$ | 2.01 | $4.75 \mathrm{E}-02$ | 1.01 | 6.48 |
| 6 | 90601 | $6.79 \mathrm{E}-05$ | 2.01 | $2.85 \mathrm{E}-02$ | 1.00 | 6.47 |
| 7 | 251001 | $2.45 \mathrm{E}-05$ | 2.00 | $1.71 \mathrm{E}-02$ | 1.00 | 6.47 |

Table 1: The polynomial solution with $\mu=-3$ (uniform refinement).

### 5.2 A singular solution

Here we analyze an example introduced in [7] and precise some results from [7]. The domain $\Omega=(-1,1)^{2}$ is decomposed into two sub-domains $\Omega_{+}=(0,1) \times(0,1)$, and $\Omega_{-}=\Omega \backslash \bar{\Omega}_{+}$, see Figure 1. As before we take $a=1$ on $\Omega_{+}$and $a=\mu<0$ on $\Omega_{-}$. According to Section 3 of [7], Problem (6) has a singularity $S$ at $(0,0)$ if $\mu<-3$ or if $\mu \in(-1 / 3,0)$ given in polar coordinates by

$$
\begin{aligned}
S_{+}(r, \theta)=r^{\lambda}\left(c_{1} \sin (\lambda \theta)+c_{2} \sin \left(\lambda\left(\frac{\pi}{2}-\theta\right)\right)\right) & \text { for } 0<\theta<\frac{\pi}{2} \\
S_{-}(r, \theta)=r^{\lambda}\left(d_{1} \sin \left(\lambda\left(\theta-\frac{\pi}{2}\right)+d_{2} \sin (\lambda(2 \pi-\theta))\right)\right. & \text { for } \frac{\pi}{2}<\theta<2 \pi
\end{aligned}
$$

where $\lambda \in(0,1)$ is given by

$$
\lambda=\frac{2}{\pi} \arccos \left(\frac{1-\mu}{2|1+\mu|}\right),
$$

and the constants $c_{1}, c_{2}, d_{1}, d_{2}$ are appropriately defined.
Now we show using the arguments of Section 2 that for $-\frac{1}{3}<\mu<0$ and $\mu<-3$, the assumption (4) holds. As before we define

$$
\mathcal{R}\left(v_{+}\right)(x, y)= \begin{cases}v_{+}(-x, y) & \forall(x, y) \in(-1,0) \times(0,1) \\ v_{+}(-x,-y) & \forall(x, y) \in(-1,0) \times(-1,0) \\ v_{+}(x,-y) & \forall(x, y) \in(0,1) \times(-1,0)\end{cases}
$$

This extension defines an element of $H_{-}^{1}\left(\Omega_{-}\right)$such that

$$
\mathcal{R}\left(v_{+}\right)=v_{+} \quad \text { on } \Sigma
$$

Moreover with this choice we have

$$
\sup _{\substack{v \in H_{+}^{1}\left(\Omega_{+}\right) \\ v \neq 0}} \frac{\left|B_{-}(\mathcal{R}(v), \mathcal{R}(v))\right|}{B_{+}(v, v)}=3|\mu|,
$$

and therefore for

$$
3|\mu|<1,
$$

we deduce that (4) holds.
To exchange the role of $\Omega_{+}$and $\Omega_{-}$we define the following extension from $\Omega_{-}$to $\Omega_{+}$: for $v_{-} \in H_{-}^{1}\left(\Omega_{-}\right)$, let

$$
\mathcal{R}\left(v_{-}\right)(x, y)=v_{-}(-x, y)+v_{-}(x,-y)-v_{-}(-x,-y) \quad \forall(x, y) \in \Omega_{+}
$$

We readily check that it defines an element of $H_{+}^{1}\left(\Omega_{+}\right)$such that

$$
\mathcal{R}\left(v_{-}\right)=v_{-} \quad \text { on } \Sigma .
$$

Moreover with this choice we have (using the estimate $(a+b+c)^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)$ valid for all real numbers $a, b, c$ )

$$
\sup _{v \in H_{-}^{1}\left(\Omega_{-}\right), v \neq 0} \frac{B_{+}(\mathcal{R}(v), \mathcal{R}(v))}{\left|B_{-}(v, v)\right|} \leq 3 /|\mu|
$$

and therefore for

$$
3 /|\mu|<1
$$

we deduce that (4) holds.
For this second test, we take as exact solution the singular function $u(x, y)=S(x, y)$ for $\mu=-5$ and $\mu=-100$, non-homogeneous Dirichlet boundary conditions on $\Gamma$ are fixed accordingly. First, with uniform meshes, we obtain the expected convergence rate of order $\lambda$ (resp. 2 $\lambda$ ) for the $H^{1}$ (resp. $L^{2}$ ) error norm, see Tables 2 and 3. There, for sufficiently fine meshes, we may notice that the effectivity index varies between 1 and 0.6 for $\mu=-5$ or between 9 and 6 for $\mu=-100$. From these results we can say that the effectivity index

| $k$ | $D o F$ | $e_{L^{2}}\left(u_{h}\right)$ | $C V_{L^{2}}$ | $e_{H^{1}}\left(u_{h}\right)$ | $C V_{H^{1}}$ | $\frac{\eta\left(u_{h}\right)}{e_{H^{1}}\left(u_{h}\right)}$ |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| 1 | 289 | $1.60 \mathrm{E}-02$ |  | $2.84 \mathrm{E}-01$ |  | 2.57 |
| 2 | 1089 | $8.66 \mathrm{E}-03$ | 0.93 | $2.10 \mathrm{E}-01$ | 0.45 | 1.94 |
| 3 | 4225 | $4.63 \mathrm{E}-03$ | 0.92 | $1.55 \mathrm{E}-01$ | 0.45 | 1.46 |
| 4 | 16641 | $2.47 \mathrm{E}-03$ | 0.92 | $1.13 \mathrm{E}-01$ | 0.45 | 1.09 |
| 5 | 32761 | $1.80 \mathrm{E}-03$ | 0.92 | $9.69 \mathrm{E}-02$ | 0.46 | 0.95 |
| 6 | 90601 | $1.13 \mathrm{E}-03$ | 0.92 | $7.68 \mathrm{E}-02$ | 0.46 | 0.76 |
| 7 | 251001 | $7.08 \mathrm{E}-04$ | 0.92 | $6.08 \mathrm{E}-02$ | 0.46 | 0.61 |

Table 2: The singular solution, $\mu=-5, \lambda \approx 0.46$ (uniform refinement).

| $k$ | $D o F$ | $e_{L^{2}}\left(u_{h}\right)$ | $C V_{L^{2}}$ | $e_{H^{1}}\left(u_{h}\right)$ | $C V_{H^{1}}$ | $\frac{\eta\left(u_{h}\right)}{e_{H^{1}}\left(u_{h}\right)}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | 289 | 6.12 E 03 |  | $1.54 \mathrm{E}-01$ |  | 18.77 |
| 2 | 1089 | $2.59 \mathrm{E}-03$ | 1.29 | $9.91 \mathrm{E}-02$ | 0.66 | 15.04 |
| 3 | 4225 | $1.08 \mathrm{E}-03$ | 1.29 | $6.35 \mathrm{E}-02$ | 0.66 | 12.06 |
| 4 | 16641 | $4.46 \mathrm{E}-04$ | 1.29 | $4.04 \mathrm{E}-02$ | 0.66 | 9.66 |
| 5 | 32761 | $2.88 \mathrm{E}-04$ | 1.29 | $3.24 \mathrm{E}-02$ | 0.66 | 8.65 |
| 6 | 90601 | $1.49 \mathrm{E}-04$ | 1.30 | $2.32 \mathrm{E}-02$ | 0.66 | 7.33 |
| 7 | 251001 | $7.66 \mathrm{E}-05$ | 1.30 | $1.66 \mathrm{E}-02$ | 0.66 | 6.21 |

Table 3: The singular solution, $\mu=-100, \lambda \approx 0.66$ (uniform refinement).
depends on $\mu$, this is confirmed by the numerical results obtained by an adaptive algorithm (see below).

Secondly, an adaptive mesh refinement strategy is used based on the estimator $\eta_{T}=$ $\eta_{R, T}+\eta_{J, T}$, the marking procedure

$$
\eta_{T}>0.5 \max _{T^{\prime}} \eta_{T^{\prime}}
$$

and a standard refinement procedure with a limitation on the minimal angle.
For $\mu=-5$ (resp. $\mu=-100$ ), Table 4 (resp. 5) displays the same quantitative results as before. There we see that the effectivity index is around 3 (resp. 34), which is quite satisfactory and comparable with results from [11, 14]. As before and in these references we notice that it deteriorates as the contrast becomes larger. On these tables we also remark a convergence order of 0.76 (resp. 1) in the $H^{1}$-norm and mainly the double in the $L^{2}$-norm. This yields better orders of convergence as for uniform meshes as expected, the case $\mu=-5$ giving less accurate results due to the high singular behavior of the solution (a similar phenomenon occurs in [11] for instance).

| $k$ | $D o F$ | $e_{L^{2}}\left(u_{h}\right)$ | $C V_{L^{2}}$ | $e_{H^{1}}\left(u_{h}\right)$ | $C V_{H^{1}}$ | $\frac{\eta\left(u_{h}\right)}{e_{H^{1}}\left(u_{h}\right)}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | 81 | $2.92 \mathrm{E}-02$ |  | $3.79 \mathrm{E}-01$ |  | 3.39 |
| 5 | 432 | $3.49 \mathrm{E}-03$ | 2.54 | $1.40 \mathrm{E}-01$ | 1.19 | 4.18 |
| 7 | 1672 | $1.25 \mathrm{E}-03$ | 1.52 | $8.04 \mathrm{E}-02$ | 0.82 | 4.07 |
| 10 | 5136 | $4.26 \mathrm{E}-04$ | 1.92 | $4.90 \mathrm{E}-02$ | 0.88 | 3.63 |
| 13 | 20588 | $1.64 \mathrm{E}-04$ | 1.37 | $3.14 \mathrm{E}-02$ | 0.64 | 3.32 |
| 18 | 80793 | $5.50 \mathrm{E}-05$ | 1.60 | $1.80 \mathrm{E}-02$ | 0.81 | 3.23 |
| 24 | 272923 | $2.39 \mathrm{E}-05$ | 1.37 | $1.17 \mathrm{E}-02$ | 0.71 | 2.5 |

Table 4: The singular solution, $\mu=-5, \lambda \approx 0.46$ (local refinement).

| $k$ | $D o F$ | $e_{L^{2}}\left(u_{h}\right)$ | $C V_{L^{2}}$ | $e_{H^{1}}\left(u_{h}\right)$ | $C V_{H^{1}}$ | $\frac{\eta\left(u_{h}\right)}{e_{H^{1}}\left(u_{h}\right)}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 1 | 81 | $1.41 \mathrm{E}-02$ |  | $2.35 \mathrm{E}-01$ |  | 23.59 |
| 4 | 363 | $1.93 \mathrm{E}-03$ | 2.65 | $8.77 \mathrm{E}-02$ | 1.31 | 34.86 |
| 7 | 1566 | $4.94 \mathrm{E}-04$ | 1.86 | $4.31 \mathrm{E}-02$ | 0.97 | 33.10 |
| 11 | 5981 | $1.23 \mathrm{E}-04$ | 2.07 | $2.15 \mathrm{E}-02$ | 1.04 | 33.17 |
| 16 | 25452 | $2.98 \mathrm{E}-05$ | 1.96 | $1.05 \mathrm{E}-02$ | 0.99 | 34.65 |
| 24 | 106827 | $7.36 \mathrm{E}-06$ | 1.95 | $5.23 \mathrm{E}-03$ | 0.97 | 33.89 |

Table 5: The singular solution, $\mu=-100, \lambda \approx 0.66$ (local refinement).

## References

[1] M. Ainsworth. A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal., 45(4):1777-1798, 2007.
[2] M. Ainsworth and J. Oden. A posteriori error estimation in finite element analysis. John Wiley and Sons, 2000.
[3] I. Babuška and T. Strouboulis. The finite element methods and its reliability. Clarendon Press, Oxford.
[4] A. S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C. M. Zwölf. Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants. J. Comput. Appl. Math., 204(2):408-417, 2007.
[5] A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C. M. Zwölf. A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials. Math. Models Methods Appl. Sci., 18(9):1605-1631, 2008.
[6] A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C. M. Zwölf. Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math., 2010. to appear.
[7] A.-S. Bonnet-Bendhia, M. Dauge, and K. Ramdani. Analyse spectrale et singularités d'un problème de transmission non coercif. C. R. Acad. Sci. Paris Sér. I Math., 328(8):717-720, 1999.
[8] P. G. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.
[9] P. Clément. Approximation by finite element functions using local regularization. R.A.I.R.O., 9(2):77-84, 1975.
[10] S. Cochez-Dhondt and S. Nicaise. Equilibrated error estimators for discontinuous Galerkin methods. Numer. Meth. PDE, 24:1236-1252, 2008.
[11] S. Cochez-Dhondt and S. Nicaise. A posteriori error estimators based on equilibrated fluxes. Comput. Methods Appl. Math., 10(1):49-68, 2010.
[12] N. Engheta. An idea for thin subwavelength cavity resonator using metamaterials with negative permittivity and permeability. IEEE Antennas Wireless Propagation Lett., 1:10-13, 2002.
[13] A. Ern, S. Nicaise, and M. Vohralík. An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris, 345(12):709-712, 2007.
[14] A. Ern, A. F. Stephansen, and M. Vohralík. Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math., 234:114-130, 2010.
[15] J. Ma and I. Wolff. Modeling the microwave properties of supraconductors. Trans. Microwave Theory and Tech., 43:1053-1059, 1995.
[16] D. Maystre and S. Enoch. Perfect lenses made with left-handed materials: Alice's mirror. J. Opt. Soc. Amer. A, 21:122-131, 2004.
[17] P. Monk. Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation. Oxford University Press, 2003.
[18] J. B. Pendry. Negative refraction makes a perfect lens. Physical Review Letters, 85:3966-3969, 2000.
[19] K. Ramdani. Lignes supraconductrices: analyse mathématique et numérique. PhD thesis, Université Pierre et Marie Curie, Paris, 1999.
[20] L. R. Scott and S. Zhang. Higher-dimensional nonnested multigrid methods. Math. Comp., 58:457-466, 1992.
[21] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement thecniques. Wiley-Teubner Series Advances in Numerical Mathematics. WileyTeubner, Chichester, Stuttgart, 1996.


[^0]:    *Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F-59313 - Valenciennes Cedex 9 France, email: Serge.Nicaise,Juliette.Venel@univ-valenciennes.fr

