Ideal games, Ramsey sets and the Fréchet-Urysohn property

Carlos Di Prisco * José G. Mijares ${ }^{\dagger}$
Instituto Venezolano
de Investigaciones Científicas y
Escuela de Matemática
Universidad Central de Venezuela
Carlos Uzcátegui ${ }^{\ddagger}$
Departamento de Matemáticas, Facultad de Ciencias
Universidad de Los Andes

Abstract

It is shown that Matet's characterization ([8]) of \mathcal{H}-Ramseyness relative to a selective coideal \mathcal{H}, in terms of games of Kastanas (5), still holds if we consider semiselectivity ([2]) instead of selectivity. Moreover, we prove that a coideal \mathcal{H} is semiselective if and only if Matet's game-theoretic characterization of \mathcal{H}-Ramseyness holds. This gives a game-theoretic counterpart to a theorem of Farah [2], asserting that a coideal \mathcal{H} is semiselective if and only if the family of \mathcal{H}-Ramsey subsets of $\mathbb{N}^{[\infty]}$ coincides with the family of those sets having the abstract $\operatorname{Exp}(\mathcal{H})$-Baire property. Finally, we show that under suitable assumptions, semiselectivity is equivalent to the Fréchet-Urysohn property.

Keywords: Semiselective coideal, Ramsey theory, Frechet-Urysohn property, Banach-Mazur games.
MSC: 05D10, 03E02.

1 Introduction

Let \mathbb{N} be the set of nonnegative integers. Given an infinite set $A \subseteq \mathbb{N}$, the symbol $A^{[\infty]}$ (resp. $A^{[<\infty]}$) represents the collection of the infinite (resp. finite) subsets of A. Let $A^{[n]}$ denote the

[^0]set of all the subsets of A with n elements. If $a \in \mathbb{N}^{[<\infty]}$ is an initial segment of $A \in \mathbb{N}^{[\infty]}$ then we write $a \sqsubset A$. Also, let $A / a:=\{n \in A: \max (a)<n\}$, and write A / n to mean $A /\{n\}$. For $a \in \mathbb{N}^{[<\infty]}$ and $A \in \mathbb{N}^{[\infty]}$ let
$$
[a, A]:=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\}
$$

The family $\operatorname{Exp}\left(\mathbb{N}^{[\infty]}\right):=\left\{[a, A]:(a, A) \in \mathbb{N}^{[<\infty]} \times \mathbb{N}^{[\infty]}\right\}$ is a basis for Ellentuck's topology, also known as exponential topology. In [1], Ellentuck gave a characterization of Ramseyness in terms of the Baire property relative to this topology (see Theorem 2.1 below).

Let (P, \leq) be a poset, a subset $D \subseteq P$ is dense in P if for every $p \in P$, there is $q \in D$ with $q \leq p . D \subseteq P$ is open if $p \in D$ and $q \leq p$ imply $q \in D . P$ is σ-distributive if the intersection of countably many dense open subsets of P is dense. P is σ-closed if every decreasing sequence of elements of P has a lower bound.

Definition 1.1. A family $\mathcal{H} \subset \wp(\mathbb{N})$ is a coideal if it satisfies:
(i) $A \subseteq B$ and $A \in \mathcal{H}$ implies $B \in \mathcal{H}$, and
(ii) $A \cup B \in \mathcal{H}$ implies $A \in \mathcal{H}$ or $B \in \mathcal{H}$.

The complement $\mathcal{I}=\wp(\mathbb{N}) \backslash \mathcal{H}$ is the dual ideal of \mathcal{H}. In this case, as usual, we write $\mathcal{H}=\mathcal{I}^{+}$. We will suppose that coideals differ from $\wp(\mathbb{N})$. Also, we say that a nonempty family $\mathcal{F} \subseteq \mathcal{H}$ is \mathcal{H}-disjoint if for every $A, B \in \mathcal{F}, A \cap B \notin \mathcal{H}$. We say that \mathcal{F} is a maximal \mathcal{H}-disjoint family if it is \mathcal{H}-disjoint and it is not properly contained in any other \mathcal{H}-disjoint family as a subset.

A subset \mathcal{X} of $\mathbb{N}^{[\infty]}$ is Ramsey if for every $[a, A] \neq \emptyset$ with $A \in \mathbb{N}^{[\infty]}$ there exists $B \in[a, A]$ such that $[a, B] \subseteq \mathcal{X}$ or $[a, B] \cap \mathcal{X}=\emptyset$. Some authors have used the term "completely Ramsey" to express this property, reserving the term "Ramsey" for a weaker property. Galvin and Prikry [3] showed that all Borel subsets of $\mathbb{N}^{[\infty]}$ are Ramsey, and Silver [11] extended this to all analytic sets. Mathias in [9] showed that if the existence of an inaccessible cardinal is consistent with $Z F C$ then it is consistent, with $Z F+D C$, that every subset of $\mathbb{N}^{[\infty]}$ is Ramsey. Mathias introduced the concept of a selective coideal (or a happy family), which has turned out to be of wide interest. Ellentuck [1] characterized the Ramsey sets as those having the Baire property with respect to the exponential topology of $\mathbb{N}^{[\infty]}$.

A game theoretical characterization of Ramseyness was given by Kastanas in [5], using games in the style of Banach-Mazur with respect to Ellentuck's topology.

In this work we will deal with a game-theoretic characterization of the following property:
Definition 1.2. Let $\mathcal{H} \subset \mathbb{N}^{[\infty]}$ be a coideal. $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ is \mathcal{H}-Ramsey if for every $[a, A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $B \in[a, A] \cap \mathcal{H}$ such that $[a, B] \subseteq \mathcal{X}$ or $[a, B] \cap \mathcal{X}=\emptyset$. \mathcal{X} is \mathcal{H}-Ramsey null if for every $[a, A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $B \in[a, A] \cap \mathcal{H}$ such that $[a, B] \cap \mathcal{X}=\emptyset$.

\mathcal{H}-Ramseyness is also called local Ramsey property.

Mathias considered sets that are \mathcal{H}-Ramsey with respect to a selective coideal \mathcal{H}, and generalized Silver's result to this context. Matet [8] used games to characterize sets which are Ramsey with respect to a selective coideal \mathcal{H}. These games coincide with the games of Kastanas if \mathcal{H} is $\mathbb{N}^{[\infty]}$ and with the games of Louveau [7] if \mathcal{H} is a Ramsey ultrafilter.

Given a coideal $\mathcal{H} \subset \mathbb{N}^{[\infty]}$, let

$$
\operatorname{Exp}(\mathcal{H}):=\left\{[a, A]:(a, A) \in \mathbb{N}^{[<\infty]} \times \mathcal{H}\right\} .
$$

In general, this is not a basis for a topology on $\mathbb{N}[<\infty]$, but the following abstract version of the Baire property and related concepts will be useful:
Definition 1.3. Let $\mathcal{H} \subset \mathbb{N}^{[\infty]}$ be a coideal. $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ has the abstract $\operatorname{Exp}(\mathcal{H})$-Baire property if for every $[a, A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $[b, B] \subseteq[a, A]$ with $B \in \mathcal{H}$ such that $[b, B] \subseteq \mathcal{X}$ or $[b, B] \cap \mathcal{X}=\emptyset$. \mathcal{X} is $\operatorname{Exp}(\mathcal{H})$-nowhere dense if for every $[a, A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $[b, B] \subseteq[a, A]$ with $B \in \mathcal{H}$ such that $[b, B] \cap \mathcal{X}=\emptyset$. \mathcal{X} is $\operatorname{Exp}(\mathcal{H})$-meager if it is the union of countably many $\operatorname{Exp}(\mathcal{H})$-nowhere dense sets.

Given a decreasing sequence $A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots$ of infinite subsets of \mathbb{N}, a set B is a diagonalization of the sequence (or B diagonalizes the sequence) if and only if $B / n \subseteq A_{n}$ for each $n \in B$. A coideal \mathcal{H} is selective if and only if every decreasing sequence in \mathcal{H} has a diagonalization in \mathcal{H}.

A coideal \mathcal{H} has the Q^{+}-property, if for every $A \in \mathcal{H}$ and every partition $\left(F_{n}\right)_{n}$ of A into finite sets, there is $S \in \mathcal{H}$ such that $S \subseteq A$ and $\left|S \cap F_{n}\right| \leq 1$ for every $n \in \mathbb{N}$.
Proposition 1.4. [9] A coideal \mathcal{H} is selective if and only if the poset $\left(\mathcal{H}, \subseteq^{*}\right)$ is σ-closed and \mathcal{H} has the Q^{+}-property.

Given a coideal \mathcal{H} and a sequence $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ of dense open sets in (\mathcal{H}, \subseteq), a set B is a diagonalization of $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ if and only if $B / n \in D_{n}$ for every $n \in B$. A coideal \mathcal{H} is semiselective if for every sequence $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ of dense open subsets of \mathcal{H}, the family of its diagonalizations is dense in (\mathcal{H}, \subseteq).
Proposition 1.5. [2] A coideal \mathcal{H} is semiselective if and only if the poset $\left(\mathcal{H}, \subseteq^{*}\right)$ is σ distributive and \mathcal{H} has the Q^{+}-property.

Since σ-closedness implies σ-distributivity, then semiselectivity follows from selectivity, but the converse does not hold (see [2] for an example).

In section 2 we list results of Ellentuck, Mathias and Farah that characterize topologically the Ramsey property and the local Ramsey property. In section 3 we define a family of games, and present the main result, which states that a coideal \mathcal{H} is semiselective if and only if the \mathcal{H}-Ramsey sets are exactly those for which the associated games are determined. This generalizes results of Kastanas [5] and Matet [8]. The proof is given in section 4. In section 5 we relate semiselectivity of coideals with the Fréchet-Urysohn property, and show that in Solovay's model every semiselective coideal has the Fréchet-Urysohn property.

We thank A. Blass and J. Bagaria for helping us to correct some deficiencies in previous versions of the article.

2 Topological characterization of Ramseyness.

The following are the main results concerning the characterization of the Ramsey property and the local Ramsey property in topological terms.

Theorem 2.1. [Ellentuck] Let $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ be given.
(i) \mathcal{X} is Ramsey if and only if \mathcal{X} has the Baire property, with respect to Ellentuck's topology.
(ii) \mathcal{X} is Ramsey null if and only if \mathcal{X} is meager, with respect to Ellentuck's topology.

Theorem 2.2. [Mathias] Let $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ and a selective coideal \mathcal{H} be given.
(i) \mathcal{X} is \mathcal{H}-Ramsey if and only if \mathcal{X} has the abstract $\operatorname{Exp}(\mathcal{H})$-Baire property.
(ii) \mathcal{X} is \mathcal{H}-Ramsey null if and only if \mathcal{X} is $\operatorname{Exp}(\mathcal{H})$-meager.

Theorem 2.3. [Farah, Todorcevic] Let \mathcal{H} be a coideal. The following are equivalent:
(i) \mathcal{H} is semiselective.
(ii) The \mathcal{H}-Ramsey subsets of $\mathbb{N}^{[\infty]}$ are exactly those sets having the abstract $\operatorname{Exp}(\mathcal{H})$-Baire property, and the following three families of subsets of $\mathbb{N}^{[\infty]}$ coincide and are σ-ideals:
(a) \mathcal{H}-Ramsey null sets,
(b) $\operatorname{Exp}(\mathcal{H})$-nowhere dense, and
(c) $\operatorname{Exp}(\mathcal{H})$-meager sets.

In the next section we state results by Kastanas [5] and Matet [8] (Theorems 3.1 and 3.2 below) which are the game-theoretic counterparts of theorems 2.1 and 2.2, respectively; and we also present our main result (Theorem 3.3 below), which is the game-theoretic counterpart of Theorem 2.3,

3 Characterizing Ramseyness with games.

The following is a relativized version of a game due to Kastanas [5] employed to obtain a characterization of the family of completely Ramsey sets (i.e. \mathcal{H}-Ramsey for $\mathcal{H}=\mathbb{N}^{[\infty]}$). The same game was used by Matet in [8] to obtain the analog result when \mathcal{H} is selective.

Let $\mathcal{H} \subseteq \mathbb{N}^{[\infty]}$ be a fixed coideal. For each $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}, A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ we define a two-player game $G_{\mathcal{H}}(a, A, \mathcal{X})$ as follows: player I chooses an element $A_{0} \in \mathcal{H} \upharpoonright A$; II answers by playing $n_{0} \in A_{0}$ such that $a \subseteq n_{0}$, and $B_{0} \in \mathcal{H} \cap\left(A_{0} / n_{0}\right)^{[\infty]}$; then I chooses $A_{1} \in \mathcal{H} \cap B_{0}^{[\infty]}$; II answers by playing $n_{1} \in A_{1}$ and $B_{1} \in \mathcal{H} \cap\left(A_{1} / n_{1}\right)^{[\infty]}$; and so on. Player I wins if and only if $a \cup\left\{n_{j}: j \in \mathbb{N}\right\} \in \mathcal{X}$.


```
II no, 的 }\quad\mp@subsup{n}{1}{},\mp@subsup{B}{1}{}\cdots\cdots\quad\mp@subsup{n}{k}{},\mp@subsup{B}{k}{}
```

A strategy for a player is a rule that tells him (or her) what to play based on the previous moves. A strategy is a winning strategy for player I if player I wins the game whenever she (or he) follows the strategy, no matter what player II plays. Analogously, it can be defined what is a winning strategy for player II. The precise definitions of strategy for two players games can be found in [6, 10].

Let $s=\left\{s_{0}, \ldots, s_{k}\right\}$ be a nonempty finite subset of \mathbb{N}, written in its increasing order, and $\vec{B}=\left\{B_{0}, \ldots, B_{k}\right\}$ be a sequence of elements of \mathcal{H}. We say that the pair (s, \vec{B}) is a legal position for player II if $\left(s_{0}, B_{0}\right), \ldots,\left(s_{k}, B_{k}\right)$ is a sequence of possible consecutive moves of II in the game $G_{\mathcal{H}}(a, A, \mathcal{X})$, respecting the rules. In this case, if σ is a winning strategy for player I in the game, we say that $\sigma(s, \vec{B})$ is a realizable move of player I according to σ. Notice that if $r \in B_{k} / s_{k}$ and $C \in \mathcal{H} \upharpoonright B_{k} / s_{k}$ then $\left(s_{0}, B_{0}\right), \ldots,\left(s_{k}, B_{k}\right),(r, C)$ is also a sequence of possible consecutive moves of II in the game. We will sometimes use the notation (s, \vec{B}, r, C), and say that (s, \vec{B}, r, C) is a legal position for player II and $\sigma(s, \vec{B}, r, C)$ is a realizable move of player I according to σ.

We say that the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined if one of the players has a winning strategy.

Theorem 3.1. [Kastanas] \mathcal{X} is Ramsey if and only if for every $A \in \mathbb{N}^{[\infty]}$ and $a \in \mathbb{N}^{[<\infty]}$ the game $G_{\mathbb{N}[\infty]}(a, A, \mathcal{X})$ is determined.

Theorem 3.2. [Matet] Let \mathcal{H} be a selective coideal. \mathcal{X} is \mathcal{H}-Ramsey if and only if for every $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined.

Now we state our main result:
Theorem 3.3. Let \mathcal{H} be a coideal. The following are equivalent:

1. \mathcal{H} is semiselective.
2. $\forall \mathcal{X} \subseteq \mathbb{N}^{[\infty]}$, \mathcal{X} is \mathcal{H}-Ramsey if and only if for every $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined.

So Theorem 3.3 is a game-theoretic counterpart to Theorem 2.3 in the previous section, in the sense that it gives us a game-theoretic characterization of semiselectivity. Obviously, it also gives us a characterization of \mathcal{H}-Ramseyness, for semiselective \mathcal{H}, which generalizes the main results of Kastanas in [5] and Matet in [8] (Theorems 3.1] and 3.2 above).

It is known that every analytic set is \mathcal{H}-Ramsey for \mathcal{H} semiselective (see Theorem 2.2 in [2] or Lemma 7.18 in [15]). We extend this result to the projective hierarchy. Please see [6] or [10] for the definitions of projective set and of projective determinacy.

Corollary 3.4. Assume projective determinacy for games over the reals. Let \mathcal{H} be a semiselective projective coideal. Then, every projective set is \mathcal{H}-Ramsey.

Proof. Let \mathcal{X} be a projective subset of $\mathbb{N}^{[\infty]}$. Fix $A \in \mathcal{H}, a \in \mathbb{N}^{[<\infty]}$. By the projective determinacy over the reals, the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined. Then, Theorem 3.3 implies that \mathcal{X} is \mathcal{H}-Ramsey.

4 Proof of the main result

Throughout the rest of this section, fix a semiselective coideal \mathcal{H}. Before proving Theorem 3.3, in Propositions 4.1 and 4.7 below we will deal with winning strategies of players in a game $G_{\mathcal{H}}(a, A, \mathcal{X})$.
Proposition 4.1. For every $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}, A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$, I has a winning strategy in $G_{\mathcal{H}}(a, A, \mathcal{X})$ if and only if there exists $E \in \mathcal{H} \upharpoonright A$ such that $[a, E] \subseteq \mathcal{X}$.

Proof. Suppose σ is a winning strategy for I. We will suppose that $a=\emptyset$ and $A=\mathbb{N}$ without loss of generality.

Let $A_{0}=\sigma(\emptyset)$ be the first move of I using σ. We will define a tree T of finite subsets of A_{0}; and for each $s \in T$ we will also define a family $M_{s} \subseteq A_{0}^{[\infty]}$ and a family $N_{s} \subseteq\left(A_{0}^{[\infty]}\right)^{|s|}$, where $|s|$ is the length of s. Put $\{p\} \in T$ for each $p \in A_{0}$ and let

$$
M_{\{p\}} \subseteq\left\{\sigma(p, B): B \in \mathcal{H} \upharpoonright A_{0}\right\}
$$

be a maximal \mathcal{H}-disjoint family, and set

$$
N_{\{p\}}=\left\{\{B\}: \sigma(p, B) \in M_{\{p\}}\right\} .
$$

Suppose we have defined $T \cap A_{0}^{[n]}$ and we have chosen a maximal \mathcal{H}-disjoint family M_{s} of realizable moves of player I of the form $\sigma(s, \vec{B})$ for every $s \in T \cap A_{0}^{[n]}$. Let

$$
N_{s}=\left\{\vec{B}: \sigma(s, \vec{B}) \in M_{s}\right\}
$$

Given $s \in T \cap A_{0}^{[n]}, \vec{B} \in N_{s}$ and $r \in \sigma(s, \vec{B}) / s$, we put $s \cup\{r\} \in T$. Then choose a maximal \mathcal{H}-disjoint family

$$
M_{s \cup\{r\}} \subseteq\left\{\sigma(s, \vec{B}, r, C): \vec{B} \in N_{s}, C \in \mathcal{H} \upharpoonright \sigma(s, \vec{B}) / r\right\}
$$

Put

$$
N_{s \cup\{r\}}=\left\{(\vec{B}, C): \sigma(s, \vec{B}, r, C) \in M_{s \cup\{r\}}\right\} .
$$

Now, for every $s \in T$, let

$$
\begin{gathered}
\mathcal{U}_{s}=\left\{E \in \mathcal{H}:\left(\exists F \in M_{s}\right) E \subseteq F\right\} \text { and } \\
\mathcal{V}_{s}=\left\{E \in \mathcal{H}:\left(\forall F \in M_{s \backslash\{\max (s)\}}\right) \max (s) \in F \rightarrow F \cap E \notin \mathcal{H}\right\} .
\end{gathered}
$$

Claim 4.2. For every $s \in T, \mathcal{U}_{s} \cup \mathcal{V}_{s}$ is dense open in $\left(\mathcal{H} \upharpoonright A_{0}, \subseteq\right)$.
Proof. Fix $s \in T$ and $A \in \mathcal{H} \upharpoonright A_{0}$. If $\left(\forall F \in M_{s \backslash\{\max (s)\}}\right) \max (s) \in F \rightarrow F \cap A \notin \mathcal{H}$ holds, then $A \in \mathcal{V}_{s}$. Otherwise, fix $F \in M_{s \backslash\{\max (s)\}}$ such that $\max (s) \in F$ and $F \cap A \in \mathcal{H}$. Let $\vec{B} \in N_{s \backslash\{\max (s)\}}$ be such that $\sigma(s \backslash\{\max (s)\}, \vec{B})=F$. Notice that since $\max (s) \in F$ then

$$
(s \backslash\{\max (s)\}, \vec{B}, \max (s), F \cap A / \max (s))
$$

is a legal position for player II. Then, using the maximality of M_{s}, choose $\hat{F} \in M_{s}$ such that

$$
E:=\sigma(s \backslash\{\max (s), \vec{B}, \max (s), F \cap A / \max (s)) \cap \hat{F}
$$

is in \mathcal{H}. So $E \in \mathcal{U}_{s}$ and $E \subseteq A$. This completes the proof of claim 4.2,
Claim 4.3. There exists $E \in \mathcal{H} \upharpoonright A_{0}$ such that for every $s \in T$ with $s \subset E, E / s \in \mathcal{U}_{s}$.
Proof. For each $n \in \mathbb{N}$, let

$$
\begin{aligned}
\mathcal{D}_{n} & =\bigcap_{\max (s)=n} \mathcal{U}_{s} \cup \mathcal{V}_{s} . \\
\mathcal{U}_{n} & =\bigcap_{\max (s)=n} \mathcal{U}_{s}
\end{aligned}
$$

(if there is no $s \in T$ with $\max (s)=n$, then we put $\mathcal{D}_{n}=\mathcal{U}_{n}=\mathcal{H} \upharpoonright A_{0}$). By Claim4.2, every \mathcal{D}_{n} is dense open in $\left(\mathcal{H} \upharpoonright A_{0}, \subseteq\right)$. Using semiselectivity, choose a diagonalization $\hat{E} \in \mathcal{H} \upharpoonright A_{0}$ of the sequence $\left(\mathcal{D}_{n}\right)_{n}$. Let

$$
E_{0}:=\left\{n \in \hat{E}: \hat{E} / n \in \mathcal{U}_{n}\right\} \text { and } E_{1}:=\hat{E} \backslash E_{0} .
$$

Let us prove that $E_{1} \notin \mathcal{H}$:
Suppose $E_{1} \in \mathcal{H}$. By the definitions, $\left(\forall n \in E_{1}\right) \hat{E} / n \notin \mathcal{U}_{n}$. Let $n_{0}=\min \left(E_{1}\right)$ and fix $s_{0} \subset \hat{E}$ such that $\max \left(s_{0}\right)=n_{0}$ and satisfying, in particular, the following:

$$
\left(\forall F \in M_{s_{0} \backslash\left\{n_{0}\right\}}\right) n_{0} \in F \rightarrow F \cap E_{1} / n_{0} \notin \mathcal{H} .
$$

Notice that $\left|s_{0}\right|>1$, by the construction of the M_{s} 's.
Now, let $m=\max \left(s_{0} \backslash\left\{n_{0}\right\}\right)$. Then $m \in E_{0}$ and therefore $\hat{E} / m \in \mathcal{U}_{m} \subseteq \mathcal{U}_{s_{0} \backslash\left\{n_{0}\right\}}$. So there exists $F \in M_{s_{0} \backslash\left\{n_{0}\right\}}$ such that $\hat{E} / m \subseteq F$. Since $m<n_{0}$ then $n_{0} \in F$. But $F \cap E_{1} / n_{0}=E_{1} / n_{0} \in \mathcal{H}$. A contradiction.

Hence, $E_{1} \notin \mathcal{H}$ and therefore $E_{0} \in \mathcal{H}$. Then $E:=E_{0}$ is as required.
Claim 4.4. Let E be as in Claim 4.3 and $s \cup\{r\} \in T$ with $s \subset E$ and $r \in E / s$. If $E / s \subseteq \sigma(s, \vec{B})$ for some $\vec{B} \in N_{s}$, then there exists $C \in \mathcal{H} \upharpoonright \sigma(s, \vec{B}) / r$ such that $E / r \subseteq$ $\sigma(s, \stackrel{\rightharpoonup}{B}, r, C)$ and $(\vec{B}, C) \in N_{s \cup\{r\}}$.

Proof. Fix s and r as in the hypothesis. Suppose $E / s \subseteq \sigma(s, \vec{B})$ for some $\vec{B} \in N_{s}$. Since $E / r \in \mathcal{U}_{s \cup\{r\}}$, there exists $(\vec{D}, C) \in N_{s \cup\{r\}}$ such that $E / r \subseteq \sigma(s, \vec{D}, r, C)$. Notice that $E / r \subseteq$ $\sigma(s, \vec{B}) \cap \sigma(s, \vec{D})$. Since M_{s} is \mathcal{H}-disjoint, then $\sigma(s, \vec{D})$ is neccesarily equal to $\sigma(s, \vec{B})$ and therefore $\sigma(s, \vec{B}, r, C)=\sigma(s, \vec{D}, r, C)$. Hence $(\vec{B}, C) \in N_{s \cup\{r\}}$ and $E / r \subseteq \sigma(s, \vec{B}, r, C)$.

Claim 4.5. Let E be as in Claim 4.3. Then $[\emptyset, E] \subseteq \mathcal{X}$.
Proof. Let $\left\{k_{i}\right\}_{i \geq 0} \subseteq E$ be given. Since $E / k_{0} \in \mathcal{U}_{\left\{k_{0}\right\}}$, there exists $B_{0} \in N_{\left\{k_{0}\right\}}$ such that $E / k_{0} \subseteq \sigma\left(k_{0}, B_{0}\right)$. Thus, by the choice of E and applying Claim 4.4 iteratively, we prove that $\left\{k_{i}\right\}_{i \geq 0}$ is generated in a run of the game in which player I has used his winning strategy σ. Therefore $\left\{k_{i}\right\}_{i \geq 0} \in \mathcal{X}$.

The converse is trivial. This completes the proof of Proposition 4.1.

Now we turn to the case when player II has a winning strategy. The proof of the following is similar to the proof of Proposition 4.3 in [8]. First we show a result we will need in the sequel, it should be compared with lemma 4.2 in [8].
Lemma 4.6. Let $B \in \mathcal{H}, f: \mathcal{H} \upharpoonright B \rightarrow \mathbb{N}$, and $g: \mathcal{H} \upharpoonright B \rightarrow \mathcal{H} \upharpoonright B$ be given such that $f(A) \in A$ and $g(A) \subseteq A / f(A)$. Then there is $E_{f, g} \in \mathcal{H} \upharpoonright B$ with the property that for each $p \in E_{f, g}$ there exists $A \in \mathcal{H} \upharpoonright B$ such that $f(A)=p$ and $E_{f, g} / p \subseteq g(A)$.

Proof. For each $n \in\{f(A): A \in \mathcal{H} \upharpoonright B\}$, let

$$
U_{n}=\{E \in \mathcal{H} \upharpoonright B:(\exists A \in \mathcal{H} \upharpoonright B)(f(A)=n \wedge E \subseteq g(A))\}
$$

and

$$
V_{n}=\{E \in \mathcal{H} \upharpoonright B:(\forall A \in \mathcal{H} \upharpoonright B)(f(A)=n \rightarrow|g(A) \backslash E|=\infty)\} .
$$

The set $D_{n}=U_{n} \cup V_{n}$ is dense open in $\mathcal{H} \upharpoonright B$. Choose $E \in \mathcal{H} \upharpoonright B$ such that for each $n \in E, E / n \in D_{n}$. Let

$$
E_{0}=\left\{n \in E: E / n \in U_{n}\right\} \text { and } E_{1}=\left\{n \in E: E / n \in V_{n}\right\} .
$$

Now, suppose $E_{1} \in \mathcal{H}$. Then, for each $n \in E_{1}, E_{1} / n \in V_{n}$. Let $n_{1}=f\left(E_{1}\right)$. So $n_{1} \in E_{1}$ by the definition of f. But, by the definition of $g, g\left(E_{1}\right) \subseteq E_{1} / n_{1}$ and so $E_{1} / n_{1} \notin V_{n_{1}}$; a contradiction. Therefore, $E_{1} \notin \mathcal{H}$. Hence $E_{0} \in \mathcal{H}$, since \mathcal{H} is a coideal. The set $E_{f, g}:=E_{0}$ is as required.

Proposition 4.7. For every $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$, $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$, II has a winning strategy in $G_{\mathcal{H}}(a, A, \mathcal{X})$ if and only if $\forall A^{\prime} \in \mathcal{H} \upharpoonright A$ there exists $E \in \mathcal{H} \upharpoonright A^{\prime}$ such that $[a, E] \cap \mathcal{X}=\emptyset$.

Proof. Let τ be a winning strategy for II in $G_{\mathcal{H}}(a, A, \mathcal{X})$ and let $A^{\prime} \in \mathcal{H} \upharpoonright A$ be given. We are going to define a winning strategy σ for I , in $G_{\mathcal{H}}\left(a, A^{\prime}, \mathbb{N}^{[\infty]} \backslash \mathcal{X}\right)$, in such a way that we will get the required result by means of Proposition 4.1. So, in a play of the game $G_{\mathcal{H}}\left(a, A^{\prime}, \mathbb{N}^{[\infty]} \backslash \mathcal{X}\right)$, with II's successive moves being $\left(n_{j}, B_{j}\right), j \in \mathbb{N}$, define $A_{j} \in \mathcal{H}$ and $E_{f_{j}, g_{j}}$ as in Lemma 4.6, for f_{j} and g_{j} such that
(1) For all $\hat{A} \in \mathcal{H} \upharpoonright A^{\prime}$,

$$
\left(f_{0}(\hat{A}), g_{0}(\hat{A})\right)=\tau(\hat{A}) ;
$$

(2) For all $\hat{A} \in \mathcal{H} \upharpoonright B_{j} \cap g_{j}\left(A_{j}\right)$,

$$
\left(f_{j+1}(\hat{A}), g_{j+1}(\hat{A})\right)=\tau\left(A_{0}, \cdots, A_{j}, \hat{A}\right) ;
$$

(3) $A_{0} \subseteq A^{\prime}$, and $A_{j+1} \subseteq B_{j} \cap g_{j}\left(A_{j}\right)$;
(4) $n_{j}=f_{j}\left(A_{j}\right)$ and $E_{f_{j}, g_{j}} / n_{j} \subseteq g_{j}\left(A_{j}\right)$.

Now, let $\sigma(\emptyset)=E_{f_{0}, g_{0}}$ and $\sigma\left(\left(n_{0}, B_{0}\right), \cdots,\left(n_{j}, B_{j}\right)\right)=E_{f_{j+1}, g_{j+1}}$.
Conversely, let A_{0} be the first move of I in the game. Then there exists $E \in \mathcal{H} \upharpoonright A_{0}$ such that $[a, E] \cap \mathcal{X}=\emptyset$. We define a winning strategy for player II by letting her (or him) play $(\min E, E \backslash\{\min E\})$ at the first turn, and arbitrarily from there on.

We are ready now for the following:

Proof of Theorem 3.3. If \mathcal{H} is semiselective, then part 2 of Theorem 3.3 follows from Propositions 4.1 and 4.7 .

Conversely, suppose part 2 holds and let $\left(\mathcal{D}_{n}\right)_{n}$ be a sequence of dense open sets in (\mathcal{H}, \subseteq). For every $a \in \mathbb{N}^{[<\infty]}$, let
$\mathcal{X}_{a}=\left\{B \in[a, \mathbb{N}]: B / a\right.$ diagonalizes some decreasing $\left(A_{n}\right)_{n}$ such that $\left.(\forall n) A_{n} \in \mathcal{D}_{n}\right\}$
and define

$$
\mathcal{X}=\bigcup_{a \in \mathbb{N}[<\infty]} \mathcal{X}_{a}
$$

Fix $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ with $[a, A] \neq \emptyset$, and define a winning strategy σ for player I in $G_{\mathcal{H}}(a, A, \mathcal{X})$, as follows: let $\sigma(\emptyset)$ be any element of \mathcal{D}_{0} such that $\sigma(\emptyset) \subseteq A$. At stage k, if II's successive moves in the game are $\left(n_{j}, B_{j}\right), j \leq k$, let $\sigma\left(\left(n_{0}, B_{0}\right), \ldots,\left(n_{k}, B_{k}\right)\right)$ be any element of \mathcal{D}_{k+1} such that $\sigma\left(\left(n_{0}, B_{0}\right), \ldots,\left(n_{k}, B_{k}\right)\right) \subseteq B_{k}$. Notice that $a \cup\left\{n_{0}, n_{1}, n_{2}, \ldots\right\} \in \mathcal{X}_{a}$.

So the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined for every $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ with $[a, A] \neq \emptyset$. Then, by our assumptions, \mathcal{X} is \mathcal{H}-Ramsey. So given $A \in \mathcal{H}$, there exists $B \in \mathcal{H} \upharpoonright A$ such that $B^{[\infty]} \subseteq \mathcal{X}$ or $B^{[\infty]} \cap \mathcal{X}=\emptyset$. The second alternative does not hold, so $\mathcal{X} \cap \mathcal{H}$ is dense in (\mathcal{H}, \subseteq). Hence, \mathcal{H} is semiselective.

5 The Fréchet-Urysohn property and semiselectivity.

We say that an coideal $\mathcal{H} \subseteq \mathbb{N}^{[\infty]}$ has the Fréchet-Urysohn property if

$$
(\forall A \in \mathcal{H})\left(\exists B \in A^{[\infty]}\right)\left(B^{[\infty]} \subseteq \mathcal{H}\right)
$$

The following characterization of the Fréchet-Urysohn property is taken from [12, 14]. It provides a method to construct ideals with that property. Given $\mathcal{A} \subseteq \mathbb{N}^{[\infty]}$, define the orthogonal of \mathcal{A} as $\mathcal{A}^{\perp}:=\left\{A \in \mathbb{N}^{[\infty]}:(\forall B \in \mathcal{A})(|A \cap B|<\infty)\right\}$. Notice that \mathcal{A}^{\perp} is an ideal.

Proposition 5.1. A coideal $\mathcal{H} \subseteq \mathbb{N}^{[\infty]}$ has the Fréchet-Urysohn property if and only if $\mathcal{H}=\left(\mathcal{A}^{\perp}\right)^{+}$for some $\mathcal{A} \subseteq \mathbb{N}^{[\infty]}$.

Proposition 5.2. Let \mathcal{H} be a coideal. The following are equivalent:
(i) \mathcal{H} is \mathcal{H}-Ramsey.
(ii) \mathcal{H} has the Fréchet-Urysohn property.

Proof. Suppose \mathcal{H} has the Fréchet-Urysohn property. Let a be a finite set and $A \in \mathcal{H}$. Let $B \subseteq A$ be such that $B^{[\infty]} \subseteq \mathcal{H}$. Then $[a, B] \subseteq \mathcal{H}$ and thus \mathcal{H} is \mathcal{H}-Ramsey.

Conversely, suppose \mathcal{H} is \mathcal{H}-Ramsey. Let $A \in \mathcal{H}$. Since \mathcal{H} is \mathcal{H}-Ramsey, there is $B \subseteq A$ in \mathcal{H} such that $[\emptyset, B] \subseteq \mathcal{H}$ or $[\emptyset, B] \cap \mathcal{H}=\emptyset$. Since the second alternative does not hold, then $B^{[\infty]} \subseteq \mathcal{H}$ and thus \mathcal{H} is Fréchet-Urysohn.

The following result is probably known but we include its proof for the sake of completeness.

Proposition 5.3. Every coideal \mathcal{H} with the Fréchet-Urysohn property is semiselective.
Proof. Let \mathcal{H} be a Fréchet-Urysohn coideal. Suppose $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of dense open sets in (\mathcal{H}, \subseteq) and $B \in \mathcal{H}$. Since $B \in \mathcal{H}$ and \mathcal{H} has the Fréchet-Urysohn property, then there is $A \subseteq B$ in \mathcal{H} such that $A^{[\infty]} \subseteq \mathcal{H}$. Let $D \subseteq A$ be any diagonalization of $\left\{D_{n}\right\}_{n \in \mathbb{N}}$. Then $D \in \mathcal{H}$. This shows that the collection of diagonalizations is dense in (\mathcal{H}, \subseteq). Thus \mathcal{H} is semiselective.

The converse of the previous result is not true in general, since a non principal ultrafilter cannot have the Fréchet-Urysohn property. However, as every analytic set is \mathcal{H}-Ramsey [2], from 5.2 we immediately get the following.

Proposition 5.4. Every analytic semiselective coideal is Fréchet-Urysohn.
The previous result can be extended from suitable axioms.
Theorem 5.5. Assume projective determinacy over the reals. Then, every projective semiselective coideal is Fréchet-Urysohn.

Proof. It follows from corollary 3.4 and proposition 5.2.
Farah [2] shows that if there is a supercompact cardinal, then every semiselective coideal in $L(\mathbb{R})$ has the Fréchet-Urysohn property.

As we show below, it is also an easy consequence of results of [2] and [9] that in Solovay's model every semiselective coideal has the Fréchet-Urysohn property.

Recall that the Mathias forcing notion \mathbb{M} is the collection of all the sets of the form

$$
[a, A]:=\left\{B \in \mathbb{N}^{[\infty]}: a \sqsubset B \subseteq A\right\}
$$

ordered by $[a, A] \leq[b, B]$ if and only if $[a, A] \subseteq[b, B]$.
If \mathcal{H} is a coideal, then $\mathbb{M}_{\mathcal{H}}$, the Mathias partial order with respect to \mathcal{H} is the collection of all the $[a, A]$ as above but with $A \in \mathcal{H}$, ordered in the same way.

A coideal \mathcal{H} has the Mathias property if it satisfies that if x is $\mathbb{M}_{\mathcal{H}}$-generic over a model M, then every $y \in x^{[\infty]}$ is $\mathbb{M}_{\mathcal{H}}$-generic over M. And \mathcal{H} has the Prikry property if for every $[a, A] \in \mathbb{M}_{\mathcal{H}}$ and every formula φ of the forcing language of $\mathbb{M}_{\mathcal{H}}$, there is $B \in \mathcal{H} \upharpoonright A$ such that $[a, B]$ decides φ.
Theorem 5.6. ([2], Theorem 4.1) For a coideal \mathcal{H} the following are equivalent.

1. \mathcal{H} is semiselective.
2. $\mathbb{M}_{\mathcal{H}}$ has the Prikry property.
3. $\mathbb{M}_{\mathcal{H}}$ has the Mathias property.

Suppose M is a model of $Z F C$ and there is a inaccessible cardinal λ in M. The Levy partial order $\operatorname{Col}(\omega,<\lambda)$ produces a generic extension $M[G]$ of M where λ becomes \aleph_{1}. Solovay's model is obtained by taking the submodel of $M[G]$ formed by all the sets hereditarily definable in $M[G]$ from a sequence of ordinals (see [9], or [4).

In [9], Mathias shows that if $V=L, \lambda$ is a Mahlo cardinal, and $V[G]$ is a generic extension obtained by forcing with $\operatorname{Col}(\omega,<\lambda)$, then every set of real numbers defined in the generic extension from a sequence of ordinals is $\mathcal{H}-$ Ramsey for \mathcal{H} a selective coideal. This result can be extended to semiselective coideals under suitable large cardinal hypothesis.

Theorem 5.7. Suppose λ is a weakly compact cardinal. Let $V[G]$ be a generic extension by $\operatorname{Col}(\omega,<\lambda)$. Then, if \mathcal{H} is a semiselective coideal in $V[G]$, every set of real numbers in $L(\mathbb{R})$ of $V[G]$ is \mathcal{H}-Ramsey.

Proof. Let \mathcal{H} be a semiselective coideal in $V[G]$. Let \mathcal{A} be a set of reals in $L(\mathbb{R})^{V[G]}$; in particular, \mathcal{A} is defined in $V[G]$ by a formula φ from a sequence of ordinals. Let $[a, A]$ be a condition of the Mathias forcing $\mathbb{M}_{\mathcal{H}}$ with respect to the semiselective coideal \mathcal{H}. Let finally $\dot{\mathcal{H}}$ be a name for \mathcal{H}. Notice that $\dot{\mathcal{H}} \subseteq V_{\lambda}$.

Since $V[G]$ satisfies that \mathcal{H} is semiselective, the following statement holds in $V[G]$: For every sequence $D=\left(D_{n}: n \in \omega\right)$ of open dense subsets of \mathcal{H} and for every $x \in \mathcal{H}$ there is $y \in \mathcal{H}, y \subseteq x$, such that y diagonalizes the sequence D.

Therefore, there is $p \in G$ such that, in V, the following statement holds:

$$
\begin{aligned}
\forall \dot{D} \forall \tau\left(p \Vdash_{C o l(\omega,<\lambda)}\right. & (\dot{D} \text { is a name for a sequence of dense open subsets of } \dot{\mathcal{H}} \\
& \text { and } \tau \in \dot{\mathcal{H}}) \longrightarrow(\exists x(x \in \dot{\mathcal{H}}, x \subseteq \tau, x \text { diagonalizes } \dot{D}))) .
\end{aligned}
$$

Notice that every real in $V[G]$ has a name in V_{λ}, and names for subsets of \mathcal{H} or countable sequences of subsets of \mathcal{H} are contained in V_{λ}. Also, the forcing $\operatorname{Col}(\omega,<\lambda)$ is a subset of V_{λ}. Therefore the same statement is valid in the structure $\left(V_{\lambda}, \in, \dot{\mathcal{H}}, \operatorname{Col}(\omega,<\lambda)\right)$. This statement is Π_{1}^{1} over this structure, and since λ is Π_{1}^{1}-indescribable, there is $\kappa<\lambda$ such that in $\left(V_{\kappa}, \in, \dot{\mathcal{H}} \cap V_{\kappa}, \operatorname{Col}(\omega,<\lambda) \cap V_{\kappa}\right)$ it holds

$$
\begin{array}{r}
\forall \dot{D} \forall \tau\left(p \Vdash _ { C o l (\omega , < \kappa) } \left(\dot{D} \text { is a name for a sequence of dense open subsets of } \dot{\mathcal{H}} \cap V_{\kappa}\right.\right. \\
\text { and } \left.\left.\tau \in \dot{\mathcal{H}} \cap V_{\kappa}\right) \longrightarrow\left(\exists x\left(x \in \dot{\mathcal{H}} \cap V_{\kappa}, x \subseteq \tau, x \text { diagonalizes } \dot{D}\right)\right)\right) .
\end{array}
$$

We can get κ inaccessible, since there is a Π_{1}^{1} formula expressing that λ is inaccessible. Also, κ is such that p and the names for the real parameters in the definition of \mathcal{A} and for A belong to V_{κ}.

If we let $G_{\kappa}=G \cap \operatorname{Col}(\omega,<\kappa)$, then $G_{\kappa} \subseteq \operatorname{Col}(\omega,<\kappa)$, and is generic over V. Also, $p \in G_{\kappa} . \dot{\mathcal{H}} \cap V_{\kappa}$ is a $\operatorname{Col}(\omega,<\kappa)$-name in V which is interpreted by G_{κ} as $\mathcal{H} \cap V\left[G_{\kappa}\right]$, thus $\mathcal{H} \cap V\left[G_{\kappa}\right] \in V\left[G_{\kappa}\right]$. And since every subset (or sequence of subsets) of $\mathcal{H} \cap V\left[G_{\kappa}\right]$ which belongs to $V\left[G_{\kappa}\right]$ has a name contained in V_{κ}, we have that, in $V\left[G_{\kappa}\right], \mathcal{H} \cap V_{\kappa}$ is semiselective, and in consequence it has both the Prikry and the Mathias properties.

Now the proof can be finished as in [9]. Let \dot{r} be the canonical name of a $\mathbb{M}_{\mathcal{H} \cap V\left[G_{\kappa}\right]}$ generic real, and consider the formula $\varphi(\dot{r})$ in the forcing language of $V\left[G_{\kappa}\right]$. By the Prikry property of $\mathcal{H} \cap V\left[G_{\kappa}\right]$, there is $A^{\prime} \subseteq A, A^{\prime} \in \mathcal{H} \cap V\left[G_{\kappa}\right]$, such that $\left[a, A^{\prime}\right]$ decides $\varphi(\dot{r})$. Since $2^{2^{\omega}}$ computed in $V\left[G_{\kappa}\right]$ is countable in $V[G]$, there is (in $\left.V[G]\right)$ a $\mathbb{M}_{\mathcal{H} \cap V\left[G_{\kappa}\right]}$-generic real x over $V\left[G_{\kappa}\right]$ such that $x \in\left[a, A^{\prime}\right]$. To see that there is such a generic real in \mathcal{H} we argue as in 5.5 of [9] using the semiselectivity of \mathcal{H} and the fact that $\mathcal{H} \cap V\left[G_{\kappa}\right]$ is countable in $V[G]$ to obtain an element of \mathcal{H} which is generic. By the Mathias property of $\mathcal{H} \cap V\left[G_{\kappa}\right]$, every $y \in[a, x \backslash a]$ is also $\left.\mathbb{M}_{\mathcal{H} \cap V\left[G_{\kappa}\right]}\right]^{\text {-generic over }} V\left[G_{\kappa}\right]$, and also $y \in\left[a, A^{\prime}\right]$. Thus $\varphi(x)$ if and only if $\left[a, A^{\prime}\right] \Vdash \varphi(\dot{r})$, if and only if $\varphi(y)$. Therefore, $[a, x \backslash a]$ is contained in \mathcal{A} or is disjoint from \mathcal{A}.

As in [9], we obtain the following.
Corollary 5.8. If $Z F C$ is consistent with the existence of a weakly compact cardinal, then so is $Z F+D C$ and "every set of reals is \mathcal{H}-Ramsey for every semiselective coideal \mathcal{H} ".

Corollary 5.9. Suppose there is a weakly compact cardinal. Then, there is a model of $Z F+D C$ in which every semiselective coideal \mathcal{H} has the Fréchet-Urysohn property.

Proof. By theorem [5.7, in $L(\mathbb{R})$ of the Levy collapse of a weakly compact cardinal, every set of reals is \mathcal{H}-Ramsey for every semiselective coideal. Thus, by proposition 5.2, every semiselective coideal \mathcal{H} in this model has the Fréchet-Urysohn property.

References

[1] Elentuck, E., A new proof that analytic sets are Ramsey, J. Symbolic Logic, 39 (1974), 163-165.
[2] Farah, I., Semiselective coideals. Mathematika, 45 (1997), 79-103.
[3] Galvin, F. and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic, 38 (1973), 193-198.
[4] Jech, T., Set Theory. Springer Verlag, 2003.
[5] Kastanas, I., On the Ramsey Property for Sets of Reals. J. Symbolic Logic, 48 (1983), 1035-1045.
[6] Kechris, A.S., Classical Descriptive Set Theory. Springer-Verlag. Grad. Texts in Math. 156, 1995.
[7] Louveau, A., Une méthode topologique pour l'étude de la propriété de Ramsey. Israel J. Math. 23 (1976) 97-116.
[8] Matet, P., Happy Families and Completely Ramsey Sets. Springer-Verlag, Archive for Mathematical Logic, 38 (1993), 151-171.
[9] Mathias, A.R.D., Happy Families. Annals of Mathematical Logic, 13(1977), 59-111.
[10] Moschovakis, Y.N., Descriptive Set Theory. North-Holland. Publ. Comp. Amsterdam, 1980.
[11] Silver, J., Every analytic set is Ramsey, J. Symbolic Logic, 35 (1970) 60-64.
[12] P. Simon, A hedghog in the product, Acta. Univ. Carolin. Math. Phys. 39 (1998), 147-153.
[13] Solovay, R. M., A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics 92 (1970) 1-56.
[14] S. Todorcevic. Analytic gaps. Fund. Math., 150(1):55-66, 1996.
[15] Todorcevic, S., Introduction to Ramsey spaces, Princeton University Press, Princeton, New Jersey, 2010.

[^0]: *cdiprisc@ivic.gob.ve
 ${ }^{\dagger}$ jmijares@ivic.gob.ve
 Ғuzca@ula.ve

