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Abstract

It is shown that Matet’s characterization ([8]) of H-Ramseyness relative to a selec-
tive coideal H, in terms of games of Kastanas ([5]), still holds if we consider semiselec-
tivity ([2]) instead of selectivity. Moreover, we prove that a coideal H is semiselective
if and only if Matet’s game-theoretic characterization of H-Ramseyness holds. This
gives a game-theoretic counterpart to a theorem of Farah [2], asserting that a coideal
H is semiselective if and only if the family of H-Ramsey subsets of N[∞] coincides with
the family of those sets having the abstract Exp(H)-Baire property. Finally, we show
that under suitable assumptions, semiselectivity is equivalent to the Fréchet-Urysohn
property.

Keywords: Semiselective coideal, Ramsey theory, Frechet-Urysohn property, Banach-Mazur
games.
MSC: 05D10, 03E02.

1 Introduction

Let N be the set of nonnegative integers. Given an infinite set A ⊆ N, the symbol A[∞] (resp.
A[<∞]) represents the collection of the infinite (resp. finite) subsets of A. Let A[n] denote the
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set of all the subsets of A with n elements. If a ∈ N
[<∞] is an initial segment of A ∈ N

[∞]

then we write a ⊏ A. Also, let A/a := {n ∈ A : max(a) < n}, and write A/n to mean
A/{n}. For a ∈ N

[<∞] and A ∈ N
[∞] let

[a, A] := {B ∈ N
[∞] : a ⊏ B ⊆ A}.

The family Exp(N[∞]) := {[a, A] : (a, A) ∈ N
[<∞] × N

[∞]} is a basis for Ellentuck’s

topology, also known as exponential topology. In [1], Ellentuck gave a characterization
of Ramseyness in terms of the Baire property relative to this topology (see Theorem 2.1
below).

Let (P,≤) be a poset, a subset D ⊆ P is dense in P if for every p ∈ P , there is q ∈ D
with q ≤ p. D ⊆ P is open if p ∈ D and q ≤ p imply q ∈ D. P is σ-distributive if the
intersection of countably many dense open subsets of P is dense. P is σ-closed if every
decreasing sequence of elements of P has a lower bound.

Definition 1.1. A family H ⊂ ℘(N) is a coideal if it satisfies:

(i) A ⊆ B and A ∈ H implies B ∈ H, and

(ii) A ∪ B ∈ H implies A ∈ H or B ∈ H.

The complement I = ℘(N) \ H is the dual ideal of H. In this case, as usual, we write
H = I+. We will suppose that coideals differ from ℘(N). Also, we say that a nonempty
family F ⊆ H is H-disjoint if for every A,B ∈ F , A∩B 6∈ H. We say that F is a maximal

H-disjoint family if it is H-disjoint and it is not properly contained in any other H-disjoint
family as a subset.

A subset X of N
[∞] is Ramsey if for every [a, A] 6= ∅ with A ∈ N

[∞] there exists
B ∈ [a, A] such that [a, B] ⊆ X or [a, B] ∩ X = ∅. Some authors have used the term
“completely Ramsey” to express this property, reserving the term “Ramsey” for a weaker
property. Galvin and Prikry [3] showed that all Borel subsets of N[∞] are Ramsey, and Silver
[11] extended this to all analytic sets. Mathias in [9] showed that if the existence of an
inaccessible cardinal is consistent with ZFC then it is consistent, with ZF +DC, that every
subset of N[∞] is Ramsey. Mathias introduced the concept of a selective coideal (or a happy
family), which has turned out to be of wide interest. Ellentuck [1] characterized the Ramsey
sets as those having the Baire property with respect to the exponential topology of N[∞].

A game theoretical characterization of Ramseyness was given by Kastanas in [5], using
games in the style of Banach-Mazur with respect to Ellentuck’s topology.

In this work we will deal with a game-theoretic characterization of the following property:

Definition 1.2. Let H ⊂ N
[∞] be a coideal. X ⊆ N

[∞] is H-Ramsey if for every [a, A] 6= ∅
with A ∈ H there exists B ∈ [a, A] ∩ H such that [a, B] ⊆ X or [a, B] ∩ X = ∅. X is
H-Ramsey null if for every [a, A] 6= ∅ with A ∈ H there exists B ∈ [a, A] ∩ H such that
[a, B] ∩ X = ∅.
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H-Ramseyness is also called local Ramsey property.

Mathias considered sets that are H-Ramsey with respect to a selective coideal H, and
generalized Silver’s result to this context. Matet [8] used games to characterize sets which
are Ramsey with respect to a selective coideal H. These games coincide with the games of
Kastanas if H is N[∞] and with the games of Louveau [7] if H is a Ramsey ultrafilter.

Given a coideal H ⊂ N
[∞], let

Exp(H) := {[a, A] : (a, A) ∈ N
[<∞] ×H}.

In general, this is not a basis for a topology on N
[<∞], but the following abstract version of

the Baire property and related concepts will be useful:

Definition 1.3. Let H ⊂ N
[∞] be a coideal. X ⊆ N

[∞] has the abstract Exp(H)-Baire

property if for every [a, A] 6= ∅ with A ∈ H there exists [b, B] ⊆ [a, A] with B ∈ H such
that [b, B] ⊆ X or [b, B]∩X = ∅. X is Exp(H)-nowhere dense if for every [a, A] 6= ∅ with
A ∈ H there exists [b, B] ⊆ [a, A] with B ∈ H such that [b, B]∩X = ∅. X is Exp(H)-meager

if it is the union of countably many Exp(H)-nowhere dense sets.

Given a decreasing sequence A0 ⊇ A1 ⊇ A2 ⊇ · · · of infinite subsets of N, a set B is a
diagonalization of the sequence (or B diagonalizes the sequence) if and only if B/n ⊆ An

for each n ∈ B. A coideal H is selective if and only if every decreasing sequence in H has
a diagonalization in H.

A coideal H has the Q+-property, if for every A ∈ H and every partition (Fn)n of A
into finite sets, there is S ∈ H such that S ⊆ A and |S ∩ Fn| ≤ 1 for every n ∈ N.

Proposition 1.4. [9] A coideal H is selective if and only if the poset (H,⊆∗) is σ-closed
and H has the Q+-property.

Given a coideal H and a sequence {Dn}n∈N of dense open sets in (H,⊆), a set B is a
diagonalization of {Dn}n∈N if and only if B/n ∈ Dn for every n ∈ B. A coideal H is
semiselective if for every sequence {Dn}n∈N of dense open subsets of H, the family of its
diagonalizations is dense in (H,⊆).

Proposition 1.5. [2] A coideal H is semiselective if and only if the poset (H,⊆∗) is σ-
distributive and H has the Q+-property.

Since σ-closedness implies σ-distributivity, then semiselectivity follows from selectivity,
but the converse does not hold (see [2] for an example).

In section 2 we list results of Ellentuck, Mathias and Farah that characterize topologically
the Ramsey property and the local Ramsey property. In section 3 we define a family of
games, and present the main result, which states that a coideal H is semiselective if and
only if the H-Ramsey sets are exactly those for which the associated games are determined.
This generalizes results of Kastanas [5] and Matet [8]. The proof is given in section 4. In
section 5 we relate semiselectivity of coideals with the Fréchet-Urysohn property, and show
that in Solovay’s model every semiselective coideal has the Fréchet-Urysohn property.

We thank A. Blass and J. Bagaria for helping us to correct some deficiencies in previous
versions of the article.
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2 Topological characterization of Ramseyness.

The following are the main results concerning the characterization of the Ramsey property
and the local Ramsey property in topological terms.

Theorem 2.1. [Ellentuck] Let X ⊆ N
[∞] be given.

(i) X is Ramsey if and only if X has the Baire property, with respect to Ellentuck’s topol-
ogy.

(ii) X is Ramsey null if and only if X is meager, with respect to Ellentuck’s topology.

Theorem 2.2. [Mathias] Let X ⊆ N
[∞] and a selective coideal H be given.

(i) X is H-Ramsey if and only if X has the abstract Exp(H)-Baire property.

(ii) X is H-Ramsey null if and only if X is Exp(H)-meager.

Theorem 2.3. [Farah, Todorcevic] Let H be a coideal. The following are equivalent:

(i) H is semiselective.

(ii) The H-Ramsey subsets of N[∞] are exactly those sets having the abstract Exp(H)-Baire
property, and the following three families of subsets of N[∞] coincide and are σ-ideals:

(a) H-Ramsey null sets,

(b) Exp(H)-nowhere dense, and

(c) Exp(H)-meager sets.

In the next section we state results by Kastanas [5] and Matet [8] (Theorems 3.1 and 3.2
below) which are the game-theoretic counterparts of theorems 2.1 and 2.2, respectively; and
we also present our main result (Theorem 3.3 below), which is the game-theoretic counterpart
of Theorem 2.3.

3 Characterizing Ramseyness with games.

The following is a relativized version of a game due to Kastanas [5], employed to obtain a
characterization of the family of completely Ramsey sets (i.e. H-Ramsey for H = N

[∞]).
The same game was used by Matet in [8] to obtain the analog result when H is selective.

Let H ⊆ N
[∞] be a fixed coideal. For each X ⊆ N

[∞], A ∈ H and a ∈ N
[<∞] we define a

two-player game GH(a, A,X ) as follows: player I chooses an element A0 ∈ H ↾ A; II answers

by playing n0 ∈ A0 such that a ⊆ n0, and B0 ∈ H∩(A0/n0)
[∞]; then I chooses A1 ∈ H∩B

[∞]
0 ;

II answers by playing n1 ∈ A1 and B1 ∈ H ∩ (A1/n1)
[∞]; and so on. Player I wins if and

only if a ∪ {nj : j ∈ N} ∈ X .
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I A0 A1 · · · Ak · · ·

II n0, B0 n1, B1 · · · nk, Bk · · ·

A strategy for a player is a rule that tells him (or her) what to play based on the
previous moves. A strategy is a winning strategy for player I if player I wins the game
whenever she (or he) follows the strategy, no matter what player II plays. Analogously, it
can be defined what is a winning strategy for player II. The precise definitions of strategy
for two players games can be found in [6, 10].

Let s = {s0, . . . , sk} be a nonempty finite subset of N, written in its increasing order, and
−→
B = {B0, . . . , Bk} be a sequence of elements of H. We say that the pair (s,

−→
B ) is a legal

position for player II if (s0, B0), . . . , (sk, Bk) is a sequence of possible consecutive moves
of II in the game GH(a, A,X ), respecting the rules. In this case, if σ is a winning strategy

for player I in the game, we say that σ(s,
−→
B ) is a realizable move of player I according

to σ. Notice that if r ∈ Bk/sk and C ∈ H ↾ Bk/sk then (s0, B0), . . . , (sk, Bk), (r, C) is also a
sequence of possible consecutive moves of II in the game. We will sometimes use the notation

(s,
−→
B, r, C), and say that (s,

−→
B, r, C) is a legal position for player II and σ(s,

−→
B, r, C) is a

realizable move of player I according to σ.

We say that the game GH(a, A,X ) is determined if one of the players has a winning
strategy.

Theorem 3.1. [Kastanas] X is Ramsey if and only if for every A ∈ N
[∞] and a ∈ N

[<∞] the
game GN[∞](a, A,X ) is determined.

Theorem 3.2. [Matet] Let H be a selective coideal. X is H-Ramsey if and only if for every
A ∈ H and a ∈ N

[<∞] the game GH(a, A,X ) is determined.

Now we state our main result:

Theorem 3.3. Let H be a coideal. The following are equivalent:

1. H is semiselective.

2. ∀X ⊆ N
[∞], X is H-Ramsey if and only if for every A ∈ H and a ∈ N

[<∞] the game
GH(a, A,X ) is determined.

So Theorem 3.3 is a game-theoretic counterpart to Theorem 2.3 in the previous section,
in the sense that it gives us a game-theoretic characterization of semiselectivity. Obviously,
it also gives us a characterization of H-Ramseyness, for semiselective H, which generalizes
the main results of Kastanas in [5] and Matet in [8] (Theorems 3.1 and 3.2 above).

It is known that every analytic set is H-Ramsey for H semiselective (see Theorem 2.2 in
[2] or Lemma 7.18 in [15]). We extend this result to the projective hierarchy. Please see [6]
or [10] for the definitions of projective set and of projective determinacy.
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Corollary 3.4. Assume projective determinacy for games over the reals. Let H be a semis-
elective projective coideal. Then, every projective set is H-Ramsey.

Proof. Let X be a projective subset of N[∞]. Fix A ∈ H, a ∈ N
[<∞]. By the projective

determinacy over the reals, the game GH(a, A,X ) is determined. Then, Theorem 3.3 implies
that X is H-Ramsey.

4 Proof of the main result

Throughout the rest of this section, fix a semiselective coideal H. Before proving Theorem
3.3, in Propositions 4.1 and 4.7 below we will deal with winning strategies of players in a
game GH(a, A,X ).

Proposition 4.1. For every X ⊆ N
[∞], A ∈ H and a ∈ N

[<∞], I has a winning strategy in
GH(a, A,X ) if and only if there exists E ∈ H ↾ A such that [a, E] ⊆ X .

Proof. Suppose σ is a winning strategy for I. We will suppose that a = ∅ and A = N without
loss of generality.

Let A0 = σ(∅) be the first move of I using σ. We will define a tree T of finite subsets of

A0; and for each s ∈ T we will also define a family Ms ⊆ A
[∞]
0 and a family Ns ⊆ (A

[∞]
0 )|s|,

where |s| is the length of s. Put {p} ∈ T for each p ∈ A0 and let

M{p} ⊆ {σ(p, B) : B ∈ H ↾ A0}

be a maximal H-disjoint family, and set

N{p} = {{B} : σ(p, B) ∈ M{p}}.

Suppose we have defined T ∩ A
[n]
0 and we have chosen a maximal H-disjoint family Ms

of realizable moves of player I of the form σ(s,
−→
B ) for every s ∈ T ∩ A

[n]
0 . Let

Ns = {
−→
B : σ(s,

−→
B ) ∈ Ms}.

Given s ∈ T ∩A
[n]
0 ,

−→
B ∈ Ns and r ∈ σ(s,

−→
B )/s, we put s∪{r} ∈ T . Then choose a maximal

H-disjoint family

Ms∪{r} ⊆ {σ(s,
−→
B, r, C) :

−→
B ∈ Ns, C ∈ H ↾ σ(s,

−→
B )/r}.

Put
Ns∪{r} = {(

−→
B ,C) : σ(s,

−→
B , r, C) ∈ Ms∪{r}}.

Now, for every s ∈ T , let

Us = {E ∈ H : (∃F ∈ Ms) E ⊆ F} and

Vs = {E ∈ H : (∀F ∈ Ms\{max(s)}) max(s) ∈ F → F ∩ E 6∈ H}.
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Claim 4.2. For every s ∈ T , Us ∪ Vs is dense open in (H ↾ A0,⊆).

Proof. Fix s ∈ T and A ∈ H ↾ A0. If (∀F ∈ Ms\{max(s)}) max(s) ∈ F → F ∩ A 6∈ H holds,
then A ∈ Vs. Otherwise, fix F ∈ Ms\{max(s)} such that max(s) ∈ F and F ∩ A ∈ H. Let
−→
B ∈ Ns\{max(s)} be such that σ(s \ {max(s)},

−→
B ) = F . Notice that since max(s) ∈ F then

(s \ {max(s)},
−→
B,max(s), F ∩ A/max(s))

is a legal position for player II. Then, using the maximality of Ms, choose F̂ ∈ Ms such that

E := σ(s \ {max(s),
−→
B,max(s), F ∩ A/max(s)) ∩ F̂

is in H. So E ∈ Us and E ⊆ A. This completes the proof of claim 4.2.

Claim 4.3. There exists E ∈ H ↾ A0 such that for every s ∈ T with s ⊂ E, E/s ∈ Us.

Proof. For each n ∈ N , let

Dn =
⋂

max(s)=n Us ∪ Vs.

Un =
⋂

max(s)=n Us ,

(if there is no s ∈ T with max(s) = n, then we put Dn = Un = H ↾ A0). By Claim 4.2, every
Dn is dense open in (H ↾ A0,⊆). Using semiselectivity, choose a diagonalization Ê ∈ H ↾ A0

of the sequence (Dn)n. Let

E0 := {n ∈ Ê : Ê/n ∈ Un} and E1 := Ê \ E0.

Let us prove that E1 6∈ H:

Suppose E1 ∈ H. By the definitions, (∀n ∈ E1) Ê/n 6∈ Un. Let n0 = min(E1) and fix
s0 ⊂ Ê such that max(s0) = n0 and satisfying, in particular, the following:

(∀F ∈ Ms0\{n0}) n0 ∈ F → F ∩ E1/n0 6∈ H.

Notice that |s0| > 1, by the construction of the Ms’s.
Now, let m = max(s0 \ {n0}). Then m ∈ E0 and therefore Ê/m ∈ Um ⊆ Us0\{n0}.

So there exists F ∈ Ms0\{n0} such that Ê/m ⊆ F . Since m < n0 then n0 ∈ F . But
F ∩ E1/n0 = E1/n0 ∈ H. A contradiction.

Hence, E1 6∈ H and therefore E0 ∈ H. Then E := E0 is as required.

Claim 4.4. Let E be as in Claim 4.3 and s ∪ {r} ∈ T with s ⊂ E and r ∈ E/s. If

E/s ⊆ σ(s,
−→
B ) for some

−→
B ∈ Ns, then there exists C ∈ H ↾ σ(s,

−→
B )/r such that E/r ⊆

σ(s,
−→
B, r, C) and (

−→
B,C) ∈ Ns∪{r}.
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Proof. Fix s and r as in the hypothesis. Suppose E/s ⊆ σ(s,
−→
B ) for some

−→
B ∈ Ns. Since

E/r ∈ Us∪{r}, there exists (
−→
D,C) ∈ Ns∪{r} such that E/r ⊆ σ(s,

−→
D, r, C). Notice that E/r ⊆

σ(s,
−→
B ) ∩ σ(s,

−→
D). Since Ms is H-disjoint, then σ(s,

−→
D) is neccesarily equal to σ(s,

−→
B ) and

therefore σ(s,
−→
B , r, C) = σ(s,

−→
D, r, C). Hence (

−→
B ,C) ∈ Ns∪{r} and E/r ⊆ σ(s,

−→
B, r, C).

Claim 4.5. Let E be as in Claim 4.3. Then [∅, E] ⊆ X .

Proof. Let {ki}i≥0 ⊆ E be given. Since E/k0 ∈ U{k0}, there exists B0 ∈ N{k0} such that
E/k0 ⊆ σ(k0, B0). Thus, by the choice of E and applying Claim 4.4 iteratively, we prove
that {ki}i≥0 is generated in a run of the game in which player I has used his winning strategy
σ. Therefore {ki}i≥0 ∈ X .

The converse is trivial. This completes the proof of Proposition 4.1.

Now we turn to the case when player II has a winning strategy. The proof of the following
is similar to the proof of Proposition 4.3 in [8]. First we show a result we will need in the
sequel, it should be compared with lemma 4.2 in [8].

Lemma 4.6. Let B ∈ H, f : H ↾ B → N, and g : H ↾ B → H ↾ B be given such that
f(A) ∈ A and g(A) ⊆ A/f(A). Then there is Ef,g ∈ H ↾ B with the property that for each
p ∈ Ef,g there exists A ∈ H ↾ B such that f(A) = p and Ef,g/p ⊆ g(A).

Proof. For each n ∈ {f(A) : A ∈ H ↾ B}, let

Un = {E ∈ H ↾ B : (∃A ∈ H ↾ B) (f(A) = n ∧ E ⊆ g(A))}

and

Vn = {E ∈ H ↾ B : (∀A ∈ H ↾ B) (f(A) = n → | g(A) \ E |= ∞)}.

The set Dn = Un ∪ Vn is dense open in H ↾ B. Choose E ∈ H ↾ B such that for each
n ∈ E, E/n ∈ Dn. Let

E0 = {n ∈ E : E/n ∈ Un} and E1 = {n ∈ E : E/n ∈ Vn}.

Now, suppose E1 ∈ H. Then, for each n ∈ E1, E1/n ∈ Vn. Let n1 = f(E1). So n1 ∈ E1

by the definition of f . But, by the definition of g, g(E1) ⊆ E1/n1 and so E1/n1 6∈ Vn1 ; a
contradiction. Therefore, E1 6∈ H. Hence E0 ∈ H, since H is a coideal. The set Ef,g := E0

is as required.

Proposition 4.7. For every X ⊆ N
[∞], A ∈ H and a ∈ N

[<∞], II has a winning strategy in
GH(a, A,X ) if and only if ∀A′ ∈ H ↾ A there exists E ∈ H ↾ A′ such that [a, E] ∩ X = ∅.
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Proof. Let τ be a winning strategy for II in GH(a, A,X ) and let A′ ∈ H ↾ A be given.
We are going to define a winning strategy σ for I, in GH(a, A

′,N[∞] \ X ), in such a way
that we will get the required result by means of Proposition 4.1. So, in a play of the game
GH(a, A

′,N[∞] \ X ), with II’s successive moves being (nj , Bj), j ∈ N, define Aj ∈ H and
Efj ,gj as in Lemma 4.6, for fj and gj such that

(1) For all Â ∈ H ↾ A′,
(f0(Â), g0(Â)) = τ(Â);

(2) For all Â ∈ H ↾ Bj ∩ gj(Aj),

(fj+1(Â), gj+1(Â)) = τ(A0, · · · , Aj , Â);

(3) A0 ⊆ A′, and Aj+1 ⊆ Bj ∩ gj(Aj);

(4) nj = fj(Aj) and Efj ,gj/nj ⊆ gj(Aj).

Now, let σ(∅)=Ef0,g0 and σ((n0, B0), · · · , (nj, Bj))=Efj+1,gj+1
.

Conversely, let A0 be the first move of I in the game. Then there exists E ∈ H ↾ A0 such
that [a, E] ∩ X = ∅. We define a winning strategy for player II by letting her (or him) play
(minE,E \ {minE}) at the first turn, and arbitrarily from there on.

We are ready now for the following:

Proof of Theorem 3.3. If H is semiselective, then part 2 of Theorem 3.3 follows from Propo-
sitions 4.1 and 4.7.

Conversely, suppose part 2 holds and let (Dn)n be a sequence of dense open sets in (H,⊆).
For every a ∈ N

[<∞], let

Xa = {B ∈ [a,N] : B/a diagonalizes some decreasing (An)n such that (∀n) An ∈ Dn}

and define
X =

⋃

a∈N[<∞]

Xa.

Fix A ∈ H and a ∈ N
[<∞] with [a, A] 6= ∅, and define a winning strategy σ for player I in

GH(a, A,X ), as follows: let σ(∅) be any element of D0 such that σ(∅) ⊆ A. At stage k, if II’s
successive moves in the game are (nj , Bj), j ≤ k, let σ((n0, B0), . . . , (nk, Bk)) be any element
of Dk+1 such that σ((n0, B0), . . . , (nk, Bk)) ⊆ Bk. Notice that a ∪ {n0, n1, n2, . . . } ∈ Xa.

So the game GH(a, A,X ) is determined for every A ∈ H and a ∈ N
[<∞] with [a, A] 6= ∅.

Then, by our assumptions, X is H-Ramsey. So given A ∈ H, there exists B ∈ H ↾ A such
that B[∞] ⊆ X or B[∞] ∩X = ∅. The second alternative does not hold, so X ∩H is dense in
(H,⊆). Hence, H is semiselective.
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5 The Fréchet-Urysohn property and semiselectivity.

We say that an coideal H ⊆ N
[∞] has the Fréchet-Urysohn property if

(∀A ∈ H) (∃B ∈ A[∞]) (B[∞] ⊆ H).

The following characterization of the Fréchet-Urysohn property is taken from [12, 14]. It
provides a method to construct ideals with that property. Given A ⊆ N

[∞], define the
orthogonal of A as A⊥ := {A ∈ N

[∞] : (∀B ∈ A) (|A ∩ B| < ∞)}. Notice that A⊥ is an
ideal.

Proposition 5.1. A coideal H ⊆ N
[∞] has the Fréchet-Urysohn property if and only if

H = (A⊥)+ for some A ⊆ N
[∞].

Proposition 5.2. Let H be a coideal. The following are equivalent:

(i) H is H-Ramsey.

(ii) H has the Fréchet-Urysohn property.

Proof. Suppose H has the Fréchet-Urysohn property. Let a be a finite set and A ∈ H. Let
B ⊆ A be such that B[∞] ⊆ H. Then [a, B] ⊆ H and thus H is H-Ramsey.

Conversely, suppose H is H-Ramsey. Let A ∈ H. Since H is H-Ramsey, there is B ⊆ A
in H such that [∅, B] ⊆ H or [∅, B] ∩ H = ∅. Since the second alternative does not hold,
then B[∞] ⊆ H and thus H is Fréchet-Urysohn.

The following result is probably known but we include its proof for the sake of complete-
ness.

Proposition 5.3. Every coideal H with the Fréchet-Urysohn property is semiselective.

Proof. Let H be a Fréchet-Urysohn coideal. Suppose {Dn}n∈N is a sequence of dense open
sets in (H,⊆) and B ∈ H. Since B ∈ H and H has the Fréchet-Urysohn property, then
there is A ⊆ B in H such that A[∞] ⊆ H. Let D ⊆ A be any diagonalization of {Dn}n∈N.
Then D ∈ H. This shows that the collection of diagonalizations is dense in (H,⊆). Thus H
is semiselective.

The converse of the previous result is not true in general, since a non principal ultrafilter
cannot have the Fréchet-Urysohn property. However, as every analytic set is H-Ramsey [2],
from 5.2 we immediately get the following.

Proposition 5.4. Every analytic semiselective coideal is Fréchet-Urysohn.

The previous result can be extended from suitable axioms.

Theorem 5.5. Assume projective determinacy over the reals. Then, every projective semis-
elective coideal is Fréchet-Urysohn.
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Proof. It follows from corollary 3.4 and proposition 5.2.

Farah [2] shows that if there is a supercompact cardinal, then every semiselective coideal
in L(R) has the Fréchet-Urysohn property.

As we show below, it is also an easy consequence of results of [2] and [9] that in Solovay’s
model every semiselective coideal has the Fréchet-Urysohn property.

Recall that the Mathias forcing notion M is the collection of all the sets of the form

[a, A] := {B ∈ N
[∞] : a ⊏ B ⊆ A},

ordered by [a, A] ≤ [b, B] if and only if [a, A] ⊆ [b, B].
If H is a coideal, then MH, the Mathias partial order with respect to H is the collection

of all the [a, A] as above but with A ∈ H, ordered in the same way.
A coideal H has the Mathias property if it satisfies that if x is MH-generic over a model

M , then every y ∈ x[∞] is MH-generic over M . And H has the Prikry property if for every
[a, A] ∈ MH and every formula ϕ of the forcing language of MH, there is B ∈ H ↾ A such
that [a, B] decides ϕ.

Theorem 5.6. ([2], Theorem 4.1) For a coideal H the following are equivalent.

1. H is semiselective.

2. MH has the Prikry property.

3. MH has the Mathias property.

Suppose M is a model of ZFC and there is a inaccessible cardinal λ in M . The Levy
partial order Col(ω,< λ) produces a generic extension M [G] ofM where λ becomes ℵ1. Solo-
vay’s model is obtained by taking the submodel of M [G] formed by all the sets hereditarily
definable in M [G] from a sequence of ordinals (see [9], or [4]).

In [9], Mathias shows that if V = L, λ is a Mahlo cardinal, and V [G] is a generic extension
obtained by forcing with Col(ω,< λ), then every set of real numbers defined in the generic
extension from a sequence of ordinals is H− Ramsey for H a selective coideal. This result
can be extended to semiselective coideals under suitable large cardinal hypothesis.

Theorem 5.7. Suppose λ is a weakly compact cardinal. Let V [G] be a generic extension
by Col(ω,< λ). Then, if H is a semiselective coideal in V [G], every set of real numbers in
L(R) of V [G] is H-Ramsey.

Proof. Let H be a semiselective coideal in V [G]. Let A be a set of reals in L(R)V [G]; in
particular, A is defined in V [G] by a formula ϕ from a sequence of ordinals. Let [a, A] be a
condition of the Mathias forcing MH with respect to the semiselective coideal H. Let finally
Ḣ be a name for H. Notice that Ḣ ⊆ Vλ.

Since V [G] satisfies that H is semiselective, the following statement holds in V [G]: For
every sequence D = (Dn : n ∈ ω) of open dense subsets of H and for every x ∈ H there is
y ∈ H, y ⊆ x, such that y diagonalizes the sequence D.

11



Therefore, there is p ∈ G such that, in V , the following statement holds:

∀Ḋ∀τ(p Col(ω,<λ) (Ḋ is a name for a sequence of dense open subsets of Ḣ

and τ ∈ Ḣ) −→ (∃x(x ∈ Ḣ, x ⊆ τ, x diagonalizes Ḋ))).

Notice that every real in V [G] has a name in Vλ, and names for subsets of H or countable
sequences of subsets of H are contained in Vλ. Also, the forcing Col(ω,< λ) is a subset
of Vλ. Therefore the same statement is valid in the structure (Vλ,∈, Ḣ, Col(ω,< λ)). This
statement is Π1

1 over this structure, and since λ is Π1
1-indescribable, there is κ < λ such that

in (Vκ,∈, Ḣ ∩ Vκ, Col(ω,< λ) ∩ Vκ) it holds

∀Ḋ∀τ(p Col(ω,<κ) (Ḋ is a name for a sequence of dense open subsets of Ḣ ∩ Vκ

and τ ∈ Ḣ ∩ Vκ) −→ (∃x(x ∈ Ḣ ∩ Vκ, x ⊆ τ, x diagonalizes Ḋ))).

We can get κ inaccessible, since there is a Π1
1 formula expressing that λ is inaccessible.

Also, κ is such that p and the names for the real parameters in the definition of A and for
A belong to Vκ.

If we let Gκ = G ∩ Col(ω,< κ), then Gκ ⊆ Col(ω,< κ), and is generic over V . Also,
p ∈ Gκ. Ḣ ∩ Vκ is a Col(ω,< κ)-name in V which is interpreted by Gκ as H ∩ V [Gκ], thus
H ∩ V [Gκ] ∈ V [Gκ]. And since every subset (or sequence of subsets) of H ∩ V [Gκ] which
belongs to V [Gκ] has a name contained in Vκ, we have that, in V [Gκ], H∩Vκ is semiselective,
and in consequence it has both the Prikry and the Mathias properties.

Now the proof can be finished as in [9]. Let ṙ be the canonical name of a MH∩V [Gκ]

generic real, and consider the formula ϕ(ṙ) in the forcing language of V [Gκ]. By the Prikry
property of H∩V [Gκ], there is A

′ ⊆ A, A′ ∈ H∩V [Gκ], such that [a, A′] decides ϕ(ṙ). Since
22

ω

computed in V [Gκ] is countable in V [G], there is (in V [G]) a MH∩V [Gκ]-generic real x
over V [Gκ] such that x ∈ [a, A′]. To see that there is such a generic real in H we argue as
in 5.5 of [9] using the semiselectivity of H and the fact that H∩ V [Gκ] is countable in V [G]
to obtain an element of H which is generic. By the Mathias property of H ∩ V [Gκ], every
y ∈ [a, x \ a] is also MH∩V [Gκ]-generic over V [Gκ], and also y ∈ [a, A′]. Thus ϕ(x) if and only
if [a, A′]  ϕ(ṙ), if and only if ϕ(y). Therefore, [a, x \ a] is contained in A or is disjoint from
A.

As in [9], we obtain the following.

Corollary 5.8. If ZFC is consistent with the existence of a weakly compact cardinal, then
so is ZF +DC and “every set of reals is H-Ramsey for every semiselective coideal H”.

Corollary 5.9. Suppose there is a weakly compact cardinal. Then, there is a model of
ZF +DC in which every semiselective coideal H has the Fréchet-Urysohn property.

Proof. By theorem 5.7, in L(R) of the Levy collapse of a weakly compact cardinal, every
set of reals is H-Ramsey for every semiselective coideal . Thus, by proposition 5.2, every
semiselective coideal H in this model has the Fréchet-Urysohn property.
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