Ideal games, Ramsey sets and the Fréchet-Urysohn property

Carlos Di Prisco * José G. Mijares†
Instituto Venezolano
de Investigaciones Científicas y
Escuela de Matemática
Universidad Central de Venezuela

Carlos Uzcátegui[‡] Departamento de Matemáticas, Facultad de Ciencias Universidad de Los Andes

Abstract

It is shown that Matet's characterization ([8]) of \mathcal{H} -Ramseyness relative to a selective coideal \mathcal{H} , in terms of games of Kastanas ([5]), still holds if we consider semiselectivity ([2]) instead of selectivity. Moreover, we prove that a coideal \mathcal{H} is semiselective if and only if Matet's game-theoretic characterization of \mathcal{H} -Ramseyness holds. This gives a game-theoretic counterpart to a theorem of Farah [2], asserting that a coideal \mathcal{H} is semiselective if and only if the family of \mathcal{H} -Ramsey subsets of $\mathbb{N}^{[\infty]}$ coincides with the family of those sets having the abstract $Exp(\mathcal{H})$ -Baire property. Finally, we show that under suitable assumptions, semiselectivity is equivalent to the Fréchet-Urysohn property.

Keywords: Semiselective coideal, Ramsey theory, Frechet-Urysohn property, Banach-Mazur games.

MSC: 05D10, 03E02.

1 Introduction

Let \mathbb{N} be the set of nonnegative integers. Given an infinite set $A \subseteq \mathbb{N}$, the symbol $A^{[\infty]}$ (resp. $A^{[<\infty]}$) represents the collection of the infinite (resp. finite) subsets of A. Let $A^{[n]}$ denote the

^{*}cdiprisc@ivic.gob.ve

[†]imijares@ivic.gob.ve

[‡]uzca@ula.ve

set of all the subsets of A with n elements. If $a \in \mathbb{N}^{[<\infty]}$ is an **initial segment** of $A \in \mathbb{N}^{[\infty]}$ then we write $a \sqsubset A$. Also, let $A/a := \{n \in A : max(a) < n\}$, and write A/n to mean $A/\{n\}$. For $a \in \mathbb{N}^{[<\infty]}$ and $A \in \mathbb{N}^{[\infty]}$ let

$$[a, A] := \{ B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A \}.$$

The family $Exp(\mathbb{N}^{[\infty]}) := \{[a,A] : (a,A) \in \mathbb{N}^{[<\infty]} \times \mathbb{N}^{[\infty]}\}$ is a basis for **Ellentuck's topology**, also known as **exponential topology**. In [1], Ellentuck gave a characterization of Ramseyness in terms of the Baire property relative to this topology (see Theorem 2.1 below).

Let (P, \leq) be a poset, a subset $D \subseteq P$ is **dense** in P if for every $p \in P$, there is $q \in D$ with $q \leq p$. $D \subseteq P$ is **open** if $p \in D$ and $q \leq p$ imply $q \in D$. P is σ -distributive if the intersection of countably many dense open subsets of P is dense. P is σ -closed if every decreasing sequence of elements of P has a lower bound.

Definition 1.1. A family $\mathcal{H} \subset \wp(\mathbb{N})$ is a **coideal** if it satisfies:

- (i) $A \subseteq B$ and $A \in \mathcal{H}$ implies $B \in \mathcal{H}$, and
- (ii) $A \cup B \in \mathcal{H}$ implies $A \in \mathcal{H}$ or $B \in \mathcal{H}$.

The complement $\mathcal{I} = \wp(\mathbb{N}) \setminus \mathcal{H}$ is the **dual ideal** of \mathcal{H} . In this case, as usual, we write $\mathcal{H} = \mathcal{I}^+$. We will suppose that coideals differ from $\wp(\mathbb{N})$. Also, we say that a nonempty family $\mathcal{F} \subseteq \mathcal{H}$ is \mathcal{H} -disjoint if for every $A, B \in \mathcal{F}, A \cap B \notin \mathcal{H}$. We say that \mathcal{F} is a **maximal** \mathcal{H} -disjoint family if it is \mathcal{H} -disjoint and it is not properly contained in any other \mathcal{H} -disjoint family as a subset.

A subset \mathcal{X} of $\mathbb{N}^{[\infty]}$ is **Ramsey** if for every $[a,A] \neq \emptyset$ with $A \in \mathbb{N}^{[\infty]}$ there exists $B \in [a,A]$ such that $[a,B] \subseteq \mathcal{X}$ or $[a,B] \cap \mathcal{X} = \emptyset$. Some authors have used the term "completely Ramsey" to express this property, reserving the term "Ramsey" for a weaker property. Galvin and Prikry [3] showed that all Borel subsets of $\mathbb{N}^{[\infty]}$ are Ramsey, and Silver [11] extended this to all analytic sets. Mathias in [9] showed that if the existence of an inaccessible cardinal is consistent with ZFC then it is consistent, with ZF+DC, that every subset of $\mathbb{N}^{[\infty]}$ is Ramsey. Mathias introduced the concept of a selective coideal (or a happy family), which has turned out to be of wide interest. Ellentuck [1] characterized the Ramsey sets as those having the Baire property with respect to the exponential topology of $\mathbb{N}^{[\infty]}$.

A game theoretical characterization of Ramseyness was given by Kastanas in [5], using games in the style of Banach-Mazur with respect to Ellentuck's topology.

In this work we will deal with a game-theoretic characterization of the following property:

Definition 1.2. Let $\mathcal{H} \subset \mathbb{N}^{[\infty]}$ be a coideal. $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ is \mathcal{H} -Ramsey if for every $[a,A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $B \in [a,A] \cap \mathcal{H}$ such that $[a,B] \subseteq \mathcal{X}$ or $[a,B] \cap \mathcal{X} = \emptyset$. \mathcal{X} is \mathcal{H} -Ramsey null if for every $[a,A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $B \in [a,A] \cap \mathcal{H}$ such that $[a,B] \cap \mathcal{X} = \emptyset$.

 \mathcal{H} -Ramseyness is also called **local Ramsey property**.

Mathias considered sets that are \mathcal{H} -Ramsey with respect to a selective coideal \mathcal{H} , and generalized Silver's result to this context. Matet [8] used games to characterize sets which are Ramsey with respect to a selective coideal \mathcal{H} . These games coincide with the games of Kastanas if \mathcal{H} is $\mathbb{N}^{[\infty]}$ and with the games of Louveau [7] if \mathcal{H} is a Ramsey ultrafilter.

Given a coideal $\mathcal{H} \subset \mathbb{N}^{[\infty]}$, let

$$Exp(\mathcal{H}) := \{ [a, A] : (a, A) \in \mathbb{N}^{[<\infty]} \times \mathcal{H} \}.$$

In general, this is not a basis for a topology on $\mathbb{N}^{[<\infty]}$, but the following abstract version of the Baire property and related concepts will be useful:

Definition 1.3. Let $\mathcal{H} \subset \mathbb{N}^{[\infty]}$ be a coideal. $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ has the abstract $Exp(\mathcal{H})$ -Baire **property** if for every $[a, A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $[b, B] \subseteq [a, A]$ with $B \in \mathcal{H}$ such that $[b, B] \subseteq \mathcal{X}$ or $[b, B] \cap \mathcal{X} = \emptyset$. \mathcal{X} is $Exp(\mathcal{H})$ -nowhere dense if for every $[a, A] \neq \emptyset$ with $A \in \mathcal{H}$ there exists $[b, B] \subseteq [a, A]$ with $B \in \mathcal{H}$ such that $[b, B] \cap \mathcal{X} = \emptyset$. \mathcal{X} is $Exp(\mathcal{H})$ -meager if it is the union of countably many $Exp(\mathcal{H})$ -nowhere dense sets.

Given a decreasing sequence $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$ of infinite subsets of \mathbb{N} , a set B is a **diagonalization** of the sequence (or B **diagonalizes** the sequence) if and only if $B/n \subseteq A_n$ for each $n \in B$. A coideal \mathcal{H} is **selective** if and only if every decreasing sequence in \mathcal{H} has a diagonalization in \mathcal{H} .

A coideal \mathcal{H} has the Q^+ -property, if for every $A \in \mathcal{H}$ and every partition $(F_n)_n$ of A into finite sets, there is $S \in \mathcal{H}$ such that $S \subseteq A$ and $|S \cap F_n| \leq 1$ for every $n \in \mathbb{N}$.

Proposition 1.4. [9] A coideal \mathcal{H} is selective if and only if the poset $(\mathcal{H}, \subseteq^*)$ is σ -closed and \mathcal{H} has the Q^+ -property.

Given a coideal \mathcal{H} and a sequence $\{D_n\}_{n\in\mathbb{N}}$ of dense open sets in (\mathcal{H},\subseteq) , a set B is a **diagonalization** of $\{D_n\}_{n\in\mathbb{N}}$ if and only if $B/n\in D_n$ for every $n\in B$. A coideal \mathcal{H} is **semiselective** if for every sequence $\{D_n\}_{n\in\mathbb{N}}$ of dense open subsets of \mathcal{H} , the family of its diagonalizations is dense in (\mathcal{H},\subseteq) .

Proposition 1.5. [2] A coideal \mathcal{H} is semiselective if and only if the poset $(\mathcal{H}, \subseteq^*)$ is σ -distributive and \mathcal{H} has the Q^+ -property.

Since σ -closedness implies σ -distributivity, then semiselectivity follows from selectivity, but the converse does not hold (see [2] for an example).

In section 2 we list results of Ellentuck, Mathias and Farah that characterize topologically the Ramsey property and the local Ramsey property. In section 3 we define a family of games, and present the main result, which states that a coideal \mathcal{H} is semiselective if and only if the \mathcal{H} -Ramsey sets are exactly those for which the associated games are determined. This generalizes results of Kastanas [5] and Matet [8]. The proof is given in section 4. In section 5 we relate semiselectivity of coideals with the Fréchet-Urysohn property, and show that in Solovay's model every semiselective coideal has the Fréchet-Urysohn property.

We thank A. Blass and J. Bagaria for helping us to correct some deficiencies in previous versions of the article.

2 Topological characterization of Ramseyness.

The following are the main results concerning the characterization of the Ramsey property and the local Ramsey property in topological terms.

Theorem 2.1. [Ellentuck] Let $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ be given.

- (i) \mathcal{X} is Ramsey if and only if \mathcal{X} has the Baire property, with respect to Ellentuck's topology.
- (ii) \mathcal{X} is Ramsey null if and only if \mathcal{X} is meager, with respect to Ellentuck's topology.

Theorem 2.2. [Mathias] Let $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$ and a selective coideal \mathcal{H} be given.

- (i) \mathcal{X} is \mathcal{H} -Ramsey if and only if \mathcal{X} has the abstract $Exp(\mathcal{H})$ -Baire property.
- (ii) \mathcal{X} is \mathcal{H} -Ramsey null if and only if \mathcal{X} is $Exp(\mathcal{H})$ -meager.

Theorem 2.3. [Farah, Todorcevic] Let \mathcal{H} be a coideal. The following are equivalent:

- (i) \mathcal{H} is semiselective.
- (ii) The \mathcal{H} -Ramsey subsets of $\mathbb{N}^{[\infty]}$ are exactly those sets having the abstract $Exp(\mathcal{H})$ -Baire property, and the following three families of subsets of $\mathbb{N}^{[\infty]}$ coincide and are σ -ideals:
 - (a) \mathcal{H} -Ramsey null sets,
 - (b) $Exp(\mathcal{H})$ -nowhere dense, and
 - (c) $Exp(\mathcal{H})$ -meager sets.

In the next section we state results by Kastanas [5] and Matet [8] (Theorems 3.1 and 3.2 below) which are the game-theoretic counterparts of theorems 2.1 and 2.2, respectively; and we also present our main result (Theorem 3.3 below), which is the game-theoretic counterpart of Theorem 2.3.

3 Characterizing Ramseyness with games.

The following is a relativized version of a game due to Kastanas [5], employed to obtain a characterization of the family of completely Ramsey sets (i.e. \mathcal{H} -Ramsey for $\mathcal{H} = \mathbb{N}^{[\infty]}$). The same game was used by Matet in [8] to obtain the analog result when \mathcal{H} is selective.

Let $\mathcal{H} \subseteq \mathbb{N}^{[\infty]}$ be a fixed coideal. For each $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$, $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ we define a two-player game $G_{\mathcal{H}}(a, A, \mathcal{X})$ as follows: player I chooses an element $A_0 \in \mathcal{H} \upharpoonright A$; II answers by playing $n_0 \in A_0$ such that $a \subseteq n_0$, and $B_0 \in \mathcal{H} \cap (A_0/n_0)^{[\infty]}$; then I chooses $A_1 \in \mathcal{H} \cap B_0^{[\infty]}$; II answers by playing $n_1 \in A_1$ and $B_1 \in \mathcal{H} \cap (A_1/n_1)^{[\infty]}$; and so on. Player I wins if and only if $a \cup \{n_j : j \in \mathbb{N}\} \in \mathcal{X}$.

$$I \quad A_0 \qquad \qquad A_1 \qquad \cdots \quad A_k \qquad \cdots$$
 $II \qquad n_0, B_0 \qquad n_1, B_1 \quad \cdots \qquad n_k, B_k \quad \cdots$

A **strategy** for a player is a rule that tells him (or her) what to play based on the previous moves. A strategy is a **winning strategy for player I** if player I wins the game whenever she (or he) follows the strategy, no matter what player II plays. Analogously, it can be defined what is a winning strategy for player II. The precise definitions of strategy for two players games can be found in [6, 10].

Let $s = \{s_0, \ldots, s_k\}$ be a nonempty finite subset of \mathbb{N} , written in its increasing order, and $\overrightarrow{B} = \{B_0, \ldots, B_k\}$ be a sequence of elements of \mathcal{H} . We say that the pair (s, \overrightarrow{B}) is a **legal position for player II** if $(s_0, B_0), \ldots, (s_k, B_k)$ is a sequence of possible consecutive moves of II in the game $G_{\mathcal{H}}(a, A, \mathcal{X})$, respecting the rules. In this case, if σ is a winning strategy for player I in the game, we say that $\sigma(s, \overrightarrow{B})$ is a **realizable move of player I** according to σ . Notice that if $r \in B_k/s_k$ and $C \in \mathcal{H} \upharpoonright B_k/s_k$ then $(s_0, B_0), \ldots, (s_k, B_k), (r, C)$ is also a sequence of possible consecutive moves of II in the game. We will sometimes use the notation $(s, \overrightarrow{B}, r, C)$, and say that $(s, \overrightarrow{B}, r, C)$ is a legal position for player II and $\sigma(s, \overrightarrow{B}, r, C)$ is a realizable move of player I according to σ .

We say that the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is **determined** if one of the players has a winning strategy.

Theorem 3.1. [Kastanas] \mathcal{X} is Ramsey if and only if for every $A \in \mathbb{N}^{[\infty]}$ and $a \in \mathbb{N}^{[<\infty]}$ the game $G_{\mathbb{N}^{[\infty]}}(a, A, \mathcal{X})$ is determined.

Theorem 3.2. [Matet] Let \mathcal{H} be a selective coideal. \mathcal{X} is \mathcal{H} -Ramsey if and only if for every $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined.

Now we state our main result:

Theorem 3.3. Let \mathcal{H} be a coideal. The following are equivalent:

- 1. \mathcal{H} is semiselective.
- 2. $\forall \mathcal{X} \subseteq \mathbb{N}^{[\infty]}$, \mathcal{X} is \mathcal{H} -Ramsey if and only if for every $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined.

So Theorem 3.3 is a game-theoretic counterpart to Theorem 2.3 in the previous section, in the sense that it gives us a game-theoretic characterization of semiselectivity. Obviously, it also gives us a characterization of \mathcal{H} -Ramseyness, for semiselective \mathcal{H} , which generalizes the main results of Kastanas in [5] and Matet in [8] (Theorems 3.1 and 3.2 above).

It is known that every analytic set is \mathcal{H} -Ramsey for \mathcal{H} semiselective (see Theorem 2.2 in [2] or Lemma 7.18 in [15]). We extend this result to the projective hierarchy. Please see [6] or [10] for the definitions of *projective set* and of *projective determinacy*.

Corollary 3.4. Assume projective determinacy for games over the reals. Let \mathcal{H} be a semiselective projective coideal. Then, every projective set is \mathcal{H} -Ramsey.

Proof. Let \mathcal{X} be a projective subset of $\mathbb{N}^{[\infty]}$. Fix $A \in \mathcal{H}$, $a \in \mathbb{N}^{[<\infty]}$. By the projective determinacy over the reals, the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined. Then, Theorem 3.3 implies that \mathcal{X} is \mathcal{H} -Ramsey.

4 Proof of the main result

Throughout the rest of this section, fix a semiselective coideal \mathcal{H} . Before proving Theorem 3.3, in Propositions 4.1 and 4.7 below we will deal with winning strategies of players in a game $G_{\mathcal{H}}(a, A, \mathcal{X})$.

Proposition 4.1. For every $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$, $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$, I has a winning strategy in $G_{\mathcal{H}}(a, A, \mathcal{X})$ if and only if there exists $E \in \mathcal{H} \upharpoonright A$ such that $[a, E] \subseteq \mathcal{X}$.

Proof. Suppose σ is a winning strategy for I. We will suppose that $a = \emptyset$ and $A = \mathbb{N}$ without loss of generality.

Let $A_0 = \sigma(\emptyset)$ be the first move of I using σ . We will define a tree T of finite subsets of A_0 ; and for each $s \in T$ we will also define a family $M_s \subseteq A_0^{[\infty]}$ and a family $N_s \subseteq (A_0^{[\infty]})^{|s|}$, where |s| is the length of s. Put $\{p\} \in T$ for each $p \in A_0$ and let

$$M_{\{p\}} \subseteq \{\sigma(p,B): B \in \mathcal{H} \upharpoonright A_0\}$$

be a maximal \mathcal{H} -disjoint family, and set

$$N_{\{p\}} = \{\{B\} : \ \sigma(p,B) \in M_{\{p\}}\}.$$

Suppose we have defined $T \cap A_0^{[n]}$ and we have chosen a maximal \mathcal{H} -disjoint family M_s of realizable moves of player I of the form $\sigma(s, \overrightarrow{B})$ for every $s \in T \cap A_0^{[n]}$. Let

$$N_s = \{\overrightarrow{B} : \sigma(s, \overrightarrow{B}) \in M_s\}.$$

Given $s \in T \cap A_0^{[n]}$, $\overrightarrow{B} \in N_s$ and $r \in \sigma(s, \overrightarrow{B})/s$, we put $s \cup \{r\} \in T$. Then choose a maximal \mathcal{H} -disjoint family

$$M_{s \cup \{r\}} \subseteq \{ \sigma(s, \overrightarrow{B}, r, C) : \overrightarrow{B} \in N_s, C \in \mathcal{H} \upharpoonright \sigma(s, \overrightarrow{B})/r \}.$$

Put

$$N_{s\cup\{r\}} = \{(\overrightarrow{B}, C) : \sigma(s, \overrightarrow{B}, r, C) \in M_{s\cup\{r\}}\}.$$

Now, for every $s \in T$, let

$$\mathcal{U}_s = \{ E \in \mathcal{H} : (\exists F \in M_s) \ E \subseteq F \}$$
 and

$$\mathcal{V}_s = \{ E \in \mathcal{H} : (\forall F \in M_{s \setminus \{max(s)\}}) \ max(s) \in F \ \to F \cap E \notin \mathcal{H} \}.$$

Claim 4.2. For every $s \in T$, $\mathcal{U}_s \cup \mathcal{V}_s$ is dense open in $(\mathcal{H} \upharpoonright A_0, \subseteq)$.

Proof. Fix $s \in T$ and $A \in \mathcal{H} \upharpoonright A_0$. If $(\forall F \in M_{s \setminus \{max(s)\}})$ $max(s) \in F \to F \cap A \notin \mathcal{H}$ holds, then $A \in \mathcal{V}_s$. Otherwise, fix $F \in M_{s \setminus \{max(s)\}}$ such that $max(s) \in F$ and $F \cap A \in \mathcal{H}$. Let $\overrightarrow{B} \in N_{s \setminus \{max(s)\}}$ be such that $\sigma(s \setminus \{max(s)\}, \overrightarrow{B}) = F$. Notice that since $max(s) \in F$ then

$$(s \setminus \{max(s)\}, \overrightarrow{B}, max(s), F \cap A/max(s))$$

is a legal position for player II. Then, using the maximality of M_s , choose $\hat{F} \in M_s$ such that

$$E := \sigma(s \setminus \{max(s), \overrightarrow{B}, max(s), F \cap A/max(s)) \cap \hat{F}$$

is in \mathcal{H} . So $E \in \mathcal{U}_s$ and $E \subseteq A$. This completes the proof of claim 4.2.

Claim 4.3. There exists $E \in \mathcal{H} \upharpoonright A_0$ such that for every $s \in T$ with $s \subset E$, $E/s \in \mathcal{U}_s$.

Proof. For each $n \in \mathbb{N}$, let

$$\mathcal{D}_n = \bigcap_{max(s)=n} \mathcal{U}_s \cup \mathcal{V}_s.$$

$$\mathcal{U}_n = \bigcap_{max(s)=n} \mathcal{U}_s$$
,

(if there is no $s \in T$ with max(s) = n, then we put $\mathcal{D}_n = \mathcal{U}_n = \mathcal{H} \upharpoonright A_0$). By Claim 4.2, every \mathcal{D}_n is dense open in $(\mathcal{H} \upharpoonright A_0, \subseteq)$. Using semiselectivity, choose a diagonalization $\hat{E} \in \mathcal{H} \upharpoonright A_0$ of the sequence $(\mathcal{D}_n)_n$. Let

$$E_0 := \{ n \in \hat{E} : \hat{E}/n \in \mathcal{U}_n \} \text{ and } E_1 := \hat{E} \setminus E_0.$$

Let us prove that $E_1 \notin \mathcal{H}$:

Suppose $E_1 \in \mathcal{H}$. By the definitions, $(\forall n \in E_1) \hat{E}/n \notin \mathcal{U}_n$. Let $n_0 = min(E_1)$ and fix $s_0 \subset \hat{E}$ such that $max(s_0) = n_0$ and satisfying, in particular, the following:

$$(\forall F \in M_{s_0 \setminus \{n_0\}}) \ n_0 \in F \rightarrow F \cap E_1/n_0 \notin \mathcal{H}.$$

Notice that $|s_0| > 1$, by the construction of the M_s 's.

Now, let $m = max(s_0 \setminus \{n_0\})$. Then $m \in E_0$ and therefore $\hat{E}/m \in \mathcal{U}_m \subseteq \mathcal{U}_{s_0 \setminus \{n_0\}}$. So there exists $F \in M_{s_0 \setminus \{n_0\}}$ such that $\hat{E}/m \subseteq F$. Since $m < n_0$ then $n_0 \in F$. But $F \cap E_1/n_0 = E_1/n_0 \in \mathcal{H}$. A contradiction.

Hence, $E_1 \notin \mathcal{H}$ and therefore $E_0 \in \mathcal{H}$. Then $E := E_0$ is as required.

Claim 4.4. Let E be as in Claim 4.3 and $s \cup \{r\} \in T$ with $s \subset E$ and $r \in E/s$. If $E/s \subseteq \sigma(s, \overrightarrow{B})$ for some $\overrightarrow{B} \in N_s$, then there exists $C \in \mathcal{H} \upharpoonright \sigma(s, \overrightarrow{B})/r$ such that $E/r \subseteq \sigma(s, \overrightarrow{B}, r, C)$ and $(\overrightarrow{B}, C) \in N_{s \cup \{r\}}$.

Proof. Fix s and r as in the hypothesis. Suppose $E/s \subseteq \sigma(s, \overrightarrow{B})$ for some $\overrightarrow{B} \in N_s$. Since $E/r \in \mathcal{U}_{s \cup \{r\}}$, there exists $(\overrightarrow{D}, C) \in N_{s \cup \{r\}}$ such that $E/r \subseteq \sigma(s, \overrightarrow{D}, r, C)$. Notice that $E/r \subseteq \sigma(s, \overrightarrow{B}) \cap \sigma(s, \overrightarrow{D})$. Since M_s is \mathcal{H} -disjoint, then $\sigma(s, \overrightarrow{D})$ is necessarily equal to $\sigma(s, \overrightarrow{B})$ and therefore $\sigma(s, \overrightarrow{B}, r, C) = \sigma(s, \overrightarrow{D}, r, C)$. Hence $(\overrightarrow{B}, C) \in N_{s \cup \{r\}}$ and $E/r \subseteq \sigma(s, \overrightarrow{B}, r, C)$. \square

Claim 4.5. Let E be as in Claim 4.3. Then $[\emptyset, E] \subseteq \mathcal{X}$.

Proof. Let $\{k_i\}_{i\geq 0} \subseteq E$ be given. Since $E/k_0 \in \mathcal{U}_{\{k_0\}}$, there exists $B_0 \in N_{\{k_0\}}$ such that $E/k_0 \subseteq \sigma(k_0, B_0)$. Thus, by the choice of E and applying Claim 4.4 iteratively, we prove that $\{k_i\}_{i\geq 0}$ is generated in a run of the game in which player I has used his winning strategy σ . Therefore $\{k_i\}_{i\geq 0} \in \mathcal{X}$.

The converse is trivial. This completes the proof of Proposition 4.1. \Box

Now we turn to the case when player II has a winning strategy. The proof of the following is similar to the proof of Proposition 4.3 in [8]. First we show a result we will need in the sequel, it should be compared with lemma 4.2 in [8].

Lemma 4.6. Let $B \in \mathcal{H}$, $f : \mathcal{H} \upharpoonright B \to \mathbb{N}$, and $g : \mathcal{H} \upharpoonright B \to \mathcal{H} \upharpoonright B$ be given such that $f(A) \in A$ and $g(A) \subseteq A/f(A)$. Then there is $E_{f,g} \in \mathcal{H} \upharpoonright B$ with the property that for each $p \in E_{f,g}$ there exists $A \in \mathcal{H} \upharpoonright B$ such that f(A) = p and $E_{f,g}/p \subseteq g(A)$.

Proof. For each $n \in \{f(A) : A \in \mathcal{H} \upharpoonright B\}$, let

$$U_n = \{ E \in \mathcal{H} \upharpoonright B : (\exists A \in \mathcal{H} \upharpoonright B) \ (f(A) = n \land E \subseteq g(A)) \}$$

and

$$V_n = \{ E \in \mathcal{H} \upharpoonright B : (\forall A \in \mathcal{H} \upharpoonright B) \ (f(A) = n \rightarrow | \ g(A) \setminus E \mid = \infty) \}.$$

The set $D_n = U_n \cup V_n$ is dense open in $\mathcal{H} \upharpoonright B$. Choose $E \in \mathcal{H} \upharpoonright B$ such that for each $n \in E, E/n \in D_n$. Let

$$E_0 = \{ n \in E : E/n \in U_n \} \text{ and } E_1 = \{ n \in E : E/n \in V_n \}.$$

Now, suppose $E_1 \in \mathcal{H}$. Then, for each $n \in E_1$, $E_1/n \in V_n$. Let $n_1 = f(E_1)$. So $n_1 \in E_1$ by the definition of f. But, by the definition of g, $g(E_1) \subseteq E_1/n_1$ and so $E_1/n_1 \not\in V_{n_1}$; a contradiction. Therefore, $E_1 \not\in \mathcal{H}$. Hence $E_0 \in \mathcal{H}$, since \mathcal{H} is a coideal. The set $E_{f,g} := E_0$ is as required.

Proposition 4.7. For every $\mathcal{X} \subseteq \mathbb{N}^{[\infty]}$, $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$, II has a winning strategy in $G_{\mathcal{H}}(a, A, \mathcal{X})$ if and only if $\forall A' \in \mathcal{H} \upharpoonright A$ there exists $E \in \mathcal{H} \upharpoonright A'$ such that $[a, E] \cap \mathcal{X} = \emptyset$.

Proof. Let τ be a winning strategy for II in $G_{\mathcal{H}}(a, A, \mathcal{X})$ and let $A' \in \mathcal{H} \upharpoonright A$ be given. We are going to define a winning strategy σ for I, in $G_{\mathcal{H}}(a, A', \mathbb{N}^{[\infty]} \setminus \mathcal{X})$, in such a way that we will get the required result by means of Proposition 4.1. So, in a play of the game $G_{\mathcal{H}}(a, A', \mathbb{N}^{[\infty]} \setminus \mathcal{X})$, with II's successive moves being (n_j, B_j) , $j \in \mathbb{N}$, define $A_j \in \mathcal{H}$ and E_{f_j,g_j} as in Lemma 4.6, for f_j and g_j such that

(1) For all $\hat{A} \in \mathcal{H} \upharpoonright A'$,

$$(f_0(\hat{A}), g_0(\hat{A})) = \tau(\hat{A});$$

(2) For all $\hat{A} \in \mathcal{H} \upharpoonright B_j \cap g_j(A_j)$,

$$(f_{j+1}(\hat{A}), g_{j+1}(\hat{A})) = \tau(A_0, \cdots, A_j, \hat{A});$$

- (3) $A_0 \subseteq A'$, and $A_{j+1} \subseteq B_j \cap g_j(A_j)$;
- (4) $n_j = f_j(A_j)$ and $E_{f_i,g_j}/n_j \subseteq g_j(A_j)$.

Now, let $\sigma(\emptyset) = E_{f_0,g_0}$ and $\sigma((n_0, B_0), \dots, (n_j, B_j)) = E_{f_{j+1},g_{j+1}}$.

Conversely, let A_0 be the first move of I in the game. Then there exists $E \in \mathcal{H} \upharpoonright A_0$ such that $[a, E] \cap \mathcal{X} = \emptyset$. We define a winning strategy for player II by letting her (or him) play $(\min E, E \setminus \{\min E\})$ at the first turn, and arbitrarily from there on.

We are ready now for the following:

Proof of Theorem 3.3. If \mathcal{H} is semiselective, then part 2 of Theorem 3.3 follows from Propositions 4.1 and 4.7.

Conversely, suppose part 2 holds and let $(\mathcal{D}_n)_n$ be a sequence of dense open sets in (\mathcal{H}, \subseteq) . For every $a \in \mathbb{N}^{[<\infty]}$, let

 $\mathcal{X}_a = \{B \in [a, \mathbb{N}] : B/a \text{ diagonalizes some decreasing } (A_n)_n \text{ such that } (\forall n) \ A_n \in \mathcal{D}_n\}$

and define

$$\mathcal{X} = \bigcup_{a \in \mathbb{N}^{[<\infty]}} \mathcal{X}_a.$$

Fix $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ with $[a, A] \neq \emptyset$, and define a winning strategy σ for player I in $G_{\mathcal{H}}(a, A, \mathcal{X})$, as follows: let $\sigma(\emptyset)$ be any element of \mathcal{D}_0 such that $\sigma(\emptyset) \subseteq A$. At stage k, if II's successive moves in the game are (n_j, B_j) , $j \leq k$, let $\sigma((n_0, B_0), \ldots, (n_k, B_k))$ be any element of \mathcal{D}_{k+1} such that $\sigma((n_0, B_0), \ldots, (n_k, B_k)) \subseteq B_k$. Notice that $a \cup \{n_0, n_1, n_2, \ldots\} \in \mathcal{X}_a$.

So the game $G_{\mathcal{H}}(a, A, \mathcal{X})$ is determined for every $A \in \mathcal{H}$ and $a \in \mathbb{N}^{[<\infty]}$ with $[a, A] \neq \emptyset$. Then, by our assumptions, \mathcal{X} is \mathcal{H} -Ramsey. So given $A \in \mathcal{H}$, there exists $B \in \mathcal{H} \upharpoonright A$ such that $B^{[\infty]} \subseteq \mathcal{X}$ or $B^{[\infty]} \cap \mathcal{X} = \emptyset$. The second alternative does not hold, so $\mathcal{X} \cap \mathcal{H}$ is dense in (\mathcal{H}, \subseteq) . Hence, \mathcal{H} is semiselective.

5 The Fréchet-Urysohn property and semiselectivity.

We say that an coideal $\mathcal{H} \subseteq \mathbb{N}^{[\infty]}$ has the Fréchet-Urysohn property if

$$(\forall A \in \mathcal{H}) \ (\exists B \in A^{[\infty]}) \ (B^{[\infty]} \subseteq \mathcal{H}).$$

The following characterization of the Fréchet-Urysohn property is taken from [12, 14]. It provides a method to construct ideals with that property. Given $\mathcal{A} \subseteq \mathbb{N}^{[\infty]}$, define the orthogonal of \mathcal{A} as $\mathcal{A}^{\perp} := \{A \in \mathbb{N}^{[\infty]} : (\forall B \in \mathcal{A}) \ (|A \cap B| < \infty)\}$. Notice that \mathcal{A}^{\perp} is an ideal.

Proposition 5.1. A coideal $\mathcal{H} \subseteq \mathbb{N}^{[\infty]}$ has the Fréchet-Urysohn property if and only if $\mathcal{H} = (\mathcal{A}^{\perp})^+$ for some $\mathcal{A} \subseteq \mathbb{N}^{[\infty]}$.

Proposition 5.2. Let \mathcal{H} be a coideal. The following are equivalent:

- (i) \mathcal{H} is \mathcal{H} -Ramsey.
- (ii) H has the Fréchet-Urysohn property.

Proof. Suppose \mathcal{H} has the Fréchet-Urysohn property. Let a be a finite set and $A \in \mathcal{H}$. Let $B \subseteq A$ be such that $B^{[\infty]} \subseteq \mathcal{H}$. Then $[a, B] \subseteq \mathcal{H}$ and thus \mathcal{H} is \mathcal{H} -Ramsey.

Conversely, suppose \mathcal{H} is \mathcal{H} -Ramsey. Let $A \in \mathcal{H}$. Since \mathcal{H} is \mathcal{H} -Ramsey, there is $B \subseteq A$ in \mathcal{H} such that $[\emptyset, B] \subseteq \mathcal{H}$ or $[\emptyset, B] \cap \mathcal{H} = \emptyset$. Since the second alternative does not hold, then $B^{[\infty]} \subseteq \mathcal{H}$ and thus \mathcal{H} is Fréchet-Urysohn.

The following result is probably known but we include its proof for the sake of completeness.

Proposition 5.3. Every coideal \mathcal{H} with the Fréchet-Urysohn property is semiselective.

Proof. Let \mathcal{H} be a Fréchet-Urysohn coideal. Suppose $\{D_n\}_{n\in\mathbb{N}}$ is a sequence of dense open sets in (\mathcal{H},\subseteq) and $B\in\mathcal{H}$. Since $B\in\mathcal{H}$ and \mathcal{H} has the Fréchet-Urysohn property, then there is $A\subseteq B$ in \mathcal{H} such that $A^{[\infty]}\subseteq\mathcal{H}$. Let $D\subseteq A$ be any diagonalization of $\{D_n\}_{n\in\mathbb{N}}$. Then $D\in\mathcal{H}$. This shows that the collection of diagonalizations is dense in (\mathcal{H},\subseteq) . Thus \mathcal{H} is semiselective.

The converse of the previous result is not true in general, since a non principal ultrafilter cannot have the Fréchet-Urysohn property. However, as every analytic set is \mathcal{H} -Ramsey [2], from 5.2 we immediately get the following.

Proposition 5.4. Every analytic semiselective coideal is Fréchet-Urysohn.

The previous result can be extended from suitable axioms.

Theorem 5.5. Assume projective determinacy over the reals. Then, every projective semiselective coideal is Fréchet-Urysohn.

Proof. It follows from corollary 3.4 and proposition 5.2.

Farah [2] shows that if there is a supercompact cardinal, then every semiselective coideal in $L(\mathbb{R})$ has the Fréchet-Urysohn property.

As we show below, it is also an easy consequence of results of [2] and [9] that in Solovay's model every semiselective coideal has the Fréchet-Urysohn property.

Recall that the Mathias forcing notion M is the collection of all the sets of the form

$$[a, A] := \{ B \in \mathbb{N}^{[\infty]} : a \sqsubset B \subseteq A \},\$$

ordered by $[a, A] \leq [b, B]$ if and only if $[a, A] \subseteq [b, B]$.

If \mathcal{H} is a coideal, then $\mathbb{M}_{\mathcal{H}}$, the Mathias partial order with respect to \mathcal{H} is the collection of all the [a, A] as above but with $A \in \mathcal{H}$, ordered in the same way.

A coideal \mathcal{H} has the *Mathias property* if it satisfies that if x is $\mathbb{M}_{\mathcal{H}}$ -generic over a model M, then every $y \in x^{[\infty]}$ is $\mathbb{M}_{\mathcal{H}}$ -generic over M. And \mathcal{H} has the *Prikry property* if for every $[a, A] \in \mathbb{M}_{\mathcal{H}}$ and every formula φ of the forcing language of $\mathbb{M}_{\mathcal{H}}$, there is $B \in \mathcal{H} \upharpoonright A$ such that [a, B] decides φ .

Theorem 5.6. ([2], Theorem 4.1) For a coideal \mathcal{H} the following are equivalent.

- 1. \mathcal{H} is semiselective.
- 2. $\mathbb{M}_{\mathcal{H}}$ has the Prikry property.
- 3. $\mathbb{M}_{\mathcal{H}}$ has the Mathias property.

Suppose M is a model of ZFC and there is a inaccessible cardinal λ in M. The Levy partial order $Col(\omega, < \lambda)$ produces a generic extension M[G] of M where λ becomes \aleph_1 . Solovay's model is obtained by taking the submodel of M[G] formed by all the sets hereditarily definable in M[G] from a sequence of ordinals (see [9], or [4]).

In [9], Mathias shows that if V = L, λ is a Mahlo cardinal, and V[G] is a generic extension obtained by forcing with $Col(\omega, < \lambda)$, then every set of real numbers defined in the generic extension from a sequence of ordinals is $\mathcal{H} - Ramsey$ for \mathcal{H} a selective coideal. This result can be extended to semiselective coideals under suitable large cardinal hypothesis.

Theorem 5.7. Suppose λ is a weakly compact cardinal. Let V[G] be a generic extension by $Col(\omega, < \lambda)$. Then, if \mathcal{H} is a semiselective coideal in V[G], every set of real numbers in $L(\mathbb{R})$ of V[G] is \mathcal{H} -Ramsey.

Proof. Let \mathcal{H} be a semiselective coideal in V[G]. Let \mathcal{A} be a set of reals in $L(\mathbb{R})^{V[G]}$; in particular, \mathcal{A} is defined in V[G] by a formula φ from a sequence of ordinals. Let [a,A] be a condition of the Mathias forcing $\mathbb{M}_{\mathcal{H}}$ with respect to the semiselective coideal \mathcal{H} . Let finally $\dot{\mathcal{H}}$ be a name for \mathcal{H} . Notice that $\dot{\mathcal{H}} \subseteq V_{\lambda}$.

Since V[G] satisfies that \mathcal{H} is semiselective, the following statement holds in V[G]: For every sequence $D = (D_n : n \in \omega)$ of open dense subsets of \mathcal{H} and for every $x \in \mathcal{H}$ there is $y \in \mathcal{H}$, $y \subseteq x$, such that y diagonalizes the sequence D.

Therefore, there is $p \in G$ such that, in V, the following statement holds:

$$\forall \dot{D} \forall \tau (p \Vdash_{Col(\omega, <\lambda)} (\dot{D} \text{ is a name for a sequence of dense open subsets of } \dot{\mathcal{H}}$$

and $\tau \in \dot{\mathcal{H}}) \longrightarrow (\exists x (x \in \dot{\mathcal{H}}, x \subseteq \tau, x \text{ diagonalizes } \dot{D}))).$

Notice that every real in V[G] has a name in V_{λ} , and names for subsets of \mathcal{H} or countable sequences of subsets of \mathcal{H} are contained in V_{λ} . Also, the forcing $Col(\omega, < \lambda)$ is a subset of V_{λ} . Therefore the same statement is valid in the structure $(V_{\lambda}, \in, \dot{\mathcal{H}}, Col(\omega, < \lambda))$. This statement is Π_1^1 over this structure, and since λ is Π_1^1 -indescribable, there is $\kappa < \lambda$ such that in $(V_{\kappa}, \in, \dot{\mathcal{H}} \cap V_{\kappa}, Col(\omega, < \lambda) \cap V_{\kappa})$ it holds

$$\forall \dot{D} \forall \tau (p \Vdash_{Col(\omega, <\kappa)} (\dot{D} \text{ is a name for a sequence of dense open subsets of } \dot{\mathcal{H}} \cap V_{\kappa})$$
 and $\tau \in \dot{\mathcal{H}} \cap V_{\kappa}) \longrightarrow (\exists x (x \in \dot{\mathcal{H}} \cap V_{\kappa}, x \subseteq \tau, x \text{ diagonalizes } \dot{D}))).$

We can get κ inaccessible, since there is a Π_1^1 formula expressing that λ is inaccessible. Also, κ is such that p and the names for the real parameters in the definition of \mathcal{A} and for A belong to V_{κ} .

If we let $G_{\kappa} = G \cap Col(\omega, < \kappa)$, then $G_{\kappa} \subseteq Col(\omega, < \kappa)$, and is generic over V. Also, $p \in G_{\kappa}$. $\dot{\mathcal{H}} \cap V_{\kappa}$ is a $Col(\omega, < \kappa)$ -name in V which is interpreted by G_{κ} as $\mathcal{H} \cap V[G_{\kappa}]$, thus $\mathcal{H} \cap V[G_{\kappa}] \in V[G_{\kappa}]$. And since every subset (or sequence of subsets) of $\mathcal{H} \cap V[G_{\kappa}]$ which belongs to $V[G_{\kappa}]$ has a name contained in V_{κ} , we have that, in $V[G_{\kappa}]$, $\mathcal{H} \cap V_{\kappa}$ is semiselective, and in consequence it has both the Prikry and the Mathias properties.

Now the proof can be finished as in [9]. Let \dot{r} be the canonical name of a $\mathbb{M}_{\mathcal{H}\cap V[G_{\kappa}]}$ generic real, and consider the formula $\varphi(\dot{r})$ in the forcing language of $V[G_{\kappa}]$. By the Prikry property of $\mathcal{H}\cap V[G_{\kappa}]$, there is $A'\subseteq A$, $A'\in\mathcal{H}\cap V[G_{\kappa}]$, such that [a,A'] decides $\varphi(\dot{r})$. Since $2^{2^{\omega}}$ computed in $V[G_{\kappa}]$ is countable in V[G], there is (in V[G]) a $\mathbb{M}_{\mathcal{H}\cap V[G_{\kappa}]}$ -generic real x over $V[G_{\kappa}]$ such that $x\in[a,A']$. To see that there is such a generic real in \mathcal{H} we argue as in 5.5 of [9] using the semiselectivity of \mathcal{H} and the fact that $\mathcal{H}\cap V[G_{\kappa}]$ is countable in V[G] to obtain an element of \mathcal{H} which is generic. By the Mathias property of $\mathcal{H}\cap V[G_{\kappa}]$, every $y\in[a,x\setminus a]$ is also $\mathbb{M}_{\mathcal{H}\cap V[G_{\kappa}]}$ -generic over $V[G_{\kappa}]$, and also $y\in[a,A']$. Thus $\varphi(x)$ if and only if $[a,A']\Vdash\varphi(\dot{r})$, if and only if $\varphi(y)$. Therefore, $[a,x\setminus a]$ is contained in \mathcal{A} or is disjoint from \mathcal{A} .

As in [9], we obtain the following.

Corollary 5.8. If ZFC is consistent with the existence of a weakly compact cardinal, then so is ZF + DC and "every set of reals is \mathcal{H} -Ramsey for every semiselective coideal \mathcal{H} ".

Corollary 5.9. Suppose there is a weakly compact cardinal. Then, there is a model of ZF + DC in which every semiselective coideal \mathcal{H} has the Fréchet-Urysohn property.

Proof. By theorem 5.7, in $L(\mathbb{R})$ of the Levy collapse of a weakly compact cardinal, every set of reals is \mathcal{H} -Ramsey for every semiselective coideal. Thus, by proposition 5.2, every semiselective coideal \mathcal{H} in this model has the Fréchet-Urysohn property.

References

- [1] Elentuck, E., A new proof that analytic sets are Ramsey, J. Symbolic Logic, 39 (1974), 163-165.
- [2] Farah, I., Semiselective coideals. Mathematika, 45 (1997), 79-103.
- [3] Galvin, F. and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic, 38 (1973), 193-198.
- [4] Jech, T., Set Theory. Springer Verlag, 2003.
- [5] Kastanas, I., On the Ramsey Property for Sets of Reals. J. Symbolic Logic, 48 (1983), 1035-1045.
- [6] Kechris, A.S., Classical Descriptive Set Theory. Springer-Verlag. Grad. Texts in Math. 156, 1995.
- [7] Louveau, A., Une méthode topologique pour l'étude de la propriété de Ramsey. Israel J. Math. 23 (1976) 97-116.
- [8] Matet, P., Happy Families and Completely Ramsey Sets. Springer-Verlag, Archive for Mathematical Logic, 38 (1993), 151-171.
- [9] Mathias, A.R.D., Happy Families. Annals of Mathematical Logic, 13(1977), 59-111.
- [10] Moschovakis, Y.N., *Descriptive Set Theory*. North-Holland. Publ. Comp. Amsterdam, 1980.
- [11] Silver, J., Every analytic set is Ramsey, J. Symbolic Logic, 35 (1970) 60-64.
- [12] P. Simon, A hedghog in the product, Acta. Univ. Carolin. Math. Phys. **39** (1998), 147-153.
- [13] Solovay, R. M., A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics 92 (1970) 1-56.
- [14] S. Todorcevic. Analytic gaps. Fund. Math., 150(1):55–66, 1996.
- [15] Todorcevic, S., *Introduction to Ramsey spaces*, Princeton University Press, Princeton, New Jersey, 2010.