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LINES ON PROJECTIVE VARIETIES AND APPLICATIONS

FRANCESCO RUSSO

ABSTRACT. The first part of this note contains a review of basic praperf the variety of lines contained in an
embedded projective variety and passing through a geneiratl pn particular we provide a detailed proof that for
varieties defined by quadratic equations the base locuegirthjective second fundamental form at a general point
coincides, as a scheme, with the variety of lines.

The second part concerns the problem of extending embeddgtiive manifolds, using the geometry of the
variety of lines. Some applications to the case of homogemetanifolds are included.

INTRODUCTION

The principle that the Hilbert scheme of lines contained in a (smooth)qmtdje varietyX c PV and
passing through a (general) point can inherit intrinsic exlinsic geometrical properties of the variety, has
emerged recently. This principle allowed to attack somélgros in aunified way provided non trivial con-
nections between different theories and put some basidiquesn a new light. A typical example is the
Hartshorne Conjecture on complete intersections/seelR2],and also[[RU, [R1]. The technique of studying,
or even reconstructingl from thevariety of minimal rational tangeniatroduced in the work of Hwang, Mok
and others (a generalization of the Hilbert scheme of lirsssing through a point) was applied to the theory of
Fano manifolds (see e.g. [HM, HM2, HM3, Hw, HK]). On the otleend, Landsberg and others investigated
some possible characterizations of special homogeneifaias via the projective second fundamental form
(see e.g.[IL2, L3, HY]).

The Hilbert schemes of lines through a general point of mamgdgeneous varieties with notable geomet-
rical properties are also somehowsted see Tabled(2/4) and (2.5), part of a matrioska For this class of
varieties, or more generally for classes where the priadiplds, one starts an induction process which some-
times stops after only a few steps, see €.ad! [Ru, Theoren®ar8llary 3.1 and 3.2]. An example of this kind is
the following: if X ¢ PV is aLQFE L-manifold of types > 3, then the Hilbert scheme of linegs, x C pr-1,

n = dim(X), passing through a general pointe X is a@Q E L-manifold of typed — 2, [Ru, Theorem 2.3].
Then starting the induction with' ¢ PV a LQ EL-manifold of typeZ, one deduces immediately= 2, 4,8

or 16, yielding as a consequence a quick proof that Sevegties appear only in these dimensions (se€ [Ru,
Corollary 3.2], also for the definitions ¢f.)Q E L-variety and of Severi variety, introduced by Zak, see e.g.
[Za]).

The Hilbert scheme of lines through a point is closely relatethe base locus of the (projective) second
fundamental form, a classical tool used in projective difgial geometry and reconsidered in modern algebraic
geometry by Griffiths and Harris, [GH] and alsa[IL]. In thiseory one tries to reconstruct a (homogeneous)
variety from its second fundamental form (see e.d [L2[L3]H) integrating local differential equations and
obtaining global results. We note that the base locus of¢leersd fundamental form at a general point of a
smooth variety is typically not smooth, while this propeidypreserved by the Hilbert scheme of lines, see
Propositiod T.11.

An important class where the two previous objects coincsdiat ofquadratic varietiesthat is varieties
X < PV scheme theoretically defined by quadratic equations. Adivkmprime Fano manifolds of high
index other than complete intersections (for example many h@megus manifolds), are quadratic; moreover,

2000Mathematics Subject Classificatiod4MXX, 14NXX, 14345, 14MO07.
1


http://arxiv.org/abs/1009.3637v1

2 FRANCESCO RUSSO

they are embedded witkmall codimension For quadratic varieties the Hilbert scheme of lines thioag
smooth point is also quadratic, see Proposifioh 1.2. Maeaince it coincides with the base locus scheme
of the second fundamental form, it may be scheme theorbtidefined by at most = codim(X) (quadratic)
equations, see Corollary1.6. ¥ c PV is smooth and: € X is general, theif,, x C P"~! is also smooth,
see Proposition 1.1. Thus for quadratic manifold<.ifx is also irreducible, a beautifahatrioskanaturally
appears. From this point of view, a quadratic manifadldc P with 3n > 2N is a complete intersection
becausel, x C P"~! is a smooth irreducible non-degenerate complete intéoseaiefined exactly by:
quadratic equations, so that it has tight dimension[IR2, Theorems 4.8 and 2.4] and Remiark 1.7.

The aim of this note is twofold: I§1l we study in detail the intrinsic and extrinsic properti€the Hilbert
scheme of lines passing through a smooth point of an equigiioeal connected variety c PV, providing
an almost self contained treatment. & we illustrate another incarnation of the principle presdrabove
by studying the problem of extending smooth varieties uady lines as hyperplane sections of irreducible
varieties.

First we describe the possible singularitiesaf x, proving that a singular point of the Hilbert scheme of
lines passing through a general paindf an irreducible variety produces a line joinimdo a singular point of
X, astronger condition than the mere existence of a singolat pn.X, see Propositidn 1.1. Then we relate the
equations definingd C PV with those of, x C P((t..x)*), seel(1J). This is applied to quadratic varieties
showing that the Hilbert scheme of lines passing throughaosihrpoint is a quadratic scheme, which coincides
with the projectivized tangent conesato the schem&, X N X, see Propositidn 1.2. After introducing the base
locus of the second fundamental form®fatz, B, x C P((¢5,x)*), we show that in generdl, x C B, x
as schemes with equality holding, as scheme¥, it P” is quadratic, see Corollafy 1.6, [IR2, Theorem 2.4
and§4] and also Propositidn_ 1.8 here. Then we recall some reahtst lines on prime Fano manifolds to
illustrate further how geometric properties &f C PV are transferred t€, x C P((t,X)*), see Proposition
1.4 and Example1.10.

In g2 we consider the classical problem of the existence of ptiogextensionsy ¢ PV+! of a subvariety
Y c PV c PNt Itis well known that some special manifolds cannot be hglaere sections of smooth
varieties and that in some cases only the trivial extenséaiss. These are given by cones oYewith vertex a
pointp € PN+ \ PV (see e.g.[[Se][[S1]. [S$2]. [Te] and al§ for precise definitions). Recently the interest
in the above problem (and further generalizations of it) veaeewed. Complete references, many results and
a lot of interesting connections with other areas, such &srihation theory of isolated singularities, can be
found in the monograph [Ba], especially relevant for thigslgem being Chapters 1 and 5.

Many sufficient conditions for the non-existence of noni#li extensions of smooth varieties are known.
These conditions are usually expressed, in the more geseftalg of extensions as ample divisors, by the
vanishing of (infinitely many) cohomology groups of the ties tangent bundle df (or of its normal bundle
in PV). These results are general and concern a lot of applicatsesoc. cit., but even in the simplest cases
the computation of these cohomology groups can be quite bocaigd. In any case their geometrical meaning
is not so obvious to the non-expertin the field.

Here we prove a simple geometrical sufficient condition fon+extendability, Theorein 2.3, for smooth
projective complex varieties uniruled by lines. The sinspleersion states that ¢ PV admits only trivial
extensionsX C PV*+! as soon a£, x C P((t,X)*) admits no smooth extension (a weaker condition than
the thesis!). Indeed, one easily shows in Proposifioh 2&2the results of1, that alsa, x C P((t,X)*) is
a projective extension of, y C P((¢,Y)*) fory € Y general. Then under the hypothesis of Theorerh 2.3
one deduces the existence of a line throygind a singular poing, € X. Thenp, = p does not vary with
y € Y general sinceX has at most a finite number of singular points so tiat PV+! is a cone of vertex
p. The range of applications of Theoréml2.3 is quite wide, se®IGry[2.4[2.5[ 2]7, allowing us to recover
some results previously obtained by more sophisticatetiodet

We were led to the analysis of the problem of extending smuatleties by the desire of understanding
geometrically why in some well-known examples the geomefry” c P¥ forces that every extension is
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trivial and by the curiosity of explicitly constructing tto®nes extending”™. Moreover, this approach reveals
that Scorza’s result about the non-extendabilitfpofx P* ¢ P*+a+? for ¢ + b > 3, originally proved in
[S2] and recovered later by many authors (see E.d. [Ba] amdl@ry[Z.4 here), implies the non-extendability
of a lot of homogeneous varieties via the description ofrthilbert scheme of lines. From this perspective
the Plucker embedding &f = G(r,m), with 1 < r < m — 1 and forr = 1 with m > 4, admits only
trivial extensions becaug®, y = P" x P ~"~! admits only trivial extensions (see [DFF] for an ad-hoc ffroo

following Scorza’'s approach). Besides the applicationgaioed in Corollary 2]4 arld 2.5, we also show that
our analysis can be used to provide a direct proof théP™) C P admits only trivial extensions, see

Propositio 2.6, a well-known classical fact originallypped by Scorza i [S1].
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improvement of the exposition and especially for variouscdssions on these subjects. Giovanni Stagliand
read carefully the text and made useful comments on a prairpiversion. A special thank to Prof. Markus
Brodmann for his invitation to give a talk at the Obersemiaiaziirich University in May 2010, for his kind
hospitality and for his interest in my work. On that occaditiegan to organize the material containedin

1. GEOMETRY OF(THE HILBERT SCHEME OF LINES CONTAINED IN A VARIETY AND PASSING THROUGH
A (GENERAL) POINT

1.1. Notation, definitions and preliminary results. Let X c PV be a (non-degenerate) connected equidi-
mensional projective variety of dimensiar> 1, defined over a fixed algebraically closed field of charastieri
zero, which from now on will be simply called@ojective variety If X is smooth and irreducible, we shall
call X amanifold Let X, = X \ Sing(X) be the smooth locus oX. Let¢, X denotethe affine tangent
space taX atz, letT, X c PV denotethe projective tangent space 20 at 2 of X c PV and for an arbitrary
schemeZ and for a closed point € Z let C,Z denotethe affine tangent cone 18 at z. Let £, x denote
the Hilbert scheme of lines contained ¥ and passing through the pointe X. For a linel. C X passing
throughz, we let[L] € L, x be the corresponding point.

Letw, : Hy — L, x denote the universal family and lgt, : H, — X be the tautological morphism.
From now on we shall always suppose that X,... Note thatr, admits a section,, : £, x — & C Ha,
which is contracted by, to the pointz. Consider the blowing-up,. : Bl, X — X of X atxz. For every
[L] € L, x thelineL = ¢, (m;*([L])) is smooth atr so that[IN, Lemma 4.3] and the universal property of
the blowing-up ensure the existence of a morphism H, — Bl, X such thav, o ¥, = ¢,. So we have the
following diagram

24, — Bl X

(1.1) ﬂzl x lax

Ew,X X.

In particulars),, maps the sectiofi, to F,, the exceptional divisor af .. Let Jz : &, — E, be the restriction
of ¢, to £,. We can define the morphism

(1.2) To = To.x = Uz 054 : Lox — P((t:X)*) = B, = P71,

which associates to each ling] € £, x the corresponding tangent direction throughi.e. 7,([L]) =
P((t, L)*). The morphisnr, is clearly injective and we claim that is a closed immersion. Indeed, by taking
in the previous constructioX = PV the corresponding morphism p~ : £, pv — P((t,PV)*) = PN~ 1is
an isomorphism betweef), p~ and the exceptional divisor @&, PV. By definition the inclusionk c PV
induces a closed embedding : £, x — L,p~. If j, @ P((t,X)*) — P((t,PY)*) is the natural closed
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embedding, then we have the following commutative diagram

Te,X

(1.3) Lo x —=P((t.X)")

Ik

m,]?N

EwapN - P((tI]P)N)*)a

proving the claim.

Forz € X, such thatl, x # 0, we shall always identifyC, x with 7,(£, x) and we shall naturally
considerZ,. x as a subscheme &*~! = P((t,X)*). We denote by, the scheme theoretic image #f,,
thatis¢. (H.) = C, C X. Via (I.1) we deduce the following relation:

as subschemes & (¢, X)*), whereP(C,(C,)) is theprojectivized tangent cone t, atz, see[[Mu, 11§3].

1.2. Singularities of £, x. We begin by studying the intrinsic geometry 6f x C P"~!. When it is clear
from the context which varietX ¢ P we are considering we shall wri, instead off, x.
If L C X.q, thenNy, x is locally free of rank: — 1 and more precisely

(1.5) Np/x =~ ®72 Opi (a:),

with a; < 1 becauseV,,, x is a subsheaf o, jpv ~ Op1 (1)1
If N1,,x is also generated by global sections, then

(1.6) NL/X ~ Op (1)5(L,X) @ Ogl—l—s(L,X)'
Therefore ifN, ,x is generated by global sections, thénis unobstructed dt.], that ishl(NL/X(_1)) =0,

L, is smooth afL] anddim; (L) = h°(Np,x(—1)) = s(L, X), wheres(L, X) > 0 is the integer defined
in (1.6).

Forz € X, let

Sy = Sz x = {[L] € L, such thatl. N Sing(X) #0 } C L,.
ThenS, x has a natural scheme structure and the previous inclusids hbthe scheme theoretic level. If
X is smooth, therb,, x = (). Moreover, ifL C X is a line passing through € X..,, clearly[L] & S, x if
andonly ifL C X,cq.

We now prove that a singular point df, produces a line passing throughand through a singular point
of X, a stronger condition than the mere existence of a singwlat pn X. These results are well known
to experts, at least for manifolds, sée [Hw, Propositior] arid also [[RU, Proposition 2.2]. 10 [DG], the
singularities of the Hilbert scheme of lines contained inr@jgrtive variety are related to some geometrical
properties of the variety.

Proposition 1.1. Let notation be as above and &t ¢ PV be an irreducible projective variety of dimension
n > 2. Then forz € X,; general:

(1) £, c P*~1is smooth outsid®,. y, thatisSing(L,) C S.. In particular if X C PV is smooth and if
z € X is general, therC,, C P"~! is a smooth variety.

(2) If £2,5 =1,...,m, are the irreducible components 6f. and if
dim(£') + dim(£P) > n — 1 for some # p,
then.L,, is singular, X is singular and there exists a lirj¢] € £, such thatl N Sing(X) # 0.
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Proof. There exists an open dense suliet X,., such that for every liné C X,., suchthatL N U # () the
normal bundleV;,, x is generated by global sections, see for example [De, Pitapog.14]. Combining this
result with the above discussion, we deduce that for everylU the varietyC, ¢ P*~! is smooth outsidé,,,
proving the first assertion.

The condition on the dimensions of two irreducible compaseh.L,. in (2) ensures that these components
have to intersect ifP"~!. A point of intersection is a singular point @f, ¢ P"~!. This forcesX to be
singular by the first part and also the existence of a[lijec S.., which by definition cutSing(X). O

1.3. Equations for £, x C P((¢,X)*). We now follow and expand the treatment outlined.in [IR2, Tieao
2.4] by looking at the equations definifg. C P! for x € X,eg.

Let X = V(f1,...,fm) C PV be a projective equidimensional connected variety, noesearily irre-
ducible, letr € X,cg, letn = dim(X) and letc = codim(X) = N — n. Thus we are assuming that c PV
is scheme theoretically the intersectionef> 1 hypersurfaces of degreés > d, > ... > d,,, > 2. More-
over it is implicitly assumed that: is minimal, i.e. none of the hypersurfaces contains thaseteion of the
others. Define, followind [IR2], the integer

d:= Z(dZ -1 >c
=1
With these definitionsX c PV (or more generally a schente ¢ PY) is calledquadraticif it is scheme
theoretically an intersection of quadrics, which means Wecan assumé, = 2. In particularX c PV is
guadratic if and only il = c.

We can choose homogeneous coordinétgs: ... : zy) onPY suchthatr = (1:0:...:0), T, X =
V(Tpit,...,on). Let AN = PN\ V(zo) with affine coordinate$y;,...,yn), thatisy, = 2L for every
l=1,...,N. LetPY = BI, PV with exceptional diviso#?’ ~ P((t,PV)*) = PN~! and letX = Bl, X
with exceptional divisoZ = P((¢,X)*) = P"~!. Looking at the graph of the projection framonto V' (z)
we can naturally identify the projectivization &f¥ \ 0 = AV \ x with E’ and with the projective hyperplane
V(SCQ) =PpPN-1,

Let f; = f1+ f2 +---+ f%, with f/ homogeneous of degrgen the variablegy:, . ..,yy). Sof} =
... = fL = 0arethe equations af. X = 7, X N AN c AY, which reduce ta,,,; = ... = yx = 0 by the
previous choice of coordinates, yielding

V(i fm) = B(t X)) C P((t,PY)") = PV

With the previous identifications,, pv = E' = PV~ = P((¢,PV)*). We now write a set of equations
definingL, C E C E’ as a subscheme &' and of E. By definitiony = (y; : ... : y,) are homogeneous
coordinates oy C E’. Foreveryj = 2,...,m and foreveryi = 1,...,m, let

f;j(y) :f%j(yla"'73/7110701"'1070)'
Then we have thaf, C E' is the scheme

V(f117f127 ) {ila"' 1f11n’ 3@7 ’fgwm) CE/?
while £, C FEis the scheme
(17) V(.],E?a"'7"}117”'1}217”'1};‘1{71)1

so that it is scheme theoretically defined by at njost , (d; — 1) equations.
The equations of, X N X N AN =¢,X N X N A", as a subscheme af", are

V(oo i+ o e ) =

(1.8) V(o fh R R+ fdmy c AN,
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Thus the equations @, X N X NAY =¢,X N X NAY as a subscheme of( X NAN) =, X are
(1.9) V(P4 A+ 0 P24+ [y C X = A

Letl = <ff+- . -+J7{i1,...,ﬁi+~-~+ﬁ?f> C Cly1, - ..,yn] = S and letI* be the ideal generated by the
initial forms of elements off. Remark that ifl is homogeneous and generated by forms of the same degree,
then clearlyl = I'*. Then the affine tangent coneTX N X atz isC, (T, X N X) = Spec(%) so that

(1.10) P(C.(T, X NX))= Proj(%),
see[Mu, 11,8 3].

Let.J C S be the homogeneous ideal generated by the polynomidlsdndéfiningC, x scheme theoreti-
cally, thatisL, x = Proj(%) C P((t.X)*). ClearlyI* C J, yielding the closed embedding of schemes
(1.11) Lo x CP(CL(TxX NX)).

If X c PV is quadratic, thed = I* = .J. In conclusion we have proved the following results.

Proposition 1.2. LetX C PV be a (non-degenerate) projective variety,det X,., be a pointand let notation
be as above. IKX c PY is quadratic, then

(1.12) T.XNXNAY =C(T,XNX)Ct, X
and
(1.13) Lox =P(C(T, X NX))CP((tX)*).

In particular if X c PV is quadratic, then the schentg, x C P((t,X)*) is quadratic.

1.4. C, versusT, X N X for a quadratic variety. The closed embedding (1]11) holds at the scheme theoretic
level. If £, x were reduced, or better smooth, it would be enough to praitdliiere exists an inclusion as sets.
Sincez € X,., was arbitrary we cannot control a priori the structureCgfx even if X C PV is a manifold.
Recall that by Propositidn 1.4, x is smooth as soon &$ is a manifold and: € X is a general point.
From now on we shall supposé c PV quadratic Then
(1) (Cz)rcd = (TzX N X)rcd;
(2) if X c PV is a manifold and ifc € X is a general point, the@, = (7, X N X);cq;
(3) the strict transforms of,, and of 7, X N X onBl, X cut the exceptional divisaE = P((¢, X )*) of
Bl, X in the same schem@, x (seel[(1.4) and(1.13));
(4) if z € X is a general point on a quadratic manifold c PV and if I* is saturated, thefi, X N X
is reduced in a neighborhood ofso that it coincides witlt,, in a neighborhood of. Indeed since
T.XNXNA" = Spec(%), with I = I* = J homogeneous and saturated, it follows thak N X
is reduced at; therefore it is reduced also in a neighborhood:ptisually smaller thatk N AN, as
shown in Example_114 below.

Already for quadratic manifolds there exist many importdiiterences betweei(C, (7, X N X)) C
P((t,X)*) and C,(T, X N X) = T, X N X N AN C t,X and also betweefl, X N X and the cone
C, C T, X N X. We shall discuss some examples in order to analyze closse timportant schemes con-
taining a lot of geometrical information.

Example 1.3. (7, X N X non-reduced only at) Remark that, (T, X N X) = ¢, X so that{C, (T, X N X)) =
t; X, while in some caseB(C, (T, X N X)) is degenerate if*((t,X)*). Consider a rational normal scroll
X c PV, different from the Segre varieti@ x P*~!, n > 2, and a general point € X. It is well known
that X c PV is quadratic so thaf, x = P(C.(T.X N X)) C P((t,X)*) by (T11). On the other hand, if
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P! is the uniqueéP"~! of the ruling passing through € X, it is easy to see, letting notation as above, that
in this case

Lox =PPrtNA") =P" 2 CP((t,X)*) =P 1
This is possible because in this examfileX N X and C,(7,X N X) are not reduced at. Indeed, the
pointz € C,(T,.X N X) corresponds to the irrelevant ideal 8f I* is not saturated, because the equation
defining the hyperplang, x belongs to the saturation df, but is not in/* (I* is generated by quadratic
polynomials!).

Also for quadratic manifolds for which* is saturated, the scherfig X N X can be quite mysterious outside
x, and hence different, as a scheme, from the reducedtofel, X N X. In any case, they essentially coincide
outsider in a neighborhood of: insidet, X, and their projective tangent cones are the samelat (1.13)
and [1.1) (see als6(1.2)). Thus, whEnis saturated, the cones of vertex, X N X andC, coincide modulo
some embedded components, possibly appeariign X, outsider.

Example 1.4. (Embedded components i, X N X outsidez but not atz). Let X C PV be a quadratic
manifold. Keeping notation as above 8t = V(f;) ¢ PV. ThenT, X = N, T,Q; andX = N, Q; as
schemes. Thug, X N X =T, X N (N, (T,Q; N Q;)). EachtruequadricT,Q; N Q, N1, X C T, X (thatis
we are considering only the quadri@s not containindl’, X) is singular atc so that it can be considered also
as a quadric if?((¢, X)*), yielding the homogeneous idelak= 7*.

SinceX c PV is quadratic, there exist quadrics, let us sag, ..., Q. such thatl, X = N1 T2 Q.
Thus we can write the scherfig X N X as: '

T.XNX=T,XnN (ﬂ?zl(Tlej n QJ)) n (Qc+1 n...N Qm)

Now ther < ¢ effective quadrics if, X givenbyT, Q,NnQ;NT, X =T, XNQ;, 1 =1,...,care coneswith
vertex atz and naturally projectivize. What could be somehow sumpg$s that these quadrics are sufficient
to defineL, x scheme theoretically (or algh,, at least locally around), while T, X N (Qcy1 N ... N Qm)
could define some embedded component, not necessarilyrsegabz. Let us consider an explicit example,
communicated to me by Paltin lonescu, revealing the sulatiera of the above picture and of what we shall
prove in the next section.

Let X = G(1,4) = Q1 N...N Qs C PP. SinceX c P? is scheme theoretically defined by these
quadrics, fixing (a generaf) € X, every hyperplanél c PV tangent atr, thatisH > 7, X, is of the form
T,.Q, with @ a quadric vanishing oiX and belonging to the linear span@f, . . ., Q5. It is well known that
L. x =P x P2 C P°so thatC, = ¢.(H,) C X is a degree 3 reduced subscheme containdd & N X
such thaC, = (T, X N X),eq. In particulardim(7, X N X) = 4 and since/* is saturated, X N X andC,
coincide in a neighborhood of

We can suppose thaf; = 7,,Q;, i = 1,2, 3, are three general hyperplanes contairlihg so thatH; N
HyNHs =T,X andHNHNHsNX = T,XNX as schemes. Sind&(1, 4) is self-dual,H; N X is singular
along aP? C T, X N X; the schemél; N Hy N X will be singular also along a ling; » passing through so
that, at least in a neighborhoddof x, H; N Hy N H3 N X is singular only at: and it will coincide withC,,
in a neighborhood C U of z. In particular we have a complete description of the singtylaf 7, X N X at
x. In general it is very difficult to control the singularitie$ T, X N X outsidex and also in this case there are
more singular points of a very particular nature.

Indeed,H; N Hy = P” > T, X = PS. We claimthatV, = H; N HoN X = C, U Q,, whereQ, is a four
dimensional quadric hypersurface cuttifigalong a quadric), not passing through. Then the hyperplane
T, X C HyNH, cutsW, inthe schem&, XNX =C,uUQ,, with@, C C,, showing that), is an embedded
componentofl, X N X.

In the case of rational normal scrolls discussed in Exam@ent saw tha, X N X \ z = C, \ = as
schemes, the affine tangent cones are different affine schéunethe projectivized tangent cones coincide.
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By choosing suitable quadri@dy, ..., Q. we shall see in subsectign 1L.6 that the complete intersectio
Y =@Q1N...NnQ. coincides locally withX aroundx. Thus7,Y NY and7, X N X coincide locally around.
In particular the intersection of their strict transform®Bh, X with the exceptional divisor is the same, so that
L. x = L,y and the last scheme can be defined scheme theoreticallybylinearly independent quadrics
by (1.7).

In any case the double nature Bf X N X as a subscheme @f, X and X plays a central role for its
infinitesimal properties at, measured exactly l§(C, (7. X N X)) C P((t.X)*).

It is useful to think ofP(C, (T, X N X)) C P((t,X)*) as being the base locus scheme of the projection of
X from T, X, as we shall do in the next section. We shall provide in thig a@other reason whg,, x can be
defined scheme theoretically by at mesjuadratic equations for an arbitrary poine X,eg.

1.5. Tangential projection and second fundamental form. There are several possible equivalent definitions
of the projective second fundamental foffd, x| C P(S?(¢, X)) of a connected equidimensional projective
variety X C PV atz € X,q, See for examplé[IL, 3.2 and end of Section 3.5]. We use tfeerefated to
tangential projections, as in [IL, Remark 3.2.11].

SupposeX C PV is non-degenerate, as always,det X,., and consider the projection froff}, X onto a
disjointPe—1!

(1.14) gt X —=> W, C P71,

The mapr, is not defined along the scherfie X N X, which containse, and it is associated to the linear
system of hyperplane sections cut out by hyperplanes econtpi, X, or equivalently by the hyperplane
sections singular at.

Let¢ : Bl, X — X be the blow-up ofX atz, let

E=P((t,X)")=P" ' CBL X

be the exceptional divisor and I& be a hyperplane section of ¢ PV. The induced rational mag, :
Bl, X --» P! is defined as a rational map alodgsince X c PV is not a linear space, see also the
discussion below.

The restriction ofr, to F is given by a linear system i@*(H) — 2E| g C | = 2E|g| = |Op(1, x)+)(2)| =
P(S?(t, X)), whose base locus scheme will be denotedhyx .

Consider the strict transform schemelofX N X onBl, X, denoted from now on bf =Bl (T, X NX).
ThenT is the base locus schememf and the restriction of, to £ has base locus scheme equal to

(1.15) TNE =P(Co(TyX N X)) = Byx CP((t.X)").

Definition 1.5. The second fundamental forid 7, x| C P(S?(¢. X)) of a connected equidimensional non-
degenerate projective variely C PV of dimensionn > 2 at a pointr € X, is the non-empty linear system
of quadric hypersurfaces B((t, X )*) defining the restriction of, to E and B, x C P((t,X)*) is the so
calledbase locus scheme of the second fundamental fotkhatfz .

Clearlydim(|II, x|) < ¢ — 1 and7,(E) C W, C P*L. LetI C S be the homogeneous ideal generated
by ther < clinearly independent quadratic forms in the second fundaatéorm of X atz. Then via[[1.1b)
we obtain
(1.16) Proj(%) = B,.x = P(C.(T, X N X)) = Proj( 5

I*

) C P((t:X)%).
In conclusion we have proved the following results by cormgr{1.1%) with [1.1B) and (1.16).

Corollary 1.6. LetX C PV be a non-degenerate projective variety,de€ X, be a point and let notation
be as above. Then:
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(2) if X c PV is quadratic, then equality holds an®}, x C P((¢,X)*) can be defined scheme theoreti-
cally by ther < ¢ quadratic equations defining the second fundamental forX af x.

Remark 1.7. The previous result has many important applications. Walké¢leat, as proved in_[IR2], if
X c PV is a quadratic manifold and if < 271, then, forz € X general,L, x C P((t,X)*) is the
complete intersection of thelinearly independent quadratic polynomials definjid, x|. ThenZ, x has
dimensiom — 1 — ¢ from which it follows thatX ¢ P is a complete intersection. This proves the Hartshorne
Conjecture on complete intersections in the quadratic easealso leads to the classification of quadratic
Hartshorne manifolds, see [IR2, Theorem 2.4 and Sectioar4]dtails.

The paper[PR1] considers also irreducible projectivestasX C P2"*! which are 3—covered by twisted
cubics, i.e. such that through three general pointXof: P?"+! there passes a twisted cubic contained in
X. A key remark for the classification of these varietied is IPRheorem 5.2], which among other things
shows that for such aX the equalityl, x = B, x holds forz € X general. A posteriori all the known
examples of varieties 3—covered by twisted cubics are pliggdy equivalent to the so callggvisted cubics
over Jordan algebraswhich are quadratic, sdec. cit for definitions and details and aldo [PR2] for a proof.
This fact has also many important consequences for theytleddiordan algebras and for the classification of
guadro-quadricCremona transformations, as shown in the forthcoming piiieZ].

1.6. Approach to B, x = L, x via [BEL]. For manifoldsX c P¥ there is another approach based on a
construction of[[BEL] elaborating and generalizing an ide@ to Severi, selc. cit. It can be used to give a
proof of a weaker form of Corollafy_1.6 (in the sense that wavprit only forz € X general); this approach
illustrates the local nature of the second fundamental fanohthe phenomena described in Exariplé 1.4. Let
us remark that the treatment in the general setting developthe previous sections is unavoidable because
the pointz € X is not necessarily general on the complete intersedfian X we now construct.

It was proved in[[BEL] that given a manifold = V(fi,..., f,,) € PV as above, we can choogg €
H%(Zx(d;)),i=1,...,csuchthat
(1.17) Y =V(g1,..-,9.) = X UX',

whereX’ (if nonempty) meets{ in a divisorD. Moreover from[(1.1]7) it follows

I c
(1.18) Ox (D) f_vdet(I—‘;()@(’)X(Zdi) ~Ox(d-—n—-1)@wk,
X i=1
see alsd[BEL, pg. 597]. We now illustrate the usefulneshisfdonstruction by proving some facts and results
contained inl[IR2, Theorem 2.4].

Suppose thak c P¥ is a quadratic manifold and consider a paint U = X \ Supp(D). By definition
Y\ Supp(D) = UIIV, whereV = X'\ Supp(D). Consider the two schem& X N XNU andT,Y NY NU.
Sincet, X =t,Y and since&y N U = X N U by the above construction, we obtain the equality as schemes

Co(T XNX)=Co(T XNXNU)=Cp(T,Y NYNU) =C,(T,Y NY).
Via (L.13) we deduce the following equality as subscheméX @f, X )*):
(2.19) Lyy =PCy(T,YNY))=P(Co(T,XNX)) =Ly x.

SinceL, y can be scheme-theoretically definedby c linearly independent quadratic equations, the same
is true forL, x. Now, without assuming anymore thatis quadratic, since € X is general(, x is smooth
and hence reduced. Clearly a liegpassing through: is contained inX if and only if it is contained inY’,
yielding L, x = (L4,v )red, S€€l[IR2, Theorem 2.4]. We proved:

Proposition 1.8. Let X  P" be a manifold, let notation be as above andidet U be a general point. Then:
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(1) Ls.x = (L4,y)rea SO thatl, x can be defined set theoretically by the. d equations defining ;. y
scheme theoretically. In particular,df < n — 1, thenZ, x # 0.

(2) If X c P¥ is quadratic, thenl, x = £,y sothatl, x C P((t.X)*) is a quadratic manifold
defined scheme theoretically by at mesguadratic equations.

1.7. Lines on prime Fano manifolds. Let X c PV be a (non-degenerate) manifold of dimensior> 2.
For a general point € X we know thatC, c P"~! is smooth, Proposition 1.1. There are well-known
examples wheif, ¢ P"~! is not irreducible, such a& = P* x P* ¢ P*+e+b Segre embedded, and also
examples wher€,, c P"~! is degenerate, see Examplel1.3 and also tablé (2.5) belowlesant class of
manifolds where the properties of smoothness, irredutyilzihd non-degeneracy of ¢ PV are transfered to
L, c P"~! consists of prime Fano manifolds of high index, which we nafirte.

A manifold X c P is called aprime Fano manifoldf —K yx is ample and ifPic(X) ~ Z(O(1)). The
index ofX is the positive integer defined byK x = i(X)H, with H a hyperplane section of c PV.

Let us recall some fundamental facts. Part (1) below is wedlkn and follows from the previous discussion
except for a fundamental Theorem of Mori which implies tlatgrime Fano manifolds of index greater than
”T“, necessarily, # 0, see[[Mo] and[Ko, Theorem V.1.6].

Proposition 1.9. Let X c PV be a projective manifold and let € X be a general point. Then
(1) If L, # 0, then for everyL] € L, we havelim(;(£,) = —Kx - L — 2. In particular for prime Fano
manifolds of index(X) > "T*3 the varietyL, C P"~!is irreducible (and in particular non-empty!).
(2) (Hw)) If X c P is a prime Fano manifold of indeX X) > 2t3, then£, C P"~!is a non-
degenerate manifold of dimensiofX ) — 2.

Let us finish this section by looking at another significargraple in which meaningful geometrical prop-
erties of X PV are reflected in similar properties 6f. ¢ P*~!, when this is non-empty.

Example 1.10.Let X P be a smooth complete intersection of tygde, da, . . ., d.) with d. > 2. Then:

e if n+1—d>0,thenX is a Fano manifold anf{ X) =n + 1 — d;
e if n > 3, thenPic(X) ~ Z(O(1));
e if i(X) > 2,then’, # () and for evenfL] € L, we have

dimy)(L;) = (-Kx-L)-2=i(X)-2=n—-1-d >0,
so thatZ, ¢ P"~!is a smooth complete intersection of type
(2,...,d1;2,. .. 0da; . 32,00 de—132, ..., de)
since it is scheme theoretically defined by thequations in[{1]7).

2. A CONDITION FOR NON-EXTENDABILITY

Definition 2.1. Let us considerd = PV as a hyperplane i®V+!. LetY c P¥ = H be a smooth (non-
degenerate) irreducible variety of dimension> 1. An irreducible varietyX c PV+! will be called an
extension ol if

(1) dim(X) = dim(Y) + 1;
(2) Y = X N H as ascheme.
For everyp € PN*1\ H, the irreducible cone

X=8pY)=J <py>cpPH
yey
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is an extension of ¢ PV = H, which will be calledtrivial. Let us observe that for any extensignc PN +!

of Y ¢ PV we necessarily havg (Sing(X)) < oo sinceX is smooth along the very ample divisor= XNH.

We also remark that in our definitidri is a fixed hyperplane section. In the classical approachllystizvas
required thatd was a general hyperplane sectionXf see for example [$1]. Under these more restrictive
hypotheses one can always suppose that a general poihisalso a general point oi .

2.1. Extensions of £,y C P"!via £, x C P". Lety € Y be a general point and let us consider an
extensionX C PV*! of Y and anirreducible componeﬁg_y of £,y C P*~!, whichis a smooth irreducible
variety by Proposition]1. The resultsiifyield that this property is immediately translated in temhHilbert
schemes of lines. Indeed we deduce the following resultyevpart (4) requires an ad hoc proof since in our
hypotheses the poigte Y is general or’, but not necessarily o, so that we cannot apply Propositlon]1.1.

Proposition 2.2. Let X < PY¥*! be an irreducible projective variety which is an extensidntiee non-
degenerate manifoltf ¢ PV. Letn = dim(Y) > 1 and lety € Y be an arbitrary point such that,, y # (.
Then:
1) £, x NP((t,Y)*) = L,y as schemes.
(2) if y € Y is general, thenlimz) (£, x) = dim;(£,,y) + 1 and[L] is a smooth point of, x for
every[L| € Ly y.
(3) if y € Y is general and ifc-;_y is an irreducible component of positive dimension, therngtlegists an
irreducible component!, , suchthatc? . = £ . NP((t,Y)*) as schemes.
(4) If y € Y is general, therSing(L, x) C Sy, x.
Proof. LetY = X N H, with H = PV ¢ PV+! a hyperplane and let notation be as in subse€fioh 1.3. The
conclusion in (1) immediately follows frorh (1.7).
Let us pass to (2) and consider an arbitrary libg € ‘C;,Y’ an irreducible component of the smooth not
necessarily irreducible varietf, y. We have an exact sequence of normal bundles
(21) O—>NL/y—>NL/X—>Ny/X|L20@1(1)%0.

Sincey € Y is general N, )y is generated by global sections, see the proof of Propaéiiib, so that(116)
yields

(2.2) Npx ~ Nijy ® Opi(1) 2 Opa (1)°EH & 07 St

Thus alsaVy,, x is generated by global section, x is smooth afL] anddim (£, x) = dimz)(Ly,v )+
1, proving (2).

Therefore ify € Y is general, there exists a unique irreducible componefit,of C P((¢,X)*), let us say
E; +» containing L] and by the previous calculatlcatnm(ﬁj <) =s(L,Y)+1= d1m(£;7 )+ 1. Recall that
by part (1) we have| ;| L, y = t;1)L, x NP((t,Y)*) so that

(2.3) Ly C L nP((t,Y)") C L,y CP" =P((t,Y)"),

yielding thatciy is an irreducible component aifj xNP((t,Y)") aswell as an irreducible component of the
smooth varietyC, y. Hence, ifdim(ﬁ-;, ) > 1, we have the equallt;gl7 y = E ».x NP((t,Y)") as schemes,
i.e. under this hypothesi@j x C P((ty X)*) (or better(ﬁi x)red) Is @ prolectlve extension of the smooth

positive dimensional irreducible varleﬁ/ y C P((tzY)"). Indeed dun(/ﬂ v) = 1forcesd1m(£j ) >2
so that it is sufficient to recall thaf, x is smooth anngCy y by the previous discussion and also that an

arbitrary hyperplane section of the irreducible vanat)@ red 1S connected by the Fulton-Hansen Theorem,
[EH]. More precisely, ifdim(ﬁ-;,y) > 1, then equality as schemes holds[in{2.3), proving part (3).
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By [De, Proposition 4.9] there exists a non-empty open dubls€ X such thatNZ/X is generated by

global sections for every liné c Xrcg intersectingU If UNY # 0, then (4) clearly holds. Suppose
YNU =0. Let[L] = Lyx \ Sy.x. If LNU # 0, then[L] is a smooth point of,, x by the previous analysis.
fLNU =0, thenL C Y by the generality of) € YV andNL is generated by global sections ly {2.2),
concluding the proof of (4). O

Now we are in position to prove the main result of this sectiod to deduce some applications.

Theorem 2.3. Let notation be as above and lgte Y be a general point. Then:
(1) Suppose there exist two distinct irreducible componr&j@ and ﬁf,,x of £, x C P((t,X)*), ex-
tending two irreducible componenf% v respectwelﬁu y» Of L, v in the sense specified above. If
L) xNL: x #0,thenX C PV*!isaconeovel” C PV of vertex a poinp € PN+ \ PV,

2 If L‘yyy C ]P((t Y)*) is a manifold whose extensions are singular, then everyneiie ofy” C P¥ is
trivial.

Proof. By the above discussion, we get that in both casesy ferY” general, the variety, x C £, x is not
empty so that foy € Y general there exists a link, C X passing througly and through a singular point
py € L, N Sing(X). SinceY is irreducible and sinc8ing(X) consists of a finite number of points, there
existsp € Sing(X) such thap € L, fory € Y general. This implies that = S(p,Y") is a cone ovel” with
vertexp. O

The first easy consequence is a result due to Scorzal(skerji82lso [Ba]), proved by him under the
stronger assumption thaf = X N H is a general hyperplane section &f. Under these more restrictive
hypotheses, the analysis before the proof of The@rem 2 18 bewsimplified via Propositidn 1.1, since we may
assume that the general point Y is also general oX.

Corollary 2.4. Let1 < a < b be integers, leh = a + b > 3 and letY c P***2*? pbe a smooth irreducible
variety projectively equivalent to the Segre embeddifigc P C P2+a+°. Then every extension &f in
pabtatbtl s trivial.

Proof. Fory € Y general, itis well known thaf, y = £}, 1 £2 ;. € P*t0~1 =P~ with £ ;, = P*~!
andEjY = P*~1, both linearly embedded. Observe that 1 > 1. By (Z.3) and the discussion following
it, there exist two irreducible componerﬁ%x j=120fL,x C P" = Pt with dim(L} ) = a
anddim(L} ) = b. If a # bthenclearlyl, v # L2 . If a = b > 2, thenL]  # L} y because an

arbitrary hyperplane section of a variety of d|men3|0n aste? is connected, see [FH] Sln@el— b =n,
L, x N L x # 0 and the conclusion follows from the first part of Theofer 2.3. O

The previous result has some interesting consequenceterased applications of the second part of The-
orem[2.8. Indeed, let us consider the following homogeneatisties (also known as irreducible hermitian
symmetric spaces), in their homogeneous embedding, amg#tveiption of the Hilbert scheme of lines passing
through a general point, see [H%4,.4.5]. Smooth extensions of homogeneous manifolds wececainsidered
in [Wa], see alsa [Kn].

Y £y7y Tyt Ey,y — P((tyY)*)
1 G(r,m) Pr x Pl Segre embedding
(2.4) 2| SO@2r)/U(r) | G(1,r—1) Plucker embedding
' 3 Es SO(10)/U(5) miminal embedding
4| E;/Es xU(1) Es Severi embedding
51 Sp(r)/U(r) Pr-1 quadratic Veronese embedding
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There are also the following homogeneous contact manifeittePicard number one associated to a com-
plex simple Lie algebrg, whose Hilbert scheme of lines passing through a generat oknown. Let us
observe that in these examples the variéfy, C P"~! = P((,Y)*) is degenerate and its linear span is ex-
actlyP((D,)*) = P"~2, thereD,, is the tangent space abf the distribution associated to the contact structure
onY, i.e. there is the following factorization, : £,y — P((D,)*) C P((t,Y)*). For more details one can
consult[Hw,§1.4.6].

g £y7y Ty - Ew,y — P((DU)*

6 Fy Sp(3)/U(3) Segre embedding

(2.5) 7 Es G(2,5) Plucker embedding
' 8 E; SO(12)/U(6) | minimal embedding

9 Ex E;/Es x U(1) | minimal embedding

10| sopmypa | PP x Q™2 Segre embedding

By case 1’) we shall denote a variety as in 1)[0f[2.4) satigfithe following numerical conditions: <
m — 1;if r = 1, thenm > 4. By 2’) we shall denote a variety as in 2) with> 5.

Corollary 2.5. LetY c PV be a manifold as in Examples 1°), 2'), 3), 4), 7), 8), 9) abcd¥Ween every extension
of Y is trivial.

Proof. In cases 2’), 3), 4) and 9) in the statement the varigfy- C P"~' of one example is the variety
Y c P¥ occurring in the next one. Thus for these cases, by the seguamaf Theoreni 213, it is sufficient
to prove the result for case 1’). For this variety the conidiu$ollows from Corollanf2.}. For the remaining
cases, the varietd,, y C P"~! s either as in case 1') witfr, m) = (2, 5) or as in case 2) with = 6 and the
conclusion follows once again by the second part of Thefré&m 2 O

The nextresult is also classical and well-known but we e direct geometric proof. Under the assump-
tion that the hyperplane sectidil N X = Y is general, it was proved by C. Segre for= 2 in [S€] and by
Scorza in[[S], see also [Te], for arbitrary> 2 (and also for arbitrary Veronese embedding@™) c PN (),
withn > 2 andd > 2).

Proposition 2.6. Letn > 2 and letY C P2 be a manifold projectively equivalent to the quadratic

Veronese embedding (P™) C P2 Then every extension &f s trivial.

Proof. Lety € Y be a general point and & = @ SinceL, y = 0, thenL, x C P, if not empty,

consists of at most a finite number of points and throygh X there passes at most a finite number of lines
contained inX. Consider a coni€’ C Y passing through. ThenN¢,y ~ Op:(1)"~!. The exact sequence
of normal bundles

0— NC/Y — NC/X — NY/X|C ~ Op1(2) — O,
yields

Ncyx =~ Nejy @ Op1(2) =~ Opi (1)" 7! @ Opa (2).

Thus there exists a unique irreducible comporignt of the Hilbert scheme of conics containedh C
PN+ passing through € X to which[C] belongs. Moreovetim(C, x) = n+ 1 and the conics parametrized
by C, x coverX. Hence there exists a one dimensional family of conics tinguand a general point € X.
By Bend and Break, see for examgle [De, Proposition 3.2}etieeat least a singular conic througtandz.
SinceX c PV+! s not a linear space, there exists no line joiningnd a generat, i. e. the singular conics
throughz andy are reduced. Thus given a general pairih X, there exists a lind., C X throughz, not
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passing througly, and a lineL, C X throughy such thatL, N L, # 0. Since there are a finite number of
lines contained inX and passing througiy, we can conclude that given a general paint X, there exists a
fixed line passing througip, Zy, and a lineL,. throughz such thatl,, N Ey £ (.

Moreover, a general con|€;, ,] € C, x and passing through a general pairis irreducible, does not pass
through the finite sefing(X) and has ample normal bundle verifyih(N¢,  /x(—1)) = h®(N¢/x (1)) =
n+1. This means that the deformations®f , keepingr fixed cover an open subset&fand also that through
general points:;;, z2 € X there passes a one dimensional family of irreducible coriibe plane spanned by
one of these conics contaims andxs so that it has to vary with the conic. Otherwise the fixed phaneld
be contained in andX c PV+! would be a linearly embeddét’ 1, which is contrary to our assumptions.
In conclusion through a general poinkE< z;,x2 > there passes at least a one dimensional family of secant
lines to X so that
n(n + 3)

(2.6) dim(SX)<2(n+1)—1=2n+1<N+1= 5

+1,

yielding SX C PN+,

Suppose the point, = Ey N L., fory € Y general, varies oﬁy. Then the linear span of two general
tangent spaces,, X andT7,, X would contain the Iiniy. SinceT,SX =< T,, X, T, X > by the Terracini
Lemma, we deduce that a general tangent spa@@d@ontainsfy and a fortioriy. SinceSX C PV+!, the
variety SX c PV+! would be a cone whose vertex, which is a linear space, C(mi@ilamd a fortioriy € Y.
By the generality of; € Y we would deduce that c PV is degenerate.

Thusp, = Zy N L, does not vary withz € X general. Let us denote this point py Then clearly
X c PN*lis a cone with vertex overY'. O

Corollary 2.7. LetY c P¥ be a manifold either as in 5) above with> 3 or as in 6) above. Then every
extension ol is trivial.

Proof. By (2.4) we know that in case 5) vv(ibh?( 3 \gve haven — 1 = % and the varietyC, y c P!
r—1)(r+2

is projectively equivalent te (P"~1') ¢ P~——=2 . To conclude we apply Proposition 2.6 and the second
part of Theorerh 2]3. Case 6) follows from case 5) with 3 by the second part of TheorémP.3. O
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