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0 LINES ON PROJECTIVE VARIETIES AND APPLICATIONS

FRANCESCO RUSSO

ABSTRACT. The first part of this note contains a review of basic properties of the variety of lines contained in an
embedded projective variety and passing through a general point. In particular we provide a detailed proof that for
varieties defined by quadratic equations the base locus of the projective second fundamental form at a general point
coincides, as a scheme, with the variety of lines.

The second part concerns the problem of extending embedded projective manifolds, using the geometry of the
variety of lines. Some applications to the case of homogeneous manifolds are included.

INTRODUCTION

The principle that the Hilbert scheme of lines contained in a (smooth) projective varietyX ⊂ PN and
passing through a (general) point can inherit intrinsic andextrinsic geometrical properties of the variety, has
emerged recently. This principle allowed to attack some problems in aunified way, provided non trivial con-
nections between different theories and put some basic questions in a new light. A typical example is the
Hartshorne Conjecture on complete intersections, see [H1,IR2] and also [Ru, IR1]. The technique of studying,
or even reconstructing,X from thevariety of minimal rational tangentsintroduced in the work of Hwang, Mok
and others (a generalization of the Hilbert scheme of lines passing through a point) was applied to the theory of
Fano manifolds (see e.g. [HM, HM2, HM3, Hw, HK]). On the otherhand, Landsberg and others investigated
some possible characterizations of special homogeneous manifolds via the projective second fundamental form
(see e.g. [L2, L3, HY]).

The Hilbert schemes of lines through a general point of many homogeneous varieties with notable geomet-
rical properties are also somehownested, see Tables (2.4) and (2.5), orpart of a matrioska. For this class of
varieties, or more generally for classes where the principle holds, one starts an induction process which some-
times stops after only a few steps, see e.g. [Ru, Theorem 2.8,Corollary 3.1 and 3.2]. An example of this kind is
the following: ifX ⊂ PN is aLQEL-manifold of typeδ ≥ 3, then the Hilbert scheme of linesLx,X ⊂ Pn−1,
n = dim(X), passing through a general pointx ∈ X is aQEL-manifold of typeδ − 2, [Ru, Theorem 2.3].
Then starting the induction withX ⊂ PN aLQEL-manifold of typen2 , one deduces immediatelyn = 2, 4, 8
or 16, yielding as a consequence a quick proof that Severi varieties appear only in these dimensions (see [Ru,
Corollary 3.2], also for the definitions of(L)QEL-variety and of Severi variety, introduced by Zak, see e.g.
[Za]).

The Hilbert scheme of lines through a point is closely related to the base locus of the (projective) second
fundamental form, a classical tool used in projective differential geometry and reconsidered in modern algebraic
geometry by Griffiths and Harris, [GH] and also [IL]. In this theory one tries to reconstruct a (homogeneous)
variety from its second fundamental form (see e.g [L2, L3, HY]) by integrating local differential equations and
obtaining global results. We note that the base locus of the second fundamental form at a general point of a
smooth variety is typically not smooth, while this propertyis preserved by the Hilbert scheme of lines, see
Proposition 1.1.

An important class where the two previous objects coincide is that ofquadratic varieties, that is varieties
X ⊂ PN scheme theoretically defined by quadratic equations. All known prime Fano manifolds of high
index, other than complete intersections (for example many homogeneous manifolds), are quadratic; moreover,
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2 FRANCESCO RUSSO

they are embedded withsmall codimension. For quadratic varieties the Hilbert scheme of lines through a
smooth point is also quadratic, see Proposition 1.2. Moreover, since it coincides with the base locus scheme
of the second fundamental form, it may be scheme theoretically defined by at mostc = codim(X) (quadratic)
equations, see Corollary 1.6. IfX ⊂ PN is smooth andx ∈ X is general, thenLx,X ⊂ Pn−1 is also smooth,
see Proposition 1.1. Thus for quadratic manifolds, ifLx,X is also irreducible, a beautifulmatrioskanaturally
appears. From this point of view, a quadratic manifoldX ⊂ PN with 3n > 2N is a complete intersection
becauseLx,X ⊂ Pn−1 is a smooth irreducible non-degenerate complete intersection, defined exactly byc
quadratic equations, so that it has theright dimension, [IR2, Theorems 4.8 and 2.4] and Remark 1.7.

The aim of this note is twofold: In§1 we study in detail the intrinsic and extrinsic properties of the Hilbert
scheme of lines passing through a smooth point of an equidimensional connected varietyX ⊂ PN , providing
an almost self contained treatment. In§2 we illustrate another incarnation of the principle presented above
by studying the problem of extending smooth varieties uniruled by lines as hyperplane sections of irreducible
varieties.

First we describe the possible singularities ofLx,X , proving that a singular point of the Hilbert scheme of
lines passing through a general pointx of an irreducible variety produces a line joiningx to a singular point of
X , a stronger condition than the mere existence of a singular point onX , see Proposition 1.1. Then we relate the
equations definingX ⊂ PN with those ofLx,X ⊂ P((tx,X)∗), see (1.7). This is applied to quadratic varieties
showing that the Hilbert scheme of lines passing through a smooth point is a quadratic scheme, which coincides
with the projectivized tangent cone atx to the schemeTxX∩X , see Proposition 1.2. After introducing the base
locus of the second fundamental form ofX atx, Bx,X ⊂ P((tx,X)∗), we show that in generalLx,X ⊆ Bx,X
as schemes with equality holding, as schemes, ifX ⊂ PN is quadratic, see Corollary 1.6, [IR2, Theorem 2.4
and§4] and also Proposition 1.8 here. Then we recall some resultsabout lines on prime Fano manifolds to
illustrate further how geometric properties ofX ⊂ PN are transferred toLx,X ⊂ P((txX)∗), see Proposition
1.7 and Example 1.10.

In §2 we consider the classical problem of the existence of projective extensionsX ⊂ PN+1 of a subvariety
Y ⊂ PN ⊂ PN+1. It is well known that some special manifolds cannot be hyperplane sections of smooth
varieties and that in some cases only the trivial extensionsexist. These are given by cones overY with vertex a
pointp ∈ PN+1 \ PN (see e.g. [Se], [S1], [S2], [Te] and also§2 for precise definitions). Recently the interest
in the above problem (and further generalizations of it) wasrenewed. Complete references, many results and
a lot of interesting connections with other areas, such as deformation theory of isolated singularities, can be
found in the monograph [Bǎ], especially relevant for this problem being Chapters 1 and 5.

Many sufficient conditions for the non-existence of non-trivial extensions of smooth varieties are known.
These conditions are usually expressed, in the more generalsetting of extensions as ample divisors, by the
vanishing of (infinitely many) cohomology groups of the twisted tangent bundle ofY (or of its normal bundle
in PN ). These results are general and concern a lot of applications, seeloc. cit., but even in the simplest cases
the computation of these cohomology groups can be quite complicated. In any case their geometrical meaning
is not so obvious to the non-expert in the field.

Here we prove a simple geometrical sufficient condition for non-extendability, Theorem 2.3, for smooth
projective complex varieties uniruled by lines. The simplest version states thatY ⊂ PN admits only trivial
extensionsX ⊂ PN+1 as soon asLy,X ⊂ P((tyX)∗) admits no smooth extension (a weaker condition than
the thesis!). Indeed, one easily shows in Proposition 2.2, via the results of§1, that alsoLy,X ⊂ P((tyX)∗) is
a projective extension ofLy,Y ⊂ P((tyY )∗) for y ∈ Y general. Then under the hypothesis of Theorem 2.3
one deduces the existence of a line throughy and a singular pointpy ∈ X . Thenpy = p does not vary with
y ∈ Y general sinceX has at most a finite number of singular points so thatX ⊂ PN+1 is a cone of vertex
p. The range of applications of Theorem 2.3 is quite wide, see Corollary 2.4, 2.5, 2.7, allowing us to recover
some results previously obtained by more sophisticated methods.

We were led to the analysis of the problem of extending smoothvarieties by the desire of understanding
geometrically why in some well-known examples the geometryof Y ⊂ PN forces that every extension is
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trivial and by the curiosity of explicitly constructing thecones extendingY . Moreover, this approach reveals
that Scorza’s result about the non-extendability ofPa × Pb ⊂ Pab+a+b for a + b ≥ 3, originally proved in
[S2] and recovered later by many authors (see e.g. [Bǎ] and Corollary 2.4 here), implies the non-extendability
of a lot of homogeneous varieties via the description of their Hilbert scheme of lines. From this perspective
the Plücker embedding ofY = G(r,m), with 1 ≤ r < m − 1 and forr = 1 with m ≥ 4, admits only
trivial extensions becauseLy,Y = Pr × Pm−r−1 admits only trivial extensions (see [DFF] for an ad-hoc proof
following Scorza’s approach). Besides the applications contained in Corollary 2.4 and 2.5, we also show that

our analysis can be used to provide a direct proof thatν2(P
n) ⊂ P

n(n+3)
2 admits only trivial extensions, see

Proposition 2.6, a well-known classical fact originally proved by Scorza in [S1].
Acknowledgements. I am indebted to Paltin Ionescu for his useful remarks and comments leading to an

improvement of the exposition and especially for various discussions on these subjects. Giovanni Staglianò
read carefully the text and made useful comments on a preliminary version. A special thank to Prof. Markus
Brodmann for his invitation to give a talk at the Oberseminarat Zürich University in May 2010, for his kind
hospitality and for his interest in my work. On that occasionI began to organize the material contained in§1.

1. GEOMETRY OF (THE HILBERT SCHEME OF) LINES CONTAINED IN A VARIETY AND PASSING THROUGH

A (GENERAL) POINT

1.1. Notation, definitions and preliminary results. Let X ⊂ PN be a (non-degenerate) connected equidi-
mensional projective variety of dimensionn ≥ 1, defined over a fixed algebraically closed field of characteristic
zero, which from now on will be simply called aprojective variety. If X is smooth and irreducible, we shall
call X a manifold. LetXreg = X \ Sing(X) be the smooth locus ofX . Let txX denotethe affine tangent
space toX at x, letTxX ⊂ PN denotethe projective tangent space toX at x ofX ⊂ PN and for an arbitrary
schemeZ and for a closed pointz ∈ Z let CzZ denotethe affine tangent cone toZ at z. Let Lx,X denote
the Hilbert scheme of lines contained inX and passing through the pointx ∈ X . For a lineL ⊂ X passing
throughx, we let[L] ∈ Lx,X be the corresponding point.

Let πx : Hx → Lx,X denote the universal family and letφx : Hx → X be the tautological morphism.
From now on we shall always suppose thatx ∈ Xreg. Note thatπx admits a sectionsx : Lx,X → Ex ⊂ Hx,
which is contracted byφx to the pointx. Consider the blowing-upσx : BlxX → X of X at x. For every
[L] ∈ Lx,X the lineL = φx(π

−1
x ([L])) is smooth atx so that [IN, Lemma 4.3] and the universal property of

the blowing-up ensure the existence of a morphismψx : Hx → BlxX such thatσx ◦ψx = φx. So we have the
following diagram

(1.1)

Hx

πx

��

φx

##H

H

H

H

H

H

H

H

H

ψx
// BlxX

σx

��
Lx,X X.

In particular,ψx maps the sectionEx toEx, the exceptional divisor ofσx. Let ψ̃x : Ex → Ex be the restriction
of ψx to Ex. We can define the morphism

(1.2) τx = τx,X = ψ̃x ◦ sx : Lx,X → P((txX)∗) = Ex = Pn−1,

which associates to each line[L] ∈ Lx,X the corresponding tangent direction throughx, i.e. τx([L]) =
P((txL)

∗). The morphismτx is clearly injective and we claim thatτx is a closed immersion. Indeed, by taking
in the previous constructionX = PN the corresponding morphismτx,PN : Lx,PN → P((txP

N )∗) = PN−1 is
an isomorphism betweenLx,PN and the exceptional divisor ofBlx PN . By definition the inclusionX ⊂ PN

induces a closed embeddingix : Lx,X → Lx,PN . If jx : P((txX)∗) → P((txP
N )∗) is the natural closed
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embedding, then we have the following commutative diagram

(1.3) Lx,X

ix

��

τx,X
// P((txX)∗)

jx

��

Lx,PN

τ
x,PN

// P((txP
N )∗),

proving the claim.
For x ∈ Xreg such thatLx,X 6= ∅, we shall always identifyLx,X with τx(Lx,X) and we shall naturally

considerLx,X as a subscheme ofPn−1 = P((txX)∗). We denote byCx the scheme theoretic image ofHx,
that isφx(Hx) = Cx ⊂ X . Via (1.1) we deduce the following relation:

(1.4) P(Cx(Cx)) = Lx,X ,

as subschemes ofP((txX)∗), whereP(Cx(Cx)) is theprojectivized tangent cone toCx at x, see [Mu, II,§3].

1.2. Singularities of Lx,X . We begin by studying the intrinsic geometry ofLx,X ⊂ Pn−1. When it is clear
from the context which varietyX ⊂ PN we are considering we shall writeLx instead ofLx,X .

If L ⊂ Xreg, thenNL/X is locally free of rankn− 1 and more precisely

(1.5) NL/X ≃ ⊕n−1
i=1 OP1(ai),

with ai ≤ 1 becauseNL/X is a subsheaf ofNL/PN ≃ OP1(1)N−1.
If NL/X is also generated by global sections, then

(1.6) NL/X ≃ OP1(1)s(L,X) ⊕O
n−1−s(L,X)
P1 .

Therefore ifNL/X is generated by global sections, thenLx is unobstructed at[L], that ish1(NL/X(−1)) = 0,
Lx is smooth at[L] anddim[L](Lx) = h0(NL/X(−1)) = s(L,X), wheres(L,X) ≥ 0 is the integer defined
in (1.6).

Forx ∈ Xreg, let

Sx = Sx,X = {[L] ∈ Lx such thatL ∩ Sing(X) 6= ∅ } ⊆ Lx.

ThenSx,X has a natural scheme structure and the previous inclusion holds at the scheme theoretic level. If
X is smooth, thenSx,X = ∅. Moreover, ifL ⊂ X is a line passing throughx ∈ Xreg, clearly[L] 6∈ Sx,X if
and only ifL ⊂ Xreg.

We now prove that a singular point ofLx produces a line passing throughx and through a singular point
of X , a stronger condition than the mere existence of a singular point onX . These results are well known
to experts, at least for manifolds, see [Hw, Proposition 1.5] and also [Ru, Proposition 2.2]. In [DG], the
singularities of the Hilbert scheme of lines contained in a projective variety are related to some geometrical
properties of the variety.

Proposition 1.1. Let notation be as above and letX ⊂ PN be an irreducible projective variety of dimension
n ≥ 2. Then forx ∈ Xreg general:

(1) Lx ⊂ Pn−1 is smooth outsideSx,X , that isSing(Lx) ⊆ Sx. In particular if X ⊂ PN is smooth and if
x ∈ X is general, thenLx ⊂ Pn−1 is a smooth variety.

(2) If Ljx, j = 1, . . . ,m, are the irreducible components ofLx and if

dim(Llx) + dim(Lpx) ≥ n− 1 for somel 6= p,

thenLx is singular,X is singular and there exists a line[L] ∈ Lx such thatL ∩ Sing(X) 6= ∅.
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Proof. There exists an open dense subsetU ⊆ Xreg such that for every lineL ⊂ Xreg such thatL∩U 6= ∅ the
normal bundleNL/X is generated by global sections, see for example [De, Proposition 4.14]. Combining this
result with the above discussion, we deduce that for everyx ∈ U the varietyLx ⊂ Pn−1 is smooth outsideSx,
proving the first assertion.

The condition on the dimensions of two irreducible components ofLx in (2) ensures that these components
have to intersect inPn−1. A point of intersection is a singular point ofLx ⊂ Pn−1. This forcesX to be
singular by the first part and also the existence of a line[L] ∈ Sx, which by definition cutsSing(X). �

1.3. Equations for Lx,X ⊂ P((txX)∗). We now follow and expand the treatment outlined in [IR2, Theorem
2.4] by looking at the equations definingLx ⊂ Pn−1 for x ∈ Xreg.

Let X = V (f1, . . . , fm) ⊂ PN be a projective equidimensional connected variety, not necessarily irre-
ducible, letx ∈ Xreg, letn = dim(X) and letc = codim(X) = N − n. Thus we are assuming thatX ⊂ PN

is scheme theoretically the intersection ofm ≥ 1 hypersurfaces of degreesd1 ≥ d2 ≥ . . . ≥ dm ≥ 2. More-
over it is implicitly assumed thatm is minimal, i.e. none of the hypersurfaces contains the intersection of the
others. Define, following [IR2], the integer

d :=
c∑

i=1

(di − 1) ≥ c.

With these definitionsX ⊂ PN (or more generally a schemeZ ⊂ PN ) is calledquadratic if it is scheme
theoretically an intersection of quadrics, which means that we can assumed1 = 2. In particularX ⊂ PN is
quadratic if and only ifd = c.

We can choose homogeneous coordinates(x0 : . . . : xN ) onPN such thatx = (1 : 0 : . . . : 0), TxX =
V (xn+1, . . . , xN ). Let AN = PN \ V (x0) with affine coordinates(y1, . . . , yN), that isyl = xl

x0
for every

l = 1, . . . , N . Let P̃N = Blx P
N with exceptional divisorE′ ≃ P((txP

N )∗) = PN−1 and letX̃ = BlxX
with exceptional divisorE = P((txX)∗) = Pn−1. Looking at the graph of the projection fromx ontoV (x0)
we can naturally identify the projectivization ofAN \ 0 = AN \ x with E′ and with the projective hyperplane
V (x0) = PN−1.

Let fi = f1
i + f2

i + · · · + fdii , with f ji homogeneous of degreej in the variables(y1, . . . , yN ). Sof1
1 =

. . . = f1
m = 0 are the equations oftxX = TxX ∩ AN ⊂ AN , which reduce toyn+1 = . . . = yN = 0 by the

previous choice of coordinates, yielding

V (f1
1 , · · · , f

1
m) = P((txX)∗) ⊂ P((txP

N )∗) = PN−1.

With the previous identificationsLx,PN = E′ = PN−1 = P((txP
N)∗). We now write a set of equations

definingLx ⊂ E ⊂ E′ as a subscheme ofE′ and ofE. By definitiony = (y1 : . . . : yn) are homogeneous
coordinates onE ⊂ E′. For everyj = 2, . . . ,m and for everyi = 1, . . . ,m, let

f̃ ji (y) = f ji (y1, . . . , yn, 0, 0, . . . , 0, 0).

Then we have thatLx ⊂ E′ is the scheme

V (f1
1 , f

2
1 , · · · , f

d1
1 , · · · , f1

m, f
2
m, · · · , f

dm
m ) ⊂ E′,

whileLx ⊂ E is the scheme

(1.7) V (f̃2
1 , · · · , f̃

d1
1 , · · · , f̃2

m, · · · , f̃
dm
m ),

so that it is scheme theoretically defined by at most
∑m

i=1(di − 1) equations.
The equations ofTxX ∩X ∩AN = txX ∩X ∩ AN , as a subscheme ofAN , are

V (f1
1 , . . . , f

1
m, f

1
1 + f2

1 + · · ·+ fd11 , . . . , f1
m + f2

m + · · ·+ fdmm ) =

(1.8) V (f1
1 , . . . , f

1
m, f

2
1 + · · ·+ fd11 , . . . , f2

m + · · ·+ fdmm ) ⊂ AN .



6 FRANCESCO RUSSO

Thus the equations ofTxX ∩X ∩ AN = txX ∩X ∩AN as a subscheme oftx(X ∩ AN ) = txX are

(1.9) V (f̃2
1 + · · ·+ f̃d11 , . . . , f̃2

m + · · ·+ f̃dmm ) ⊂ txX = An.

Let I = 〈f̃2
1 + · · ·+ f̃d11 , . . . , f̃2

m+ · · ·+ f̃dmm 〉 ⊂ C[y1, . . . , yn] = S and letI∗ be the ideal generated by the
initial forms of elements ofI. Remark that ifI is homogeneous and generated by forms of the same degree,
then clearlyI = I∗. Then the affine tangent cone toTxX ∩X atx isCx(TxX ∩X) = Spec( SI∗ ) so that

(1.10) P(Cx(TxX ∩X)) = Proj(
S

I∗
),

see [Mu, III,§ 3].
Let J ⊂ S be the homogeneous ideal generated by the polynomials in (1.7) definingLx,X scheme theoreti-

cally, that isLx,X = Proj(SJ ) ⊂ P((txX)∗). ClearlyI∗ ⊆ J , yielding the closed embedding of schemes

(1.11) Lx,X ⊆ P(Cx(TxX ∩X)).

If X ⊂ PN is quadratic, thenI = I∗ = J . In conclusion we have proved the following results.

Proposition 1.2. LetX ⊂ PN be a (non-degenerate) projective variety, letx ∈ Xreg be a point and let notation
be as above. IfX ⊂ PN is quadratic, then

(1.12) TxX ∩X ∩ AN = Cx(TxX ∩X) ⊂ txX

and

(1.13) Lx,X = P(Cx(TxX ∩X)) ⊂ P((txX)∗).

In particular if X ⊂ PN is quadratic, then the schemeLx,X ⊂ P((txX)∗) is quadratic.

1.4. Cx versusTxX ∩X for a quadratic variety. The closed embedding (1.11) holds at the scheme theoretic
level. IfLx,X were reduced, or better smooth, it would be enough to prove that there exists an inclusion as sets.
Sincex ∈ Xreg was arbitrary we cannot control a priori the structure ofLx,X even ifX ⊂ PN is a manifold.
Recall that by Proposition 1.1Lx,X is smooth as soon asX is a manifold andx ∈ X is a general point.

From now on we shall supposeX ⊂ PN quadratic. Then

(1) (Cx)red = (TxX ∩X)red;
(2) if X ⊂ PN is a manifold and ifx ∈ X is a general point, thenCx = (TxX ∩X)red;
(3) the strict transforms ofCx and ofTxX ∩X onBlxX cut the exceptional divisorE = P((txX)∗) of

BlxX in the same schemeLx,X (see (1.4) and (1.13));
(4) if x ∈ X is a general point on a quadratic manifoldX ⊂ PN and if I∗ is saturated, thenTxX ∩ X

is reduced in a neighborhood ofx so that it coincides withCx in a neighborhood ofx. Indeed since
TxX ∩X ∩ An = Spec(SI ), with I = I∗ = J homogeneous and saturated, it follows thatTxX ∩X

is reduced atx; therefore it is reduced also in a neighborhood ofx, usually smaller thanX ∩ AN , as
shown in Example 1.4 below.

Already for quadratic manifolds there exist many importantdifferences betweenP(Cx(TxX ∩ X)) ⊂
P((txX)∗) andCx(TxX ∩ X) = TxX ∩ X ∩ AN ⊂ txX and also betweenTxX ∩ X and the cone
Cx ⊆ TxX ∩ X . We shall discuss some examples in order to analyze closer these important schemes con-
taining a lot of geometrical information.

Example 1.3. (TxX ∩X non-reduced only atx) Remark thattx(TxX ∩X) = txX so that〈Cx(TxX ∩X)〉 =
txX , while in some casesP(Cx(TxX ∩ X)) is degenerate inP((txX)∗). Consider a rational normal scroll
X ⊂ PN , different from the Segre varietiesP1 × Pn−1, n ≥ 2, and a general pointx ∈ X . It is well known
thatX ⊂ PN is quadratic so thatLx,X = P(Cx(TxX ∩ X)) ⊂ P((txX)∗) by (1.11). On the other hand, if



LINES ON PROJECTIVE VARIETIES 7

Pn−1
x is the uniquePn−1 of the ruling passing throughx ∈ X , it is easy to see, letting notation as above, that

in this case
Lx,X = P(Pn−1

x ∩ An) = Pn−2 ⊂ P((txX)∗) = Pn−1.

This is possible because in this exampleTxX ∩ X andCx(TxX ∩ X) are not reduced atx. Indeed, the
point x ∈ Cx(TxX ∩ X) corresponds to the irrelevant ideal ofS. I∗ is not saturated, because the equation
defining the hyperplaneLx,X belongs to the saturation ofI∗, but is not inI∗ (I∗ is generated by quadratic
polynomials!).

Also for quadratic manifolds for whichI∗ is saturated, the schemeTxX∩X can be quite mysterious outside
x, and hence different, as a scheme, from the reduced coneCx ⊆ TxX∩X. In any case, they essentially coincide
outsidex in a neighborhood ofx insidetxX , and their projective tangent cones are the same atx by (1.13)
and (1.1) (see also (1.2)). Thus, whenI∗ is saturated, the cones of vertexx TxX ∩X andCx coincide modulo
some embedded components, possibly appearing inTxX ∩X , outsidex.

Example 1.4. (Embedded components inTxX ∩ X outsidex but not atx). Let X ⊂ PN be a quadratic
manifold. Keeping notation as above letQi = V (fi) ⊂ PN . ThenTxX = ∩mi=1TxQi andX = ∩mi=1Qi as
schemes. ThusTxX ∩X = TxX ∩ (∩mi=1(TxQi ∩Qi)). EachtruequadricTxQi ∩Qi ∩ TxX ⊂ TxX (that is
we are considering only the quadricsQi not containingTxX) is singular atx so that it can be considered also
as a quadric inP((txX)∗), yielding the homogeneous idealI = I∗.

SinceX ⊂ PN is quadratic, there existc quadrics, let us sayQ1, . . . , Qc such thatTxX = ∩cj=1TxQj .
Thus we can write the schemeTxX ∩X as:

TxX ∩X = TxX ∩ (∩cj=1(TxQj ∩Qj)) ∩ (Qc+1 ∩ . . . ∩Qm)

Now ther ≤ c effective quadrics inTxX given byTxQl∩Ql ∩TxX = TxX ∩Ql, l = 1, . . . , c are cones with
vertex atx and naturally projectivize. What could be somehow surprising is that theser quadrics are sufficient
to defineLx,X scheme theoretically (or alsoCx, at least locally aroundx), while TxX ∩ (Qc+1 ∩ . . . ∩ Qm)
could define some embedded component, not necessarily supported atx. Let us consider an explicit example,
communicated to me by Paltin Ionescu, revealing the subtle nature of the above picture and of what we shall
prove in the next section.

Let X = G(1, 4) = Q1 ∩ . . . ∩ Q5 ⊂ P9. SinceX ⊂ P9 is scheme theoretically defined by these
quadrics, fixing (a general)x ∈ X , every hyperplaneH ⊂ PN tangent atx, that isH ⊃ TxX , is of the form
TxQ, with Q a quadric vanishing onX and belonging to the linear span ofQ1, . . . , Q5. It is well known that
Lx,X = P1 × P2 ⊂ P5 so thatCx = φx(Hx) ⊂ X is a degree 3 reduced subscheme contained inTxX ∩ X
such thatCx = (TxX ∩X)red. In particulardim(TxX ∩ X) = 4 and sinceI∗ is saturatedTxX ∩X andCx
coincide in a neighborhood ofx.

We can suppose thatHi = TxQi, i = 1, 2, 3, are three general hyperplanes containingTxX so thatH1 ∩
H2∩H3 = TxX andH1∩H2∩H3∩X = TxX∩X as schemes. SinceG(1, 4) is self-dual,H1∩X is singular
along aP2

x ⊂ TxX ∩X ; the schemeH1 ∩H2 ∩X will be singular also along a lineL1,2 passing throughx so
that, at least in a neighborhoodU of x, H1 ∩ H2 ∩H3 ∩ X is singular only atx and it will coincide withCx
in a neighborhoodV ⊆ U of x. In particular we have a complete description of the singularity of TxX ∩X at
x. In general it is very difficult to control the singularitiesof TxX ∩X outsidex and also in this case there are
more singular points of a very particular nature.

Indeed,H1 ∩H2 = P7 ⊃ TxX = P6. We claim thatWx = H1 ∩H2 ∩X = Cx ∪Qx, whereQx is a four
dimensional quadric hypersurface cuttingCx along a quadricQx not passing throughx. Then the hyperplane
TxX ⊂ H1∩H2 cutsWx in the schemeTxX∩X = Cx∪Qx, withQx ⊂ Cx, showing thatQx is an embedded
component ofTxX ∩X .

In the case of rational normal scrolls discussed in Example 1.3 we saw thatTxX ∩ X \ x = Cx \ x as
schemes, the affine tangent cones are different affine schemes, but the projectivized tangent cones coincide.
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By choosing suitable quadricsQ1, . . . , Qc we shall see in subsection 1.6 that the complete intersection
Y = Q1∩ . . .∩Qc coincides locally withX aroundx. ThusTxY ∩Y andTxX∩X coincide locally aroundx.
In particular the intersection of their strict transform onBlxX with the exceptional divisor is the same, so that
Lx,X = Lx,Y and the last scheme can be defined scheme theoretically byr ≤ c linearly independent quadrics
by (1.7).

In any case the double nature ofTxX ∩ X as a subscheme ofTxX andX plays a central role for its
infinitesimal properties atx, measured exactly byP(Cx(TxX ∩X)) ⊂ P((txX)∗).

It is useful to think ofP(Cx(TxX ∩X)) ⊂ P((txX)∗) as being the base locus scheme of the projection of
X from TxX , as we shall do in the next section. We shall provide in this way another reason whyLx,X can be
defined scheme theoretically by at mostc quadratic equations for an arbitrary pointx ∈ Xreg.

1.5. Tangential projection and second fundamental form.There are several possible equivalent definitions
of the projective second fundamental form|IIx,X | ⊆ P(S2(txX)) of a connected equidimensional projective
varietyX ⊂ PN at x ∈ Xreg, see for example [IL, 3.2 and end of Section 3.5]. We use the one related to
tangential projections, as in [IL, Remark 3.2.11].

SupposeX ⊂ PN is non-degenerate, as always, letx ∈ Xreg and consider the projection fromTxX onto a
disjointPc−1

(1.14) πx : X 99KWx ⊆ Pc−1.

The mapπx is not defined along the schemeTxX ∩ X , which containsx, and it is associated to the linear
system of hyperplane sections cut out by hyperplanes containing TxX , or equivalently by the hyperplane
sections singular atx.

Let φ : BlxX → X be the blow-up ofX atx, let

E = P((txX)∗) = Pn−1 ⊂ BlxX

be the exceptional divisor and letH be a hyperplane section ofX ⊂ PN . The induced rational map̃πx :
BlxX 99K Pc−1 is defined as a rational map alongE sinceX ⊂ PN is not a linear space, see also the
discussion below.

The restriction of̃πx toE is given by a linear system in|φ∗(H)− 2E||E ⊆ |− 2E|E | = |OP((txX)∗)(2)| =
P(S2(txX)), whose base locus scheme will be denoted byBx,X .

Consider the strict transform scheme ofTxX ∩X onBlxX , denoted from now on bỹT = Blx(TxX ∩X).
ThenT̃ is the base locus scheme ofπ̃x and the restriction of̃πx toE has base locus scheme equal to

(1.15) T̃ ∩ E = P(Cx(TxX ∩X)) = Bx,X ⊂ P((txX)∗).

Definition 1.5. Thesecond fundamental form|IIx,X | ⊆ P(S2(txX)) of a connected equidimensional non-
degenerate projective varietyX ⊂ PN of dimensionn ≥ 2 at a pointx ∈ Xreg is the non-empty linear system
of quadric hypersurfaces inP((txX)∗) defining the restriction of̃πx to E andBx,X ⊂ P((txX)∗) is the so
calledbase locus scheme of the second fundamental form ofX at x.

Clearlydim(|IIx,X |) ≤ c − 1 andπ̃x(E) ⊆ Wx ⊆ Pc−1. Let Ĩ ⊂ S be the homogeneous ideal generated
by ther ≤ c linearly independent quadratic forms in the second fundamental form ofX atx. Then via (1.15)
we obtain

(1.16) Proj(
S

Ĩ
) = Bx,X = P(Cx(TxX ∩X)) = Proj(

S

I∗
) ⊂ P((txX)∗).

In conclusion we have proved the following results by combining (1.15) with (1.13) and (1.16).

Corollary 1.6. LetX ⊂ PN be a non-degenerate projective variety, letx ∈ Xreg be a point and let notation
be as above. Then:

(1) Lx,X ⊆ Bx,X ;
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(2) if X ⊂ PN is quadratic, then equality holds andLx,X ⊂ P((txX)∗) can be defined scheme theoreti-
cally by ther ≤ c quadratic equations defining the second fundamental form ofX at x.

Remark 1.7. The previous result has many important applications. We recall that, as proved in [IR2], if
X ⊂ PN is a quadratic manifold and ifc ≤ n−1

2 , then, forx ∈ X general,Lx,X ⊂ P((txX)∗) is the
complete intersection of thec linearly independent quadratic polynomials defining|IIx,X |. ThenLx,X has
dimensionn−1− c from which it follows thatX ⊂ PN is a complete intersection. This proves the Hartshorne
Conjecture on complete intersections in the quadratic caseand also leads to the classification of quadratic
Hartshorne manifolds, see [IR2, Theorem 2.4 and Section 4] for details.

The paper [PR1] considers also irreducible projective varietiesX ⊂ P2n+1 which are 3–covered by twisted
cubics, i.e. such that through three general points ofX ⊂ P2n+1 there passes a twisted cubic contained in
X . A key remark for the classification of these varieties is [PR1, Theorem 5.2], which among other things
shows that for such anX the equalityLx,X = Bx,X holds forx ∈ X general. A posteriori all the known
examples of varieties 3–covered by twisted cubics are projectively equivalent to the so calledtwisted cubics
over Jordan algebras, which are quadratic, seeloc. cit for definitions and details and also [PR2] for a proof.
This fact has also many important consequences for the theory of Jordan algebras and for the classification of
quadro-quadricCremona transformations, as shown in the forthcoming paper[PR2].

1.6. Approach to Bx,X = Lx,X via [BEL] . For manifoldsX ⊂ PN there is another approach based on a
construction of [BEL] elaborating and generalizing an ideadue to Severi, seeloc. cit. It can be used to give a
proof of a weaker form of Corollary 1.6 (in the sense that we prove it only forx ∈ X general); this approach
illustrates the local nature of the second fundamental formand the phenomena described in Example 1.4. Let
us remark that the treatment in the general setting developed in the previous sections is unavoidable because
the pointx ∈ X is not necessarily general on the complete intersectionY ⊇ X we now construct.

It was proved in [BEL] that given a manifoldX = V (f1, . . . , fm) ⊂ PN as above, we can choosegi ∈
H0(IX(di)), i = 1, . . . , c such that

(1.17) Y = V (g1, . . . , gc) = X ∪X ′,

whereX ′ (if nonempty) meetsX in a divisorD. Moreover from (1.17) it follows

(1.18) OX(D) ≃ det(
IX
I2
X

)⊗OX(

c∑

i=1

di) ≃ OX(d− n− 1)⊗ ω∗
X ,

see also [BEL, pg. 597]. We now illustrate the usefulness of this construction by proving some facts and results
contained in [IR2, Theorem 2.4].

Suppose thatX ⊂ PN is a quadratic manifold and consider a pointx ∈ U = X \ Supp(D). By definition
Y \Supp(D) = U∐V , whereV = X ′\Supp(D). Consider the two schemesTxX∩X∩U andTxY ∩Y ∩U .
SincetxX = txY and sinceY ∩ U = X ∩ U by the above construction, we obtain the equality as schemes

Cx(TxX ∩X) = Cx(TxX ∩X ∩ U) = Cx(TxY ∩ Y ∩ U) = Cx(TxY ∩ Y ).

Via (1.13) we deduce the following equality as subschemes ofP((txX)∗):

(1.19) Lx,Y = P(Cx(TxY ∩ Y )) = P(Cx(TxX ∩X)) = Lx,X .

SinceLx,Y can be scheme-theoretically defined byr ≤ c linearly independent quadratic equations, the same
is true forLx,X . Now, without assuming anymore thatX is quadratic, sincex ∈ X is general,Lx,X is smooth
and hence reduced. Clearly a lineL passing throughx is contained inX if and only if it is contained inY ,
yieldingLx,X = (Lx,Y )red, see [IR2, Theorem 2.4]. We proved:

Proposition 1.8. LetX ⊂ PN be a manifold, let notation be as above and letx ∈ U be a general point. Then:
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(1) Lx,X = (Lx,Y )red so thatLx,X can be defined set theoretically by ther ≤ d equations definingLx,Y
scheme theoretically. In particular, ifd ≤ n− 1, thenLx,X 6= ∅.

(2) If X ⊂ PN is quadratic, thenLx,X = Lx,Y so thatLx,X ⊂ P((txX)∗) is a quadratic manifold
defined scheme theoretically by at mostc quadratic equations.

1.7. Lines on prime Fano manifolds. Let X ⊂ PN be a (non-degenerate) manifold of dimensionn ≥ 2.
For a general pointx ∈ X we know thatLx ⊂ Pn−1 is smooth, Proposition 1.1. There are well-known
examples whenLx ⊂ Pn−1 is not irreducible, such asX = Pa × Pb ⊂ Pab+a+b Segre embedded, and also
examples whereLx ⊂ Pn−1 is degenerate, see Example 1.3 and also table (2.5) below. A relevant class of
manifolds where the properties of smoothness, irreducibility and non-degeneracy ofX ⊂ PN are transfered to
Lx ⊂ Pn−1 consists of prime Fano manifolds of high index, which we now define.

A manifoldX ⊂ PN is called aprime Fano manifoldif −KX is ample and ifPic(X) ≃ Z〈O(1)〉. The
index ofX is the positive integer defined by−KX = i(X)H , withH a hyperplane section ofX ⊂ PN .

Let us recall some fundamental facts. Part (1) below is well known and follows from the previous discussion
except for a fundamental Theorem of Mori which implies that for prime Fano manifolds of index greater than
n+1
2 , necessarilyLx 6= ∅, see [Mo] and [Ko, Theorem V.1.6].

Proposition 1.9. LetX ⊂ PN be a projective manifold and letx ∈ X be a general point. Then

(1) If Lx 6= ∅, then for every[L] ∈ Lx we havedim[L](Lx) = −KX ·L− 2. In particular for prime Fano
manifolds of indexi(X) ≥ n+3

2 the varietyLx ⊂ Pn−1 is irreducible (and in particular non-empty!).
(2) ([Hw]) If X ⊂ PN is a prime Fano manifold of indexi(X) ≥ n+3

2 , thenLx ⊂ Pn−1 is a non-
degenerate manifold of dimensioni(X)− 2.

Let us finish this section by looking at another significant example in which meaningful geometrical prop-
erties ofX ⊂ PN are reflected in similar properties ofLx ⊂ Pn−1, when this is non-empty.

Example 1.10. LetX ⊂ PN be a smooth complete intersection of type(d1, d2, . . . , dc) with dc ≥ 2. Then:

• if n+ 1− d > 0, thenX is a Fano manifold andi(X) = n+ 1− d;
• if n ≥ 3, thenPic(X) ≃ Z〈O(1)〉;
• if i(X) ≥ 2, thenLx 6= ∅ and for every[L] ∈ Lx we have

dim[L](Lx) = (−KX · L)− 2 = i(X)− 2 = n− 1− d ≥ 0,

so thatLx ⊂ Pn−1 is a smooth complete intersection of type

(2, . . . , d1; 2, . . . , d2; . . . ; 2, . . . dc−1; 2, . . . , dc)

since it is scheme theoretically defined by thed equations in (1.7).

2. A CONDITION FOR NON-EXTENDABILITY

Definition 2.1. Let us considerH = PN as a hyperplane inPN+1. Let Y ⊂ PN = H be a smooth (non-
degenerate) irreducible variety of dimensionn ≥ 1. An irreducible varietyX ⊂ PN+1 will be called an
extension ofY if

(1) dim(X) = dim(Y ) + 1;

(2) Y = X ∩H as a scheme.

For everyp ∈ PN+1 \H , the irreducible cone

X = S(p, Y ) =
⋃

y∈Y

< p, y >⊂ PN+1
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is an extension ofY ⊂ PN = H , which will be calledtrivial . Let us observe that for any extensionX ⊂ PN+1

of Y ⊂ PN we necessarily have#(Sing(X)) <∞ sinceX is smooth along the very ample divisorY = X∩H .
We also remark that in our definitionY is a fixed hyperplane section. In the classical approach usually it was
required thatH was a general hyperplane section ofX , see for example [S1]. Under these more restrictive
hypotheses one can always suppose that a general point onY is also a general point onX .

2.1. Extensions ofLx,Y ⊂ Pn−1 via Lx,X ⊂ Pn. Let y ∈ Y be a general point and let us consider an
extensionX ⊂ PN+1 of Y and an irreducible componentLjy,Y of Ly,Y ⊂ Pn−1, which is a smooth irreducible
variety by Proposition 1.1. The results of§1 yield that this property is immediately translated in terms of Hilbert
schemes of lines. Indeed we deduce the following result, where part (4) requires an ad hoc proof since in our
hypotheses the pointy ∈ Y is general onY , but not necessarily onX , so that we cannot apply Proposition 1.1.

Proposition 2.2. Let X ⊂ PN+1 be an irreducible projective variety which is an extension of the non-
degenerate manifoldY ⊂ PN . Letn = dim(Y ) ≥ 1 and lety ∈ Y be an arbitrary point such thatLy,Y 6= ∅.
Then:

(1) Ly,X ∩ P((tyY )∗) = Ly,Y as schemes.
(2) if y ∈ Y is general, thendim[L](Ly,X) = dim[L](Ly,Y ) + 1 and [L] is a smooth point ofLy,X for

every[L] ∈ Ly,Y .

(3) if y ∈ Y is general and ifLjy,Y is an irreducible component of positive dimension, then there exists an

irreducible componentLjy,X such thatLjy,Y = Ljy,X ∩ P((tyY )∗) as schemes.
(4) If y ∈ Y is general, thenSing(Ly,X) ⊆ Sy,X .

Proof. Let Y = X ∩ H , with H = PN ⊂ PN+1 a hyperplane and let notation be as in subsection 1.3. The
conclusion in (1) immediately follows from (1.7).

Let us pass to (2) and consider an arbitrary line[L] ∈ Ljy,Y , an irreducible component of the smooth not
necessarily irreducible varietyLy,Y . We have an exact sequence of normal bundles

(2.1) 0 → NL/Y → NL/X → NY/X|L ≃ OP1(1) → 0.

Sincey ∈ Y is general,NL/Y is generated by global sections, see the proof of Proposition 1.1, so that (1.6)
yields

(2.2) NL/X ≃ NL/Y ⊕OP1(1) ≃ OP1(1)s(L,Y )+1 ⊕O
n−s(L,Y )−1
P1 .

Thus alsoNL/X is generated by global sections,Ly,X is smooth at[L] anddim[L](Ly,X) = dim[L](Ly,Y )+
1, proving (2).

Therefore ify ∈ Y is general, there exists a unique irreducible component ofLy,X ⊂ P((tyX)∗), let us say
Ljy,X , containing[L] and by the previous calculationdim(Ljy,X) = s(L, Y )+ 1 = dim(Ljy,Y )+ 1. Recall that
by part (1) we havet[L]Ly,Y = t[L]Ly,X ∩ P((tyY )∗) so that

(2.3) Ljy,Y ⊆ Ljy,X ∩ P((tyY )∗) ⊆ Ly,Y ⊂ Pn−1 = P((tyY )∗),

yielding thatLjy,Y is an irreducible component ofLjy,X ∩P((tyY )∗) as well as an irreducible component of the

smooth varietyLy,Y . Hence, ifdim(Ljy,Y ) ≥ 1, we have the equalityLjy,Y = Ljy,X ∩ P((tyY )∗) as schemes,

i.e. under this hypothesisLjy,X ⊂ P((tyX)∗) (or better(Ljy,X)red) is a projective extension of the smooth

positive dimensional irreducible varietyLjy,Y ⊂ P((txY )∗). Indeed,dim(Ljy,Y ) ≥ 1 forcesdim(Ljy,X) ≥ 2
so that it is sufficient to recall thatLy,X is smooth alongLy,Y by the previous discussion and also that an
arbitrary hyperplane section of the irreducible variety(Ljy,X)red is connected by the Fulton-Hansen Theorem,

[FH]. More precisely, ifdim(Ljy,Y ) ≥ 1, then equality as schemes holds in (2.3), proving part (3).
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By [De, Proposition 4.9] there exists a non-empty open subset U ⊆ X such thatNL̃/X is generated by

global sections for every linẽL ⊂ Xreg intersectingU . If U ∩ Y 6= ∅, then (4) clearly holds. Suppose
Y ∩U = ∅. Let [L̃] ∈ Ly,X \ Sy,X . If L̃∩U 6= ∅, then[L̃] is a smooth point ofLy,X by the previous analysis.
If L̃ ∩ U = ∅, thenL̃ ⊂ Y by the generality ofy ∈ Y andNL̃/X is generated by global sections by (2.2),
concluding the proof of (4). �

Now we are in position to prove the main result of this sectionand to deduce some applications.

Theorem 2.3. Let notation be as above and lety ∈ Y be a general point. Then:

(1) Suppose there exist two distinct irreducible componentsL1
y,X andL2

y,X of Ly,X ⊂ P((tyX)∗), ex-
tending two irreducible componentsL1

y,Y , respectivelyL2
y,Y , ofLy,Y in the sense specified above. If

L1
y,X ∩ L2

y,X 6= ∅, thenX ⊂ PN+1 is a cone overY ⊂ PN of vertex a pointp ∈ PN+1 \ PN .
(2) If Ly,Y ⊂ P((tyY )∗) is a manifold whose extensions are singular, then every extension ofY ⊂ PN is

trivial.

Proof. By the above discussion, we get that in both cases, fory ∈ Y general, the varietySy,X ⊆ Ly,X is not
empty so that fory ∈ Y general there exists a lineLy ⊆ X passing throughy and through a singular point
py ∈ Ly ∩ Sing(X). SinceY is irreducible and sinceSing(X) consists of a finite number of points, there
existsp ∈ Sing(X) such thatp ∈ Ly for y ∈ Y general. This implies thatX = S(p, Y ) is a cone overY with
vertexp. �

The first easy consequence is a result due to Scorza (see [S2] and also [Bǎ]), proved by him under the
stronger assumption thatY = X ∩ H is a general hyperplane section ofX . Under these more restrictive
hypotheses, the analysis before the proof of Theorem 2.3 could be simplified via Proposition 1.1, since we may
assume that the general pointy ∈ Y is also general onX .

Corollary 2.4. Let 1 ≤ a ≤ b be integers, letn = a + b ≥ 3 and letY ⊂ Pab+a+b be a smooth irreducible
variety projectively equivalent to the Segre embeddingPa × Pb ⊂ Pab+a+b. Then every extension ofY in
Pab+a+b+1 is trivial.

Proof. Fory ∈ Y general, it is well known thatLy,Y = L1
y,Y ∐ L2

y,Y ⊂ Pa+b−1 = Pn−1 with L1
y,Y = Pa−1

andL2
y,Y = Pb−1, both linearly embedded. Observe thatb − 1 ≥ 1. By (2.3) and the discussion following

it, there exist two irreducible componentsLjy,X , j = 1, 2, of Ly,X ⊂ Pn = Pa+b with dim(L1
y,X) = a

anddim(L2
y,X) = b. If a 6= b then clearlyL1

y,X 6= L2
y,X . If a = b ≥ 2, thenL1

y,X 6= L2
y,X because an

arbitrary hyperplane section of a variety of dimension at least 2 is connected, see [FH]. Sincea + b = n,
L1
y,X ∩ L2

y,X 6= ∅ and the conclusion follows from the first part of Theorem 2.3. �

The previous result has some interesting consequences via iterated applications of the second part of The-
orem 2.3. Indeed, let us consider the following homogeneousvarieties (also known as irreducible hermitian
symmetric spaces), in their homogeneous embedding, and thedescription of the Hilbert scheme of lines passing
through a general point, see [Hw,§1.4.5]. Smooth extensions of homogeneous manifolds were also considered
in [Wa], see also [Kn].

(2.4)

Y Ly,Y τy : Ly,Y → P((tyY )∗)
1 G(r,m) Pr × Pm−r−1 Segre embedding
2 SO(2r)/U(r) G(1, r − 1) Plücker embedding
3 E6 SO(10)/U(5) miminal embedding
4 E7/E6 × U(1) E6 Severi embedding
5 Sp(r)/U(r) Pr−1 quadratic Veronese embedding
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There are also the following homogeneous contact manifoldswith Picard number one associated to a com-
plex simple Lie algebrag, whose Hilbert scheme of lines passing through a general point is known. Let us
observe that in these examples the varietyLy,Y ⊂ Pn−1 = P((tyY )∗) is degenerate and its linear span is ex-
actlyP((Dy)

∗) = Pn−2, thereDy is the tangent space aty of the distribution associated to the contact structure
onY , i.e. there is the following factorizationτy : Ly,Y → P((Dy)

∗) ⊂ P((tyY )∗). For more details one can
consult [Hw,§1.4.6].

(2.5)

g Ly,Y τx : Lx,Y → P((Dy)
∗

6 F4 Sp(3)/U(3) Segre embedding
7 E6 G(2, 5) Plücker embedding
8 E7 SO(12)/U(6) minimal embedding
9 E8 E7/E6 × U(1) minimal embedding
10 som+4 P1 ×Qm−2 Segre embedding

By case 1’) we shall denote a variety as in 1) of (2.4) satisfying the following numerical conditions:r <
m− 1; if r = 1, thenm ≥ 4. By 2’) we shall denote a variety as in 2) withr ≥ 5.

Corollary 2.5. LetY ⊂ PN be a manifold as in Examples 1’), 2’), 3), 4), 7), 8), 9) above.Then every extension
of Y is trivial.

Proof. In cases 2’), 3), 4) and 9) in the statement the varietyLy,Y ⊂ Pn−1 of one example is the variety
Y ⊂ PN occurring in the next one. Thus for these cases, by the secondpart of Theorem 2.3, it is sufficient
to prove the result for case 1’). For this variety the conclusion follows from Corollary 2.4. For the remaining
cases, the varietyLy,Y ⊂ Pn−1 is either as in case 1’) with(r,m) = (2, 5) or as in case 2) withr = 6 and the
conclusion follows once again by the second part of Theorem 2.3. �

The next result is also classical and well-known but we provide a direct geometric proof. Under the assump-
tion that the hyperplane sectionH ∩ X = Y is general, it was proved by C. Segre forn = 2 in [Se] and by
Scorza in [S1], see also [Te], for arbitraryn ≥ 2 (and also for arbitrary Veronese embeddingsνd(P

n) ⊂ PN(d),
with n ≥ 2 andd ≥ 2).

Proposition 2.6. Let n ≥ 2 and letY ⊂ P
n(n+3)

2 be a manifold projectively equivalent to the quadratic

Veronese embeddingν2(Pn) ⊂ P
n(n+3)

2 . Then every extension ofY is trivial.

Proof. Let y ∈ Y be a general point and letN = n(n+3)
2 . SinceLy,Y = ∅, thenLy,X ⊂ Pn, if not empty,

consists of at most a finite number of points and throughy ∈ X there passes at most a finite number of lines
contained inX . Consider a conicC ⊂ Y passing throughy. ThenNC/Y ≃ OP1(1)n−1. The exact sequence
of normal bundles

0 → NC/Y → NC/X → NY/X|C ≃ OP1(2) → 0,

yields
NC/X ≃ NC/Y ⊕OP1(2) ≃ OP1(1)n−1 ⊕OP1(2).

Thus there exists a unique irreducible componentCy,X of the Hilbert scheme of conics contained inX ⊂
PN+1 passing throughy ∈ X to which[C] belongs. Moreoverdim(Cy,X) = n+1 and the conics parametrized
by Cy,X coverX . Hence there exists a one dimensional family of conics throughy and a general pointx ∈ X .
By Bend and Break, see for example [De, Proposition 3.2], there is at least a singular conic throughy andx.
SinceX ⊂ PN+1 is not a linear space, there exists no line joiningy and a generalx, i. e. the singular conics
throughx andy are reduced. Thus given a general pointx in X , there exists a lineLx ⊂ X throughx, not
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passing throughy, and a lineLy ⊂ X throughy such thatLy ∩ Lx 6= ∅. Since there are a finite number of
lines contained inX and passing throughy, we can conclude that given a general pointx ∈ X , there exists a
fixed line passing throughy, L̃y, and a lineLx throughx such thatLx ∩ L̃y 6= ∅.

Moreover, a general conic[Cx,y] ∈ Cy,X and passing through a general pointx is irreducible, does not pass
through the finite setSing(X) and has ample normal bundle verifyingh0(NCx,y/X(−1)) = h0(NC/X(−1)) =
n+1. This means that the deformations ofCx,y keepingx fixed cover an open subset ofX and also that through
general pointsx1, x2 ∈ X there passes a one dimensional family of irreducible conics. The plane spanned by
one of these conics containsx1 andx2 so that it has to vary with the conic. Otherwise the fixed planewould
be contained inX andX ⊂ PN+1 would be a linearly embeddedPN+1, which is contrary to our assumptions.
In conclusion through a general pointz ∈< x1, x2 > there passes at least a one dimensional family of secant
lines toX so that

(2.6) dim(SX) ≤ 2(n+ 1)− 1 = 2n+ 1 < N + 1 =
n(n+ 3)

2
+ 1,

yieldingSX ( PN+1.
Suppose the pointpx = L̃y ∩ Lx, for y ∈ Y general, varies oñLy. Then the linear span of two general

tangent spacesTx1X andTx2X would contain the linẽLy. SinceTzSX =< Tx1X,Tx2X > by the Terracini
Lemma, we deduce that a general tangent space toSX containsL̃y and a fortioriy. SinceSX ( PN+1, the
varietySX ⊂ PN+1 would be a cone whose vertex, which is a linear space, contains L̃y and a fortioriy ∈ Y .
By the generality ofy ∈ Y we would deduce thatY ⊂ PN is degenerate.

Thuspx = L̃y ∩ Lx does not vary withx ∈ X general. Let us denote this point byp. Then clearly
X ⊂ PN+1 is a cone with vertexp overY . �

Corollary 2.7. Let Y ⊂ PN be a manifold either as in 5) above withr ≥ 3 or as in 6) above. Then every
extension ofY is trivial.

Proof. By (2.4) we know that in case 5) withr ≥ 3 we haven− 1 = (r−1)(r+2)
2 and the varietyLy,Y ⊂ Pn−1

is projectively equivalent toν2(Pr−1) ⊂ P
(r−1)(r+2)

2 . To conclude we apply Proposition 2.6 and the second
part of Theorem 2.3. Case 6) follows from case 5) withr = 3 by the second part of Theorem 2.3. �
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