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Abstract

A toric arrangement is a finite set of hypersurfaces in a complex torus,
every hypersurface being the kernel of a character. In the present paper
we build a CW-complex homotopy equivalent to the arrangement comple-
ment, with a combinatorial description similar to that of the well-known
Salvetti complex. If the toric arrangement is defined by a Weyl group, we
also provide an algebraic description, very handy for cohomology compu-
tations. In the last part we give a description in terms of tableaux for a
toric arrangement appearing in robotics.
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Introduction

A toric arrangement is a finite set of hypersurfaces in a complex torus T = (C*)",
in which every hypersurface is the kernel of a character x € X C Hom(T,C*)
of T. Let Rx be the complement of the arrangement: its geometry and topol-
ogy have been studied by many authors, see for instance [9], [4], [3], [13]. In
particular, in [10] and [3] the De Rham cohomology of Rx has been computed,
and recently in [15] a wonderful model has been built.

In the present paper we build a topological model S for R x. This model is
a regular CW-complex, similar to the one introduced by Salvetti ([17]) for the
complement of hyperplane arrangements. Indeed for a wide class of arrange-
ments, which we call thick, the cells of S are in bijection with pairs [C' < F],
where C' is a chamber of the real toric arrangement and F' is a facet adjacent
to it (according to the definitions given in Section 1.3).

The model § is well suited for homology and homotopy computations, which
will be developed in future papers (see for instance [19]). Furthermore, the
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jumping loci in the local system cohomology of a CW-complex are affine alge-
braic varieties. In the theory of hyperplane arrangements such objects, called
characteristic varieties, proved to be of fundamental importance. It is then a
remarkable fact that the characteristic varieties can be defined also in the toric
case.

In Section 2 we focus on a toric arrangement associated to an affine Weyl
group W. In this case the chambers are in bijection with the elements of the
corresponding finite Weyl group W, and the cells of S are given by the pairs
(w,T), where w € W and T is a proper subset of the set S of generators of .
This generalizes a construction introduced in [18] and [6].

In the last Section we give a description of the facets of the real toric ar-
rangement defined by the Weyl group A,, in the torus corresponding to the root
lattice. This description in terms of Young tableaux turns out to be interesting
since it coincides with the complex describing the space of all periodic legged
gaits of a robot body (see [2]).
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1 The CW-complex

1.1 Main definitions

Let T = (C*)" be a complex torus and X C Hom(T,C*) be a finite set of
characters of T'. The kernel of every x € X is a hypersurface of T":

He={teT | x(t)=1}.
Then X defines on T the toric arrangement:
Tx :={H,,x € X}.
Let Rx be the complement of the arrangement:
Rx =T\ |J Hy.
XEX

Let m : V. — T be the universal covering of 7. Then V is a complex vector
space of rank n, and 7 is the quotient map = : V — V/A, where A is a lattice
in V. Then the preimage 7~ (H,) of a hypersurface H, € Tx is the union of
an infinite family of parallel hyperplanes. Thus

Ax = {H hyperplane of V' | 3x € X s.t. n(H) = Hy}
is a periodic affine hyperplane arrangement in V. Let M x be its complement:

Mx :=V\ U W_I(Hx)-

xeX



By definition, m maps M x on Rx. Moreover the equations defining the hyper-
planes in Ax can always be assumed to have integral (hence real) coefficients
since they are given by elements of A. Thus by [17] there is an (infinite) CW-
complex ScM x and a map ¢ : Mx — S giving a homotopy equivalence.
Furthermore, we can build § in such a way that it is invariant under the action
of translation in A: for instance by building the cells relative to a fundamental
domain and then inductively, defining for each cell above the other cells of its
A-orbit by translation. Thus 7(S) is a finite CW-complex, which will be de-
noted by &, and the image of every cell of Sisacell of S. Moreover, since ¢ is
A—equivariant, it is well defined the map

Pr(t) = (T o) (x ()

which makes the following diagram commutative:

My 5 S
T T (1)

Ry =5 S
Lemma 1.1 The map ¢, is a homotopy equivalence between Rx and S.

Proof. The map ¢ is a homotopy equivalence hence, by definition, there is
a continuous map 1 : § — Mx such that ¢ is homotopic to the identity map
idpy and @) is homotopic to idg. Namely, since § is a deformation retract, the
homotopy inverse 1 is simply the inclusion map, which is clearly A—equivariant.
Hence the map

Un(t) = (m o) (n (1))
is well defined and makes the following diagram commutative:
S B My

T T (2)

S Y Ry,

Let I = [0, 1] be the unit interval and F': Mx x I — M x be the continuous
map such that F(z,0) = ¢(p(z)) and F(x,1) = idy, (x). Again, since F' is
A—equivariant, we can define the map:

Fr(t) := (mo F)(n~ (1))

In this way we get the commutative diagram:

My xI 5 My
Tl Tl (3)

RxxI 1= Ry.
By construction map Fy is a continuous map such that F(x,1) = idg, and
Fﬂ(x7 0) = (WP)W(CC) = T‘—"/}(pﬂ_l(x) = 7T¢7T_17T<P7T_1($) = r O @w(x)'

Hence F}; gives the required homotopy equivalence. 0



1.2 Salvetti complex for affine arrangements

In order to describe the structure of S, we now have to focus on the real coun-
terparts of the complex arrangements above.
Let Vg be the real part of V. In other words, let Vg = R™ be a real vector
space, and let V' = Vg ®g C be its complexification. Then we identify Vg with
a subspace of V' via the map v — v ® 1.
Let Ax g be the corresponding hyperplane arrangement on Vg and Mxr =
M xNVg its complement. Since the image of R under the map C — C/Z = C*
is the circle

St:i={zeC||z|=1}

we have that the image of V& under the map 7 : V — V/A = T is a compact
torus Tg C 1. A real toric arrangement Tx wr is naturally defined on Tk with
hypersurfaces H, g := H, N7k and complement Rx r = Rx NTr. Furthermore
7 restricts to universal covering map 7 : Vg — Tg and 1(Mx r) = Rx k.

We recall the following definitions:
1. a chamber of Ax g is a connected component of M x g;
2. a space of Ax R is an intersection of elements in Ax g;

3. a facet of Ax g is the intersection of a space and the closure of a chamber.

Let S := {ﬁ *1 be the stratification of Vi into facets F* induced by the arrange-
ment Ax g (see [1]), where superscript k stands for codimension.

Then the k-cells of the complex S described in [17] bijectively correspond to
pairs L

[C < F¥|

where C' = F¥ is a chamber of S and F' < FJ & clos(F') D F is the standard
partial ordering in S (see also [16]).

Let |ﬁ | be the affine subspace spanned by F , and let us consider the subar-
rangement

Az = {He Axg = FC H}.
A cell [C < F*] is in the boundary of [D < GY] (k < j) if and only if

i) F* <G
(4)

ii) the chambers C' and D are contained in the same chamber of Az

Previous conditions are equivalent to say that C is the chamber of Axr

which is the ”closest” to Z) among those which contain F* in their closure. The
standard notation [C' < F*] € 95[D < G7] will be used.

It is a simple remark that the above description of the Salvetti complex 5 is
A-invariant. Indeed each translation ¢ € A acts on the stratification S := {F¥}
sending a k-facet F* into the k-facet t.F’*. Then the translation ¢ acts on S
sanding a k-cell [C' < F*¥] in the k-cell [t.C' < t.F*].



1.3 Salvetti Complex for toric arrangements

In order to give a similar description for S, we introduce the following definitions:
1. a chamber of Tx r is a connected component of Rx g;

2. a layer of Tx r is a connected component of an intersection of elements of

Tx R;

3. a facet of Tx g is an intersection of a layer and the closure of a chamber.
Lemma 1.2

1. If&' is a chamber of Ax R, 77(5) is a chamber of Tx r;

2. If L is a space of Ax R, w(f) is a layer of Tx r;

3. If F is a facet of Ax R, w(ﬁ) is a facet of Tx r;

Proof. The first statement is clear, as well as the second one since w(f)
must be connected. The third claim is a direct consequence of the previous
two. O

Now, let us consider pairs
[C < F¥]

where C' = FY is a chamber of Tx g, F k a k-codimensional facet of Txr and
F' < FI & clos(F") D FJ.

By Lemma 1.2 the quotient map 7(F) of a facet is still a facet in the real
torus and, because of the surjectivity of m, we get that any facet F' in Tx r is

the image F' = mw(F') of an affine one.
We notice that

7([C < F)) = n([D < G]) = [(C) < 7(F)] = [x(D) < n(G)].

Indeed if 7([C < F]) = 7([D < G)]) there is a translation ¢ € A which sends
[C < F]in [D < G]. As a simple consequence D = t.C and F = t.G, i..
7(C) = (D) and 7 (F) = n(D).

Then there is a natural surjective map from the cells of S to the set of pairs

[C < F], but this map in general is not injective. Let us consider the simple
example defined by A ={z € R |z € Z}.



The chambers C; for i € Z are the open intervals (i, 4+ 1) and the 1-
codimensional facets are the points. The toric arrangement depends on the
chosen lattice. For example we can quotient in two different way as in the
above figure.

Namely, the picture on the left corresponds to the choice A = Z, i.e. w: 1z +—
e2™@ whereas the picture on the right is given by A = 2Z and 7 : x — ™. As
shown in the pictures the complex in the former example cannot be described
by the two pairs [C_; < C_1], [C_1 < ep] since it has 3 cells. Furthermore,
this CW-complex is not regular (the closure of its cells is not contractible). On
the other hand, in the latter example we have a regular CW-complex with two
0-dimensional cells and four 1-dimensional cells.

Now we will focus on the case in wich & maps bijectively on the set of pairs
[C < F], since then the description of the complex S is particularly striking.

Since § = 7(8S) is a complex homotopic to the complement Rx, S is described
by pairs of the form [C < F] if and only if the map

([C < F]) — [x(C) < =(F)] ()
is injective.

Moreover, if the definition (5) holds then we can define the boundary of a
pair [C' < F|. We need first to introduce new notations.

Notations. Let Py C V be a fundamental parallelogram for = : V. — T
containing the origin of V. Let 4y x be the subarrangement of Ax made by
all the hyperplanes that intersect Py (see, for istance, figure (8) in the next
Section).

We will say that a maximal dimensional cell [C < F™] is in A x if its
support | En | is the intersection of some of the hyperplanes in Ay x. While a



k-cell [5 < ﬁk] is in Ag, x if it is in the boundary of a n-cell in Ag x. Let So be
the set of all such cells.

With previous notations if (5) is injective (i.e. it is a bijection) we define the
boundary as follow:

[C < F¥]is in the boundary of [D < G’] (k < j7) if and only if there are cells
[C’ = Fk] en” ([C < F¥)N Sy and [D < G7] € = Y([D < GI]) N Sy such that
[C < F* € a4[D < G7).

Obviously this boundary map commutes with the one in S and we get that
the map in (5) is a bijection of CW-complexes.

Toric arrangement for which S is in bijection with pairs [C' < F] are easily
characterized as follows.

Definition 1.3 A toric arrangement Tx is thick if the quotient map
m:V—T

is injective on the closure clos(C ) of every chamber C of the associated affine
arrangement Ax .

We notice that every toric arrangement is covered by a thick one and the fiber
of the covering map is finite; hence our assumption is not very restrictive.
We have the following

Lemma 1.4 A toric arrangement Tx is thick if and only if
[7(C) < m(F)] = [r(D) < n(G)] <= n([C < F]) = n(|D < G))
for any two cells [C < F|,[D <G| e S

Proof. By previous considerations, it is enough to prove that the thick
condition is equivalent to

[7(C) < n(F)] = [x(D) < n(G)] = =([C < F]) = (D < G])

=1 Let Tx be thick and [r (C) < F(ﬁ)] = [f(ﬁ) <I(é)] for two given k-cells in

S. This implies that F(C) 7T(D) and 7(F") = 7(G), i.e. there are translations

tt’eAsuChthatDitCandG—t’ B
By construction ¢.F' is a facet in the closure clos(D). We get two facets t.F

and G both in clos(D) and with the same image 7(t.F) = 7(F) = n(G). By
hypothesis 7 is injective on clos(D) then t.F' = G, i.e. t = ¢’ which implies that
([C < F]) = =([D < G)). - N
< Let F and G two facets in clos(C) such that w(F) = (G) then

([C < F]) = [x(C) < «(F)] = [+(C) < 7(G)] = =([C < G)).

As a consequence if t € A is the translation such that F = t.G then t.C = C
It follows that ¢ is the identity and we get F= G i.e. 7 is injective on clos(C)
O



By Lemma 1.4 the map defined in (5) is a bijection if and only if Tx is a

thick toric arrangement. Hence the set of pairs [C' < F] is a CW-complex S
and we get the following theorem

Theorem 1 Let Tx be a thick toric arrangement. Then its complement Rx
has the same homotopy type of the CW-complex S.

Then in this case the complex S has a nice combinatorial description, totally
analogue to that of the classical Salvetti complex [17].

__ Moreover if a toric arrangement is thick then the maximal dimensional cells
[C < F"]in A, x are in one to one correspondence with the n-dimensional facets
of S. Then the boundary in a thick toric arrangement 7x can be completely
described knowing the boundary in the associated finite complex Ag x.

This allows to better understand the fundamental group of the complement
and to perform computations on integer cohomology.
Furthermore, in this case S is a regular CW-complex.

Remark 1.5 The number of chambers of Txr can be computed by formulae
given in [8] and [13]. However, the combinatorics of the layers in Tx r is more
complicated than the one of spaces of Axr. Hence, an enumeration of the
facets is not easy to provide in the general case. Thus from now on we focus
on the arrangements defined by roots systems. In this case the chambers are
parametrized by the elements of the Weyl group, and the poset of layers has
been described in [12].

2 Weyl toric arrangements

In this section we give a simpler description of the above complex for the case of
toric arrangements associated to affine Weyl groups, by taking as A the coroot
lattice (for the theory of Weyl groups see, for instance, [1]). Indeed in this case
the toric arrangement is thick. Using this description, we give an example of
how the integer cohomology of these arrangements can be computed.

2.1 Notations and Recalls.

Toric arrangement associated to a Weyl group. Let ® be a root system,
A = (®V) be the lattice spanned by the coroots, and A be its dual lattice (which
is called the cocharacters lattice). Then we define a torus 7' = Ta having A
as group of characters. Namely, if g is the semisimple complex Lie algebra
associated to ® and b is a Cartan subalgebra, T is defined as the quotient
T="n/A.

Each root « takes integer values on A, so it induces a map
e*:T—-CJ/Z~=C"

which is a character of the torus. Let X be the set of these characters; more
precisely, since @ and —« define the same hypersurface, we set

Xi{eo‘,ae@Jr}.



In this way to every affine Weyl group W we associate a toric arrangement Ty,
with complement Ry

We will call these arrangements Weyl toric arrangements. They have been
studied in [11] and [12].

Remark 2.1

1. Let G be the semisimple, simply connected linear algebraic group associated
to g. Then T is the mazimal torus of G corresponding to b, and Rx is
known as the set of regular points of T'.

2. One may take as A the root lattice (or equivalently, take as A the char-
acter lattice). But in this way one obtains as T a mazimal torus of the
semisimple adjoint group G*, which is the quotient of G by its center.

Let (W, S) be the Coxeter system associated to W and
AW = {stiﬁ—l |w e ﬁ// and s; € S}

the arrangement in C" obtained by complexifying the reflection hyperplanes of
W, where, in a standard way, the hyperplane Hg, -1 is the hyperplane fixed
by the reflection ws;w!.

We can view A as a subgroup of W acting by translations. Then it is well known
that W /A =~ W, where W is the finite reflection group associated to W (see for
instance [21]). As a consequence, the toric arrangement can be described as:

TW = {H[w]si[wfl] | w € W and s; € S}

where two hypersurfaces H{s, (w-1] and Hig,, (1] are equal if and only if there
is a translation t € A such that tws;(tw)~! = ws;w !, i.e. W = tw.
By [12], these hypersurfaces intersect in

W
| War s |
local copies of the finite hyperplane arrangement Ay, (o5} associated to the
group generated by S\ {s;}, s; € S.
For example in the affine Weyl group gn generated by {so,...,s,} for any
generator s; the finite reflection group associated to S\ {s;} is a copy of the

finite Coxeter group A,.
Then we have

Proposition 2.2 The toric arrangement T; is thick.

Proof. Since A is the coroot lattice, if ¢ € A is a translation such that there
is a n-codimensional facet F™ € clos(C) N clos(t.C) for an affine chamber C,
then ¢ is the identity (see [1]).

If T3 is not thick then there are two facets Fy and F} in the closure clos(C)
of a chamber C such that 7(F,) = n(F,), i.e. there is a translation ¢ € A such
that F, = t.Fy. Hence F2 is a facet in clos(C) N clos(t.C). In particular all the
n-codimensional facets F™ in the closure of F2 are in the closure of both C and
t.C'. This is a contradiction and it concludes the proof. |

Then we can construct the Salvetti complex for these arrangements in a way
which is very similar to the one known for affine Coxeter arrangements.



Salvetti Complex for affine Artin groups It is well known (see, for in-
stance, [6], [18] ) that the cells of Salvetti complex Sy for arrangements Ay are
of the form E(w,T) with I € S and @ € W. Indeed if & € {wsw|s € S,w €
W} is a reflection, the chambers are in one to one correspondence with the
elements of the group W as follows. Fixed a base chamber Cy, it corresponds
to 1 € W. Now if C corresponds to w, the chamber D separated from C' by the
reflection hyperplane Hg corresponds to the element aw € W. The notation
D ~ aw will be used.

If F* is a k-codimensional facet then the k-cell [C' < F*] corresponds to
the pair E(@,T) where @ ~ C and T’ = {s,,,..., si, } 1s the unique subset of
cardinality k£ in .S such that

k
| F* = His, a1

j=1

If Wp is the finite subgroup generated by s € T', by [6] the integer boundary
map can be expressed as follows:

OE@T) =Y 3 ()OS E@E T {5))

sjEFﬁGWFF\{Sj} (6)

where WIF\{U} ={we Wr: l(ws) > l(w)Vs € T\ {c}} and p(T,s;) = #{s; €
Ili < j}.

Remark 2.3 Instead of the co-boundary operator we prefer to describe its dual,
i.e. we define the boundary of a k-cell E(w,T') as a linear combination of the
(k — 1)-cells which have E(w,T) in their co-boundary, with the same coefficient
of the co-boundary operator. We make this choice since the boundary operator
has a nicer description than co-boundary operator in terms of the elements of

wW.

2.2 Description of the complex

Let Sw be the CW-complex associated to Ti;;. By the previous considerations,

Sw admits a description similar to that of gw. Indeed each chamber C' is in one
to one correspondence with an equivalence class [w] € W /A and then with an
element w € W ~ ﬁ///A of the finite reflection group W. We will write C' ~ [w].

In the same way, the pair [C' < F*] corresponds to the cell E([w],T') € Sy
where C' ~ [w] and T = {s;,,..., s, } is the unique subset of cardinality k in S

such that i

| Fk |: ﬂ H[w]sij[wfl]'
j=1
We now want to describe the boundary of each cell: this is done in a standard
way by characterizing the cells that are in the boundary of a given cell, and by
assigning an orientation to all cells (see, for instance, [18]).
By construction the toric CW-complex is locally isomorphic to the affine one
and it can inherit its affine orientation. Then the integer boundary operator for

10



Weyl toric arrangements can be written as the affine one:

(], 1) =3 S (—)! T B[], T\ {o})
€r r\{c} (7)
7t BeWn
where, instead of elements of the affine group W, we have equivalence classes
with representatives in the finite group W.
By the formula above, the complex Sy, can be effectively used for computing
homotopy invariants of Ry;. For instance we have

Proposition 2.4
H* (R, 2) ~ H*(Sw, Z)

where the coboundary map is the dual of the map defined in (7).

Example. Let us consider the affine Weyl group B, (see [1]) with Coxeter-
Dynkin diagram

4 4
[e] — [e] — O
50 51 52
and associated finite group Bs
4
o —> o
S1 S92

In this case we get translations t; = sps15251 and to = s25150s51 and the
affine arrangement is represented as:

H,=Hu ta, H,, He, o= Ha,
| N N N N N I/ H
| - '—/‘l—\" - /—l\_ - 7NT T 7|\_ - _/l\_ - _l_ a1 +2a2,3
N N 2 EE N NN
T | A 1A A oA |
artaz,—1 (| 7 |7 N 7 N[ 72oN 7N N
T N NN AN SN N R
as,5 N\ 7
220 v o Loy
Hoyvon 2 7 N7 LN N RN
Ny / \|/ N\ \'7
= = — W~ e — W — e — 2 H 00,1
/N /T\ 7 7IN sgA /Ty N N o 2,
Ha2,4 | N o/ LN /s AN PN s |
H N /\ S1A A /\ A
aitaz, =31, N1/ N s AN 1 N \I/H H
» o _
H K P N P N A /éI;\ /OTl\ 7 Hor+2a2,0 = Har+2a
A VA AR
Ha1+a27,4\| N N |, LN TN
v / N
/K - _/*\— N T E 2N /‘*f’: - : HO(I+2Q2771
Hey2 " N ! \<’ \>/ | N
/ AN
Haitas,—5 7\ /N 020NN
RGN G . b S T H,
H A N PN PN VARN p i a1 +202,—2
as,1 |\ | V2 BN VA BN | /N _ _
2 | | /\ < < > L /\ | | Hac1+0c2,1 = H@71 - Hao
Ny 4 N |/ N NI
e o T Nk - N Hy e 3
AN 2N O /N P . a1t202,—

11



If Ay is the finite subarrangement defined in Section 2.3, then the real toric
arrangement is obtained quotienting it as shown in the following figure, where
arrows indicate identified edges:

| Hg 5,5, Hgs,50 Hs, | Hy,
___________ .>___._._._._._._._._.
| S$15081 [s1S05150,/ |
| 515250 i i |
S150@
| sos10l
' L
| | 818081
[ )
| 182 |
508
° s1@ 051
| |
| |
| |
Y . (8)
S0
|
| |
| |
S|15251 .l
° |
| |
- Hy,
slsgslsg. I
| S2@ [ |
[ ] $280
| 525182 |
S U — ’ _________ ]_
H525152

Here, for brevity, the vertices E(w, () are labelled by the element w € w.

We get, for example, that the cell E([1],0) is the vertex in the chamber
containg 1 € W, while the vertices E([so],0)) and E([s1s251],0) correspond
to the same chamber in the toric arrangement; indeed sqg = t1$15251, then
[80] = [818281].

Notice that the number of chambers in the real torus is 8 in one to one
correspondence with the finite Weyl group By with cardinality 8. Then we get
exactly:

8 0-cells of the form E([w],0) for w € Ba,
24 1-cells of the form E([w],{s;}) for w € By and i = 0,1,2,
24 2-cells of the form E([w],{s;,s;}) for w € By and 0 <i < j < 2.

These cells locally correspond to four finite Coxeter arrangements, two of
type By and two of type A; X A; appearing in the figure above. In particular
the 2-cells can be written as:

E([w], {s:, si+1}) with a representative w chosen in the Coxeter group Bs
generated by {s;, si+1}), i=0,1;

E([w], {s0,s2}) and E([syw], {so, s2}) with a representative w chosen in the
group {1, sg, s2, Sps2} generated by {so, s2}.

The representatives can be chosen in the more suitable way for computations.
The boundary map (7) for the 1-cells is:

hE([wl,{si}) = E([w],0) — E([ws], 0)

12



and it gives rise to a matrix of 24 columns and 8 rows with entries 0, 1 and —1.
On the other hand, the second boundary map is given by

O E([w], {si,si41}) = E([w],{s:}) — E([wsiy1],{s:}) + E([wsisiy1], {si})—
—E([w], {si+1}) + E([wsi], {si+1}) — E([wsit1si], {si+1})

OaE([w], {50, 52}) = E([w], {s0}) = E([ws2], {so}) = E([w], {s2}) + E([wso], {s2})-

In this way we get that the homology, and hence the cohomology, is torsion free
and Hy(Rp,,Z) = Z, Hi(Rp,,Z) = Z® and Hy(Rp,,Z) = Z'°, which agrees
with the Betti numbers computed in [12, Ex. 5.14].

In general we have the following

Conjecture 2.5 Let W be an affine Weyl group and Ty be the corresponding
toric arrangement. Then the integer cohomology of the complement is torsion
free (and hence it coincides with the De Rham cohomology computed in [3]).

This conjecture will be proved in a future paper [19].

3 An example from robotics

In this section we give an example of non-thick arrangement: the one obtained
from the affine Weyl arrangement A i by quotienting by the coroot lattice,
which we will denoted by A 7 (see the second part of Remark 2.1).

Indeed in this case the underlying real toric arrangement has a very nice
description in terms of Young tableaux. More precisely the facets of ’TA R are
in one to one correspondence with a family of Young tableaux which turn out
to be the same tableaux describing the space of all periodic legged gaits of a
robot body (see [2]).

It is clear that, in this case, the finite arrangement A, 7 is exactly the braid
arrangement A4, .

3.1 Tableaux description for the complex S A,

We indicate by A, the symmetric group on n + 1 elements, acting by permu-
tations of the coordinates. Then A = A4, is the braid arrangement and Sa,,
is the associated CW-complex (even if the arrangement is finite we continue to
use the same notation used above for the affine case to distinguish it from the
toric one).

Given a system of coordinates in R"*1, we describe gAn through certain
tableaux as follow.

Every k-cell [C' < F1 is represented by a tableau with n+1 boxes and n+1—k
rows (aligned on the left), filled with all the integers in {1,...,n + 1}. There is
no monotony condition on the lengths of the rows. One has:

- (21,...,&p41) Is a point in F if and only if:

1.7 and j belong to the same row if and only if z; = z;,
2. i belongs to a row preceding the one containing j if and only if x; < z;;
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- the chamber C belongs to the half-space x; < z; if and only if:

1. either the row which contains ¢ is preceding the one containing j or
2.4 and j belong to the same row and the column which contains i is pre-
ceding the one containing j.

Notice that the facets of the real stratification are represented by standard

Young tableaux, since the order of the entries in each row does not matter, and
hence we can assume it to be strictly increasing.
Notice also that the geometrical action of A, on the stratification induces a
natural action on the complex S4, which, in terms of tableaux, is given by a
left action of A,,: o. T is the tableau with the same shape as T', and with entries
permuted by o.

3.2 Tableaux description for the facets of 7;

Let Ayj ;7 C Aj; be the braid arrangement passing through the origin and
m: R — R /A5 = Tk the projection map.

If F; is the stratification of R™*! into facets induced by the arrangement
Az, we deﬁne the set:

Foi ={FFeF; |dos(F")> (| H}

HEAO,A“H

Obviously FO 4, is in one to one correspondence with the stratification F 4,
induced by the braid arrangement A4, and the restriction TF, is surjective
on TR

It follows that in order to understand how A 7 A, acts on F~ it is enough
to study how it acts on F; 7 . Moreover it is enough to c0n31der facets in the

closure of the base chamber CO corresponding to 1 € An; the action on the
others will be obtained by symmetry.

Let us remark that a facet F* is in FO i, if and only if it intersects any ball
By around the origin. Let By be a ball of suﬁimently small radius and

z=(T1,...,Tnt1) € clos(éo) N By

be a given point in a facet Fk ¢ F, i Then the z;’s satisfy z1 < 29 < ... <

ZTny1 and the standard Young tableaux T'bz;, associated to F* will have entries
increasing along both, rows and columns.

Let t1,...,t, € A; be a base such that ¢; translates the reflection hyper-

plane H; ;41 = Ker(:zcZ xi+1) fixing all hyperplanes H; j11 = Ker(z; — 2j+1)
for j # i (i.e. each point in H; ;11 is sent in a point still in Hj j41).
Then we can assume that translation ¢; acts on the entry z; as t;.x; = x; + ¢
with «; +t > 2541 and, as Hj j41, for j # i, are invariant under the action of ¢;,
it follows that ¢;.x;_1 = x;_1 + t and, by 1nduct10n t;.x; =x; 4+t for all j <1,
while t;.2; = x; for all j > 1.
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Recall that, by construction, given a standard Young tableaux, a point
(z1,...,Tpt1) is a point in F' if and only if:

1.7 and j belong to the same row if and only if z; = z;,
2. i belongs to a row preceding the one containing j if and only if z; < z;;

It follows that if T'b is a tableau such that ¢ € ri and ¢ + 1 € rgyq are in
two different rows, then ¢; acts on Tb sending it in a tableau T with rows
P = Thily oo s Ty = ThyTh_ g1 = T1s- -7 = Tk While if 4,4 +1 € ry, are in
the same row, then t; acts sending the corresponding facet in a facet which is
not anymore in A, 7 .

Then A; acts on the h rows of a tableau Thz as a power of the cyclic

n

permutation (1,...,h).

Equivalently let Y(n + 1,k + 1) be the set of standard Young tableaux with
k 4+ 1 rows and n + 1 entries and Tb € Y(n + 1,k + 1) be a tableau of rows
(r1,...,7%+1). Then we have the following proposition.

Proposition 3.1 The set of facets F* of the toric arrangement Tﬁn g 8 in one
to one correspondence with the set

Y(n+1,k+1)/ ~

where a tableau TV ~ Tb if and only if the rows of TV are (r4:(1),- -, Tos (k41))
for a power o of the cyclic permutation o = (1,...,k+1).

In this way we get exactly the tableaux described in [2].

Finally let us recall that the relation F* < FF+1 holds if and only if the

tableau T, corresponding to F' k+1 is obtained by attaching two consecutive
rows of Thz,.
As a consequence if F¥ and FF*1 are facets in the toric arrangement ’Tng,
F¥ < F*+1if and only if the tableau Thpx11 corresponding to F*+1 is obtained
by attaching two consecutive rows of Thrr or attaching the first one to the last
one.
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