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Abstract: Frequency hopping (FH) sequences play a key role in frequency hopping spread 

spectrum communication systems. It is important to find FH sequences which have 

simultaneously good Hamming correlation，large family size and large period. In this paper, a 

new set of FH sequences with large period is proposed, and the Hamming correlation 

distribution of the new set is investigated. The construction of new FH sequences is based 

upon Whiteman’s generalized cyclotomy. It is shown that the proposed FH sequence set is 

optimal with respect to the average Hamming correlation bound.  

1  Introduction 

Frequency hopping code division multiple access (FH-CDMA) is widely used in modern 

communication systems such as Bluetooth, ultra-wideband (UWB), military or radar 

applications, etc. In FH-CDMA systems, the receiver is confronted with the interference 

caused by undesired signals when it attempts to demodulate one of the signals from several 

transmitters. Generally, it is very desirable to keep the mutual interference, or the Hamming 

crosscorrelations and the out-of-phase Hamming autocorrelations of the frequency hopping 

(FH) sequences employed, as low as possible. On the other hand, it is also preferred to have 

more FH sequences accommodating more distinct users. The processing gain [1][2] of an FH 

system is clearly lost if the jammer knows the FH sequences being used. To prevent the 

jammer from storing and replaying to his advantage the FH sequences currently employed, it 

is necessary that the period L of the FH sequences be large. As a consequence, the need for 

finding FH sequences which have simultaneously low Hamming correlation, large family size 

and large period is therefore well motivated. 
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There are two kinds of measurement for the Hamming correlation of FH sequences: one is 

the maximum Hamming correlation [3][4] and another is the average Hamming correlation 

[5][6]. In recent years, the designs of FH sequences remain of great interest. Among of them, 

most have been devoted to the maximum Hamming correlation property [7][8][9][10][11]. 

While the average Hamming correlation indicates the average error (or interference) 

performance of the FH-CDMA systems, the design of optimal FH sequences with respect to 

the optimal average Hamming correlation property is very meaningful as well. However, up 

to now, only a few results on the average Hamming correlation of FH sequences have been 

reported [5][6][12][13]. 

A generalized cyclotomy with respect to n = pq was introduced by Whiteman [14], where p 

and q are two different odd primes. When n is a prime, it is referred to as classical cyclotomy. 

Some optimal or near-optimal FH sequence sets with respect to the maximum Hamming 

correlation bound were constructed based on classical cyclotomy [7][9][15][16]. Whiteman’s 

generalized cyclotomy has been widely applied to design difference sets [14][17], as well to 

construct binary sequences with good correlation properties (but, not Hamming correlation) 

[18][19][20]. In this paper, we construct a new set of FH sequences based on Whiteman’s 

generalized cyclotomy and investigate the average Hamming correlation of the FH sequence 

set. It is shown that the set of FH sequences is an optimal average Hamming correlation set. 

The outline of this paper is as follows. In Section 2, we give some preliminaries on FH 

sequences, and review some bounds on the maximum and average Hamming correlation, 

respectively. In Section 3, we introduce the definition and some fundamental properties of 

Whiteman’s generalized cyclotomy and the corresponding cyclotomic number. In Section 4, 

we give some basic lemmas that are needed to prove our main results. In Section 5, we focus 

on a new construction of the FH sequence set, and determine the Hamming correlation value 

of the FH sequences. Finally, we conclude this paper in Section 6. 

2 Preliminaries 

Let F={f0,f1,…,fv−1} be a set of available frequencies called a frequency library. Let U be a set 

of M FH sequences of length L over F. Given two sequences X={x0,x1,…,xL−1} and 

Y={y0,y1,…,yL−1} in U, the periodic Hamming crosscorrelation function of X and Y is defined 
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by 
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modulo L. When X=Y,
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, ( )X YH τ is called the Hamming autocorrelation function of X. In this 

case, we denote by ( )XH τ . 

The maximum Hamming autocorrelation sidelobe H(X) of X and the maximum Hamming 

crosscorrelation H(X, Y) between X and Y are defined, respectively, by 

{ }

{ }
1 <

,0 <

( ) max ( ) ,

( , ) max ( ) .

XL

X YL

H X H

H X Y H
τ

τ

τ

τ
≤

≤

=

=
 

To evaluate single FH sequence, Lempel and Greenberger established the first bound in 

1974, known as the Lempel-Greenberger bound. 

Lemma 1(The Lempel-Greenberger bound [3]): For any FH sequence X of length L over F 

with |F|=v, 

( )( )( )
( 1)

L b L b vH X
v L

⎡ ⎤− + −
≥ ⎢ ⎥−⎢ ⎥

                           (1) 

where b denotes the nonnegative residue of L modulo v, and ⎡x⎤ denotes the smallest integer 

greater than or equal to x. 

For any given FH sequence set U, the maximum Hamming autocorrelation sidelobe Ha(U) 

and the maximum Hamming crosscorrelation Hc(U) are defined, respectively, by 

, ,

( ) max{ ( )},

( ) max { ( , )}.
a X U

c X Y U X Y

H U H X

H U H X Y
∈

∈ ≠

=

=
 

In 2004, Peng and Fan took account of the number of sequences in the family and then 

developed the following bound. 

Lemma 2 ([4]): Let U be a set of M FH sequences of length L over a frequency slot set F 

with |F|=v, and /I LM v= ⎢ ⎥⎣ ⎦ , where ⎣x⎦ denotes the largest integer less than or equal to x. 

Then 

( 1) ( ) ( 1) ( ) ( )a cL vH U M LvH U LM v L− + − ≥ − .                   (2) 

Another important performance indicator of the FH sequences is the average Hamming 

correlation defined by 

Definition 1 ([6]): Let U be a set of M FH sequences of length L over a given frequency slot 
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set F with size v, we call 

, 1 1
( ) ( ),a

X U L
S U H

τ
X τ

∈ ≤ ≤ −

= ∑                            (3) 

,
, , ,0 1

1( ) ( )
2c

X Y U X Y L

S U H
τ

X Y τ
∈ ≠ ≤ ≤ −

= ∑                        (4) 

as the overall number of Hamming autocorrelation and Hamming crosscorrelation of U 

respectively, and call 

( )( ) ,
( 1)
a

a
S UA U

M L
=

−    
                              (5) 

2 ( )( )
( 1
c

c
S UA U

LM M
=

)−
                                 (6) 

as the average Hamming autocorrelation and the average Hamming crosscorrelation of U 

respectively.  

  For simplicity, we denote Ha =Ha(U), Hc =Hc(U), Sa = Sa(U), Sc = Sc(U), Aa = Aa(U) and Ac = 

Ac(U). 

In 2008, Peng et al. derived the following theoretical limit which gave a bounded relation 

among the parameters v, L, M, Aa and Ac. 

Lemma 3 ([6]): Let U be a set of M FH sequences of length L over a given frequency slot 

set F with size v. Let Aa and Ac be the average Hamming autocorrelation and the average 

Hamming crosscorrelation of U, respectively. Then 

.
( 1) ( 1) ( 1)( 1)

a cA A LM v
L M L v L M

−
+ ≥

− − − −
                    (7) 

Hereafter, we use the following definitions. 

1)  An FH sequence X∈U is called optimal if the Lempel-Greenberger bound in 

Lemma 1 is met. 

2)  An FH sequence set U is an optimal set with respect to the maximum Hamming 

correlation bound if Ha and Hc of U is a pair of the minimum integer solutions of 

inequality (2).  

3)  An FH sequence set U is an optimal set with respect to the average Hamming 

correlation bound if the parameters v, L, M, Aa, and Ac of U satisfy inequality (7) with 
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equality. 

3 Generalized cyclotomy and cyclotomic number 

Let p and q be two distinct primes with gcd(p−1, q−1)=e. According to the Chinese 

Remainder Theorem, there exists a common primitive root of p and q, say g. Let x be an 

integer satisfying the simultaneous congruences  

(mod  ),
1(mod  ).

x g p
x q
≡⎧

⎨ ≡⎩
                                  (8) 

Let d=(p−1)(q−1)/e, f1=(p−1)/e, f2=(q−1)/e and L=pq. Thus, we can get a multiplicative 

subgroup of the residue class ring ZL, as follows [14] 

{ }* : 0,1, , 1;  0,1, , 1s i
L g x s d i e= = − =Z K K −  

where *
LZ  denotes the set of all invertible elements of ZL.  

Whiteman’s generalized cyclotomic classes Di, 0≤ i ≤e−1, of order e are defined by 

Di={gsxi: s=0,1,…,d−1} 

where the multiplication is performed modulo L. Obviously, . 1*
0

e
L ii

D−

=
=Z U

Define 

{ }
{ }

, 2 , , ( 1) ,

, 2 , , ( 1) ,
{0}.

P p p q p

Q q q p q
R

= −

= −

=

K

K  

Let H be a subset of ZL and a be an element of ZL. Define 

{ }: ,            { : }.H a h a h H a H a h h H+ = + ∈ ⋅ = ⋅ ∈  

For fixed i and j with 0≤i, j≤ e−1, the corresponding generalized cyclotomic number of 

order e is defined by 

( , ) | ( 1) |ii j D Dj= + I .                            (9) 

Now we give two fundamental properties of the generalized cyclotomic number. 

Lemma 4 ([17]): The generalized cyclotomic number defined in (9) has the following 

properties: 

1)                       (i, j)=( e − i, j − i); 

  



6 

2)                     
1

0

( 2)( 2) 1( , )
e

j
i

p qi j
e

ε
−

=

− − −
= +∑  

where 

⎩
⎨
⎧ =

=
       otherwise.   ,0

           0 if   ,1 j
jε  

4 Basic Lemmas 

In this section, we will give some useful lemmas for determining the Hamming correlation of 

our FH sequence set defined in the next section. 

Lemma 5 ([21]):   

∑
−

= ⎪
⎩

⎪
⎨

⎧

−−−

=+
−−−

=+
1

0   otherwise.      ,1)2)(2(

     0 if   ,11)2)(2(

),(
e

i

e
qp

k
e
qp

iik                  (10) 

Lemma 6 ([21]): For any k∈Ze\{0}, we have 

1)                   ( )
1 21

2 1
0

*

( 1),                   if  
( 1),                  if  

( 2)( 2) 1 1,    if ;

e

i i
i

L

ef f w P
D w D ef f w Q

p q w
e

−

=

⎧
⎪ − ∈
⎪

+ = − ∈⎨
⎪ − − −⎪ + ∈
⎩

∑
Z

I             

2)                    ( )
1 21

*
0

,                      if 
( 2)( 2) 1,   if .     

e

i k i
Li

ef f w P Q
D w D p q w

e

−

+
=

∈⎧
⎪+ = − − −⎨

∈⎪⎩
∑ Z

U

I             

Lemma 7:   

( )( ) ( )
*0,   if 

,   if   
Lw P

Q R w Q R
p w Q R

∈⎧
+ = ⎨ ∈⎩

ZU
U I U

U
 

and  

( )
2,      if   
1,      if  0  

0,           otherwise.

q w
P w P q w

− ∈⎧
⎪+ = − =⎨
⎪
⎩

I

P
 

Proof: This lemma is obvious, so we omit the proof.                              ■ 

Lemma 8: Given 0 ≤ i ≤ e−1, then 
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( ) ( )
*

1

0,  if  
,  if 

i
L

w Q R
D w Q R

f w P
∈⎧

+ = ⎨ ∈⎩ Z
U

I U
U

  

and  

( ) ( )
*

2

0,  if  
,  if .

i
L

w P R
D w P R

f w Q
∈⎧
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U

I U
U

 

Proof: We only prove the first equation since the second one is similar. 

When ,w Q R∈ U ( ) ( ) 0iD w Q R+ I U =  is clear. As for *
Lw P∈ ZU , an element 

, 0≤ s ≤d−1, 0≤ i ≤e−1 if and only if (s iz g x w Q R= + ∈ U )

0(mod  )sg w+ ≡ q                                (11) 

in which we make use of the fact that x≡1(mod q). Let s = t(q −1) +s1, where 0 ≤ t ≤ f1−1, 0 ≤ 

s1 ≤ q−1. Obviously, only one s1 in Zq satisfies (11). Then, there are f1 solutions 0≤s≤ d−1 to 

(11). Therefore, the number of solutions of (11) with 0≤s≤ d−1 is f1.                    ■ 

Lemma 9 ([21]): −1∈D0 if |f1−f2| is even, and −1∈De/2 if |f1−f2| is odd. 

Lemma 10: For any 0≤ i≤ e−1, we have 

1)         ( )

2

2 1 2

*
2 1

2 /2 1 2

*
2 /2 1 2

0,           if 
,         if 

1,    if  and | | is even
,         if \  and | | is even

1,    if  and | | is odd
,         if \  and | | is odd

i
i

L i

e i

L e i

w P R
f w Q
f w D f f

D w P
f w D f f
f w D f f
f w D f f

+

+

∈
∈

− ∈ −
+ =

∈ −
− ∈ −

∈ −

Z

Z

U

I

;

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

2

      (12) 

2)             ( ) ( *
2

2

0,         if 
,       if  \

1,  if .
i

i

w P R
P w D f w Q D

f w D

∈⎧
⎪+ = ∈⎨
⎪ − ∈⎩

Z
U

I )L iU                   (13) 

Proof: For 1), note that  

( ) ( ) ( )( )i i iD w P D w P R D w R+ = + − +I I U I . 

By Lemma 9, we have 

( )
1 2

*
1 2

/2 1 2

*
/2 1 2

0,   if 
1,    if  and | | is even
0,    if \  and | | is even
1,    if  and | | is odd
0,    if \  and | | is odd.

i

i L i

e i

L e i

w P Q R
w D f f

D w R w D f f
w D f f
w D f f

+

+

∈⎧
⎪ ∈ −⎪⎪+ = ∈ −⎨
⎪ ∈ −⎪

∈ −⎪⎩

Z

Z

U U

I          (14) 

Then the conclusion follows from Lemma 8 and Equation (14). 
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  For 2), we have 

( ) ( )( ) ( ) ( )i i i iP w D P D w P R D w R D w+ = − = − − −I I U I I .  

Applying Lemma 8, we arrive at the conclusion.                                   ■ 

Lemma 11 ([18]):  

( ) ( )
*

0,  if         
1,   if .L

w Q
P w Q R

w P
∈⎧

+ = ⎨ ∈⎩ Z
I U

U
 

5 New construction of FH sequences based on Whiteman’s generalized cyclotomy 

In this section, we construct a new set of FH sequences with optimal average Hamming 

correlation property. 

Let 

0 0

/2 /2

,
,  for 1 1, / 2,

.
i i

e e

C D Q R
C D i e i e
C D P

=
= ≤ ≤ − ≠
=

U U

U

 

Then,  and 
1

0

e
ii

C−

=
= ZU L i jC C = ∅I  for i≠j. 

Let be a sequence of length L over a frequency slot set F. Then 

supp

0 1 1{ , , , }LX x x x −= K

X(k)={t | xt=k, 0≤ t ≤ L−1} is called the support of k∈F in the sequence X. 

Definition 2: Define an FH sequence set ( ){ : 0,1,..., 1}iU X i e= = −  of length L=pq, 

where ( ) ( ) ( )( )
0 1 1{ , ,..., }i i ii

LX x x x −=  is defined by 

( )supp ( ) ,0 1iX j ij C j e+= ≤ ≤ −                          (15) 

where j+i is reduced modulo e. 

Based on the lemmas in last section, we are now ready to determine the Hamming 

correlation properties of the FH sequence set U. 

Theorem 1: Let p and q be different odd primes with gcd(p−1, q−1)=e. Define p=ef1+1 and 

q=ef2+1, then the FH sequence set U over F have the following properties. 

1) The family size M=e, the sequence length L=pq, and |F|=e. 

2) The Hamming autocorrelation function of X(k)∈U for 0≤ k≤ e−1 is given by 
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( )

/2 1 2

0 /2 1 2

1 1,   if        

1 1,   if    

1 1,                           if  and | |  is even
( ) 1,                                if  and | | is odd

k

e

X

e

pq p q q p w P
e e

pq q p p q w Q
e e

pq w D f f
eH w pq w D D f f
e

pq

− −
+ + − − ∈

− −
+ + − + ∈

−
− ∈ −

=
−

∈ −

−

U

0 1 2
1 1,                            if  and | | is even

1 1,                            if  for 0, / 2.i

w D f f
e

pq w D i e
e

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ + ∈ −⎪
⎪ −⎪ + ∈ ≠
⎩

 

3) The Hamming crosscorrelation function of any two distinct FH sequences X(k), X(l)∈U for 

k≠l is given by 

3.1) When l−k≡e/2(mod e) 

( ) ( ), /2

0 /2 1 2

0,                             if 0 
1 2,   if  

1 ,        if 

1( ) 2,               if  and | | is even

1 1,                if  and | | is odd

k lX X e

e

w
pq p q w P

e e
pq q p w Q

e e
pqH w w D f f

e
pq w D D f f

e

=
− −

+ + ∈

− −
+ ∈

−
= + ∈ −

−
+ ∈ −U

1 2

0 1 2
1,                     if  and | | is even

1 2,                if  for 0, / 2.     i

pq w D f f
e

pq w D i e
e

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ −

∈ −⎪
⎪

−⎪ + ∈ ≠
⎪⎩

      (16) 

3.2) When 2(l−k)≡e/2(mod e), 

( ) ( ), /2 1 2

1 2

0,                           if 0
1 ,      if  

1 ,      if 

1( ) 1,              if  and | | is even

1 2,             if  and | | is odd

k lX X l k l k e

l k

w
pq p q w P

e e
pq q p w Q

e e
pqH w w D D f f

e
pq w D f f

e
pq

− − +

−

=
− −

+ ∈

− −
+ ∈

−
= − ∈ −

−
− ∈ −

U

/2 1 2
1,                  if  and | | is odd

1,                  if  for , / 2.

l k e

i

w D f f
e

pq w D i l k l k e
e

− +

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ −

∈ −⎪
⎪

−⎪ ∈ ≠ − − +
⎪⎩

   (17) 

3.3) When 2(l−k)≠e/2(mod e) and l−k≠e/2(mod e), 
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( ) ( )

1 2

, 1

0,                          if 0
1 ,     if 

1 ,     if 

1,                 if  and | | is even

1( ) 1,             if  and | | is odd

1 1,       

k l

l k

X X l k

w
pq p q w P

e e
pq q p w Q

e e
pq w D f f

e
pqH w w D f f

e
pq

e

−

−

=
− −

+ ∈

− −
+ ∈

−
∈ −

−
= − ∈ −

−
−

2

/2 1 2

/2 1 2

/2

      if  and | | is even

1,                  if  and | | is odd

1,                  if  for , / 2, / 2

1 1,             if .

l k e

l k e

i

k l e

w D f f

pq w D f f
e

pq w D i l k l k e k l e
e

pq w D
e

− +

− +

− +

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪ ∈ −
⎪
⎪ −

∈ −⎪

−
∈ ≠ − − + − +

−
− ∈

⎩

⎪
⎪
⎪
⎪
⎪

   (18) 

Proof: 1) is clear. 

Concerning 2), the Hamming autocorrelation of X(k) at shift w is  

( ) ( ) ( )

( )( ) ( )
( ) ( )
( )( ) ( )

( )

1

0
0

0

/2 /2

( )

.

k

e

X i i
i

e e

H w D w D D w Q

Q R w D P w P

D w P P w D

Q R w Q R

−

=

= + + +

+ + + +

+ + + +

+ +

∑ I I

U I I

I I

U I U

RU

             (19) 

Then by Lemma 6, 7, 8, and 10, the result follows. 

Regarding 3), for any FH sequences X(k), X(l)∈U with k ≠ l and 0≤ k, l ≤e−1, their Hamming 

crosscorrelation function at shift w is given by 

( )( ) ( )

1

,
0

( )k l

e

X X i l i k
i

H w C w C
−

+ +
=

= +∑ I . 

When l−k≡e/2(mod e), we have 

( ) ( )( )

( )( ) ( )
( ) ( ) ( ) ( )
( )

( ) ( )

1

, /2
0

0

/2

0

( )

.

k l

e

X X i e i e
i

e

/2H w D w D Q R w D

Q R w P D w P

D w Q R P w Q R

P w D

−

+

=

= + + +

+ + + +

+ + + +

+ +

∑ I U I

U I I

I U I U

I

 

Applied Lemmas 6, 8, 10 and 11 to the above equation, the conclusion in 3.1) then follows. 

While for any FH sequences X(k), X(l)∈U with l−k≠e/2(mod e), their Hamming 
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crosscorrelation function at shift w is given by 

( ) ( ) ( )

( ) ( )( )
( )

( ) ( )

1

,
0

/2

/2

( )

  

  .

k l

e

X X i l k i l k
i

l k e k l

k l e

H w D w D D w Q

D w P Q R w D

P w D

−

+ − −

=

R

− + −

− +

= + + +

+ + + +

+ +

∑ I I

I U I

I

U

 

When 2(l−k)≡e/2(mod e), it is easily verified that ( ) ( )/2k l e l kP w D P w D− + −+ = +I I . 

Therefore, the equation in 3.2) follows immediately from Lemmas 6, 8, and 10. Similarly, 

when 2(l−k)≠e/2(mod e), from Lemma 6, 8, and 10, the desired result in 3.3) follows, which 

completes the proof.                                                         ■ 

Theorem 2: The average Hamming autocorrelation and average Hamming crosscorrelation 

of the FH sequence set U are respectively as follows 

2 2 2 2

( )( )
( 1)

( 1) ( ) (1 ) 2 ( 1) ( 1)
( 1)

a
a

S UA U
M L
pq e q p e pq eq q p

e pq

=
−

− + + + − − − − − −
=

−

2
,       (20)

 

2 2

2 ( )( )
( 1)

( 1)( 1) 2 ( 1) ( 1)( 1) ( 1)( 1) .
( 1)

c
c

S UA U
LM M
e pq ep q e q e p

pqe e

=
−

− − + − − − − − − −
=

−

2
           (21) 

The FH sequence set U is optimal with respect to the average Hamming correlation bound. 

Proof: When |f1−f2| is even, according to the definitions of Sa and Sc, we have
 

( )

0 1, 1 1

2 2 2 2 2

( )

1 1( 1) 1 ( 1) 1
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From Theorem 1, then 
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Applying (5) and (6), we obtain (20) and (21). 

Similarly, when |f1−f2| is odd, we obtain the same average Hamming autocorrelation and 

average Hamming crosscorrelation. By applying (20) and (21) to (7), it follows that 
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Thus, the FH sequence set U is an optimal average Hamming correlation set.          ■ 

Example 1: Let p=5, q=17, then e=4, d=16, f1=1, f2=4 and |f1−f2|=3. The FH sequences of U 

are 

X(0) = {0010221030212112001020223220212311022211211332330020331230202100222 

302233032212320232}; 

X(1) = {1121332101323223112131330331323022133322322003001131002301313211333 

013300103323031303}; 

X(2) = {2232003212030330223202001002030133200033033110112202113012020322000 

120011210030102010}; 

X(3) ={3303110323101001330313112113101200311100100221223313220123131033111 

231122321101213121}. 

  



13 

The Hamming autocorrelation of X(i) for i = 0,1, 2, 3 is 

( ) = {85, 21, 22, 21, 21, 29, 22, 21, 22, 21, 29, 22, 21, 22, 22, 29, 21, 13, 22, 21, 29, 21, 
    21, 21, 22, 29, 21, 21, 21, 22, 29, 22, 22, 22, 13, 29, 21, 21, 22, 22, 29, 22, 22, 22,
    22, 29, 2

iXH

2, 22,  21, 21, 29, 13, 22, 22, 22, 29, 22, 21, 21, 21, 29, 22, 21, 21, 21, 29,
    21, 22, 13, 21, 29, 22, 22, 21, 22, 29, 21, 22, 21, 22, 29, 21, 21, 22, 21}.

 

The Hamming crosscorrelation is 

(0) (1), ={0, 21, 19, 21, 21, 18, 19, 21, 21, 21, 18, 19, 21, 19, 19, 18, 21, 24, 19, 21,18, 21,
   21, 21, 21, 18, 21, 21, 21,19, 18, 21, 19, 19, 24, 18, 21, 21, 19, 19,18, 19, 19, 21,
   21, 18, 21, 

X XH

21, 21, 21, 18, 24, 21, 21, 19, 18, 21, 21, 21, 21, 8, 19, 21, 21, 21, 18,
   21, 21, 24, 21, 18, 21, 21, 21, 21, 18, 21, 19, 21, 21,18, 21, 21, 21, 21};

 

(0) ( 2), ={0, 22, 23, 22, 22, 20, 23, 22, 23, 22, 20, 23, 22, 23, 23, 20, 22, 24, 23, 22,20, 22, 22,
                 22, 23, 20, 22, 22, 22,23, 20, 23, 23, 23, 24, 20, 22, 22, 23, 23,20, 23, 23, 23, 

X XH
23, 20,

                 23, 23, 22, 22, 20, 24, 23, 23, 23, 20, 23, 22, 22, 22,20, 23, 22, 22, 22, 20, 22, 23, 24,
                 22, 20, 23, 23, 22, 23, 20, 22, 23, 22, 23,20, 22, 22, 23, 22};

 

(0) (3), ={0, 21, 21, 21, 21, 18, 21, 21, 19, 21, 18, 21, 21, 21, 21, 18, 21, 24, 21, 21,18, 21, 21,
                 21, 19, 18, 21, 21, 21,21, 18, 19, 21, 21, 24, 18, 21, 21, 21, 21,18, 21, 21, 19, 

X XH
19, 18,

                 19, 19, 21, 21, 18, 24, 19, 19, 21, 18, 19, 21, 21, 21,18, 21, 21, 21, 21, 18, 21, 19, 24,
                 21, 18, 19, 19, 21, 19, 18, 21, 21, 21, 19,18, 21, 21, 19, 21};

 

(1) ( 2), ={0, 21, 19, 21, 21, 18, 19, 21, 21, 21, 18, 19, 21, 19, 19, 18, 21, 24, 19, 21,18, 21, 21,
                 21, 21, 18, 21, 21, 21, 19, 18, 21, 19, 19, 24, 18, 21, 21, 19, 19,18, 19, 19, 21,

X XH
 21, 18,

                 21, 21, 21, 21, 18, 24, 21, 21, 19, 18, 21, 21, 21, 21,18, 19, 21, 21, 21, 18, 21, 21, 24,
                 21, 18, 21, 21, 21, 21, 18, 21, 19, 21, 21,18, 21, 21, 21, 21};

 

(1) (3), {0, 22, 23, 22, 22, 20, 23, 22, 23, 22, 20, 23, 22, 23, 23, 20, 22, 24, 23, 22,20, 22, 22,
                   22, 23, 20, 22, 22, 22, 23, 20, 23, 23, 23, 24, 20, 22, 22, 23, 23,20, 23, 23, 2

X XH =

3, 23, 20,
                   23, 23, 22, 22, 20, 24, 23, 23, 23, 20, 23, 22, 22, 22,20, 23, 22, 22, 22, 20, 22, 23, 24,
                   22, 20, 23, 23, 22, 23, 20, 22, 23, 22, 23,20, 22, 22, 23, 22};

 

( 2) (3), {0, 21, 19, 21, 21, 18, 19, 21, 21, 21, 18, 19, 21, 19, 19, 18, 21, 24, 19, 21,18, 21, 21,
                   21, 21, 18, 21, 21, 21, 19, 18, 21, 19, 19, 24, 18, 21, 21, 19, 19,18, 19, 19, 2

X XH =

1, 21, 18,
                   21, 21, 21, 21, 18, 24, 21, 21, 19, 18, 21, 21, 21, 21,18, 19, 21, 21, 21, 18, 21, 21, 24,
                   21, 18, 21, 21, 21, 21, 18, 21, 19, 21, 21, 18, 21, 21, 21, 21}.

 

The average Hamming auto- and cross-correlation are 473/21 and 5248/255 respectively. 

The sequence set U is optimal with respect to the average Hamming correlation bound. 

6 Conclusion 

The average Hamming correlation is an important performance indicator of the FH sequences. 
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A new FH sequence set with length pq, family size e and frequency slot set size e is 

constructed based on Whiteman’s generalized cyclotomy. To the best of our knowledge, this 

is the first paper which uses Whiteman’s generalized cyclotomy for the construction of FH 

sequences. Based on some properties of Whiteman’s generalized cyclotomy, the proposed FH 

sequences’ Hamming correlation distribution is determined completely. It is shown that the 

FH sequence set is optimal with respect to the average Hamming correlation bound. Moreover, 

the proposed FH sequences have large period such that they can be used as a good candidate 

for military applications. 
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