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STRUCTURE OF SEMISIMPLE HOPF ALGEBRAS OF

DIMENSION p2q2

JINGCHENG DONG

Abstract. Let p, q be prime numbers with p4 < q, and k an algebraically
closed field of characteristic 0. We show that semisimple Hopf algebras of
dimension p2q2 can be constructed either from group algebras and their duals
by means of extensions, or from Radford biproduct R#kG, where kG is the
group algebra of group G of order p2, R is a semisimple Yetter-Drinfeld Hopf
algebra in kG

kG
YD of dimension q2. As an application, the special case that the

structure of semisimple Hopf algebras of dimension 4q2 is given.

1. Introduction

Throughout this paper, we will work over an algebraically closed field k of char-
acteristic 0.

The problem of classifying all Hopf algebras of dimension d, where d factorizes
in a simple way, attracts many mathematicians’ interest. It is also a question posed
by Andruskiewitsch [1, Question 6.2]. As a pioneer, Zhu [22] proved that a Hopf
algebra of prime dimension over k is a group algebra. Several years later, a series of
papers [2, 5, 9, 10] proved that semisimple Hopf algebras of dimension p2 or pq over
k are trivial, where p, q are distinct prime numbers. That is, they are isomorphic
to a group algebra or to a dual group algebra. Quite recently, Etingof et al [3]
completed the classification of semisimple Hopf algebras of dimension pq2 and pqr,
where p, q, r are distinct prime numbers. The results in [3] showed that all these
Hopf algebras can be constructed from group algebras and their duals by means of
extensions.

In this paper, we study the structure of semisimple Hopf algebras of dimension
p2q2, where p, q are prime numbers with p4 < q. As an application, we also study
the structure of semisimple Hopf algebras of dimension 4q2, where q is a prime
number.

The paper is organized as follows. In Section 2, we recall the definitions and basic
properties of semisolvability, characters and Radford’s biproducts, respectively.

In Section 3, we study the structure of semisimple Hopf algebras of dimension
p2q2, where p, q are prime numbers with p4 < q. By checking the order of G(H∗),
we prove that if |G(H∗)| = p, pq, q2 or pq2 then H is not simple as a Hopf algebra
and is semisolvable, in the sense of [12]; if |G(H∗)| = p2 or p2q then H is either
semisolvable or isomorphic to a Radford’s biproduct R#kG, where kG is the group
algebra of group G of order p2, R is a semisimple Yetter-Drinfeld Hopf algebra in
kG
kGYD of dimension q2. The possibility that |G(H∗)| = 1 and q can be discarded.
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2 J. DONG

In particular, we prove that if p does not divide q−1 and q+1, then H is necessarily
semisolvable.

In Section 4, we study the structure of semisimple Hopf algebras of dimension
4q2, where q is a prime number. In view of the results in Section 3, we discuss the
cases that q = 3, 5, 7, 11 and 13.

Throughout this paper, all modules and comodules are left modules and left
comodules, and moreover they are finite-dimensional over k. ⊗, dim mean⊗k, dimk,
respectively. For two positive integers m and n, gcd(m,n) denotes the greatest
common divisor of m,n. Our references for the theory of Hopf algebras are [13]
or [21]. The notation for Hopf algebras is standard. For example, the group of
group-like elements in H is denoted by G(H).

2. Preliminaries

2.1. Semisolvability. Let H be a finite-dimensional Hopf algebra over k. A Hopf
subalgebra A ⊆ H is called normal if h1AS(h2) ⊆ A and S(h1)Ah2 ⊆ A, for all
h ∈ H . If H does not contain proper normal Hopf subalgebras then it is called
simple. The notion of simplicity is self-dual, that is, H is simple if and only if H∗

is simple.
Let q : H → B be a Hopf algebra map and consider the subspaces of coinvariants

Hcoq = {h ∈ H |(id⊗ q)∆(h) = h⊗ 1}, and

coqH = {h ∈ H |(q ⊗ id)∆(h) = 1⊗ h}.

Then Hcoq (respectively, coqH) is a left (respectively, right) coideal subalgebra of
H . Moreover, we have

dimH = dimHcoqdimq(H) = dimcoqHdimq(H).

The left coideal subalgebra Hcoq is stable under the left adjoint action of H .
Moreover Hcoq = coqH if and only if Hcoq is a (normal) Hopf subalgebra of H . If
this is the case, we shall say that the map q : H → B is normal. See [20] for more
details.

The following lemma comes from [15, Section 1.3].

Lemma 2.1. Let q : H → B be a Hopf epimorphism and A a Hopf subalgebra of
H such that A ⊆ Hcoq. Then dimA divides dimHcoq.

The notions of upper and lower semisolvability for finite-dimensional Hopf alge-
bras have been introduced in [12], as generalizations of the notion of solvability for
finite groups. By definition, H is called lower semisolvable if there exists a chain of
Hopf subalgebras

Hn+1 = k ⊆ Hn ⊆ · · · ⊆ H1 = H

such that Hi+1 is a normal Hopf subalgebra of Hi, for all i, and all quotients
Hi/HiH

+
i+1 are trivial. Dually, H is called upper semisolvable if there exists a

chain of quotient Hopf algebras

H(0) = H
π1−→ H(1)

π2−→ · · ·
πn−−→ H(n) = k

such that each of the maps H(i−1)
πi−→ H(i) is normal, and all Hcoπi

(i−1) are trivial.

By [12, Corollary 3.3], we have that H is upper semisolvable if and only if H∗ is
lower semisolvable. If this is the case, then H can be obtained from group algebras
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and their duals by means of (a finite number of) extensions. For the definition of
the extension of Hopf algebras, the reader is directed to [11, Definition 1.3].

Recall that a semisimple Hopf algebraH is called of Frobenius type if the dimen-
sions of the simple H-modules divide the dimension of H . Kaplansky conjectured
that every finite-dimensional semisimple Hopf algebra is of Frobenius type [6, Ap-
pendix 2]. It is still an open problem. Recently, many examples show that a positive
answer to Kaplansky’s conjecture would be very helpful in the classification prob-
lem. For example, in case that dimH is a product of two distinct prime numbers,
Gelaki and Westreich [5] proved that if H and H∗ are of Frobenius type then H is
trivial.

The following result is not explicitly stated in [3]. We give a proof for complete-
ness.

Lemma 2.2. Let H be a semisimple Hopf algebra of dimension pmqn, where p, q are
distinct prime numbers and m,n are non-negative integer. Then H is of Frobenius
type and H has a non-trivial 1-dimensional representation.

The proof of Lemma 2.2 involves some definitions and properties from fusion
categories. We refer the reader to [3] and references therein for basic results on
fusion category.

Proof. Let Rep(H) be the category of representations of H . By [3, Theorem 1.6],
Rep(H) is a solvable fusion category. Comparing [3, Definition 1.1] with [3, Def-
inition 1.2], we find out that Rep(H) is also weakly group-theoretical. The first
statement then follows from [3, Theorem 1.5]. The second statement directly fol-
lows from [3, Proposition 9.9]. �

Lemma 2.3. Let H be a semisimple Hopf algebra of dimension p2q2, where p < q
are prime numbers. If H has a Hopf subalgebra K of dimension pq2 then H is
lower semisolvable.

Proof. Since the index of K in H is p which is the smallest prime number dividing
dimH , the result in [7] shows that K is a normal Hopf algebra of H . Since the
dimension of the quotient H/HK+ is p, the result in [22] shows that it is trivial.

SinceK∗ is also a semisimple Hopf algebra (see [8]), Lemma 2.2 and [14, Theorem
5.4.1] show that K has a proper normal Hopf subalgebra L of dimension p, q, pq or
q2. The results in [2, 5, 9, 10] (mentioned in Section 1) show that L and K/KL+

are both trivial. Hence, we have a chain of Hopf subalgebras k ⊆ L ⊆ K ⊆ H ,
which satisfies the definition of lower semisolvability. �

2.2. Characters. Throughout this section, H will be a semisimple Hopf algebra
over k.

Let V be an H-module. The character of V is the element χ = χV ∈ H∗

defined by 〈χ, h〉 = TrV (h) for all h ∈ H . The degree of χ is defined to be the
integer degχ = χ(1) = dimV . We shall use Xt to denote the set of all irreducible
characters of H of degree t. If U is another H-module, we have

χU⊗V = χUχV , χV ∗ = S(χV ),

where S is the antipode of H∗.
Hence, the irreducible characters, namely, the characters of the simpleH-modules,

span a subalgebra R(H) of H∗, which is called the character algebra of H . By [22,
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Lemma 2], R(H) is semisimple. The antipode S induces an anti-algebra involu-
tion ∗ : R(H) → R(H), given by χ → χ∗ := S(χ). The character of the trivial
H-module is the counit ε.

The properties of R(H) have been intensively studied in [17]. We recall some of
them here, and will use them freely in this paper. See also [15, Section 1.2].

Let χU , χV ∈ R(H) be the characters of the H-modules U and V , respectively.
The integer m(χU , χV ) = dimHomH(U, V ) is defined to the the multiplicity of U
in V . This can be extended to a bilinear form m : R(H)×R(H) → k.

Let Ĥ denote the set of irreducible characters of H . Then Ĥ is a basis of R(H).
If χ ∈ R(H), we may write χ =

∑
α∈Ĥ

m(α, χ)α. Let χ, ψ, ω ∈ R(H). Then
m(χ, ψω) = m(ψ∗, ωχ∗) = m(ψ, χω∗) and m(χ, ψ) = m(χ∗, ψ∗). See [17, Theorem
9].

For each group-like element g in G(H∗), we have m(g, χψ) = 1, if ψ = χ∗g and

0 otherwise for all χ, ψ ∈ Ĥ . In particular, m(g, χψ) = 0 if deg(χ) 6= deg(ψ). Let

χ ∈ Ĥ . Then for any group-like element g in G(H∗), m(g, χχ∗) > 0 if and only if
m(g, χχ∗) = 1 if and only if gχ = χ. The set of such group-like elements forms a
subgroup of G(H∗), of order at most (deg(χ))2. See [17, Theorem 10]. Denote this
subgroup by G[χ]. In particular, we have

χχ∗ =
∑

g∈G[χ]

g +
∑

α∈Ĥ,degα>1

m(α, χχ∗)α.

The following result can be found in [16, Lemma 2.2.2].

Lemma 2.4. Let χ ∈ Ĥ be an irreducible character of H. Then
(1) The order of G[χ] divides (degχ)2.
(2) The order of G(H∗) divides n(degχ)2, where n is the number of non-isomorphic

simple H-modules of dimension degχ.

Let 1 = d1, d2, · · · , ds, n1, n2, · · · , ns be positive integers, with d1 < d2 < · · · <
ds. H is said to be of type (d1, n1; · · · ; ds, ns) as an algebra if d1, d2, · · · , ds are the
dimensions of the simple H-modules and ni is the number of the non-isomorphic
simple H-modules of dimension di. That is, as an algebra, H is isomorphic to a
direct product of full matrix algebras

H ∼= k(n1) ×
s∏

i=2

Mdi
(k)(ni).

If H∗ is of type (d1, n1; · · · ; ds, ns) as an algebra, then H is said to be of type
(d1, n1; · · · ; ds, ns) as a coalgebra.

A subalgebra A of R(H) is called a standard subalgebra if A is spanned by ir-

reducible characters of H . Let X be a subset of Ĥ . Then X spans a standard
subalgebra of R(H) if and only if the product of characters in X decomposes as a
sum of characters in X . There is a bijection between ∗-invariant standard subalge-
bras of R(H) and quotient Hopf algebras of H . See [17, Theorem 6].

Lemma 2.5. Let G be a non-trivial subgroup of G(H∗). If G[χt] = G for every
χt ∈ Xt, then χtχ

′
t is not irreducible for all χt, χ

′
t ∈ Xt.

Proof. This is a consequence of [15, Lemma 2.4.1]. �
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2.3. Radford’s biproduct. In what follows, we briefly summarize results from
[19]. Let A be a semisimple Hopf algebra and let A

AYD denote the braided category
of Yetter-Drinfeld modules over A. Let R be a semisimple Yetter-Drinfeld Hopf
algebra in A

AYD. Denote by ρ : R → A ⊗ R, ρ(a) = a−1 ⊗ a0, and · : A⊗ R → R,
the coaction and action of A on R, respectively. We shall use the notation ∆(a) =
a1 ⊗ a2 and SR for the comultiplication and the antipode of R, respectively.

Since R is in particular a module algebra over A, we can form the smash product
(see [12, Definition 4.1.3]). This is an algebra with underlying vector space R⊗A,
multiplication is given by

(a⊗ g)(b⊗ h) = a(g1 · b)⊗ g2h, for all g, h ∈ A, a, b ∈ R,

and unit 1 = 1R ⊗ 1A.
Since R is also a comodule coalgebra over A, we can dually form the smash

coproduct. This is a coalgebra with underlying vector space R⊗A, comultiplication
is given by

∆(a⊗ g) = a1 ⊗ (a2)−1g1 ⊗ (a2)0 ⊗ g2, for all h ∈ A, a ∈ R,

and counit εR ⊗ εA.
As observed by D. E. Radford (see [19, Theorem 1]), the Yetter-Drinfeld condi-

tion assures that R ⊗ A becomes a Hopf algebra with these structures. This Hopf
algebra is called the Radford’s biproduct of R and A. We denote this Hopf algebra
by R#A and write a#g = a⊗ g for all g ∈ A, a ∈ R. Its antipode is given by

S(a#g) = (1#S(a−1g))(SR(a0)#1), for all g ∈ A, a ∈ R.

A biproduct R#A as described above is characterized by the following prop-
erty(see [19, Theorem 3]): suppose that H is a finite-dimensional Hopf algebra
endowed with Hopf algebra maps ι : A→ H and π : H → A such that πι : A→ A
is an isomorphism. Then the subalgebra R = Hcoπ has a natural structure of
Yetter-Drinfeld Hopf algebra over A such that the multiplication map R#A → H
induces an isomorphism of Hopf algebras.

The following theorem is a direct consequence of [15, Lemma 4.1.9]. We give the
proof for the sake of completeness.

Theorem 2.6. Let H be a semisimple Hopf algebra of dimension p2q2, where p, q
are distinct prime numbers. If gcd(|G(H)|, |G(H∗)|) = p2, then H ∼= R#kG is a
biproduct, where kG is the group algebra of group G of order p2, R is a semisimple
Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.

Proof. By assumption and Sylow Theorem, G(H∗) has a subgroup K of order
p2. Considering the Hopf algebra map q : H → (kK)∗ obtained by transposing
the inclusion kK ⊆ H∗, we have that dimHcoq = q2. Again by assumption and
Sylow Theorem, G(H) also has a subgroup G of order p2. If there exists an element
1 6= g ∈ G such that g appears in Hcoq, then k〈g〉 ⊆ Hcoq since Hcoq is a subalgebra
of H . But this contradicts Lemma 2.1 since dimk〈g〉 does not divide dimHcoq.
Therefore, Hcoq ∩ kG = k1. This means that the restriction q|kG is injective, and
hence q|kG : kG → (kK)∗ is an isomorphism. Finally, from the discussion above,
we know that H ∼= R#kG is a biproduct, where R = Hcoq. �
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3. Semisimple Hopf algebras of dimension p2q2

Let p, q be distinct prime numbers with p4 < q, and H a semisimple Hopf algebra
of dimension p2q2. By Nichols-Zoeller Theorem [18], the order of G(H∗) divides
dimH . Moreover, |G(H∗)| 6= 1 by Lemma 2.2. Again by Lemma 2.2, the dimension
of a simple H-module can only be 1, p, p2 or q. Let a, b, c be the number of non-
isomorphic simple H-modules of dimension p, p2 and q, respectively. It follows
that we have an equation p2q2 = |G(H∗)| + ap2 + bp4 + cq2. In particular, if
|G(H∗)| = p2q2 then H is a dual group algebra.

The proof of the following lemma is direct.

Lemma 3.1. The irreducible characters of degree 1, p and p2 span a standard sub-
algebra of R(H) corresponding to a quotient Hopf algebra H of H of dimension
|G(H∗)|+ ap2 + bp4. In particular, |G(H∗)| divides dimH and |G(H∗)|+ ap2+ bp4

divides dimH.

Lemma 3.2. If |G(H∗)| = p or pq, then H is upper semisolvable.

Proof. First, c 6= 0, since otherwise we get the contradiction p2 | p.
Consider the quotient Hopf algebra H from Lemma 3.1. Then p | dimH and

since c 6= 0, then dimH < p2q2. Therefore dimH = p, pq, p2q, pq2 or p2. Moreover,
dimH 6= p2, since otherwise (H)∗ ⊆ kG(H∗) by [10], but p2 = dimH does not
divide |G(H∗)| = p or pq.

The possibilities dimH = p, pq or p2q lead, respectively to the contradictions
p2q2 = p + cq2, p2q2 = pq + cq2 and p2q2 = p2q + cq2. Hence these are also
discarded, and therefore dimH = pq2. This implies that H is upper semisolvable,
by Lemma 2.3. �

Lemma 3.3. |G(H∗)| 6= q.

Proof. Suppose on the contrary that |G(H∗)| = q. By Lemma 3.1, dimH = q +
ap2 + bp4. On the other hand, the product of irreducible characters of H of degree
> 1 cannot contain nontrivial characters of degree 1, by Lemma 2.4(1). If a 6= 0 or
b 6= 0, this would imply p2 = 1 +mp or p4 = 1 +mp for some positive integer m,
which is impossible. Therefore a = b = 0. So we have p2q2 = q + cq2, which is a
contradiction. �

Lemma 3.4. If |G(H∗)| = q2, then H is upper semisolvable.

Proof. A similar argument as in Lemma 3.3 shows that a = b = 0. Hence, H is of
type (1, q2; q, p2− 1) as an algebra. Equivalently, H∗ is of type (1, q2; q, p2− 1) as a
coalgebra. The group G(H∗), being abelian, acts by left multiplication on the set
Xq. The set Xq is a union of orbits which have length 1, q or q2. Since |Xq| = p2−1
is less than q, every orbit has length 1. That is, G[χq] = G(H∗) for all χq ∈ Xq.
Let g ∈ G(H∗) and χq ∈ Xq. Then gχq = χq and g−1χ∗

q = χ∗
q . This means that

gχq = χqg = χq.
Let Ci(i = 1, · · · , p2 − 1) be the non-isomorphic q2-dimensional simple subcoal-

gebra of H∗. Then gCi = Ci = Cig for all g ∈ G(H∗). By [15, Proposition
3.2.6], G(H∗) is normal in k[C1, · · · , Cp2−1], where k[C1, · · · , Cp2−1] denotes the
subalgebra generated by C1, · · · , Cp2−1. It is a Hopf subalgebra of H∗ containing
G(H∗). Counting dimension, we know k[C1, · · · , Cp2−1] = H∗. Since kG(H∗) is a
group algebra and the quotient H∗/H∗(kG(H∗))+ is trivial (see [10]), H∗ is lower
semisolvable. Hence, H is upper semisolvable. �
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From the discussion above, the following lemma is obvious.

Lemma 3.5. If |G(H∗)| = pq2, then H is upper semisolvable.

Lemma 3.6. If |G(H∗)| = p2 or p2q then H is either semisolvable or isomorphic
to a Radford’s biproduct R#kG, where kG is the group algebra of group G of order
p2, R is a semisimple Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.

Proof. This is a corollary of Lemma 2.3. �

We are now in a position to give the main theorem.

Theorem 3.7. Let H be a semisimple Hopf algebra of dimension p2q2, where p, q
are prime numbers with p4 < q. Then H is either semisolvable or isomorphic to a
Radford’s biproduct R#kG, where kG is the group algebra of group G of order p2,
R is a semisimple Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.

In analogy with the situations for finite groups, it is enough for many applications
to know that a Hopf algebra is semisolvable. Under certain restrictions on p and q,
we can obtain a more precise result.

Corollary 3.8. If p does not divide q − 1 or q + 1, then H is semisolvable.

Proof. It suffices to consider the case that the order of G(H) and G(H∗) are p2 or
p2q, and H is a biproduct. Let q : H → (kK)∗ be the projection in Theorem 2.6.
Then we have that dimHcoq = q2. We then consider the decomposition of Hcoq as
a coideal of H . Let c be the number of non-isomorphic irreducible left coideals of
H of dimension q. If |G(H)| = p2 then c = 0, otherwise Lemma 2.4 (2) shows that
cq2 ≥ p2q2, a contradiction. If |G(H)| = p2q then c = 0 by a similar argument.
Hence, by Lemma 2.1, there are 2 possible decompositions of Hcoq as a coideal of
H :

Hcoq = k1⊕
∑

i

Vi ⊕
∑

j

Wj , orH
coq = kG⊕

∑

i

Vi ⊕
∑

j

Wj ,

where Vi is an irreducible left coideal of H of dimension p, Wi is an irreducible left
coideal of H of dimension p2 and G is a subgroup of G(H) of order q. Counting
dimensions on both sides, we have q2 = 1 +mp or q2 = q + np for some positive
integers m,n. This contradicts the assumption that p does not divide q − 1 and
q + 1. �

As an immediate consequence of the discussions in this section, we have the
following corollary.

Corollary 3.9. If H is simple as a Hopf algebra then H is isomorphic to a Rad-
ford’s biproduct R#kG, where kG is the group algebra of group G of order p2, R is
a semisimple Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.

The following example was pointed out to the author by the anonymous referee.

Example. In fact, examples of nontrivial semisimple Hopf algebras of dimension
p2q2 which are Radford’s biproducts in such a way, and are simple as Hopf algebras
do exists. A construction of such examples as twisting deformations of certain
groups appears in [4, Remark 4.6].
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4. Semisimple Hopf algebras of dimension 4q2

Let q be a prime number, and H a semisimple Hopf algebra of dimension 4q2. In
this section, we discuss the structure of H . By Theorem 3.7, it suffices to consider
the cases that q = 3, 5, 7, 11 and 13. By Nichols-Zoeller Theorem and Lemma 2.2,
the order of G(H∗) is 2, 4, q, q2, 2q, 4q,2q2 or 4q2. Moreover, if |G(H∗)| = 4q2 then
H is a dual group algebra. The dimension of a simple H-module can only be 1, 2, 4
or q. Let a, b, c be the number of non-isomorphic simple H-module of dimension
2, 4 and q, respectively. Then we have 4q2 = |G(H∗)|+4a+16b+cq2. In particular,
if c 6= 0 then c = 1, 2 or 3. By [15, Chapter 8], if dimH = 36 then H is upper
semisolvable or lower semisolvable. Therefore, we may assume that q = 5, 7, 11 or
13 in the followings.

Lemma 4.1. If |G(H∗)| = 2 then H is upper semisolvable.

Proof. We first note that c 6= 0, otherwise 4q2 = 2 + 4a + 16b will give rise to a
contradiction 2(q2 − a− 4b) = 1. That is, c = 1, 2 or 3.

We then consider the case that a 6= 0. Let χ2 ∈ X2. Since H does not have irre-
ducible characters of degree 3, we have G[χ2] = G(H∗). Then a similar argument
as in Lemma 3.2 shows that G(H∗) ∪ X2 spans a standard subalgebra of R(H).
Hence, H has a quotient Hopf algebra of dimension 2 + 4a, and 2 + 4a divides
4q2. Since q is odd, 2 + 4a can not be q and q2. If 2 + 4a = 4q2 then c = 0, a
contradiction. If 2+4a = 4q then 1 = 2(q−a), a contradiction. If 2+4a = 2q, then
a direct check, for q = 5, 7, 11, 13 and c = 1, 2, 3, shows that b is not a integer, a
contradiction. Hence, 2+4a = 2q2 and H has a quotient Hopf algebra of dimension
2q2. Therefore, H is upper semisolvable by Lemma 2.3.

Finally, we consider the case that a = 0. In this case, 4q2 = 2 + 16b + cq2. A
direct check, for q = 5, 7, 11, 13 and c = 1, 2, 3, shows that above equation holds
true only when b = 3, q = 5, c = 2 or b = 6, q = 7, c = 2 or b = 15, q = 11, c = 2
or b = 21, q = 13, c = 2. That is, H is of type (1, 2; 4, 3; 5, 2), (1, 2; 4, 6; 7, 2),
(1, 2; 4, 15; 11, 2) or (1, 2; 4, 21; 13, 2) as an algebra. We shall prove that all these
can not happen.

Suppose on the contrary that H is of type (1, 2; 4, 3; 5, 2) as an algebra. Let
χ4 ∈ X4 and G(H∗) = {ε, g}. Then there must exist χ5 ∈ X5 such that 1 ≤
m(χ5, χ4χ

∗
4) ≤ 3.

If m(χ5, χ4χ
∗
4) = 3 then m(χ4, χ5χ4) = 3. This implies that χ5χ4 = 3χ4 +

χ′
4 + χ′′

4 , where χ4 6= χ′
4, χ4 6= χ′′

4 ∈ X4. In case χ′
4 6= χ′′

4 , we have m(χ′
4, χ5χ4) =

m(χ5, χ
′
4χ

∗
4) = 1. This implies that χ′

4χ
∗
4 = χ5 + ϕ, where m(χ5, ϕ) = 0 and

degϕ = 11. Since χ′
4 6= χ4, ε can not appear in ϕ. From the introduction in Section

2.2, we know that the multiplicity of g in ϕ is less than 2. Hence, ϕ = 2χ′
5+g, where

χ5 6= χ′
5 ∈ X5. From m(g, χ′

4χ
∗
4) = m(χ′

4, gχ4) = 1, we have gχ4 = χ′
4. Hence,

χ′
4χ

∗
4 = gχ4χ

∗
4 = g+χ5+2χ′

5. This means that χ4χ
∗
4 = ε+gχ5+2gχ′

5 = ε+χ′
5+2χ5.

In the second equality, we use the fact that gχ5 = χ′
5 which is deduced from the fact

that G[χ5] = G[χ′
5] = {ε}. This contradicts the assumption that m(χ5, χ4χ

∗
4) = 3.

In case χ′
4 = χ′′

4 , we have m(χ′
4, χ5χ4) = m(χ5, χ

′
4χ

∗
4) = 2. This implies that

χ′
4χ

∗
4 = 2χ5 + χ′

5 + g. A similar argument shows that it is also a contradiction.
If m(χ5, χ4χ

∗
4) = 2 then m(χ4, χ5χ4) = 2. This implies that χ5χ4 = 2χ4 +

2χ′
4 + χ′′

4 , where χ4 6= χ′
4, χ4 6= χ′′

4 ∈ X4. In case χ′
4 = χ′′

4 , we have m(χ′
4, χ5χ4) =

m(χ5, χ
′
4χ

∗
4) = 3. This implies that χ′

4χ
∗
4 = 3χ5 + g. Then 1 = m(g, χ′

4χ
∗
4) =

m(χ′
4, gχ4) implies that gχ4 = χ′

4. Hence, χ′
4χ

∗
4 = gχ4χ

∗
4 = g + 3χ5. This
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means that χ4χ
∗
4 = ε + 3gχ5 = ε + 3χ′

5. This contradicts the assumption that
m(χ5, χ4χ

∗
4) = 2. In case χ′

4 6= χ′′
4 , we have m(χ′

4, χ5χ4) = m(χ5, χ
′
4χ

∗
4) = 2. This

implies that χ′
4χ

∗
4 = 2χ5 +χ′

5 + g, where χ5 6= χ′
5 ∈ X5. A similar argument shows

that χ4χ
∗
4 = ε+ 2χ′

5 + χ5. This also contradicts the assumption.
If m(χ5, χ4χ

∗
4) = 1 then χ4χ

∗
4 = ε+χ5+2χ′

5, where χ5 6= χ′
5 ∈ X5. In this case,

m(χ′
5, χ4χ

∗
4) = 2. From the discussion above, we know it is impossible.

Suppose on the contrary that H is of type (1, 2; 4, 6; 7, 2) as an algebra. Let
χ4 ∈ X4 and G(H∗) = {ε, g}. Then there must exist χ7 ∈ X7 such that 1 ≤
m(χ7, χ4χ

∗
4) ≤ 2.

If m(χ7, χ4χ
∗
4) = 1 then m(χ4, χ7χ4) = 1. This implies that χ7χ4 = χ4 +

ϕ, where m(χ4, ϕ) = 0 and degϕ = 24. A direct check shows that there is no
irreducible character of degree 7 in ϕ and there exists χ4 6= χ′

4 ∈ X4 such that
m(χ′

4, χ7χ4) = 2. Then m(χ7, χ
′
4χ

∗
4) = 2 implies that χ′

4χ
∗
4 = 2χ7 + ψ, where

degψ = 2. Since χ4 6= χ′
4, ε does not appear in the decomposition of ψ. Hence, ψ

is irreducible or a sum of 2 copies of g. It is impossible.
If m(χ7, χ4χ

∗
4) = 2 then m(χ4, χ7χ4) = 2. This implies that χ7χ4 = 2χ4 + ϕ,

wherem(χ4, ϕ) = 0 and degϕ = 20. From the discussion above, we know there does
not exist χ4 6= χ′

4 ∈ X4 such that m(χ′
4, χ7χ4) = 2. Then we have χ7χ4 = 2χ4 +∑5

i=1 ϕi, where {χ4, ϕ1, · · · , ϕ5} = X4. From m(ϕi, χ7χ4) = m(χ7, ϕiχ
∗
4) = 1,

we have ϕiχ
∗
4 = χ7 + ψi, where degψi = 9 and m(χ7, ψi) = 0. It is clear that

m(g, ψi) = 1 for all i. Then m(g, ϕiχ
∗
4) = m(ϕi, gχ4) implies that ϕi = gχ4. This

means that ϕ1 = · · · = ϕ5, a contradiction.
Suppose on the contrary that H is of type (1, 2; 4, 15; 11, 2) as an algebra. Let

χ4 ∈ X4 and G(H∗) = {ε, g}. Then χ4χ
∗
4 = ε + χ11 + ϕ1, where χ11 ∈ X11 and

ϕ1 ∈ X4. From m(χ11, χ4χ
∗
4) = m(χ4, χ11χ4) = 1, we have χ11χ4 = χ4 + ϕ, where

m(χ4, ϕ) = 0 and degϕ = 40. A direct check shows that there exists χ4 6= χ′
4 ∈ X4

such that m(χ′
4, χ11χ4) = m(χ11, χ

′
4χ

∗
4) = 1. This means that χ′

4χ
∗
4 = χ11+ϕ2+g,

where ϕ2 ∈ X4. Then m(g, χ′
4χ

∗
4) = m(χ′

4, gχ4) implies that χ′
4 = gχ4. Hence,

χ′
4χ

∗
4 = gχ4χ

∗
4 = χ11 + ϕ2 + g implies that χ4χ

∗
4 = gχ11 + gϕ2 + ε. On the other

hand, χ4χ
∗
4 = ε + χ11 + ϕ1. Hence, χ11 = gχ11. This means that g appears in

the decomposition of χ11χ
∗
11, and hence G[χ11] = G(H∗). This contradicts the fact

that the order of G[χ11] divides 121 (See Lemma 2.4).
Suppose on the contrary that H is of type (1, 2; 4, 21; 13, 2) as an algebra. Let

χ4 ∈ X4. Then the decomposition of χ4χ
∗
4 gives a contradiction. �

Lemma 4.2. |G(H∗)| 6= q.

Proof. Suppose on the contrary that |G(H∗)| = q. If a 6= 0 we then take χ2 ∈
X2. Since G[χ2] is a subgroup of G(H∗) and the order of G[χ2] divides 4 by
Lemma 2.4(1), G[χ2] = {ε} is trivial. This is a contradiction since H does not
have irreducible characters of degree 3. Hence, a = 0 and 4q2 = q + 16b+ cq2. A
direct check, for q = 5, 7, 11, 13 and c = 0, 1, 2, 3, shows that above equation holds
true only when b = 22, q = 11, c = 1. That is, H is of type (1, 11; 4, 22; 11, 1) as an
algebra. We shall prove that it is impossible.

Suppose on the contrary that H is of type (1, 11; 4, 22; 11, 1) as an algebra. Let
χ be the unique irreducible character of degree 11 and g the generator of G(H∗).
Then gχ = χ and hence G[χ] = G(H∗). If

χχ∗ = χ2 =

11∑

i=1

gi + 10χ
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then G(H∗) ∪X11 spans a standard subalgebra of R(H). Hence, H has a quotient
Hopf algebra of dimension 132. By Nichols-Zoeller Theorem, it is impossible.

Therefore, there exists χ4 ∈ X4 such thatm(χ4, χ
2) = n ≥ 1. Fromm(χ, χ4χ) =

m(χ, χχ∗
4) = n, we have χχ∗

4

(1)
= nχ+ ϕ, where degϕ = 44− 11n and m(χ, ϕ) = 0.

On the other hand, χ∗
4χ4 = ε + χ′

4 + χ, where χ′
4 ∈ X4. From m(χ, χ∗

4χ4) =

m(χ∗
4, χχ

∗
4) = 1, we have χχ∗

4

(2)
= χ∗

4 + ψ, where degψ = 40 and m(χ∗
4, ψ) = 0. A

direct check shows that χ does not appear in the decomposition of ψ. Hence, (1)
and (2) give rise to a contradiction. �

Lemma 4.3. If |G(H∗)| = q2 then H is upper semisolvable.

Proof. A similar argument as in Lemma 4.2 shows that a = 0, and hence 3q2 =
16b + cq2. A direct check, for c = 0, 1, 2, 3, shows that H is of type (1, q2; q, 3) as
an algebra. The result then follows from a similar argument as in Lemma 3.4. �

Lemma 4.4. If |G(H∗)| = 2q then H is upper semisolvable.

Proof. If a 6= 0 then q2 does not divide a, otherwise 4a ≥ 4q2, a contradiction.
Then, by Lemma 3.1, we have that 2q + 4a divides 4q2. A direct check shows that
2q+4a can not be q2, 4q2 and 4q. Hence, 2q+4a = 2q2 and H has a quotient Hopf
algebra of dimension 2q2. So, H is upper semisolvable by Lemma 2.3.

If a = 0 then 4q2 = 2q + 16b + cq2. A direct check, for q = 5, 7, 11, 13 and
c = 0, 1, 2, 3, shows that this can not happen. �

The following lemma is obvious.

Lemma 4.5. If |G(H∗)| = 2q2 then H is upper semisolvable.

Lemma 4.6. If |G(H∗)| = 4 or 4q then H is either semisolvable or isomorphic to
a Radford’s biproduct R#kG, where kG is the group algebra of group G of order 4,
R is a semisimple Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.

Proof. This is a corollary of Lemma 2.3. �

Now we reach the main result in this section.

Theorem 4.7. Let q be a prime number, and H a semisimple Hopf algebra of di-
mension 4q2. Then H is either semisolvable or isomorphic to a Radford’s biproduct
R#kG, where kG is the group algebra of group G of order 4, R is a semisimple
Yetter-Drinfeld Hopf algebra in kG

kGYD of dimension q2.
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