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Locally nearly spherical surfaces are

almost-positively c-curved∗

Ph. Delanoë† and Yuxin Ge

Abstract

The c-curvature of a complete surface with Gauss curvature close to
1 in C2 norm is almost-positive (in the sense of Kim–McCann). Our
proof goes by a careful case by case analysis combined with perturbation
arguments from the constant curvature case, keeping track of an estimate
on the closeness curvature condition.

1 Introduction and main results

Monge’s problem, in optimal transport theory, goes back to [19]. In its general
formulation, one is looking for an optimal map f : (M,µ) → (M, µ̄) between two
Polish probability spaces. The optimality criterion consists in minimizing the to-

tal cost functional

∫

M

c(x, f(x)) dµ(x) among measurable maps which push µ to

µ̄, where the cost function c :M×M → R∪{+∞} is given lower semi-continuous
with some additional properties (see e.g. [21] and references therein). In the em-

blematic case of the Brenier–McCann cost function: M =M, c =
1

2
d2, whereM

stands for a complete Riemannian manifold with associated distance function d,
this problem was solved under mild assumptions on the given probability mea-
sures µ and µ̄ [2, 17]. In that case, the optimal map must read f = exp(gradu)
for some c-convex potential function u such that the pushing condition f#µ = µ̄
becomes a partial differential equation of Monge–Ampère type satisfied by u in
a weak sense. Neil Trudinger and his co-workers observed that a similar solution
scheme exists for a class of more general cost functions c for which, given smooth
data, they analyzed the smoothness of the corresponding potential function u
[16]. For the purpose of a one-sided interior estimate on an expression of second
order (in u), they were lead to formulate a fourth-order two-points condition on
the cost function c, called (A3S) condition. A weak form of the latter, called
(A3W), was proved necessary (for the smoothness of u) by Loeper [14]; in partic-
ular, in the Brenier–McCann case, he interpreted (A3W) read on the diagonal of
M ×M as the non-negativity of the sectional curvature of M . Lately, still with
c = 1

2d
2, Cédric Villani and his co-workers were able to relate some variants of

(A3S), checked stable at round spheres under C4 small deformations of the stan-
dard round metric, with the convexity of the tangential domain of injectivity
of the exponential map [15, 8, 10]. However, the very geometrical status of the
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fourth-order expression (in c) occuring in condition (A3S) was not understood
untill Kim and McCann interpreted it [11] as a genuine, though quite special,
curvature expression arising on the product manifold M ×M endowed with the

pseudo-Riemannian metric: h = −1

2

∂2c

∂xi∂x̄j
(dxi ⊗ dx̄j + dx̄j ⊗ dxi). They also

defined an extended version of (A3S), stronger than (A3W), called non-negative
cross-curvature condition (NNCC, for short1) and proved that it is stable under
Cartesian product2 as well as, in the Brenier–McCann case, under Riemannian
submersion [12]. Actually, in that case, they defined a stronger condition called
almost-positive cross-curvature condition (APCC, for short3) shown as stable
as NNCC [12]. So, with c = 1

2d
2, the stability of APCC under products and

submersions enables to construct new APCC examples out of known ones – like
the standard sphere [12]. In the present paper, we will prove the stability of
APCC at the standard 2-sphere; specifically, we will check the APCC condition
for c = 1

2d
2 on a complete surface with Gauss curvature C2 close to a positive

constant. This result complements the stability one of [8] on the 2-sphere as
well as an unstated one (stability of APCC at the standard n-sphere, near con-
jugacy, see Remark 1 below) obtained in the course of a proof in [10]. Here,
let us point out that our paper is drawn from an initial 44 pages draft sent by
Ge to Figalli in January 2009, thus independent from the papers [9, 10] first
circulated in July 2009; in particular, our analysis of the APCC property near
conjugacy (Section 4 below) departs from that of [10].

In order to state our result, let us first recall some definitions, restricting
to connected complete Riemannian manifolds M = M with the cost function
c = 1

2d
2 defined onM ×M \Cut, where Cut stands for the cut locus. Using the

aforementioned pseudo-Riemannian metric h onM×M and setting Secth for its
sectional curvature tensor viewed as a field of quadratic forms on

∧2
T (M×M),

for each (m,m) ∈M ×M \Cut and each (ξ, ξ̄) ∈ TmM ×TmM , the associated
cross-curvature is defined by [11]:

cross(m,m)(ξ, ξ̄) := Secth[(ξ ⊕ 0) ∧ (0⊕ ξ̄)].

Kim and McCann observed that it must vanish for some choice of (ξ, ξ̄) [12].
If it is identically non-negative, we say that the manifold M is NNCC. For
instance, the standard n-sphere is NNCC [12, 8] and if a manifold M endowed
with a Riemannian metric g is so, its sectional curvature tensor Sectg must be

non-negative because, at m = m, we have: cross(m,m)(ξ, ξ̄) ≡
4

3
Sectg(ξ ∧ ξ̄), as

first observed by Loeper [14]. Pulling back by the exponential map:

(m,V ) ∈ NoCut −→ (m, expm(V )) ∈M ×M \ Cut ,

where NoCut is the domain of TM defined by:

NoCut := {(m,V ) ∈ TM, ∀t ∈ [0, 1], expm(tV ) /∈ Cutm}

(and Cutm, the cut locus of the point m), Trudinger et al noted [16, p.164] that
one identically recovers 1

2 cross(m,m)(ξ, ξ̄) atm = expm(V ) with (m,V ) ∈ NoCut

1also used below as an abbreviation for non-negatively cross-curved
2unlike (A3S), or even (A3W) alone as soon as a factor is not NNCC
3also used below as an abbreviation for almost-positively cross-curved
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and ξ̄ = d(expm)(V )(ν), by calculating the quantity:

C(m,V )(ξ, ν) := −D2

dλ2
[A(m,V + λν)(ξ)]λ=0 (1)

where: A(m,V )(ξ) := ∇d[p → c(p, expm(V ))]p=m(ξ, ξ) with ∇ the Levi–Civita
connection of the Riemannian metric g and whereD stands for the canonical flat
connection of TmM . In [7], we performed a stepwise calculation of A(m,V )(ξ)
and its first and second derivatives with respect to V , in a Fermi chart along the
geodesic t ∈ [0, 1] → expm(tV ) ∈M . This calculation just requires that (m,V )
belong to NoConj, denoting so the domain4 of TM which consists of tangent
vectors (m,W ) ∈ TM such that the geodesic segment t ∈ [0, 1] → expm(tW )
contains no conjugate points, a fact conceptualized in [8] using the Hamilto-
nian flow (see also [10]). Neil Trudinger suggested that one calls the quantity
C(m,V )(ξ, ν) defined by (1), now with (m,V ) ∈ NoConj, the c-curvature5 of
M at (m,V, ξ, ν). It is known to vanish if rank(V, ξ, ν) ≤ 1 [7, 12]. Now, the
definition given in [12] of an APCC (resp. NNCC) manifold reads in terms of
the c-curvature as follows:

Definition 1 Let M be a connected complete Riemannian manifold with cost
function c = 1

2d
2. We say that M is non-negatively c-curved, or NNCC, if

C(m,V )(ξ, ν) ≥ 0 for each (m,V ) ∈ NoConj and each couple (ξ, ν) in TmM . If
M is NNCC and such that: C(m,V )(ξ, ν) = 0 if and only if the span of (V, ξ, ν)
has dimension at most 1, we call it almost-positively c-curved, or APCC.

Remark 1 An intermediate (unquantified) result of [10], unstated there as
such, obtained via the square completion of a huge expression, goes as follows:
If M is the n-sphere endowed with a Riemannian metric C4 close to the stan-
dard one and if (m,V ) ∈ NoConj lies close enough to the boundary of NoConj,
then (ξ, ν) 7→ C(m,V )(ξ, ν) satisfies the APCC property on TmM × TmM .

Let us call, for short, a surface any smooth connected complete 2-dimensional
Riemannian manifold without boundary. We aim at the following result:

Theorem 1 Let S be a surface with Gauss curvature K such that minS K = 1.
There exists a small universal constant η > 0 such that, if |K − 1|C2(S) ≤ η,
then S is APCC.

Here, the C2 norm of a function f : S → R is defined (using the Riemannian
norm |.| on tensors) by: |f |C2(S) := sup

S
|f |+ sup

S
|df |+ sup

S
|∇df |.

The result is proved in [12] with η = 0 (constant curvature case, see also [8] for
NNCC) and in [10] with (m,V ) ∈ NoConj lying close enough to the boundary of
NoConj (with no quantified estimates, though). If V = 0, the result is obvious
(due to the cross-curvature interpretation when m = m), so we will assume
V 6= 0 with no loss of generality.

4as well-known [4, 6], NoConj is the maximum rank domain for the exponential map which
contains NoCut

5somewhat consistently with the c-segment denomination used in [16]; we will use this short
denomination, instead of ’extended MTW tensor’ as in [15, 9, 10] or ’Ma–Trudinger–Wang
curvature’ as in [9, 13], since further names could be associated to the birth of this conceptual
object, anyhow
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Remark 2 Let

Dc = sup {|V |m, (m,V ) ∈ NoConj}

be the diameter of conjugacy of S. Since K ≥ 1, the Bonnet–Myers theorem
[1, 4, 6, 18] implies: Dc ≤ π (in particular, the diameter of S is at most equal
to π and S is compact).

Actually, we will prove a stronger result, namely:

Theorem 2 Let S be a surface with minS K = 1. There exists small universal
positive constants η, ς such that, if |K − 1|C2(S) ≤ η, for any (m,V ) ∈ NoConj
and any couple (ξ, ν) of unit vectors in TmS, the following inequality holds:

C(m,V )(ξ, ν) ≥ ς A2(m,V, ξ, ν) , (2)

where A2(m,V, ξ, ν) stands for the squared quadratic mean of the areas of the
parallelograms repectively defined in TmS by the couples (ξ, ν), (V, ξ), (V, ν), in
other words:

A2(m,V, ξ, ν) = |ξ|2|ν|2 − g(ξ, ν)2 + |V |2|ξ|2 − g(V, ξ)2 + |V |2|ν|2 − g(V, ν)2.

The outline of the paper essentially coincides with that of the proof. We
present a quick derivation of the c-curvature expression in Section 2 and related
perturbative estimates for that expression, based on the assumption that the C2

norm of (K − 1) is small, in Section 3. Using the latter, we prove successively
Theorem 2 under the additional assumption that the point expm(V ) lies, either
near the first conjugate point m∗ of m along the geodesic t ∈ R

+ → expm(tV ) ∈
S (Section 4), or near m (Section 5), or in-between (Section 6). The proof of
Theorem 2 itself, as a whole, is provided in Section 7, by synthetizing the vari-
ous, sometimes redundant, smallness assumptions made in the previous sections
on |K−1|C2(S), ς and an extra parameter δ used to locate expm(V ) with respect
to m and m∗ as just described. The proof of the main perturbation lemma is
deferred to Appendix A, but Section 3 includes a straightforward application of
it to a uniform convexity estimate for the boundary of NoConj.

Finally, a warning must be made about some notations and conventions
used below. Starting from Lemma 1 (Section 3), we will abbreviate |K−1|C2(S)

merely by ε. In Section 4 (resp. Section 5), we will set δ1d(m,m
∗) (resp. δ2) for

the maximal distance assumed between expm(V ) and the first conjugate point
m∗ (resp. and the point m); consistently in Section 6, we will set 1

2δ1d(m,m
∗)

(resp. 1
2δ2) for the minimal distance at which expm(V ) must stay away from

m∗ (resp. from m) on that geodesic. In the course of the proof, starting from
Lemma 1, we will require various (fairly explicit, universal) smallness conditions
on ε or the auxiliary position parameters δi’s. Furthermore, in each case or
subcase distinguished below for (m,V, ξ, ν), we will find a different value of the
(small positive) constant ς occuring in (2); the actual value to be taken for ς in
the statement of Theorem 2 will be, of course, the smallest among them. The
various universal6 constants and smallness conditions arising in the paper are
listed in Appendix B to which the reader should systematically refer.

6thus, in particular, independent of (m, V ) ∈ NoConj
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2 c-curvature expression in dimension 2

Henceforth, we fix a surface S, a point m0 ∈ S and three non-zero tangent
vectors (V0, ξ, ν) in Tm0

S with (m0, V0) ∈ NoCut and (ξ, ν) linearly independent.
We wish to calculate the c-curvature C(m0, V0)(ξ, ν).

2.1 General case

A chart x = (x1, x2) of S centered at m0 such that the local components gij(x)
of the metric satisfy: gij(0) = δij , dgij(0) = 0, is called normal at m0; let x be
such a chart. We set v = (v1, v2) for the fiber coordinates of TS → S naturally
associated to x, use Einstein’s convention and abbreviate partial derivatives as
follows:

∂i =
∂

∂xi
, ∂ij =

∂2

∂xi∂xj
, . . . ;Di =

∂

∂vi
, Dij =

∂2

∂vi∂vj
, . . .

For each (m,V ) ∈ NoCut with m in the domain of the chart x, we set:

X = X(x, v, t) =
(

X1(x, v, t), X2(x, v, t)
)

= x (expm(tV )) ,

where x = x(m) and V = vi∂i. For V ∈ Tm0
S such that (m0, V ) ∈ NoCut, and

setting ξ = ξi∂i, we recall from [7] that the quadratic form A(m0, V )(ξ) defined
in the introduction is equal to Aij(v)ξ

iξj with:

Aij(v) = Y i
k (v) ∂jX

k(0, v, 1) (3)

and the matrix Y i
k (v) given by: Y i

k (v) DjX
k(0, v, 1) = δij . Given V = vi∂i as

above, it is convenient to compute the right-hand side of (3) by choosing for x
a particular normal chart at m0 (unique up to x1 → −x1), namely:

Definition 2 A Fermi chart along V is a normal chart x at m0 such that
V = r∂2 (with r = |V |) and the Riemannian metric reads:

g = dx1 ⊗ dx1 +G(x1, x2) dx2 ⊗ dx2, with G(0, x2) = 1, ∂1G(0, x
2) = 0.

Let x be a Fermi chart along V . The geodesic t ∈ [0, 1] → mt = expm(tV ) ∈
S (called the axis of the chart) simply reads t 7→ X((0, 0), (0, r), t) = (0, tr)
and, for fixed x2, the paths which read t 7→ (t, x2) are geodesics of S as well,
orthogonal to the axis. The Christoffel symbols are given by:

Γ1
22 = −1

2
∂1G, Γ

2
12 =

∂1G

2G
, Γ2

22 =
∂2G

2G
, others vanish,

and the Gauss curvature, by K = −∂11
√
G√

G
. We thus get for the derivatives of

the Christoffel symbols on the axis, intrinsic expressions given in terms of K at
x = (0, x2) by:

∂1Γ
1
22 = −∂1Γ2

12 = K, ∂11Γ
1
22 = −∂11Γ2

12 = ∂1K, ∂1Γ
2
22 = 0, ∂11Γ

2
22 = −∂2K.

With these formulas at hand, we readily find:

∂X((0, 0), (0, r), t) =

(

f0(t) 0
0 1

)

, DX((0, 0), (0, r), t) =

(

f1(t) 0
0 t

)

,
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where fi(t) = fi((0, 0), (0, r), t) for i ∈ {0, 1}; here, fi(x,w, t) are the expressions
in the chart x of the solutions for t ∈ [0, 1] of the Jacobi equation:

f̈ + |W |2 K (expm(tW )) f = 0 (4)

(where x = x(m),W = wi∂i with (m,W ) ∈ NoConj, and we use the dot

notation: ḟ =
df

dt
, f̈ =

d2f

dt2
), satisfying the initial condition:

fi(0) = δi0, ḟi(0) = δi1 .

Remark 3 For later use, we observe that, for t ∈ (0, 1] and (m,W ) ∈ NoConj,
we have: 0 < f1(x,w, t). Moreover, Sturm comparison theorem [4] combined
with Remark 2 provides the pinching:

sin
(√

maxS K|W |t
)

√
maxS K|W | ≤ f1(x,w, t) ≤

sin(|W |t)
|W | ,

which yields f1(x,w, t) ≤ t ≤ 1 and lim
|W |↓0

f1(x,w, 1) = 1.

Back to (m,W ) = (m0, V ), applying (3) in our Fermi chart along V , we get:

A(m0, V )(ξ) = |ξ|2 −
(

1− f0(1)

f1(1)

)

|ξ − g(ξ, U)U |2, with U =
V

|V | .

Here comes a key observation, also made in [9] (and extended to the higher
dimensional setting in [10], see also [13]): the right-hand side of the preceding
equation is intrinsic because so is (4). We may thus use a single Fermi chart x,
along the sole tangent vector V0 at m0, and write for each V = vi∂i ∈ Tm0

S
close to V0:

A(m0, V )(ξ) = |ξ|2 −
(

1− f0(0, v, 1)

f1(0, v, 1)

)

|ξ − g(ξ, U)U |2. (5)

We will now calculate the c-curvature C(m0, V0)(ξ, ν) in that Fermi chart (fixed
once for all), by combining (1) with (5). Letting henceforth ξ and ν be unit
vectors and orienting the tangent plane Tm0

S by the local volume form dx1∧dx2,
we denote by ϑ (resp. ϕ) the angle in [0, 2π) by which a direct rotation brings

ξ (resp. ν) to U0 =
V0
|V0|

= ∂2; in other words, we set:

ξ = sinϑ ∂1 + cosϑ ∂2, ν = sinϕ ∂1 + cosϕ ∂2.

A lengthy but routine calculation yields:

C(m0, V0)(ξ, ν) = − sin2 ϑ

(

f ′′
0

f1
− f0f

′′
1

f2
1

− 2f ′
0f

′
1

f2
1

+
2f0(f

′
1)

2

f3
1

)

(6)

+
2

r20

(

cos2 ϑ− cos2(ϑ+ ϕ)
)

(

1− f0
f1

)

+
4

r0
cosϑ sinϑ sinϕ

(

f ′
0

f1
− f0f

′
1

f2
1

)

,

where we have set, for short: f ′
a = νiDifa(0, v0, 1), f

′′
a = νiνjDijfa(0, v0, 1),

for a = 0, 1, and v0 = (0, r0) with r0 = |V0|.
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2.2 Constant curvature case recalled

Setting for short κ = K(m0) and r̄ =
√
κ r, let us recall the expressions which

occur for f0, f1 in case K ≡ κ, labelling them all with a bar:

f̄0(0, v, t) = cos(r̄t), f̄1(0, v, t) =
sin(r̄t)

r̄
, where r =

√

(v1)2 + (v2)2.

At (v, t) = (v0, 1), with v0 = (0, r0) and r̄0 =
√
κ r0, we infer correspondingly:

f̄ ′
0 = −

√
κ sin r̄0 cosϕ, f̄ ′′

0 = κ

(

− sin r̄0
r̄0

+

(

sin r̄0
r̄0

− cos r̄0

)

cos2 ϕ

)

,

f̄ ′
1 =

√
κ

r̄0

(

cos r̄0 −
sin r̄0
r̄0

)

cosϕ ,

f̄ ′′
1 =

κ

r̄20

(

cos r̄0 −
sin r̄0
r̄0

+

(

3

(

sin r̄0
r̄0

− cos r̄0

)

− r̄0 sin r̄0

)

cos2 ϕ

)

,

hence:

1

κ
C(m0, V0)(ξ, ν) = sin2 ϑ sin2 ϕ

r̄20 + r̄0 cos r̄0 sin r̄0 − 2 sin2 r̄0

r̄20 sin
2 r̄0

(7)

+ 2 sin2 ϑ cos2 ϕ
sin r̄0 − r̄0 cos r̄0

sin3 r̄0

+ 2 cos2 ϑ sin2 ϕ
sin r̄0 − r̄0 cos r̄0

r̄20 sin r̄0

+ 4 cosϑ sinϑ cosϕ sinϕ
sin2 r̄0 − r̄20
r̄20 sin

2 r̄0
.

3 Perturbative tools

In the sequel of the paper, dropping the first argument x = x(m) since it is
fixed, equal to (0, 0) = x(m0), we simply write: fa = fa(v, t), X = X(v, t) and,
abusively with the same letter: K(X(v, t)) = K

(

expm0
(tV )

)

, where V = vi∂i.
Moreover, anytime the second argument v is equal to v0 = (0, r0), we will also
drop it and just write: fa = fa(t) and so on.
Given a real number ω > 0, we will require the linear map:

f ∈ C0([0, 1],R) −→ Sω(f) ∈ C0([0, 1],R)

defined as the solution map f 7→ u of the linear initial value problem:

ü+ ω2u = f, u(0) = u̇(0) = 0.

The representation formula : Sω(f)(t) =

∫ t

0

sin (ω(t− τ))

ω
f(τ) dτ is well

known. Setting ‖v‖ = sup
t∈[0,1]

|v(t)|, it yields for Sω the contraction estimate:

‖Sω(f)‖ ≤ 1

2
‖f‖, (8)
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easily obtained by writing:

u(t) =

∫ t

0

u̇(τ)dτ =

∫ t

0

∫ τ

0

cos (ω(τ − θ)) f(θ) dθdτ.

We will also require the following formulas (written at t = 1, for f(t) = t and
f(t) = t2):

Sr̄0(t)(1) =
r̄0 − sin r̄0

r̄30
, Sr̄0(t

2)(1) =
r̄20 + 2(cos r̄0 − 1)

r̄40
. (9)

We are now ready to state our main perturbation lemma, the proof of which is
deferred to Appendix A:

Lemma 1 If |K−1|C2(S) ≤
1

π2
, there exists universal constants B1ka, B2ka, B3ka,

for a ∈ {0, 1} and k ∈ {0, 1, 2}, such that the following estimates hold:

‖Dk
νfa‖ ≤ B1ka, ‖Dk

ν (fa − f̄a)‖ ≤ B2ka ε r
2−k
0 ,

‖Dk
ν(fa − f̄a) + r3−k

0 ψk Sr̄0(t
a+1)‖ ≤ B3ka ε r

4−k
0 ,

where, for short, ε := |K − 1|C2(S) and:

ψ0 := ∂2K(0), ψ1 := 3 cosϕ ∂2K(0) + sinϕ ∂1K(0),

ψ2 := (2 + 4 cos2 ϕ) ∂2K(0) + 4 sinϕ cosϕ ∂1K(0)

(from now on, we will freely use to these abbreviations).

Remark 4 Let us stress that the bounds:

∀a = 0, 1, ‖D12fa‖ ≤ 2B12a, ‖D12(fa − f̄a)‖ ≤ 2B22aε,

follow from thoses on ‖Dννfa‖ and ‖Dνν(fa − f̄a)‖ by letting ν = 1√
2
(∂1 + ∂2).

The first line of conclusion of Lemma 1 will be used to prove Theorem 1
near7 the first conjugate point (Section 4). Uniformly away from that point,
and crucially for r0 ↓ 0, the proof requires the second line of conclusion through
a Maclaurin type approximation estimate for the c-curvature, namely:

Corollary 1 If |K−1|C2(S) ≤
1

π2
and r̄0 < π, there exists a universal constant

C1 such that the absolute value of the following expression:

f3
1

f̄3
1

C(m0, V0)(ξ, ν) − C(m0, V0)(ξ, ν) −
r0ψ2 sin

2 ϑ

f̄1

(

Sr̄0(t)(1) −
f̄0Sr̄0(t

2)(1)

f̄1

)

+
2r0ψ0Sr̄0(t

2 − t)(1)

f̄1

(

cos2 ϑ− cos2(ϑ+ ϕ)
)

+
4r0ψ1 cosϑ sinϑ sinϕ

f̄1

(

Sr̄0(t)(1)−
f̄0Sr̄0(t

2)(1)

f̄1

)

is bounded above by:

1

f̄3
1

C3
1π

8εr20(338 sin
2 ϑ+ 268 cos2 ϑ sin2 ϕ).

7where C(m0, V0)(ξ, ν) could blow up since r̄0 could exit from (0, π) for ε 6= 0
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Proof of the corollary. For each a ∈ {0, 1} and k ∈ {0, 1, 2}, we split Dk
νfa

identically into three summands: Dk
νfa = S

(k,a)
1 + S

(k,a)
2 + S

(k,a)
3 given by:

S
(k,a)
1 = Dk

ν f̄a, S
(k,a)
2 = −r3−k

0 ψkSr̄0(t
a+1)(1).

From (9), we define the constants c6, c7 as in Appendix B. From Lemma 1, we
know that ∣

∣

∣S
(k,a)
1

∣

∣

∣ ≤ B1ka,
∣

∣

∣S
(k,a)
3

∣

∣

∣ ≤ B3kaεr
4−k
0 ,

and from the obvious bounds:

|ψ0| ≤ ε, |ψ1| ≤ 4ε, |ψ2| ≤ 8ε, (10)

we further know that
∣

∣

∣S
(k,a)
2

∣

∣

∣ ≤ 8c6+aεr
3−k
0 .

Let us consider the expression (6) of the c-curvature, multiply it by f3
1 and,

using the preceding splittings and bounds, let us estimate the Maclaurin ap-
proximation of each of the three auxiliary expressions:

E1 := f2
1 f

′′
0 − f0f1f

′′
1 − 2f1f

′
0f

′
1 + 2f0(f

′
1)

2

E2 :=
2

r20
f2
1 (f1 − f0) , E3 :=

4

r0
f1 (f1f

′
0 − f0f

′
1) ,

which occur in f3
1C(m0, V0)(ξ, ν) as coefficients, respectively of:

− sin2 ϑ,
(

cos2 ϑ− cos2(ϑ+ ϕ)
)

, cosϑ sinϑ sinϕ .

Setting E1, E2, E3, for the corresponding quantities defined with f̄0, f̄1 instead
of f0, f1, and proceeding stepwise, with careful intermediate calculations8, we
get for the (Eℓ − Eℓ)’s the following analogues of the second line of conclusion
of Lemma 1:

∣

∣E1 − E1 + r0ψ2f̄1
[

f̄1Sr̄0(t)(1)− f̄0Sr̄0(t
2)(1)

]∣

∣ ≤ 154π8C3
1εr

2
0 ,

∣

∣E2 − E2 + 2r0ψ0f̄
2
1Sr̄0(t

2 − t)(1)
∣

∣ ≤ 84π8C3
1εr

2
0 ,

∣

∣E3 − E3 + 4r0ψ1f̄1
[

f̄1Sr̄0(t)(1)− f̄0Sr̄0(t
2)(1)

]∣

∣ ≤ 200π8C3
1εr

2
0 ,

where the constant C1 is defined
9 in Appendix B, as well as three other constants

c8, c9, c10, and where, recalling Remark 2, π8 is used as an upper bound for

max
(

1, rp−2
0

)

with10 2 ≤ p ≤ 10. Since r̄0 < π, we may divide by f̄3
1 > 0 the

resulting Maclaurin approximation estimate for f3
1C(m0, V0)(ξ, ν) and, using the

general inequalities:
∣

∣cos2 ϑ− cos2(ϑ+ ϕ)
∣

∣ ≤ sin2 ϑ+ 2 cos2 ϑ sin2 ϕ , (11)

2| cosϑ sinϑ sinϕ| ≤ sin2 ϑ+ cos2 ϑ sin2 ϕ ,

we obtain the estimate of Corollary 1.

8in particular, for counting numbers of terms which are O(εr20)
9using, in particular, the bounds

√
κ ≤ 1 + 1

2π2
< 19

18
and κ ≤ 1 + 1

π2
< 10

9

10for instance, p = 2 (resp. p = 10) for

(

S
(0,1)
1

)2

S
(2,0)
3 (resp.

(

S
(0,1)
3

)2

S
(2,0)
3 ) in the first

term of E1



10 Ph. Delanoë and Yuxin Ge

Quick digression on the convexity of NoConj. The reader may wish to
skip the rest of this section, devoted to a quick digression from our main topic.
Indeed, let us pause and provide a uniform convexity estimate on the tangential
domains

NoConjm = {W ∈ TmS, (m,W ) ∈ NoConj},
obtained in terms of |K − 1|C2(S) as a direct consequence of Lemma 1, and
stated as follows:

Corollary 2 Let S be a surface as above with: minS K = 1. There exists

universal positive constants β, γ, C, with β ≤ 1

π2
and γ ≤ C, such that, if

|K − 1|C2(S) ≤ β, for each m0 ∈ S and V0 ∈ ∂NoConjm0
, the curvature of the

boundary curve ∂ NoConjm0
at V0 is pinched between γ and C.

Qualitative proofs of the uniform convexity of NoConj are given in [5, 10]
for C4 perturbations of the standard n-sphere. Let us further note that, com-
bining Corollary 2 with Theorem 1, one can readily show that NoCut is con-
vex for small enough β by arguing as in [10], here just with a linear path
t ∈ [0, 1] → Vt = tV1 + (1− t)V0 in Tm0

S, with V0 and V1 in NoCutm0
.

Proof. Fix (m0, V0) as stated and take a Fermi chart x along V0, sticking
to the above notations. From the vanishing of f1(0, v0, t) at t = 1 combined
with its positivity for t ∈ (0, 1) and the uniqueness of the solution of the initial
(here final, rather) value problem [20], we infer that ḟ1(0, v0, 1) < 0 hence also
D2f1(0, v0, 1) < 0, since f1(0, v0, t) = f1((0, 0), (0, r0), t) ≡ tf1((0, 0), (0, tr0), 1).
Therefore, near V0, the curve ∂NoConjm0

admits the equation v2 = h(v1) with
the function h implicitly given by:

f1
(

(0, 0), (v1, h(v1)), 1
)

= 0, and h(0) = r0.

Now, classically [3], the curvature k of ∂NoConjm0
at V0 is equal to:

k =
−h′′(0)

(1 + h′(0)2)3/2
≡ −D11f1(D2f1)

2 − 2D12f1(D1f1)(D2f1) +D22f1(D1f1)
2

((D1f1)2 + (D2f1)2)
3/2

.

Considering this formula, and since with ε = 0 we would have r0 = π, f1 = f̄1
and k = 1

π2 , the timeliness of Lemma 1 for our purpose is fully conceivable. For
an effective proof, we first observe that, by Sturm theorem [4], r0 is pinched
between π/

√
1 + ε and π; in particular, we have:

π
(

1− ε

2

)

≤ r̄0 ≤ π
(

1 +
ε

2

)

. (12)

At (x, v, t) = (0, v0, t), Lemma 1 and the formulas of Section 2.2 imply:

D2f1 ≤ 1

r0

(

cos r̄0 −
sin r̄0
r̄0

)

+B211εr0 ,

D11f1 ≤ 1

r20

(

cos r̄0 −
sin r̄0
r̄0

)

+B221ε ,

which, combined with the pinching of r0 and standard bounds on the cosine and
sine, yields:

D2f1 ≤ 1

r0

(

−1 + ε

(

1

2
+B211π

2

)

+
ε2π2

8

)

,
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D11f1 ≤ 1

r20

(

−1 + ε

(

1

2
+B221π

2

)

+
ε2π2

8

)

.

So D2f1 ≤ − 1

2r0
, hence in particular |Df1| ≥

1

2r0
≥ 1

2π
, and D11f1 ≤ − 1

2r20
,

provided ε is small enough. Moreover, still by Lemma 1 and Section 2.2, we
have at (0, v0, t):

|D1f1| ≤ B211εr0 ≤ B211πε .

The combination of Lemma 1 (including Remark 4) with the preceding bounds
yields, on the one hand:

k ≤ (2π)36B121B
2
111 =: C,

on the other hand:

k ≥ 1

2B3
111

√
2

(

1

8r40
− επB211B121 (4B111 + επB211)

)

so that k ≥ γ :=
1

32π4
√
2B3

111

for ε small enough. Altogether, this pinching of

k holds provided we require ε ≤ β with β the smallest among the positive roots
of the quadratic equations11:

π2

8
β2 +

(

1

2
+B221π

2

)

β − 1

2
= 0 ,

π2B121B
2
211β

2 + 4πB111B121B211β − 1

16π4
= 0 .

Finally, a tedious but routine evaluation shows that we may take:

γ = 1.1× 10−7, C = 7.4× 107, β = 4.5× 10−10,

in the statement of Corollary 2.

4 c-curvature almost-positivity near conjugacy

In this section, we prove Theorem 2 at (m0, V0) ∈ NoConj and (ξ, ν) unit vectors
of Tm0

S in case the point expm0
(V0) is close to the first conjugate point m∗

0 of
m0 along the geodesic t ∈ R

+ → expm0
(tV0) ∈ S. Specifically, setting l0 for

the length of that geodesic curve from m0 up to m∗
0, we establish the following

proposition:

Proposition 1 There exists a triple of small (strictly) positive real numbers
(η1, δ1, ς1) such that C(m0, V0)(ξ, ν) satisfies the lower bound (2) with ς = ς1,
provided ε = |K − 1|C2(S) ≤ η1 and (1 − δ1)l0 ≤ |V0| < l0.

Proof. Sticking to previous notations and recalling (12), we infer from the
pinching of |V0| the following ones (dropping the subscript of δ1):

(

1− ε

2
− δ
)

π ≤ r0 ≤ π and
(

1− ε

2
− δ
)

π ≤ r̄0 <
(

1 +
ε

2

)

π . (13)

11which turns out to be that of the second equation
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We will assume:

r0 ∈
(

5π

6
, π

)

and r̄0 ∈
(

5π

6
,
7π

6

)

(14)

with no loss of generality (it holds under the smallness condition posed below12

on ε and δ, see (50) of Appendix B). Combining (13) with Remark 3, the
formulas of Section 2.2 and the first line of conclusion of Lemma 1, we derive
the following set of inequalities:

− 1− επ2B200 ≤ f0 ≤ −1 + επ2B200 +
(ε

2
+ δ
)2 π2

2
(15)

0 < f1 ≤ sin r0
r0

≤
ε
2 + δ

1−
(

ε
2 + δ

) (16)

|f ′
0| ≤

(ε

2
+ δ
)(

1 +
ε

2

)

π + επB210. (17)

Furthermore, we derive two important lower bounds, namely:

Lemma 2 If cosϕ 6= 0, and ε and δ satisfy the relative smallness condition13

(49) (see Appendix B), the lower bound:

|f ′
1| ≥

| cosϕ|
π

− επB211 −
ε
2

π
(

1−
(

ε
2 + δ

)) −
(ε

2
+ δ
)2 π

2

holds true, as well as the sign condition: −f ′
1 cosϕ > 0 . If | cosϕ| ≤ 1

2
and ε

and δ are (50)-small, the following lower bound is valid instead:

f0f
′′
1 ≥ 1

8π2
− ε

(

B221 +
1

8
B200

)

− 1

16

(ε

2
+ δ
)2

.

Proof. If cosϕ 6= 0, using |f ′
1 − f̄ ′

1| ≤ επB211 combined with the lower bound:

− f̄ ′
1

cosϕ
≥ 1

π

(

1−
ε
2

1−
(

ε
2 + δ

) − π2

2

(ε

2
+ δ
)2
)

,

one can readily check the first part of the lemma. For the second part, we first
note that f̄ ′′

1 is bounded above by the expression:

1

r20

[

−1 +
ε
2

1−
(

ε
2 + δ

) +
π2

2

(ε

2
+ δ
)2

+ cos2 ϕ

(

3

1−
(

ε
2 + δ

) +
ε

2

(

1 +
ε

2

)

π2

)]

.

If | cosϕ| ≤ 1

2
, it implies f̄ ′′

1 ≤ − 1

8π2
provided ε and δ are taken (50)-small. By

Lemma 1, the inequality

f ′′
1 ≤ − 1

8π2
+ εB221

follows. Combined with (15), it yields the second part of the lemma.

12we will say, for short, that they are (50)-small
13to be used only in Section 4.2 below, with | cosϕ| bounded away from 0 by a (small)

universal constant i.e. with | cosϕ| replaced by that constant
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In order to investigate the sign of the c-curvature expression (6), we will
have to recast this expression in appropriate forms, namely, either:

C(m0, V0)(ξ, ν) = − sin2 ϑ

(

f ′′
0

f1
− f0f

′′
1

f2
1

− 2f ′
0f

′
1

f2
1

)

− 2f0
f1

(

f ′
1

f1
sinϑ+

sinϕ cosϑ

r0

)2

(18)

+
2

r20

(

1− f0
f1

)

(

2 cosϑ cosϕ sinϑ sinϕ− sin2 ϑ sin2 ϕ
)

+
2

r20
cos2 ϑ sin2 ϕ+

4

r0
cosϑ sinϑ sinϕ

f ′
0

f1
,

or:

C(m0, V0)(ξ, ν) = − sin2 ϑ

(

f ′′
0

f1
− f0f

′′
1

f2
1

− 2f ′
0f

′
1

f2
1

+
2f0(f

′
1)

2

f3
1

+
2

r20

(

1− f0
f1

))

+
2

r20

(

1− f0
f1

)

(cosϕ sinϑ+ cosϑ sinϕ)
2

(19)

+
4

r0
cosϑ sinϑ sinϕ

(

f ′
0

f1
− f0f

′
1

f2
1

)

,

We will also have to distinguish cases, depending on the size of | cosϕ|, then on
the relative size of further arising quantities. In each case, relying on Lemma 2
and treating f1 as a small parameter in intermediate steps thanks to (16), we
will be able to find a leading term blowing up positively as ε and δ go to zero
and argue with it.

We are now ready to continue the proof of Proposition 1 and start out for a
case by case discussion of the sign of the c-curvature.

4.1 Case | cosϕ| small enough

4.1.1 Subcase

∣

∣

∣

∣

sinϑ
f ′
1

f1

∣

∣

∣

∣

≤ | sinϕ cosϑ|
2r0

In this subcase, the assumption | cosϕ| ≤ 1

2
will suffice. We note the estimate:

(

f ′
1

f1
sinϑ+

sinϕ cosϑ

r0

)2

≥ sin2 ϕ cos2 ϑ

4r40

and use it to derive from (18) the inequality:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

f2
1

[

f0f
′′
1 + 2f ′

0f
′
1 − f1

(

f ′′
0 +

2

r20
(f1 − f0) sin

2 ϕ

)]

− 2f0
f1

sin2 ϕ cos2 ϑ

4r20

− 4

f1
| cosϑ sinϑ sinϕ|

(

f1 − f0
r20

+
|f ′

0|
r0

)

.

The right-hand side will be handled relying on the second part of Lemma 2 com-
bined with the pinching (14) of r0 and previous estimates on the various Dkfa
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terms which arise apart from f0f
′′
1 . Doing so, we can establish for C(m0, V0)(ξ, ν)

the lower bound:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

f2
1

(

1

12π2
−R1(ε, δ)

)

+
sin2 ϕ cos2 ϑ

8π2f1
(20)

+
sin2 ϑ

24π2f2
1

+
sin2 ϕ cos2 ϑ

8π2f1
− 4

(

1 +
5

π2

) | cosϑ sinϑ sinϕ|
f1

,

provided ε and δ are (51)-small, where R1(ε, δ) stands for the rational function of
(ε, δ) vanishing at (0, 0) given by the right-hand side of the smallness condition
(51). We claim that the second line of the right-hand side of (20) is non-negative
for small enough ε and δ. Indeed, from the identity a2 + b2 ≥ 2|ab| used with

a =
sinϑ

2π
√
6f1

and b =
sinϕ cosϑ

2π
√
2f1

, we infer that this line is bounded below by:

| cosϑ sinϑ sinϕ|
f1
√
f1

(

1

4
√
3π2

− 4

(

1 +
5

π2

)

√

f1

)

,

and the claim follows by taking ε and δ (52)-small. Eventually, for ε and δ
(51)(52)-small, we obtain:

C(m0, V0)(ξ, ν) ≥
sin2 ϑ

24π2f2
1

+
sin2 ϕ cos2 ϑ

8π2f1
.

Combining this lower bound with (16)(52) and the useful, easily established14,
inequality:

sin2 ϑ+ cos2 ϑ sin2 ϕ ≥ 1

4π2
A2(m0, V0, ξ, ν), (21)

we get (2) at (m0, V0, ξ, ν) with ς = 18.

4.1.2 Subcase

∣

∣

∣

∣

sinϑ
f ′
1

f1

∣

∣

∣

∣

>
| sinϕ cosϑ|

2r0

The second line of the right-hand side of (18) is non-negative due to (15)(16).
So we may write:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

f2
1

[

f0f
′′
1 + 2f ′

0f
′
1 − f1

(

f ′′
0 +

2

r20
(f1 − f0) sin

2 ϕ

)]

− 4

f1
| cosϑ sinϑ sinϕ|

(

f1 − f0
r20

| cosϕ|+ |f ′
0|
r0

)

,

hence also:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

f2
1

[

f0f
′′
1 + 2f ′

0f
′
1 − f1

(

f ′′
0 +

2

r20
(f1 − f0) sin

2 ϕ

)]

− 8 sin2 ϑ

f2
1

|f ′
1|
(

f1 − f0
r0

| cosϕ|+ |f ′
0|
)

14hint: use Remark 2
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by applying our subcase assumption. If | cosϕ| ≤ 1
2 , repeating the above argu-

ment, we see that the first line of the preceding right-hand side is larger than
sin2 ϑ

f2
1

(

1

8π2
−R1(ε, δ)

)

, while the second line is bounded below by:

−8B111
sin2 ϑ

f2
1





(ε

2
+ δ
)(

1 +
ε

2

)

π + επB210 +
1 + επ2B200 +

ε

2
+δ

1−( ε

2
+δ)

π
(

1− ε
2 − δ

) | cosϕ|





as shown by combining Lemma 1 with (13)(15)(16)(17). Altogether, we may
write:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

f2
1

(

1

12π2
−R2(ε, δ)

)

+
sin2 ϑ

f2
1





1

24π2
− 8B111

1 + επ2B200 +
ε

2
+δ

1−( ε

2
+δ)

π
(

1− ε
2 − δ

) | cosϕ|





with R2(ε, δ) given by the right-hand side of (53). We get from (52):

1 + επ2B200 +
ε

2
+δ

1−( ε

2
+δ)

(

1− ε
2 − δ

) ≤ 768(π2 + 5)2 + 2π2 + 1

768(π2 + 5)2 − 1
< 1.00013 ;

besides, we have: πB111 = 5 + π
√
2 + 3π2 ≃ 39, 05 < 40. So the smallness

conditions:

| cosϕ| ≤ 1

7704
(22)

and (53) imply that C(m0, V0)(ξ, ν) ≥ sin2 ϑ

24π2f2
1

. In our present subcase, the

latter inequality yields:

C(m0, V0)(ξ, ν) ≥
sin2 ϑ

48π2f2
1

+
cos2 ϑ sin2 ϕ

192π2r20f
′2
1

.

On the one hand, from (16) combined with (52), we get 48π2f2
1 ≤ 2 × 10−8.

On the other hand, combining Lemma 1 with (13) and (22), we have: r0|f ′
1| ≤

επ2B211 +
1

3852
. So we can arrange to have 192π2r20f

′2
1 ≤ 1 by taking ε (54)-

small. Altogether, we may write

C(m0, V0)(ξ, ν) ≥ sin2 ϑ+ cos2 ϑ sin2 ϕ

and, from (21), conclude that (2) holds at (m0, V0, ξ, ν), indeed, with ς =
1

4π2
.

4.2 Case | cosϕ| > 1
7704

In this case, the first part of Lemma 2 implies:

|f ′
1| ≥

1

15408π
with − f ′

1 cosϕ > 0 , (23)
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provided ε and δ are (55)-small. Furthermore, if the latter are (50)(51)-small,
we infer from (15) the pinching:

1

2
≤ −f0 ≤ 3

2
. (24)

which will be used repeatedly.

4.2.1 Subcase cosϑ cosϕ sinϑ sinϕ ≤ 0

Working with the expression (19) of C(m0, V0)(ξ, ν), the second line of which
is non-negative, and combining (23) with (24), (14) and Lemma 1, we get the
inequality:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

f3
1

(

1

154082π2
− f1

(

B120 +
3

2
B121 + 2B110B111 +

36

5π2

))

+
2

r20

(

1− f0
f1

)

(cosϕ sinϑ+ cosϑ sinϕ)2

+
2

r0f2
1

| cosϑ sinϑ sinϕ|
(

1

15408π
− 2f1B110

)

.

Recalling (16) (24) and assuming that ε and δ are (56)-small, we infer the lower
bound:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

2π2154082f3
1

+
2

r20

(

1 +
1

2f1

)

cos2 ϑ sin2 ϕ

+
1

15408πr0f2
1

| cosϑ sinϑ sinϕ|
(

1− 4

r0
15408πf1(f1 − f0)

)

,

the second line of the right-hand side of which is non-negative, as checked by
combining Remark 3 with (13) (16) (24) and (52). Using (13)(16)(52) to treat
its first line, we obtain the inequality

C(m0, V0)(ξ, ν) ≥ 17205
(

sin2 ϑ+ cos2 ϑ sin2 ϕ
)

which, recalling (21), implies (2) at (m0, V0, ξ, ν) with ς = 435.

4.2.2 Subcase cosϑ cosϕ sinϑ sinϕ > 0

Here, since −f ′
1 cosϕ > 0, we know that the expressions sinϑ

f ′
1

f1
and

sinϕ cosϑ

r0
have opposite signs.

Case

∣

∣

∣

∣

sinϑ
f ′
1

f1

∣

∣

∣

∣

≤ 4| sinϕ cosϑ|
5r0

or

∣

∣

∣

∣

sinϑ
f ′
1

f1

∣

∣

∣

∣

≥ 5| sinϕ cosϑ|
4r0

: If a and b are

two real numbers such that: ab < 0 and |a| ≤ 4

5
|b| or |b| ≤ 4

5
|a|, one can

readily verify that they satisfy: (a + b)2 ≥ 1

50
(a2 + b2). Using the expression

(18) of C(m0, V0)(ξ, ν), we apply the preceding estimate with a = sinϑ
f ′
1

f1
, b =



Almost-positivity of the c-curvature of surfaces 17

sinϕ cosϑ

r0
, and find the c-curvature bounded below by:

sin2 ϑ

(−f0(f ′
1)

2

25f3
1

− f ′′
0

f1
+
f0f

′′
1 + 2f ′

0f
′
1

f2
1

− 2

r20
sin2 ϕ

(

1− f0
f1

))

+
4| cosϑ sinϑ sinϕ|

f1

(

− f0
7704r20

− |f ′
0|
r0

)

− f0
25f1r20

cos2 ϑ sin2 ϕ ,

hence also, combining Lemma 1 with (14)(23)(24) and (17), by:

sin2 ϑ

f3
1

(

1

50π2154082
− f1

(

B120 +
3

2
B121 + 2B110B111 +

36

5π2

))

+
4| cosϑ sinϑ sinϕ|

f1

(

1

15408π2
−

6

5

((

ε

2
+ δ

)(

1 +
ε

2

)

+ εB210

))

+
1

50π2f1
cos2 ϑ sin2

ϕ.

Recalling (16), we infer that:

C(m0, V0)(ξ, ν) ≥
sin2 ϑ

100π2154082f3
1

+
1

50π2f1
cos2 ϑ sin2 ϕ ,

provided ε and δ are (57)-small. Recalling (16)(52) and (21), it yields (2) with
ς = 8.7 at (m0, V0, ξ, ν).

Case
4| sinϕ cosϑ|

5r0
<

∣

∣

∣

∣

sinϑ
f ′
1

f1

∣

∣

∣

∣

<
5| sinϕ cosϑ|

4r0
: This case is more difficult

because we cannot use the square occuring in the second line of (18) any more;
all we can do now from (18) is write:

C(m0, V0)(ξ, ν) ≥ sin2 ϑ

(

−f
′′
0

f1
+
f0f

′′
1 + 2f ′

0f
′
1

f2
1

− 2

r20
sin2 ϕ

(

1− f0
f1

))

+
4

r20
| sinϕ cosϑ|| cosϕ sinϑ|

(

1− f0
f1

)

− 4

r0
| sinϕ cosϑ|| sinϑ| |f

′
0|
f1

and, from our present assumption, infer for C(m0, V0)(ξ, ν) the lower bound:

sin2 ϑ

(

−f
′′
0

f1
+
f0f

′′
1 + 2f ′

0f
′
1

f2
1

− 2

r20
sin2 ϕ

(

1− f0
f1

))

− 16f0
5r0f2

1

sin2 ϑ|f ′
1 cosϕ| − 5 sin2 ϑ

|f ′
1f

′
0|

f2
1

. (25)

We will factorize
sin2 ϑ

f2
1

as leading blowing up term in this expression and seek

a positive coefficient for it. Doing so, we focus on the terms:

−f0 sin
2 ϑ

f2
1

(

−f ′′
1 +

16

5r0
|f ′

1 cosϕ|
)

,

thus carefully investigate the sign of the latter parenthesis. Using Lemma 1, we
find it bounded below by:

(

−f̄ ′′
1 +

16

5r0
|f̄ ′

1 cosϕ|
)

− ε

(

B221 +
16

5
B211

)

.
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Now, a direct calculation of

(

−f̄ ′′
1 +

16

5r0
|f̄ ′

1 cosϕ|
)

, using the expressions of f̄ ′
1

and f̄ ′′
1 given in Section 2.2, shows that it is equal to:

1

r20

[

| cos r̄0|
(

1 +
1

5
cos2 ϕ

)

+
sin r̄0
r̄0

(

1 +

(

r̄20 +
1

5

)

cos2 ϕ

)]

;

recalling (13), we see that it will meet the required positivity. Back to the lower

bound (25), rewritten as C(m0, V0)(ξ, ν) ≥
sin2 ϑ

f2
1

E with E equal to:

(−f0)
(

−f ′′
1 +

16

5r0
|f ′

1 cosϕ|
)

− 7|f ′
0f

′
1| − f1

(

|f ′′
0 |+

2 sin2 ϕ

r20
(f1 − f0)

)

,

the preceding argument, combined with Lemma 1, Remark 3 and (13) (14)

(16) (17) (24), implies that C(m0, V0)(ξ, ν) ≥
√
3 sin2 ϑ

8π2f2
1

provided ε and δ are

(58)-small. In the present subcase, the latter inequality implies:

C(m0, V0)(ξ, ν) ≥
√
3

16π2

(

sin2 ϑ

f2
1

+
16 cos2 ϑ sin2 ϕ

25r20(f
′
1)

2

)

.

Recalling that r20(f
′
1)

2 ≤ 1

192π2
due to (54) and f2

1 ≤ 1
(

16
√
3(π2 + 5)

)4 by

(16)(52), we obtain

C(m0, V0)(ξ, ν) ≥
1212

√
3

16π2

(

sin2 ϑ+ cos2 ϑ sin2 ϕ
)

which, combined with (21), yields (2) with ς = 0.3 at (m0, V0, ξ, ν).

4.3 Concluding the proof of Proposition 1

By inspection of the smallness conditions (49) through (58) which ε and δ1 must
satisfy, we find that (57) implies all others. Calculation yields the pinching:

1439 ≤ B120 +
3

2
B121 + 2B110B111 +

36

5π2
≤ 1440

the right-hand side of which provides the condition:

ε

2
+ δ1 ≤ 2.96× 10−15

as a sufficient one for (57), hence for all, to be satisfied. It leads us to take:

η1 = 2.96× 10−15, δ1 = 1.48× 10−15, (26)

in the statement of Proposition 1. As for ς1, we choose the smallest value among

the ones found along the way, namely: ς1 =
1

4π2
.

Finally, let us stress that the proof just completed obviously departs from that of
[10] mentionned in Remark 1; in particular, in each of the above cases, the origin
of the blow up rate (quadratic or cubic) chosen for the positive lower bound on
the c-curvature can readily be traced back to the expression of C(m0, V0)(ξ, ν)
itself, relying on Lemma 2 and Lemma 1.
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5 c-curvature almost-positivity near the origin

In this section, we prove Theorem 2 at (m0, V0, ξ, ν) when d
(

m0, expm0
(V0)

)

is
small.

Proposition 2 There exists a triple of small (strictly) positive real numbers
(η2, δ2, ς2) such that C(m0, V0)(ξ, ν) satisfies the lower bound (2) with ς = ς2,
provided ε = |K − 1|C2(S) ≤ η2 and |V0| ≤ δ2.

Proof. As already observed, we may take V0 6= 0 with no loss of generality.

Dropping the subscript of δ2, we take r̄0 ≤ π

2
by assuming ε and δ (59)-small.

We use the Maclaurin type approximation of
f3
1

f̄3
1

C(m0, V0)(ξ, ν) obtained in

Corollary 1 and proceed to specify it further as r0 ↓ 0. As regards its first sum-
mand, namely C(m0, V0)(ξ, ν), the expression (7) prompts us to define constants
c11, . . . , c14 as done in Appendix B. These definitions imply at once that the
absolute value of:

C(m0, V0)(ξ, ν)−
2κr̄20
45

sin2 ϑ sin2 ϕ− 2κ

3

(

1 +
2r̄20
5

)

sin2 ϑ cos2 ϕ

−2κ

3

(

1 +
2r̄20
15

)

cos2 ϑ sin2 ϕ− 4κ

3

(

1 +
r̄20
5

)

cosϑ sinϑ cosϕ sinϕ

is bounded above by:

κr̄30(c11 sin
2 ϑ sin2 ϕ+ c12 sin

2 ϑ cos2 ϕ

+c13 cos
2 ϑ sin2 ϕ+ c14| cosϑ sinϑ cosϕ sinϕ|).

Let us now focus on the second summand, namely on the expression

E4 :=
r0ψ2 sin

2 ϑ

f̄1

(

Sr̄0(t)(1)−
f̄0Sr̄0(t

2)(1)

f̄1

)

−2r0ψ0Sr̄0(t
2 − t)(1)

f̄1

(

cos2 ϑ− cos2(ϑ+ ϕ)
)

−4r0ψ1 cosϑ sinϑ sinϕ

f̄1

(

Sr̄0(t)(1)−
f̄0Sr̄0(t

2)(1)

f̄1

)

and rewrite, on the one hand:

r0

f̄1

(

Sr̄0(t)(1)−
f̄0Sr̄0(t

2)(1)

f̄1

)

as: r0Sr̄0(t− t2)(1) +
√
κr20

[

A1(r̄0)Sr̄0(t)(1)−A2(r̄0)Sr̄0(t
2)(1)

]

, where15:

A1(τ) :=
τ − sin τ

τ sin τ
, A2(τ) :=

τ2 cos τ − sin2 τ

τ sin2 τ

15so that: A1(r̄0) =
1
r̄0

(

1
f̄1

− 1

)

, A2(r̄0) =
1
r̄0

(

f̄0
f̄2

1

− 1

)



20 Ph. Delanoë and Yuxin Ge

(and note that two additional constants c15, c16 are defined accordingly as in
Appendix B), on the other hand:

r0

f̄1
Sr̄0(t

2 − t)(1) = r0Sr̄0(t
2 − t)(1) +

√
κr20A1(r̄0)Sr̄0(t

2 − t)(1).

Furthermore, the Maclaurin expansion of Sr̄0(t
2 − t)(1) prompts us to write:

r0Sr̄0(t
2 − t)(1) = − r0

12
+ κr30A3(r̄0)

(defining so the auxiliary function A3 and, accordingly, a constant c17 as in
Appendix B). Gathering terms of same order and recalling (11), we obtain that
the absolute value of:

E4−
r0

6

[

2 sin ϑ sinϕ sin(ϑ− ϕ)∂1K(0) +
(

2 sinϑ cosϕ sin(ϑ− ϕ) + sin2(ϑ− ϕ)
)

∂2K(0)
]

is bounded above by:

2
√
κεr20 [(8(c15c6 + c16c7) + (c6 + c7)c15) sin

2 ϑ

+(4(c15c6 + c16c7) + 2(c6 + c7)c15) cos
2 ϑ sin2 ϕ]

+2c17 κεr
3
0

(

9 sin2 ϑ+ 6 cos2 ϑ sin2 ϕ
)

.

Combining the latter inequality with the one derived above for the first sum-
mand C(m0, V0)(ξ, ν) of the expansion of C(m0, V0)(ξ, ν) given in Corollary 1,
we infer that, if we consider the decomposition:

f3
1

f̄3
1

C(m0, V0)(ξ, ν) = I + II + III

with

I :=
κ

3

(

1 +
23r̄20
30

)

sin2 ϑ cos2 ϕ+
κ

3

(

1 +
r̄20
10

)

cos2 ϑ sin2 ϕ

−2κ

3

(

1 +
2r̄20
5

)

sinϑ cosϑ sinϕ cosϕ ,

and

II :=
κ

3
sin2(ϑ− ϕ) +

κr̄20
180

(

sin2 ϑ cos2 ϕ+ cos2 ϑ sin2 ϕ+ 4 sin2 ϑ sin2 ϕ
)

+
r0
6

[2 sinϑ sinϕ sin(ϑ− ϕ)∂1K(0)

+
(

2 sinϑ cosϕ sin(ϑ− ϕ) + sin2(ϑ− ϕ)
)

∂2K(0)]

and III so defined, then the quantity:

∣

∣

∣

∣

III − κr̄20
180

(

sin2 ϑ cos2 ϕ+ cos2 ϑ sin2 ϕ+ 4 sin2 ϑ sin2 ϕ
)

∣

∣

∣

∣

is altogether bounded above by:

εr20 sin
2 ϑ

(

338C3
1π

8

f̄3
1

+ 2
√
κ [8(c15c6 + c16c7) + (c6 + c7)c15]

)



Almost-positivity of the c-curvature of surfaces 21

+εr20 cos
2 ϑ sin2 ϕ

(

268C3
1π

8

f̄3
1

+ 2
√
κ [4(c15c6 + c16c7) + 2(c6 + c7)c15]

)

+εr30 2κc17
(

9 sin2 ϑ+ 6 cos2 ϑ sin2 ϕ
)

+κr̄30 (c11 sin
2 ϑ sin2 ϕ+ c12 sin

2 ϑ cos2 ϕ)

+κr̄30 (c13 cos
2 ϑ sin2 ϕ+ c14| cosϑ sinϑ cosϕ sinϕ|).

Now, let us discuss separately the positivity of each summand I, II, III. Noting
that

I ≥ 2κ

3
| cosϑ sinϑ cosϕ sinϕ|

(
√

(

1 +
r̄20
10

)(

1 +
23r̄20
30

)

−
(

1 +
2r̄20
5

)

)

,

we find I ≥ 0 provided r̄0 ≤ 2√
5
which holds if ε and δ are (60)-small. Next,

we have:

II ≥ κ

3
sin2(ϑ− ϕ) +

κr̄20
180

(

sin2 ϑ+ sin2 ϕ+ 2 sin2 ϑ sin2 ϕ
)

−εr0
6

(4| sinϑ|+ | sin(ϑ− ϕ)|) | sin(ϑ− ϕ)| ,

hence

II ≥ κ

9
sin2(ϑ− ϕ) +

κr̄20
360

(

sin2 ϑ+ sin2 ϕ
)

+ sin2(ϑ− ϕ)
(κ

9
− εr0

6

)

+
κ

9
sin2(ϑ− ϕ) +

κr̄20
360

sin2 ϑ− 2εr0
3

| sinϑ sin(ϑ− ϕ)| .

So, assuming provisionally III ≥ 0, and under the further smallness condi-
tions16:

εδ ≤ 2

3
, ε ≤ 1

6
√
10
,

the first of which implies
(κ

9
− εr0

6

)

≥ 0, the second of which ensures that the

second line of our last lower bound on II is identically non-negative, we obtain:

f3
1

f̄3
1

C(m0, V0)(ξ, ν) ≥
κ

9
sin2(ϑ− ϕ) +

κ2

360
r20
(

sin2 ϑ+ sin2 ϕ
)

. (27)

From r0 ≤ r̄0 ≤ π
2 combined with Remark 3, we find

f1

f̄1
≤

√
κ, with

√
κ ≤

1+ ε
2 ≤ 1+ 1

12
√
10

due to our last smallness assumption on ε. It yields
f3
1

f̄3
1

≤ 1.1

and the latter, plugged into (27) proves Proposition 2 with ς =
1

396
in (2).

Finally, let us discuss the non-negativity of III. From r̄0 ≤ π
2 , we have f̄1(r̄0) ≥

2

π
; moreover, we just saw that

√
κ is bounded above by 1 +

1

12
√
10

< 1.027.

16implied, for instance, by (51) and (60)
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So the constants C2, C3 defined in Appendix B can be used as upper bounds
on the coefficients respectively of εr20 sin

2 ϑ and εr20 cos
2 ϑ sin2 ϕ in the lengthy

expression which controls

∣

∣

∣

∣

III − κr̄20
180

. . .

∣

∣

∣

∣

(cf. supra). Using them and recalling

(11), we infer from the control just mentionned that:

1

r20
III ≥ sin2 ϑ

[

1

180
− ε(C2 + 19c17δ)−

115

100
δ(c11 + c12 +

1

2
c14)

]

+ cos2 ϑ sin2 ϕ

[

1

180
− ε(C3 + 13c17δ)−

115

100
δ(c13 +

1

2
c14)

]

.

Therefore III ≥ 0 provided ε and δ are taken (61)(62)-small. Proposition 2 is
proved.

Concluding the proof of Proposition 2. By inspection of the smallness
conditions (59) through (62) which ε and δ2 must satisfy, we find that (61) is
the strongest one bearing on ε, because C2 (like C3 < C2) is O(10

18) while the
constants ci’s (with 11 ≤ i ≤ 17) are O(1). It is also the strongest smallness

condition on δ = δ2 since setting ε = 1 in (61) yields δ ≤ 1

78
. We will thus take:

δ2 = 0.01 (28)

and, plugging this choice in (61), get: εC2 ≤ 1.214×10−3. Since C2 ≤ 1.4×1018,
it leads us to take:

η2 = 8.6× 10−22. (29)

So, Proposition 2 holds with (η2, δ2) as just chosen and ς2 =
1

396
(as found

above).

6 c-curvature almost-positivity elsewhere

In this section, we prove Theorem 2 at (m0, V0, ξ, ν) when expm0
(V0) stays away

from m0 and m∗
0 as specified17 in the:

Proposition 3 There exists a couple of small (strictly) positive real numbers
(η3, ς3) such that C(m0, V0)(ξ, ν) satisfies the lower bound (2) with ς = ς3, pro-

vided ε = |K − 1|C2(S) ≤ η3 and
1

2
δ2 ≤ |V0| ≤

(

1− 1

2
δ1

)

ℓ0.

Proof. The following pinching holds:

1

2
δ2
√
1− ε ≤ r̄0 ≤ π

(

1− 1

2
δ1

)√
1 + ε .

Recalling (26) and assuming that ε ≤ η2, it implies the other one:

49

100
δ2 ≤ r̄0 ≤

(

1− 1

4
δ1

)

π, (30)

17sticking to the notations of Propositions 1 and 2
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the right-hand side of which yields the estimate:

1

f̄1
≤ π

sin
(

π
4 δ1
) , (31)

recorded here for later use. From Corollary 1 combined with (10), (11), r0 ≤ π
and κ ≥ 1, we may write:

f3
1

f̄3
1

C(m0, V0)(ξ, ν) ≥ 1

κ
C(m0, V0)(ξ, ν) −

ε

f̄3
1

sin2 ϑ
(

338C3
1π

10 + 20π(c6 + c7)
)

− ε

f̄3
1

cos2 ϑ sin2 ϕ
(

268C3
1π

10 + 20π(c6 + c7)
)

. (32)

The inequality:
f1

f̄1
≤

√
κ sin r0
sin r̄0

, (33)

obvious from Remark 3, will be used below to deal with the left-hand side of

(32). As for the term
1

κ
C(m0, V0)(ξ, ν) occurring in the right-hand side of (32),

recalling its expression (7), we split it into two summands, namely, the square:

S1 = 2



sinϑ cosϕ

√

r̄20 − sin2 r̄0

r̄0 sin
3 r̄0

− cos θ sinϕ

√

r̄20 − sin2 r̄0
r̄30 sin r̄0





2

,

and the remaining part, equal to:

S2 = sin2
ϑ sin2

ϕ
h1(r̄0)

r̄20 sin
2 r̄0

+8 sin2
ϑ cos2 ϕ

cos r̄0
2
h2(

r̄0
2
)

r̄0 sin
3 r̄0

+8 cos2 ϑ sin2
ϕ
cos r̄0

2
h2(

r̄0
2
)

r̄30 sin r̄0
,

where

h1(τ) = τ2 + τ sin τ cos τ − 2 sin2 τ ,

h2(τ) = (τ + sin τ cos τ) sin τ − 2τ2 cos τ .

Obviously, setting:

µ1(τ) := min

(

h1(τ)

τ2 sin2 τ
,
8 cos τ

2h2(
τ
2 )

τ sin3 τ
,
8 cos τ

2h2(
τ
2 )

τ3 sin τ

)

,

we have: S2 ≥ µ1(r̄0)(sin
2 ϑ + cos2 ϑ sin2 ϕ), so we focus on a positive lower

bound on µ1(r̄0).
To proceed further, let us distinguish two cases and split the proof accord-

ingly.

6.1 First case:
49

100
δ2 ≤ r̄0 ≤ 1

In that case, on the one hand we may write:

1

f̄1
≤ 1

sin 1
, (34)



24 Ph. Delanoë and Yuxin Ge

on the other hand, combining (33) with the alternating series test applied to
the Maclaurin series of sin r̄0, we get:

f1

f̄1
≤ 1

1− r̄2
0

6

≤ 6

5
,

so (32) implies:

(

6

5

)3

C(m0, V0)(ξ, ν) ≥
1

κ
C(m0, V0)(ξ, ν)−

εC4

sin3 1
(sin2 ϑ+cos2 ϑ sin2 ϕ) , (35)

where C4 is the constant defined in Appendix B.4. Besides, the following lemma
holds:

Lemma 3 The function h1 (resp. h2) is increasing on [0, π] (resp. on
[

0, π2
]

).
Furthermore, for each τ ∈ [0, 1], the alternating series test holds for the Maclau-
rin series of h1(τ) and h2(τ), implying the lower bounds:

h1(τ) ≥
2

315
τ6(7− τ2), h2(τ) ≥

4

5
τ6
(

2

9
− 1

21
τ2
)

.

The proof is lengthy but rather elementary hence left as an exercise. Combining

this lemma with the standard bounds sin τ ≤ τ, cos
τ

2
≥ 1− τ2

8
, we get:

µ1(r̄0) ≥ min

(

14

315
r̄20

(

1− 1

7
r̄20

)

,
1

45
r̄20

(

1− 5

28
r̄20

))

≡ 1

45
r̄20

(

1− 5

28
r̄20

)

and, from (30), conclude: µ1(r̄0) ≥ 4.38× 10−3 δ22 . This lower bound combined
with (35) implies:

C(m0, V0)(ξ, ν) ≥
(

5

6

)3

2.19× 10−3 δ22 (sin2 ϑ+ cos2 ϑ sin2 ϕ) ,

provided ε is taken (63)-small. Recalling (21), we thus obtain (2) at (m0, V0, ξ, ν)

with ς =
1

4π2

(

5

6

)3

2.19× 10−3 δ22 . Here, the value of δ2 is the one chosen at

the end of Section 5, namely δ2 = 0.01; plugging it in the preceding formula,
and in (63) together with the sharp bound C4 ≤ 3.6× 1018, leads us to take:

η3 ≤ 3.62× 10−26, ς3 = 3.21× 10−9. (36)

6.2 Second case: 1 ≤ r̄0 ≤
(

1− δ1

4

)

π

Back to (32), using (31), we now have:

f3
1

f̄3
1

C(m0, V0)(ξ, ν) ≥
1

κ
C(m0, V0)(ξ, ν)−

επ3C4

sin3
(

δ1
4 π
) (sin2 ϑ+ cos2 ϑ sin2 ϕ) ,

hence:

f3
1

f̄3
1

C(m0, V0)(ξ, ν) ≥
(

µ1(r̄0)−
επ3C4

sin3
(

δ1
4 π
)

)

(sin2 ϑ+ cos2 ϑ sin2 ϕ) . (37)
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Moreover, using:

sin τ = sin(π − τ) ≤ π − τ, and cos
τ

2
= sin

(π − τ)

2
≥ (π − τ)

2
− (π − τ)3

48
,

with τ = r̄0, we have:

cos r̄0
2

sin r̄0
≥ 1

2
− (π − 1)2

48
≥ 0.4 ,

therefore:
8 cos r̄0

2 h2(
r̄0
2 )

r̄30 sin r̄0
≥ 3.2

π3
h2

(

1

2

)

≥ 2.6× 10−4.

Besides, we directly get:

h1(r̄0)

r̄20 sin
2 r̄0

≥ h1(1)

π2
≥ 3.9× 10−3,

and thus conclude: µ1(r̄0) ≥ 2.6× 10−4. Finally, from (33), we infer the bound:

f1

f̄1
≤
(

1 +
ε

2

) sin r0
sin r̄0

,

and from the identity:

sin r0 ≡ sin r̄0 cos[(
√
κ− 1)r0]− cos r̄0 sin[(

√
κ− 1)r0] ,

we readily get:

sin r0
sin r̄0

≤ 1 +
sin[(

√
κ− 1)r0]

sin
(

δ1
4 π
) ≤ 1 +

2ε

δ1

(

1− δ2
1
π2

96

) .

It prompts us to take ε (64)-small with δ1 as chosen at the end of Section 4

(namely δ1 = 1.48× 10−15), in order to keep the ratio
f1

f̄1
below 6

5 . Plugging in

(37) the latter upper bound together with the former lower bound on µ1(r̄0),
we obtain:

C(m0, V0)(ξ, ν) ≥
(

5

6

)3

1.3× 10−4 (sin2 ϑ+ cos2 ϑ sin2 ϕ) ,

provided ε is taken (65)-small. Recalling (21), we conclude that C(m0, V0)(ξ, ν)
satisfies (2) with:

ς ≤ 1

4π2

(

5

6

)3

1.3× 10−4,

so here, it is sufficient to take: ς3 ≤ 1.9 × 10−6, a condition well satisfied by
the value chosen in (36) for ς3. Finally, recalling that δ1 was taken equal to
1.48× 10−15, the smallness condition (65) on ε leads us to take:

η3 = 1.8× 10−69. (38)

This tiny value (compare with (26)(29)(36)) reflects the fact that a perturbation
device from the constant curvature case becomes outrageously rough as |V0| ↑ ℓ0
(i.e. getting close to the first conjugate point).
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7 Proof of Theorem 2

The proof of Theorem 2 at (m0, V0, ξ, ν) goes by combining Propositions 1, 2 and
3. Doing so, we first observe that the assumption made on |V0| in Proposition
3 overlaps, as it should, the corresponding ones of Propositions 1 and 2. Next,
since ε should now fulfill all the smallness conditions stated on it in Sections 4,
5 and 6, we take η in the statement of Theorem 2 equal to:

η = min(η1, η2, η3) ≡ η3 = 1.8× 10−69.

Similarly, we choose:

ς = min(ς1, ς2, ς3) ≡ ς3 = 3.21× 10−9.

A Proof of Lemma 1

We will proceed stepwise in the Fermi chart along V0, using repeatedly the
Maclaurin theorem, the solution map Sr̄0 and its contraction property, to derive
estimates at ((0, r0), t), uniform in t ∈ [0, 1], on the expressions appearing in
the conclusion of Lemma 1 and also on |D2X | and |DjK| for j = 1, 2, where
K = K ◦X .

A.1 Estimates of order 0

A.1.1 Basic estimates

From Remark 3, we may take B101 = 1. Besides, we have:

‖κ−K‖ ≤ ε min(1, r0) . (39)

On the axis of the Fermi chart, the functions f̃a = fa− f̄a (with a = 0, 1) satisfy:

d2f̃a
dt2

+ r20κ f̃a = φ0a with φ0a = r20(κ−K)fa .

Combining the latter with (8) applied to Sr̄0 , and (39), we get:

‖f̃a‖ ≤ ε

2
min(r20 , r

3
0) ‖fa‖.

If a = 0, since ‖f0‖ ≤ ‖f̃0‖+ ‖f̄0‖ ≤ ‖f̃0‖+ 1, we infer:

‖f̃0‖ ≤ µ

1− µ
with µ =

ε

2
min(r20 , r

3
0),

while if a = 1, recalling Remark 3, we get at once: ‖f̃1‖ ≤ µ. Since ε ≤ 1

π2
, we

have εr20 ≤ 1 (recalling Remark 2), an inequality used throughout this appendix.
So we readily obtain:

‖f̃0‖ ≤ ε min

(

r20 ,
r30

2− εr30

)

.
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In particular, regarding the first line of conclusion of the lemma for k = 0, we

may take B200 = 1, B201 =
1

2
, which yields B100 = 2 after use of the triangle

inequality. Similarly, setting h0 = 1 and h1 = t, we find on the axis:

fa − ha = Sr̄0

(

−r20 K ha + r20(κ−K)(fa − ha)
)

for a = 0, 1. Combining (8) with an argument as the one above for f̃0 yields:

‖fa − ha‖ ≤ r20‖K‖
2− εr20

≤ r20‖K‖

hence the inequalities:

‖f0 − 1‖ ≤ r20(1 + ε), ‖f1 − t‖ ≤ r20(1 + ε) , (40)

recorded here for later use.

A.1.2 Estimates on Maclaurin approximations

The first order Maclaurin approximation of K at t = 0 satisfies the estimate:

‖K − κ− tr0 ∂2K(0)‖ ≤ 1

2
ε r20 . (41)

The latter combined with the triangle inequality is used to evaluate the remain-
der of the first non trivial Maclaurin approximation of φ0a at t = 0, namely of
φ0a + ta+1r30 ∂2K(0) written as:

φ0a + ta+1r30 ∂2K(0) = −r20 (K − κ− tr0 ∂2K(0)) fa + tr30 ∂2K(0) (ha − fa).

It leads us to the upper bound:

‖φ0a + ta+1r30 ∂2K(0)‖ ≤ 1

2
ε r40 ‖fa‖+ ε r30 ‖fa − ha‖

which, combined with (40) and (8), yields for

f̃a + r30 ψ0 Sr̄0(t
a+1) ≡ Sr̄0

(

φ0a + ta+1r30 ∂2K(0)
)

the desired second line of conclusion with B30a =
1

4
B10a +

π

2

(

1 +
1

π2

)

.

A.2 Estimates of order 1

A.2.1 Basic estimates

From the definition of K and f1, we have at (v0, t):

D1K = f1(t) (∂1K)(0, tr0), D2K = t (∂2K)(0, tr0).

Recalling Remark 3, we conclude:

∀i = 1, 2, ∀t ∈ [0, 1], |DiK(v0, t)| ≤ ε, thus ‖DνK(v0, .)‖ ≤
√
2ε. (42)



28 Ph. Delanoë and Yuxin Ge

Besides, if we apply Dν to the Jacobi equations:

f̈ + |v|2K(v, t)f = 0 and f̈ + |v|2κf = 0, (43)

then let v = v0 = (0, r0), we readily infer for f̃a the equation (still abbreviating

freely Dν by a prime):
d2f̃ ′

a

dt2
+ r20κ f̃

′
a = φ1a, with:

φ1a = r20(κ−K)f ′
a − 2r0 cosϕ κf̃a + 2r0 cosϕ fa(κ−K) − r20K′fa,

and for f̄a the equation:
d2f̄ ′

a

dt2
+ r20κ f̄

′
a = −2r0 cosϕ κf̄a. Recalling (8), we get

from the latter the auxiliary bound:

‖f̄ ′
a‖ ≤ r0κ ≤ c1 (44)

(see Appendix B), and from the former:

‖f̃ ′
a‖ ≤ 1

2
r20‖κ−K‖

(

‖f̃ ′
a‖+ ‖f̄ ′

a‖
)

+r0κ ‖f̃a‖+r0‖κ−K‖ ‖fa‖+
1

2
r20‖K′‖ ‖fa‖,

after use of the triangle inequality. Previous bounds, namely (39)(42)(44) and
those of Lemma 1 for k = 0, yield:

‖f̃ ′
a‖ ≤ 1

1− 1
2εr

2
0

(

1

2
εκr30 +B20aεκr

3
0 +B10aεr0 +

1

2
B10a

√
2εr20

)

hence the conclusion of the first line of the lemma holds for k = 1 with:

B21a = 1 + π2 + 2B20a(1 + π2) +B10a(2 + π
√
2),

and, combining the triangle inequality with the auxiliary bound on f̄ ′
a, with:

B11a = π +
1

π
(1 +B21a).

A.2.2 Estimates on Maclaurin approximations

From the expression found above for DK(v0, t), we may write:

DνK(v0, t) = t∂νK(0, tr0) + sinϕ ∂1K(0, tr0) (f1 − t).

So, using the straightforward bound: |∂νK(0, tr0) − ∂νK(0)| ≤ εr0 combined
with the triangle inequality and (40), we obtain:

‖K′ − t∂νK(0)‖ ≤ (1 + c1)εr0 . (45)

We wish now to estimate the remainder of the first non trivial Maclaurin ap-
proximation of φ1a at t = 0, namely the ‖.‖ norm of the expression:

φ1a + 2t har
2
0 cosϕ ∂2K(0) + t har

2
0 ∂νK(0).

To do so, we recast the latter as follows:

= −2κr0 cosϕ f̃a−2r0 cosϕ fa (K − κ− tr0 ∂2K(0))+2tr20 cosϕ ∂2K(0)(ha−fa)
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+r20(κ−K)(f̃ ′
a + f̄ ′

a)− r20 (K′ − t∂νK(0)) fa − tr20 ∂νK(0)(fa − ha)

and apply the triangle inequality combined with (39)(40)(41)(44)(45) and the
bounds of the lemma on the ‖.‖ norms of f̃a, f̃

′
a. Observing that, if we apply the

map Sr̄0 to the preceding expression and use (9), we recover f̃ ′
a+r

2
0 ψ1 Sr̄0(t

a+1),
and recalling (8), we infer that ‖f̃ ′

a + r20 ψ1 Sr̄0(t
a+1)‖ is bounded above by:

εr30

(

1

2
B10a

(

2 + π +
1

π

)

+B20aκ+B21a
ε

2
+

3

2
r0(1 + ε) +

κ

2

)

.

The second line of conclusion of Lemma 1 for k = 1, indeed, follows with:

B31a =
1

2
B10a

(

2 + π +
1

π

)

+B20a

(

1 +
1

π2

)

+B21a
1

2π2
+
(3π + 1)

2

(

1 +
1

π2

)

.

A.3 Estimates of order 2

A.3.1 Basic estimates

As in [7], applying twice Dν to the geodesic equation with initial conditions
(0, v), then letting v = v0 = (0, r0), and recalling the 2-dimensional formulas
given after Definition 2 for the derivatives of the Christoffel symbols on the
axis of the Fermi chart, yields for DννX

i(t) = DννX
i(0, v0, t) the following

equations, with zero initial conditions:

d2

dt2
(

DννX
1
)

+ r20K DννX
1 = − 4r0 cosϕ sinϕ Kf1

− r20 sin
2 ϕ f2

1 ((∂1K) ◦X)

− 2r20 sinϕ cosϕ tf1 ((∂2K) ◦X) ,

d2

dt2
(

DννX
2
)

= 4r0 sin
2 ϕ Kf1ḟ1 + r20 sin

2 ϕ f2
1 ((∂2K) ◦X) .

To treat the first equation, we view K as a perturbation of κ and apply the
solution map Sr̄0 and the estimates (8) (39) and that on ‖f1‖; to treat the
second equation, we use our estimates on ‖K‖ and ‖f1‖ and note the further
one:

ḟ1(t) = 1+

∫ t

0

f̈1(θ)dθ ≡ 1−r20
∫ t

0

K(θ)f1(θ)dθ =⇒ ‖ḟ1‖ ≤ 1+r20(1+ε) ≤ 2+π2.

We readily find:
‖DννX

1‖ ≤ c2r0, ‖DννX
2‖ ≤ c3r0. (46)

Next, we calculate the expression of DννK(v0, t) and obtain:

DννK(v0, t) = ∂1K(0, tr0) DννX
1 + ∂2K(0, tr0) DννX

2

+∂11K(0, tr0) f
2
1 sin

2 ϕ+ 2∂12K(0, tr0) tf1 sinϕ cosϕ

+∂22K(0, tr0) t
2 cos2 ϕ ,

from what we infer, using (46) combined with Remark 3:

‖DννK(v0, .)‖ ≤ (c2 + c3)εr0 + 2ε ≤ c4ε. (47)
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Now, we apply Dνν to (43) and get, on the one hand:

d2

dt2
(

f̄ ′′
a

)

+ r20κf̄
′′
a = −2κf̄a − 4κr0 cosϕ f̄ ′

a ,

from what, recalling (44), we infer the auxiliary bound:

‖f̄ ′′
a ‖ ≤ c5 , (48)

on the other hand:
d2

dt2

(

f̃ ′′
a

)

+ r20κf̃
′′
a = φ2a ,

with:

φ2a = r20(κ−K)f ′′
a + 2(κf̄a −Kfa) + 4r0 cosϕ(κf̄

′
a −Kf ′

a)

−4r0 cosϕ faDνK− 2r20f
′
aDνK − r20faDννK.

Finally, from (8) applied (with ω = r̄0) to the latter equation, we routinely
derive the first line of conclusion of Lemma 1 for k = 2 with:

B12a = c5 +
1

π2
B22a ,

after use of the triangle inequality combined with (48), and:

B22a = 6+π2(4+c5)+(4
√
2+πc4)πB10a+2

√
2π2B11a+2(1+π2) (B20a + 2B21a) ,

after use of the triangle inequality combined with (39)(42)(44)(47) and the
bounds of the same line of conclusion for k = 0, 1.

A.3.2 Estimates on Maclaurin approximations

Finally, in order to estimate the ‖.‖ norm of f̃ ′′
a + r0ψ2Sr̄0(t

a+1), we note that
the latter is equal to Sr̄0 (φ2a + 2thar0∂2K(0) + 4r0 cosϕ tha∂νK(0)), we recast
the argument of Sr̄0 as follows:

φ2a+2thar0∂2K(0)+4r0 cosϕ tha∂νK(0) = r20(κ−K)f ′′
a−2r20f

′
aDνK−r20faDννK

−2κf̃a − 2tr0∂2K(0)(fa − ha)− 2 (K − κ− tr0∂2K(0)) fa − 4r0 cosϕ κf̃ ′
a

+4r0 cosϕ(κ−K)f ′
a−4r0 cosϕ fa (DνK − t∂νK(0))+4tr0 cosϕ(ha−fa)∂νK(0) ,

and we apply (8) with ω = r̄0 to the right-hand expression, combined with the
triangle inequality, the previous bounds of Lemma 1 and (39) (40)(41)(42)(45)(47).
Doing so term by term, we obtain the second line of conclusion of Lemma 1 for
k = 2 with:

B32a =
1

2
B12a +

√
2B11a +

1

2
B10ac4 +

(

1 +
1

π2

)

B20a + c1

+
1

2
B10a + 2

(

1 +
1

π2

)

B21a + 2B11a + 2B10a(1 + c1) + 2c1

≡ 3c1 +
1

2
(5 + 4c1 + c4)B10a + (

√
2 + 2)B11a +

1

2
B12a

+

(

1 +
1

π2

)

(B20a + 2B21a) .
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B Auxiliary universal constants and conditions

B.1 List of constants for Section 3

c1 = π +
1

π
, c2 = 4

(

3

4π
+

1

π2
+ 1

)

, c3 =
1

2π
+ 2

(

1 +
1

π2

)

(

2 + π2
)

,

c4 =
11

2
+ 10π +

8

π
+ 2π3, c5 = 1 +

1

π2
+ 2c21,

c6 = sup
τ∈[0,2π]

∣

∣

∣

∣

τ − sin τ

τ3

∣

∣

∣

∣

, c7 = sup
τ∈[0,2π]

∣

∣

∣

∣

τ2 + 2(cos τ − 1)

τ4

∣

∣

∣

∣

,

c8 = sup
τ∈[0,2π]

∣

∣

∣

∣

τ cos τ − sin τ

τ2

∣

∣

∣

∣

, c9 = sup
τ∈[0,2π]

∣

∣

∣

∣

τ cos τ − sin τ

τ3

∣

∣

∣

∣

,

c10 = sup
τ∈[0,2π]

∣

∣

∣

∣

cos τ sin τ − τ

τ3

∣

∣

∣

∣

,

C1 = max

(

max
a=0,1;k=0,1,2

(B1ka, B3ka) , 8c6, 8c7,
19

18
c8,

10

9
c9, c10

)

.

B.2 List of conditions on ε and δ = δ1 for Section 4

| cosϕ|
π

(

1−
ε
2

1−
(

ε
2 + δ

) − π2

2

(ε

2
+ δ
)2
)

− επB211 > 0 (49)

an inequality to be used only in subsection 4.2 with | cosϕ| replaced by
1

7704
;

2ε

1−
(

ε
2 + δ

) + 2π2
(ε

2
+ δ
)2

+
επ2

2

(

1 +
ε

2

)

+
3
(

ε
2 + δ

)

1−
(

ε
2 + δ

) ≤ 1

2
(50)

1

24π2
≥ R1(ε, δ) := ε

(

B221 +
1

8
B200

)

+
1

16

(ε

2
+ δ
)2

(51)

+ 2πB111

((ε

2
+ δ
)(

1 +
ε

2

)

+ εB210

)

+
ε
2 + δ

1−
(

ε
2 + δ

)

[

B120 +
2

π2
(

1− ε
2 − δ

)2

(

1 + επ2B200 +
ε
2 + δ

1−
(

ε
2 + δ

)

)]

1

16
√
3(π2 + 5)

≥
√

ε
2 + δ

1−
(

ε
2 + δ

) (52)

1

24π2
≥ R2(ε, δ) := R1(ε, δ) + 8B111

((ε

2
+ δ
)(

1 +
ε

2

)

π + επB210

)

(53)

ε ≤ 1

π2B211

(

1

π
√
192

− 1

3852

)

(54)

1

15408π
≥ επB211 +

ε
2

π
(

1−
(

ε
2 + δ

)) +
(ε

2
+ δ
)2 π

2
(55)
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1

2π2154082
≥

ε
2 + δ

1−
(

ε
2 + δ

)

(

B120 +
3

2
B121 + 2B110B111 +

36

5π2

)

(56)

1

100π2154082
≥

ε
2 + δ

1−
(

ε
2 + δ

)

(

B120 +
3

2
B121 + 2B110B111 +

36

5π2

)

(57)

√
3

8π2
≥

(

ε
2 + δ

)

(

1− ε
2 − δ

)3
π2

(

6

5
+
(

1 +
ε

2

)2

π2

)

+ ε

(

B221 +
16

5
B211

)

(58)

+ 7πB111

((ε

2
+ δ
)(

1 +
ε

2

)

+ εB210

)

+

(

ε
2 + δ

)

1−
(

ε
2 + δ

)

(

B120 +
36

5π2

)

B.3 List of constants and conditions on ε and δ = δ2 for

Section 5
(

1 +
ε

2

)

δ ≤ π

2
(59)

c11 = sup
τ∈[0,π2 ]

∣

∣

∣

∣

τ2 + τ cos τ sin τ − 2 sin2 τ

τ5 sin2 τ
− 2

45τ

∣

∣

∣

∣

c12 = sup
τ∈[0,π2 ]

∣

∣

∣

∣

2(sin τ − τ cos τ)

τ3 sin3 τ
− 2

3τ3

(

1 +
2τ2

5

)∣

∣

∣

∣

c13 = sup
τ∈[0,π2 ]

∣

∣

∣

∣

2(sin τ − τ cos τ)

τ5 sin τ
− 2

3τ3

(

1 +
τ2

15

)∣

∣

∣

∣

c14 = sup
τ∈[0,π2 ]

∣

∣

∣

∣

4(sin2 τ − τ2)

τ5 sin2 τ
+

4

3τ3

(

1 +
τ2

5

)∣

∣

∣

∣

c15 = sup
τ∈[0,π2 ]

∣

∣

∣

∣

τ − sin τ

τ sin τ

∣

∣

∣

∣

, c16 = sup
τ∈[0,π2 ]

∣

∣

∣

∣

τ2 cos τ − sin2 τ

τ sin2 τ

∣

∣

∣

∣

,

c17 = sup
τ∈[0,π2 ]

∣

∣

∣

∣

2 cos τ − 2 + τ sin τ

τ6
+

1

12τ2

∣

∣

∣

∣

(

1 +
ε

2

)

δ ≤ 2√
5

(60)

C2 =
338C3

1π
11

8
+

206

100
[8(c15c6 + c16c7) + (c6 + c7)c15]

C3 =
268C3

1π
11

8
+

411

100
[2(c15c6 + c16c7) + (c6 + c7)c15]

1

180
≥ ε (C2 + 19c17 δ) +

115

100
δ (c11 + c12 +

1

2
c14) (61)

1

180
≥ ε (C3 + 13c17 δ) +

115

100
δ (c13 +

1

2
c14) (62)
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B.4 A constant and conditions on ε for Section 6

C4 = 338π10C3
1 + 20π(c6 + c7)

ε ≤ 2.19× 10−3 sin3 1

C4
δ22 (63)

(

1 +
ε

2

)



1 +
2ε

δ1

(

1− δ2
1
π2

96

)



 ≤ 6

5
(64)

ε ≤ 1.3× 10−4

π3C4
sin3

(π

4
δ1

)

(65)
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Laboratoire J.–A. Dieudonné, Parc Valrose
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