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A GRUNWALD-WANG TYPE THEOREM FOR ABELIAN VARIETIES

BRENDAN CREUTZ

Abstract. Let A be an abelian variety over a number field k. We show that weak approxima-
tion holds in the Weil-Châtelet group, H1(k, A), but that it may fail when one restricts to the
n-torsion subgroup. This failure is however relatively mild; we show that weak approximation
holds outside a finite set of primes which is generically empty. This can be seen as an analog
of the Grunwald-Wang theorem in class field theory which asserts that similar results hold for
abelian extensions of number fields. The methods apply, for the most part, to arbitrary finite
Gk-modules and so may be of interest in their own right.

1. Introduction

Let k be a number field and denote its completion at a prime v by kv. The Grunwald-Wang
theorem is an existence theorem for abelian extensions of k with prescribed local behavior.
Namely, given abelian extensions Kv/kv, for v in some finite set S, with Galois groups Hv, all of
which may be embedded in some abelian group H , the theorem asserts that there is an abelian
extension K/k with completions Kv. Usually one is also allowed the requirement that Gal(K/k)
can be embedded in H . It is only in a particular set of well understood circumstances that this
stronger requirement can fail. For example, the unramified extension of Q2 of degree 8 cannot
be realized by any degree 8 cyclic extension of Q. In general, obstructions can only occur when
8 divides the exponent of H , and then only at primes of k lying above 2.

These global (resp. local) extensions correspond to continuous homomorphisms from the
absolute Galois group, Gk (resp. decomposition groups), to H . Considering H as a finite Gk-
module with trivial action, we have H1(k,H) = Homcont(Gk, H) and similarly for the local
cohomology groups. So the Grunwald-Wang theorem can be rephrased as a statement about the
surjectivity of the restriction map H1(k,H) → ∏

v∈S H1(kv, H).
Now let A be an abelian variety over a number field k and n a positive integer. The Weil-

Châtelet group, H1(k,A), parameterizes torsors under A/k. In [LT, p. 683] Lang and Tate
write

“In analogy with Grunwald’s theorem in class field theory, one may conjecture that if k is an
algebraic number field and p a given prime, then given αp ∈ H1(kp, A), there exists

α ∈ H1(k,A) restricting to αp.”

For any n, there is a surjective map H1(k,A[n]) → H1(k,A)[n] (here H [n] denotes the n-torsion
in an abelian group H). One can also ask for analogs of the Grunwald-Wang theorem at finite
level.

Question 1.1. Given an abelian variety A over a number field k, an integer n ≥ 2 and a finite
set of primes S, is the map H1(k,A[n]) → ∏

v∈S H1(kv, A[n]) surjective?

Question 1.2. Given an abelian variety A over a number field k, an integer n ≥ 2 and a finite
set of primes S, is the map H1(k,A)[n] → ∏

v∈S H1(kv, A)[n] surjective?

Perhaps motivating their ‘conjecture’, Lang and Tate showed that the answer to these ques-
tions is yes when µn ⊂ k and the action of the Galois group on A[n] is trivial ([LT], see also
[Si, Exercise 10.8]). This also follows directly from the Grunwald-Wang theorem. Assuming the
finiteness of the Tate-Shafarevich groupX(A/k), Tate went on to characterize the image of the
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map H1(k,A) → ⊕

all v H
1(kv, A) in terms of a kind of reciprocity coming from the dual abelian

variety (see [Mi, I.6.26b]). However, this settles neither the ‘conjecture’ nor the questions above,
even under the assumption thatX(A/k) is finite.

1.1. Statement of results. In this paper we prove the ‘conjecture’, independently of the finite-
ness ofX(A/k). With regard to questions 1.1 and 1.2 we show, in analogy with the Grunwald-
Wang theorem, that the answer can be no in general, but generically will be yes.

Theorem 1.3 (weak approximation). Let A/k be an abelian variety over a number field k and
let S be any finite set of primes. Then the map H1(k,A) → ∏

v∈S H1(kv, A) is surjective.

Theorem 1.4. There exists an abelian variety A/Q such that, for infinitely many n (including
n = 2), the map H1(Q, A)[n] → H1(Q2, A)[n] is not surjective.

Theorem 1.5. Let A/k be an abelian variety over a number field k. There exists a constant
c = c(A, k) such that if n is an integer divisible by no prime less than c and S is any finite set
of primes, then the map H1(k,A[n]) → ∏

v∈S H1(kv, A[n]) is surjective.

The Grunwald-Wang theorem shows that while weak approximation does not always hold
for H1(k,Z/nZ), it does hold outside some finite set of primes. Along these lines we prove the
following.

Theorem 1.6 (weak weak approximation). Let A/k be an abelian variety over a number field
k and n an integer. Let S be any set of primes containing all primes of bad reduction and all
primes dividing n. Let X(k,A[n], Sc) denote the subgroup of H1(k,A[n]) consisting of classes
that are locally trivial on S. The restriction map X(k,A[n], Sc) → ∏

v/∈S H1(kv, A[n]) has dense
image in the product of the discrete topologies.

A slightly weaker form of this result (with X(k,A[n], Sc) replaced by H1(k,A[n])) can be
deduced rather easily from [Mi, Lemma I.9.8]. In a forthcoming paper this stronger form is used
to show that the p-torsion in the Tate-Shafarevich group of any principally polarized abelian
variety over a number field is unbounded as one ranges extensions of degree O(p), the implied
constant depending only on the dimension of the abelian variety.

As we show below, these results are closely related to various local-global properties of the
group H1(k,A[n]). More generally, Dvornicich and Zannier have studied the local-global principle
in G(k)/nG(k) and H1(k,G[n]), for a commutative algebraic group G (see [DZ1, DZ2, DZ3]).
Their results and ideas play a large role in the development below. On the other hand, it seems
the related problem of weak approximation has only been addressed in the case of linear algebraic
groups (for example [Mi, Theorem I.9.10] and the Grunwald-Wang theorem itself).

1.2. Organization. Section 2 contains a quick review of Potiou-Tate duality and other results
in Galois cohomology of number fields needed in what follows. In section 3 we study various
local-global ‘principles’ for cohomology groups of finite Gk-modules. Much of this section is
influenced by the ideas in [DZ1, DZ3]. In section 4 we use Poitou-Tate duality to characterize
(weak) weak approximation in terms of the local-global principles of the previous section. The
main result here is proposition 4.5, which gives a broad generalization of theorem 1.6. All of
this is then applied to the particular case of abelian varieties in section 5, where the proofs of
theorems 1.3, 1.4 and 1.5 are given.

2. Preliminaries

We recall several well known results in Galois cohomology that will be used below. For details
we refer the reader to [Se4, Section II.5-6] or [CoN, Chapters VII-VIII].

Throughout the paper we adopt the following notation: k is a number field, Gk denotes its
absolute Galois group, M is a finite Gk-module of exponent n and M∨ = Hom(M,µn) is its
dual. We use Hi(k,−) and Hi(kv,−) to denote global and local Galois cohomology groups. Our
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convention for indexing (co)products will be that if no index set is specified, then the (co)product
is to be taken over all primes v of k. Similarly, an expression such as

∏

v/∈S is understood to
run over all primes of k not in the set S. When we say something holds almost everywhere or
almost everywhere locally, this means at all but a finite number of primes of k.

For each prime v of k, duality and the cup-product induce a nondegenerate bilinear pairing
(the Tate pairing)

( , )v : H1(kv,M)×H1(kv,M
∨) → Br(kv)[n] .(2.1)

For almost all v, the unramified subgroups of H1(kv,M) and H1(kv,M
∨) are exact annihilators

with respect to this pairing.
We denote the global pairing induced by the cup product and duality by

( , ) : H1(k,M)×H1(k,M∨) → Br(k)[n] .

This pairing is no longer nondegenerate, but it is compatible with the local pairings via the
restriction maps. For this reason we will often behave as though the Tate pairings are defined
on global classes as well (i.e. for ξ ∈ H1(k,M), we may write (ξ,−)v to mean (resv(ξ),−)v and
similarly for classes in H1(k,M∨)).

For nonarchimedean primes v, there is a canonical isomorphism invv : Br(kv) → Q/Z (in the
archimedean case a canonical injection). The groups H1(kv,M) and H1(kv,M

∨) are finite, and
the Tate pairing identifies H1(kv,M) and H1(kv,M

∨) as Pontryagin duals of one another (i.e.
H1(kv,M

∨) = H1(kv,M)∗ := Hom(H1(kv,M),Q/Z) ).
The Brauer group of k satisfies a local-global principle expressed by the exactness of

0 → Br(k)
∏

resv−→
⊕

Br(kv)
∑

invv−→ Q/Z → 0 .

This gives rise to a product rule for global classes. Namely,
∑

invv(ξ, η)v = 0 for all ξ ∈ H1(k,M) and η ∈ H1(k,M∨).(2.2)

Note that since any global class is unramified almost everywhere, this sum is in fact finite.
Given (ξv) ∈

∏

H1(kv,M), there are two obvious necessary conditions for the existence of a
lift of (ξv) to a global cocycle. First, (ξv) must be unramified outside of some finite set of primes.
Second, (ξv) must obey the aforementioned product rule. In fact these conditions are already
sufficient. This is expressed by the (middle third of the) Poitou-Tate exact sequence

H1(k,M) →
′

∏

H1(kv,M) → H1(k,M∨)∗ .(2.3)

Here the product is the restricted product taken with respect to unramified subgroups. The map
on the right is given by

(ξv) 7→
(

η 7→
∑

invv(ξv, η)
)

∈ Hom
(

H1(k,M∨),Q/Z
)

.

As a set, the restricted product consists of all families (ξv) such that ξv is in the unramified
subgroup for almost all v. It is endowed with a natural topology making it into a locally compact
group. The topology is defined by specifying a neighborhood base of 0 to be the family of all
subgroups

∏

v/∈T H1
nr(kv,M), as T ranges over the finite sets of primes of k containing all primes

where M is ramified.

3. Local-global principles

Definition 3.1. Let M be a finite Gk-module and V ⊂ H1(k,M) a subgroup.

(1) For a set T of primes of k, we define X(V, T ) to be the kernel of the restriction map
V → ∏

v/∈T H1(kv,M).
(2) We say that the Hasse principle holds for V if X(V, ∅) = 0.
(3) We say that the strong Hasse principle holds for V if X(V, T ) = 0, for every finite set

of primes T .
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(4) For a finite set of primes T , we say that V is T -singular if the image of the map X(V, T ) →
∏

v∈T H1(kv,M) is not trivial.
(5) We say that V is nonsingular if it is not T -singular for any finite set of primes T .

Remark: One easily sees that the strong Hasse principle holds for V if and only if V is nonsingu-
lar and the Hasse principle holds. We will see below that the Hasse principle and nonsingularity
are, however, independent.

If ξ ∈ X(V, T ) for some finite set of primes T , we will say that ξ is finitely supported. If in
addition ξ /∈ X(V, ∅) we say that ξ is T -singular (or simply singular). When V = H1(k,M) we
will use the abbreviationX(k,M, T ) forX(H1(k,M), T ). For a profinite group G and finite
G-module M , let H1

∗(G,M) denote the kernel of the map H1(G,M) → ∏

Z H1(Z,M), where the
product runs over all closed cyclic subgroups of G. This group was introduced by Tate (see [Se1]
and [Mi, Section I.9]). This group is also used by by Dvornicich and Zannier to study the Hasse
principle for divisibility in commutative algebraic groups, see [DZ1, DZ3]. The following lemma
is similar (see also [Mi, Lemma I.9.3]).

Lemma 3.2. Let M be a finite Gk-module and let K/k denote the minimal Galois extension
over which the action on M is trivial. The strong Hasse principle holds for H1(k,M) if and only
if H1

∗(Gal(K/k),M) = 0.

Proof: Let T be any finite set of primes. The inflation and restriction maps give a commutative
diagram with exact rows

0 // H1(K/k,M)
infK/k //

∏
resv

��

H1(k,M)
resK/k //

∏
resv

��

H1(K,M)

∏
resv

��
0 // ∏

v/∈T H1(Kv/kv,M) // ∏
v/∈T H1(kv,M) // ∏

v/∈T H1(Kv,M)

(Here Kv denotes the completion of K at some prime above v; the cohomology groups do not
depend on this choice). The groups on the right consist of continuous homomorphisms. The
Chebotarëv density theorem then shows that the vertical map on the right is injective. So the
kernels of the other two vertical maps are isomorphic.

It thus suffices to show that H1(K/k,M) satisfies the strong Hasse principle if and only if
H1

∗(K/k,M) = 0. This also follows from the Chebotarëv density theorem. For all but finitely
many primes (namely those where K/k is ramified) the decomposition groups are cyclic and
every cyclic subgroup occurs as the decomposition group at a positive density set of primes.
So H1

∗(K/k,M) consists entirely of finitely supported classes and every finitely supported in
H1(K/k,M) is contained in H1

∗(K/k,M). The proof is completed by noting that the strong
Hasse principle holds if and only if every finitely supported class is trivial. 2

Corollary 3.3. Let M and K/k be as in the proposition.

(1) The Hasse principle holds for H1(k,M) if and only if H1
∗(K/k,M)∩ X(K/k,M, ∅) = 0.

(2) H1(k,M) is nonsingular if and only if H1
∗(K/k,M) ⊂ X(K/k,M, ∅).

Proof: As noted in the proof above, every finitely supported class in H1(k,M) is contained in
(the image under the inflation map of) H1

∗(K/k,M). The intersection in (1) is trivial if and only
if there is no nontrivial class in H1(k,M) with trivial support. Similarly the containment in (2)
holds if and only if every finitely supported class has trivial support. 2

From the proof we also extract the following useful observation.

Corollary 3.4. Let M be a finite Gk-module and S the finite set of primes consisting of all
primes where the decomposition group in Gal(K/k) is not cyclic. Let V be a subgroup of H1(k,M)
and T any finite set of primes. Then
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(1) X(V, T ) ⊂ X(V, S).
(2) if T ∩ S = ∅, then X(V, T ) = 0.

Remark: Note that the set S in the corollary is contained in the finite set of primes where M
is ramified.

3.1. Local-global principles for H1(k, µn). In the case M = µn, one can give a complete
description of the finitely supported classes in H1(k, µn). Recall that Hilbert’s theorem 90 gives
an isomorphism H1(k, µn) ≃ k×/k×n, so this can be interpreted as the study of local-global
properties of divisibility in Gm. We summarize with the following theorem. For the proof we
refer the reader to [CoN, IX.1]. The Grunwald-Wang theorem can be derived as a consequence
using, for example, theorem 4.1 below.

Theorem 3.5. Let T be a finite set of primes of k, n = 2rn′ be a positive integer with n′ odd
and let κ be the kernel of the map k×/k×n → ∏

v/∈T k×v /k
×n
v . Then

(1) κ has order dividing 2.
(2) κ is nontrivial if and only if k(µ2r )/k is not cyclic and T contains all primes v which

do not decompose in k(µ2r )
(3) If n is even, then κ is contained in k×(n/2)/k×n ⊂ k×/k×n.

Remark: Since k(µ4) = k(
√
−1) is cyclic, the κ can be nontrivial only when r ≥ 3, i.e. 8 | n.

Suppose k(µ2r)/k is not cyclic and let S be the set of primes of k which do not decompose in
k(µ2r )/k. Then S consists entirely of 2-adic primes. Indeed, all other primes are unramified, so
the decomposition groups are cyclic, but k(µ2r )|k is not.

By way of example, consider V := H1(Q, µ8) ≃ Q×/Q×8. For a finite set of primes T , the
kernel of the map Q×/Q×8 → ∏

v/∈T Q×
v /Q

×8
v is nontrivial if and only if 2 ∈ T . Thus the Hasse

principle holds for V , and the singular sets for V are the finite sets of primes containing 2. When
2 ∈ T , the nontrivial class in the kernel is represented by 16. In other words 16 is a v-adic 8-th
power if and only if v 6= 2. Adjoining a square root of 7 to Q2 gives a ramified extension in
which 16 is an 8-th power. However, 16 is not an 8-th power in Q(

√
7)×. Thus H1(Q(

√
7), µ8)

is nonsingular but the Hasse principlie fails. Note that, in agreement with theorem 3.5(3), 16 is
a 4-th power.

4. Weak approximation

Suppose ξ ∈ X(k,M, T ) is a class supported entirely on some finite set of primes T . Consider
its image resT (ξ) ∈ ∏

v∈T H1(kv,M). It follows from the product rule (2.2) that the image

of res∨T : H1(k,M∨) → ∏

v∈T H1(kv,M
∨) must be orthogonal to resT (ξ) with respect to the

nondegenerate pairing

( , )T :
∏

v∈T

H1(kv,M)×
∏

v∈T

H1(kv,M
∨) → Q/Z ,

given by
∑

v∈T invv( , )v. In fact, this is the only restriction on the image of res∨T .

Theorem 4.1. Let M be a finite Gk-module with dual M∨ and T a finite set of primes. An
element (ξv) ∈ ∏

v∈T H1(kv,M
∨) is in the image of res∨T if and only if it is orthogonal to

resT X(k,M, T ) with respect to the pairing ( , )T .

The theorem is a special case of proposition 4.5. The more technical version below will allow
us to determine also the image of res∨T modulo arbitrary subgroups of

∏

v∈T H1(kv,M
∨). This

in turn will be used to characterize weak approximation in the n-torsion of the Weil-Châtelet
group of an abelian variety, and ultimately to prove that weak approximation holds in the
Weil-Châtelet group. First we give two corollaries. The second, together with the criterion of
Neron-Ogg-Shafarevich, implies theorem 1.6.



6 BRENDAN CREUTZ

Corollary 4.2. The map res∨T : H1(k,M∨) → ∏

v∈T H1(kv,M
∨) is surjective if and only if

H1(k,M) is not T -singular. In particular, weak approximation holds for H1(k,M∨) if and only
if H1(k,M) is nonsingular.

Proof: This follows from the fact that ( , )T is nondegenerate. 2

Corollary 4.3. Let S be the finite set of primes consisting of primes where M is ramified. The
map res∨S : X(k,M∨, S) → ∏

v/∈S H1(kv,M
∨) has dense image in the product of the discrete

topologies.

Proof: Suppose T is any finite set of primes and (ηv) ∈
∏

v∈T∪S H1(kv,M
∨) with ηv = 0, for

all v in S. We need to show that (ηv) is orthogonal to resT∪S X(k,M, T ∪ S). Clearly (ηv)
is orthogonal to resT∪S X(k,M, S). The result then follows from Corollary 3.4 which implies
thatX(k,M, T ∪ S) ⊂ X(k,M, S). 2

4.1. Weak approximation for abelian extensions.

Theorem 4.4 (Grunwald-Wang). Let T be a finite set of primes and, for each v ∈ T , let Kv/kv
be an abelian extension. There exists an abelian extension K/k with completions Kv.

Proof: Choose an abelian group A for which we can find, for each v ∈ T , an embedding
fv : Gal(Kv/kv) → A. It suffices to find an abelian group B ⊃ A such that (fv) is in the
image of the map Homcont(Gk, B) → ∏

v∈T Homcont(Gkv , B). We reduce to the case that B
and, hence, A are cyclic. Suppose A = Z/nZ and let B = Z/2nZ. Let ξ ∈ X(k, µ2n, T ).
The dual of B is µ2n, so by theorem 4.1, it suffices to show that (fv)v∈T is orthogonal to
resT (ξ) ∈

∏

v∈T H1(kv, µ2n). By theorem 3.5, ξ lies in the subgroup nH1(k, µ2n). On the other
hand, the fv are n-torsion and the pairing ( , )T is bilinear. The result follows. 2

Remark: If every cyclic factor Z/nZ of A is such that H1(k, µn) is nonsingular, then one can
take B = A in the proof above. Precisely when this is the case is determined by theorem 3.5.
Taken together these two results give what is commonly known as the Grunwald-Wang theorem
(see [CoN, IX.2]).

4.2. Weak approximation modulo open subgroups. Let U be an open subgroup of the
restricted product

∏′
H1(kv,M). U is a product of subgroups Uv ⊂ H1(kv,M). If U is a proper

subgroup, then all but finitely many of these are equal to the unramified subgroup. If U⊥
v

denotes the exact annihilator of Uv with respect to the Tate pairing, then U⊥ :=
∏

U⊥
v is an

open subgroup of
∏′

H1(k,M∨). Note that when U = 0, U⊥ is the entire restricted product and
conversely.

Let us use VU and VU⊥ to denote the subgroups of global classes which map into U and U⊥,
repsectively (i.e.

VU = {ξ ∈ H1(k,M) | ∀v, resv(ξ) ∈ Uv}, and

VU⊥ = {η ∈ H1(k,M∨) | ∀v, resv(η) ∈ U⊥
v } ).

Let T denote any finite set of primes and let I ′ = (resT X(VU , T ))
⊥ ⊂ ∏

v∈T H1(kv,M
∨) be

the orthogonal complement of resT X(VU , T ) with respect to the pairing ( , )T . Let I denote

the image of I ′ under the quotient map q :
∏

v∈T H1(kv,M
∨) → ∏

v∈T
H1(kv,M

∨)
U⊥

v
.

Proposition 4.5. The composition

H1(k,M∨)
res∨T−→

∏

v∈T

H1(kv,M
∨)

q−→
∏

v∈T

H1(kv,M
∨)

U⊥
v

maps H1(k,M∨) surjectively onto I. In particular, q ◦ res∨T is surjective if and only if VU is not
T -singular.
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Our proof of this proposition is based on (the discussion leading up to) [CoN, Theorem
9.2.3]. Theorem 4.1 follows by taking U to be the entire restricted product

∏′
H1(kv,M) so that

VU = H1(k,M), U⊥ = 0 and I is the orthogonal complement of resT (X(k,M, T )). We start
with a couple lemmas.

Lemma 4.6. I is a proper subgroup of
∏

v∈T
H1(kv ,M

∨)
U⊥

v
if and only if VU is T -singular.

Proof: Suppose there is some nonzero element ξT ∈ resT X(VU , T ). Since the pairing ( , )T
is nondegenerate, this will be the case if and only if there exists some ηT ∈ ∏

v∈T H1(kv,M
∨) pair-

ing nontrivially with ξT . This means ηT /∈ I ′. Since
∏

v∈T U⊥
v pairs trivially with resT X(VU , T ),

this is equivalent to requiring that the class of ηT modulo
∏

v∈T U⊥
v does not lie in I. 2

Lemma 4.7. The Pontryagin dual of I is canonically isomorphic to
∏

v∈T Uv

resT X(VU ,T )
.

Proof: For finite abelian groups A1 ⊂ A2 ⊂ A3, with character groups A∗
i , let A

⊥
i denote the

orthogonal complement of Ai in A∗
3 with respect to the natural pairing. One checks that (A2/A1)

and A⊥
1 /A

⊥
2 are canonically identified as duals. The result follows by applying this with

A1 = resT X(VU , T ) ⊂ A2 =
∏

v∈T

Uv ⊂ A3 =
∏

v∈T

H1(kv,M) ,

since by definition, I =
(resT X(VU ,T ))

⊥

∏
v∈T U⊥

v
. 2

Proof of Proposition 4.5: The discussion leading up to theorem 4.1 shows that the image
of res∨T is contained in the set I ′. As I is the image of I ′ under q, the image of the composition
in the proposition is contained in I.

By definition VU⊥ is contained in the kernel of q ◦ res∨T . Let C be the cokernel q ◦ res∨T . Taking
Pontryagin duals, we have an exact sequence

0 → C∗ → I∗ →
(H1(k,M∨)

VU⊥

)∗

.

Our goal is to show that C∗ is trivial.
The Poitou-Tate exact sequence (2.3) expresses the fact that an element of U is obtained by

restriction of some global class (necessarily in VU ) if and only if it is trivial as an element of
H1(k,M∨)∗. Since U pairs trivially with VU⊥ we have an exact sequence

VU → U →
(H1(k,M∨)

VU⊥

)∗

.

This induces an exact sequence

VU → U

res (X(VU , T ))
→

(H1(k,M∨)

VU⊥

)∗

.
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Fitting all of this together, we have a commutative and exact diagram

0X(VU , T )
�

� // VU
//
∏

v/∈T Uv

OO

X(VU , T )
�

� // VU
// U

res(X(VU ,T ))
//

OO

(

H1(k,M∨)
V
U⊥

)∗

∏
v∈T Uv

resT (X(VU ,T ))

OO

I∗

OO

0

OO

C∗

OO

0

OO

The non-tautological equality here is the identification given by lemma 4.7. Consideration of
the appropriate kernel-cokernel exact sequence shows that C∗ ≃ X(VU , T )/X(VU , T ) = 0. 2

5. Application to abelian varieties

5.1. Local-global principles for H1(k,A[n]). Let A and A∨ be dual abelian varieties over k
and n ≥ 2. The following theorem summarizes some of the results of [DZ1, DZ3] regarding the
strong Hasse principle in the group H1(k,A[n]). Together with corollary 4.2 this proves theorem
1.5.

Theorem 5.1 (Dvornicich-Zannier). The strong Hasse principle holds for H1(k,A[n]) if any
one of the following hold.

(1) A is an elliptic curve and n is prime.
(2) A is an elliptic curve over Q and n = pe is any power of a sufficiently large prime

(independent of A).
(3) n = pe is any power of a sufficiently large prime (depending on A and k).

Proof: Parts (1) and (2) are shown in [DZ1] and [DZ3, Theorem 1], respectively. The argument
for (3) is given for elliptic curves in [DZ3] (see also [DZ1, Remark 2.6]). It is not particularly
difficult to deduce the same for arbitrary abelian varieties. This goes as follows.

Let K/k be the minimal Galois extension over which the action on A[pe] is trivial. Suppose
there exists an element σ ∈ G := Gal(K/k) which acts on A[pe] as a homothety in (Z/peZ)× ⊂
Aut(A[pe]) which has no nontrivial fixed points. In other words σ ∈ G is a central element and
P 7→ σ(P ) − P is an automorphism of A[pe]. It follows from Sah’s lemma (see [La, Theorem
V.5.1]), that H1

∗(G,A[pe]) ⊂ H1(G,A[pe]) = 0. Then, by lemma 3.2, the strong Hasse principle
holds for H1(k,A[pe]).

The existence of such a σ follows from a result of Serre [Se3] (see also [McQ, Corollary 2.1.7]).
There exists a contant d = d(A, k) depending only on A and k, such that, for any n, all d-th
powers in (Z/nZ)× arise as homotheties via the action of Gk on A[n]. For any prime p > d+ 1
there exists a nontrivial d-th power in F×

p . Hence, there exists an element σ ∈ Gk which acts
on A[pe] as multiplication by some integer mσ 6= 1 mod p. This implies that σ does not fix any
nontrivial element of A[pe]. 2
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5.2. Weak approximation for abelian varieties. We apply the results of the previous section
to characterize weak approximation in H1(k,A[n]) and H1(k,A)[n]. For primes v of k, we make
the convention that H0(kv, A) denotes Tate’s modified cohomology group; if v is nonarchimedean
then H0(kv, A) = A(kv), if v is archimedean H0(kv, A) is the component group of A(kv).

Proposition 5.2. The map H1(k,A∨[n]) → ∏

v∈T H1(kv, A
∨[n]) is surjective if and only if

H1(k,A[n]) is not T -singular. The map H1(k,A∨)[n] → ∏

v∈T H1(kv, A
∨)[n] is surjective if and

only if the n-Selmer group of A is not T -singular. In particular, weak approximation holds
in H1(k,A∨[n]) if and only if H1(k,A[n]) is nonsingular while weak approximation holds in

H1(kv, A
∨)[n] if and only if Sel(n)(A/k) is nonsingular.

Remark: This implies that weak approximation holds if any of the conditions in theorem 5.1
are met.

Proof: The statements about H1(k,A[n]) follow from the corollaries to theorem 4.1. The
statement for H1(k,A)[n] will follow by taking VU in proposition 4.5 to be the n-Selmer group
of A.

For any n, one has a Kummer sequence,

H0(kv, A)
n→ H0(kv, A)

δv−→ H1(kv, A[n]) → H1(k,A)[n] → 0 ,

and similarly for A∨. The subgroup U :=
∏

Im(δv) ⊂
∏

H1(kv, A[n]) is known to be an open
subgroup of the restricted product (the claim is that the image of δv is equal to the unrami-
fied subgroup at almost all primes). By definition, the subgroup VU ⊂ H1(k,A[n]) of classes
restricting into U is the n-Selmer group of A.

Tate’s local duality theorems (e.g. [Mi, Corollary 3.4]) show that the orthogonal comple-
ment of Im(δv) is equal to the image of H0(kv, A

∨) under the connecting homomorphism in the
Kummer sequence for the dual abelian variety. So proposition 4.5 implies that the diagonal
map in the commuative diagram below is surjective if and only the n-Selmer group of A is not
T -singular.

H1(k,A∨[n]) //

�� ((R

R

R

R

R

R

R

R

R

R

R

R

R

R

H1(k,A∨)
δ(H0(k,A))

��

H1(k,A∨)[n] //

��

0

∏

v∈T H1(kv, A
∨[n]) // ∏

v∈T
H1(kv ,A

∨)
δv(H0(kv ,A))

∏

v∈T H1(kv, A
∨)[n] // 0

Clearly the same is true of the vertical map on the right. This is what we wanted to prove. 2

For any n, Tate has defined a bilinear pairing

〈 , 〉 : H0(k,A)/nH0(k,A)×H1(k,A∨)[n] → Br(k) .

This pairing is compatible with the pairing

( , ) : H1(k,A[n])×H1(k,A∨[n]) → Br(k)

via the Kummer sequences of A and A∨. Namely, for any P ∈ H0(k,A)/nH0(k,A) and η ∈
H1(k,A∨)[n], 〈P, η〉 = (δ(P ), η̃), where δ(P ) denotes the image of P under the connecting
homomorphism and η̃ denotes any lift of η to H1(k,A∨[n]). The same is true locally and 〈 , 〉v
indentifies H0(kv, A)/nH0(kv, A) and H1(kv, A)[n] as Pontryagin duals.

For any finite set of primes T ,

〈 , 〉T :=
∑

v∈T

invv〈 , 〉v
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defines a nondegenerate pairing

〈 , 〉T :
∏

v∈T

H0(kv, A)

nH0(kv, A)
×

∏

v∈T

H1(kv, A
∨)[n] → Q/Z .

Since, for any v, resv

(

Sel(n)(A/k)
)

is contained in the image of H0(kv, A)/nH0(kv, A) under

the connecting homomorphism, this also gives a pairing

〈 , 〉T : Sel(n)(A/k)×
∏

v∈T

H1(kv, A
∨)[n]) → Q/Z .

Combining proposition 4.5 with the proof above readily yields the following.

Proposition 5.3. Let T be a finite set of primes. An element ηT ∈ ∏

v∈T H1(kv, A
∨)[n] is in

the image of the restriction map H1(k,A∨)[n] → ∏

v∈T H1(kv, A
∨)[n] if and only if

〈ξ, ηT 〉T = 0, for every ξ ∈ X(Sel(n)(A/k), T ) .

5.3. Counter-examples to weak approximation. Using proposition 5.2 we can give exam-
ples where weak approximation fails for n-coverings and principal homogeneous spaces of period
n.

Dvornicich and Zannier [DZ2] have shown that the point (1561/122, 19459/123) on the curve
E : y2 = (x + 15)(x − 5)(x − 10) is divisible by 4 in E(Qv) if and only if v 6= 2. This provided
one of the first examples of the failure of the strong Hasse principle for n-divisibility on an
elliptic curve. Under the connecting homomorphism, the point gives rise to a {2}-singular class
in Sel(4)(Q, E) ⊂ H1(Q, E[4]). Weak approximation fails for both H1(Q, E)[4] and 4-coverings
of E since, by proposition 5.2, H1(Q, E)[4] → H1(Q2, E)[4] cannot be surjective.

Prior to the example above, Cassels and Flynn [CF, p. 61] constructed an abelian surface A
overQ for which the Hasse principle for 2-divisibility fails. We briefly describe their example. Let
C : Y 2 = P (X)Q(X)R(X) where P,Q,R are irreducible polynomials of degree 2 with coefficients

in Q and constant term equal to 1, splitting over Q(
√
2), Q(

√
17) and Q(

√
34), respectively. The

point a = (0, 1) ∈ C(Q) gives rise to the point a = {a, a} ∈ A(Q), where A is the Jacobian of
C. It follows from their lemma 6.5.1 that a /∈ 2A(Q). However, for any v ≤ ∞, at least one of
P,Q,R has a root rv in Qv. Then the point b = {a, (rv, 0)} ∈ A(Qv) is such that 2b = a.

Using the same idea, we can construct an example where weak approximation for H1(Q, A)[2].
Let C be the hyperelliptic curve of genus 2 given by

y2 = −(x2 + 1)(x2 + 5)(x2 − 5) .

We have a point (0, 5) ∈ C(Q). One can check that this gives a Q-point of infinite order
a = {(0, 5), (0, 5)} on the Jacobian A = Jac(C). One easily checks that at least one of the
quadratic polynomials defining C has a root in Qv if and only if v 6= 2. So as above we see that

a is divisible by 2 over Qv if and only if v 6= 2. So the image of a in Sel(2)(Q, A) ⊂ H1(Q, A[2])
is {2}-singular.

The next proposition illustrates how the counterexamples above propagate to higher level.

Proposition 5.4. Suppose that weak approximation fails for H1(k,A)[n]. Then weak approxi-
mation fails for H1(k,A)[mn] for infinitely many m.

Proof: We prove the statement for the dual abelian variety. By assumption there is a singular

class ξ ∈ Sel(n)(A/k). For any positive integer m and any prime v, the map i : A[n] → A[mn]
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induces a commutative diagram

Sel(n)(A/k)

resv

��

i∗ // Sel(mn)(A/k)

resv

��
A(kv)/nA(kv)

m // A(kv)/mnA(kv)

If resv(ξ) = 0, then resv(i∗ξ) = 0. So, since ξ is finitely supported, i∗(ξ) is finitely supported.
By assumption there exists v such that resv(ξ) 6= 0. Choose Qv ∈ A(kv) representing resv(ξ) ∈
A(kv)/nA(kv). Then resv(i∗(ξ)) is represented by mQv. Now suppose resv(i∗(ξ)) = 0. Then
there exists some Pv ∈ A(kv) such that m(Qv − nPv) = 0. Thus Qv − nPv ∈ A(kv)[m]. The
torsion subgroup of A(kv) is finite, so there are infinitely many m for which this cannot happen.
For such m we have that i∗(ξ) is singular. The result follows from proposition 5.2. 2

Remark: In a similar fashion, Paladino has shown that a counterexample to the Hasse principle
in A(k)/pnA(k) can lead to counterexamples in A(k)/pn+sA(k) for all s ≥ 0 [Pa2]. She has also
given examples where the Hasse principle fails for divisibility by 9 in elliptic curves over Q [Pa1].
Similar methods give rise to examples of singular classes and the failure of weak approximation
in H1(k,A)[9].

5.4. The ‘conjecture’ of Lang and Tate. We now come to the proof of theorem 1.3. Since
H1(k,A) is torsion, the Bézout identity shows that it will suffice to prove the following theorem.

Theorem 5.5. For any prime number p, weak approximation holds in H1(k,A)[p∞].

Here H1(k,A)[p∞] denotes the subgroup consisting of elements of p-powered order. Since we
will be working only with p-th powers, we use the notation S(n)(A/k) to denote the pn-Selmer

group, Sel(p
n)(A/k). For any positive integers m and n, multiplication by pm induces an exact

sequence

0 → A[pm]
i∗→ A[pm+n]

pm

−→ A[pn] → 0 ,

and consequently a map pm∗ : S(m+n)(A/k) → S(n)(A/k). Let S(A/k) denote the projective
limit of the groups S(n)(A/k) with respect to these maps and use φn : S(A/k) → S(n)(A/k) for
the canonical map. One knows that S(A/k) satisfies the strong Hasse principle [Mi, Proposition
I.6.22]. Using this we deduce the following.

Lemma 5.6. For every n > 0, there exits m such that the image of any finitely supported class
in S(m+n)(A/k) under the map to S(n)(A/k) is trivial.

Proof: We will show below that, for any nontrivial finitely supported class in S(n)(A/k), there
exists some m0 such that, for any m ≥ m0, no lift of ξ to S(m+n)(A/k) is finitely supported.
Using this we prove the lemma as follows. Take M0 to be the maximum of the m0’s as we range
over the finitely many nontrivial finitely supported classes in S(n)(A/k) (recall that the n-Selmer
group is itself finite). Let M ≥ M0 and consider a finitely supported class in S(M+n)(A/k). Its
image in S(n)(A/k) cannot be equal to any nontrivial finitely supported class. On the other
hand, its image is finitely supported. It follows that its image must be trivial.

To establish the claim above, let Lξ ⊂ S(A/k) be the set of elements which map to ξ in

S(n)(A/k). For each ζ ∈ Lξ, define m(ζ) to be the least positive integer such that φm(ζ)+n(ζ)
is not finitely supported. This is well defined since S(A/k) satisfies the strong Hasse principle.
Set m0 = supζ∈Lξ

m(ζ). If this supremum is finite the claim follows. So suppose this is not the

case. Then we can find a sequence {ζi}∞i=1 ⊂ Lξ such that, for each i, φn+i(ζi) ∈ S(n+i)(A/k)
is finitely supported. Note that S(A/k) is sequentially compact (being a profinite group, it is
compact and first countable). So, replacing with a subsequence if necessary, we may assume
that the sequence ζi converges to some ζ ∈ S(A/k). Clearly φn(ζ) = ξ 6= 0. Our claim will be
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established if we can show that ζ is finitely supported, for this will contradict the strong Hasse
principle for S(A/k).

Let S be the finite set of primes consisting of primes of bad reduction for A and primes
dividing p. By the criterion of Neron-Ogg-Shafarevich A[pe] is unramified outside S. Suppose
resv(ζ) 6= 0 for some v /∈ S. Then there exists some M such that resv(φM+n(ζ)) 6= 0. Since ζ is
the limit of the ζi, we can choose i > M such that φM+n(ζi) = φM+n(ζ) in S(M+n)(A/k). Now
i > M and φi+n(ζi) is finitely supported, so φM+n(ζi) must be as well. By corollary 3.4 it follows
that φM+n(ζ) = φM+n(ζi) is supported on S. This contradiction shows that ζ is supported on
S, which is a finite set of primes. This is what we intended to show. 2

Proof of Theorem 5.5: We will prove the statement for the dual abelian variety. Let T
be any finite set of primes and ηT := (ηv)v∈T ∈ ∏

v∈T H1(kv, A
∨)[p∞]. Let n be a positive

integer such that, for all v ∈ T , ηv is killed by pn. Choose m as in lemma 5.6 and let ξ be any
finitely supported class in the pm+n-Selmer group of A. We may consider ηT as an element in
∏

v∈T H1(kv, A
∨)[pn+m]. Using proposition 5.3, the theorem will follow if we can show that ηT

is orthogonal to ξ with respect to the pairing

〈 , 〉T : S(n+m)(A/k)×
∏

v∈T

H1(kv, A
∨)[pn+m] → Q/Z .

We have the commutative diagram

S(m+n)(A/k)

resv
��

// S(n)(A/k)

resv
��

∏

v∈T
H0(kv ,A)

pm+n H0(kv ,A)
// ∏

v∈T
H0(kv ,A)

pn H0(kv ,A)

By assumption, the image of ξ in the upper-right hand corner is trivial, so this is also true
of its image in the lower-right corner. From commutativity it follows that there exists some
PT ∈ ∏

v∈T H0(kv, A) such that resT (ξ) ≡ pnPT mod
∏

v∈T pm+nH0(kv, A). The pairing 〈 , 〉T
is bilinear, so

〈ξ, ηT 〉T = 〈pnPT , ηT 〉T = 〈PT , p
nηT 〉T = 〈PT , 0〉T = 0 .

This is what we wanted to show. 2

Remark: Corollary 3.4 shows that any finitely supported class in H1(k,A[n]) is unramified
outside the set of primes of bad reduction and the primes above n. It follows that there can only
be finitely many singular classes. The strong Hasse principle is also valid for the projective limit

of the groups H1(k,A[n]). The proof of 5.6 carries over for H1(k,A[n]) in place of Sel(n)(A/k).
A similar argument to that in the proof above then shows that weak approximation holds for the
direct limit of the groups H1(k,A[n]) with respect to the maps induced by the obvious inclusion
A[n] → A[mn].
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