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Abstract

In this paper we introduce a nonuniform sparsity model and analyze the performance of an opti-

mized weighted ℓ1 minimization over that sparsity model. In particular, we focus on a model where

the entries of the unknown vector fall into two sets, with entries of each set having a specific proba-

bility of being nonzero. We propose a weighted ℓ1 minimization recovery algorithm and analyze its

performance using a Grassmann angle approach. We compute explicitly the relationship between the

system parameters-the weights, the number of measurements, the size of the two sets, the probabilities

of being nonzero- so that when i.i.d. random Gaussian measurement matrices are used, the weighted

ℓ1 minimization recovers a randomly selected signal drawn from the considered sparsity model with

overwhelming probability as the problem dimension increases. This allows us to compute the optimal

weights. We demonstrate through rigorous analysis and simulations that for the case when the support

of the signal can be divided into two different subclasses with unequal sparsity fractions, the optimal

weighted ℓ1 minimization outperforms the regular ℓ1 minimization substantially. We also generalize

the results to an arbitrary number of classes.

1 Introduction

Compressed sensing is an emerging technique of joint sampling and compression that has been recently

proposed as an alternative to Nyquist sampling (followed by compression) for scenarios where measure-

ments can be costly [24]. The whole premise is that sparse signals (signals with many zero or negligible
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elements over a known basis) can be recovered with far fewer measurements than the ambient dimension

of the signal itself. In fact, the major breakthrough in this area has been the demonstration that ℓ1

minimization can efficiently recover a sufficiently sparse vector from a system of underdetermined linear

equations [2]. ℓ1 minimization is usually posed as the convex relaxation of ℓ0 minimization which solves

for the sparsest solution of a system of linear equation and is NP hard.

The conventional approach to compressed sensing assumes no prior information on the unknown

signal other than the fact that it is sufficiently sparse over a particular basis. In many applications,

however, additional prior information is available. In fact, in many cases the signal recovery problem

that compressed sensing addresses is a detection or estimation problem in some statistical setting. Some

recent work along these lines can be found in [6], which considers compressed detection and estimation,

[7], which studies Bayesian compressed sensing, and [8] which introduces model-based compressed sensing

allowing for model-based recovery algorithms. In a more general setting, compressed sensing may be the

inner loop of a larger estimation problem that feeds prior information on the sparse signal (e.g., its

sparsity pattern) to the compressed sensing algorithm [10, 11].

In this paper we will consider a particular model for the sparse signal where the entries of the unknown

vector fall into a number u of classes, with each class having a specific fraction of nonzero entries. The

standard compressed sensing model is therefore a special case where there is only one class. As mentioned

above, there are many situations where such prior information may be available, such as in natural images,

medical imaging, or in DNA microarrays. In the DNA microarrays applications for instance, signals are

often block sparse, i.e., the signal is more likely to be nonzero in certain blocks rather than in others [9].

While it is possible (albeit cumbersome) to study this model in full generality, in this paper we will focus

on the case where the entries of the unknown signal fall into a fixed number u of categories; in the ith set

Ki with cardinality ni, the fraction of nonzero entries is pi. This model is rich enough to capture many

of the salient features regarding prior information. We refer to the signals generated based on this model

as nonuniform sparse signals.

A signal generated based on this model could resemble the vector representation of a natural image

in the domain of some linear transform (e.g. Discrete Fourier Transform, Discrete Cosine Transform,

Discrete Wavelet Transform, ...) or the spatial representation of some biomedical image, e.g., a brain

fMRI image. Although a brain fMRI image is not necessarily sparse, the subtraction of the brain image

at any moment during an experiment from an initial background image of inactive brain mode is indeed a

sparse signal which, demonstrates the additional brain activity during the specific course of experiment.

Moreover, depending on the assigned task, the experimenter might have some prior information. For

example it might be known that some regions of the brain are more likely to be entangled with the

decision making process than the others. This can be captured in the above nonuniform sparse model

by considering a higher value pi for the more active region. Similarly, this model is applicable to other
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problems like network monitoring (see [17] for an application of compressed sensing and nonlinear esti-

mation in compressed network monitoring), DNA microarrays [19, 20, 21], astronomy, satellite imaging

and many more practical examples.

In this paper we first analyze this model for the case where there are u ≥ 2 categories of entries, and

demonstrate through rigorous analysis and simulations that the recovery performance can be significantly

boosted by exploiting the additional information. We find a closed form expression for the recovery

threshold for u = 2. We also generalize the results to the case of u > 2. A further interesting question

to be addressed in future work would be to characterize the gain in recovery percentage as a function of

the number of distinguishable classes u. It is worth mentioning that a somewhat similar model for prior

information has been considered in [5]. There, it has been assumed that part of the support is completely

known a priori or due to previous processing. A modification of the regular ℓ1 minimization based on the

given information is proven to achieve significantly better recovery guarantees. As will be discussed, this

model can be cast as a special case of the nonuniform sparse model, where the sparsity fraction is equal

to unity in one of the classes . Therefore, using the generalized tools of this work, we can explicitly find

the recovery thresholds for the method proposed in [5]. This is in contrast to the recovery guarantees of

[5] which are given in terms of the restricted isometry property (RIP).

The contributions of the paper are the following. We propose a weighted ℓ1 minimization approach

for sparse recovery where the ℓ1 norms of different classes (Ki’s) are assigned different weights wKi

(1 ≤ i ≤ u). Clearly, one would want to give a larger weight to the entries with a higher chance of being

zero and thus further force them to be zero.1 The second contribution is that we explicitly compute the

relationship between pi, wKi
,ni

n , 1 ≤ i ≤ u and the number of measurements so that the unknown signal

can be recovered with overwhelming probability as n→ ∞ (the so-called weak and strong thresholds) for

measurement matrices drawn from an i.i.d. Gaussian ensemble. The analysis uses the high-dimensional

geometry techniques first introduced by Donoho and Tanner [1, 3] (e.g., Grassmann angles) to obtain

sharp thresholds for compressed sensing. However, rather than the neighborliness condition used in

[1, 3], we find it more convenient to use the null space characterization of Xu and Hassibi [4, 16]. The

resulting Grassmannian manifold approach is a general framework for incorporating additional factors

into compressed sensing: in [4] it was used to incorporate approximately sparse signals; here it is used

to incorporate prior information and weighted ℓ1 optimization. Our analytic results allow us to precisely

compute the optimal weights for any pi,ni, 1 ≤ i ≤ u. We also provide certain robustness conditions for

the recovery scheme for compressible signals or under model mismatch. We present simulation results to

show the advantages of the weighted method over standard ℓ1 minimization. Furthermore, the results

of this paper for the case of two classes (u = 2) builds a rigid framework for analyzing certain classes of

1A somewhat related method that uses weighted ℓ1 optimization is by Candès et al. [10]. The main difference is that
there is no prior information. At each step, the ℓ1 optimization is re-weighted using the estimate of the signal obtained in
the last minimization step.

3



re-weighted ℓ1 minimization algorithms. In a re-weighted ℓ1 minimization algorithm, the post processing

information from the estimate of the signal at each step can be viewed as additional prior information

about the signal, and can be incorporated into the next step as appropriate weights. In a further work

we have been able to analytically prove the threshold improvement in a reweighted ℓ1 minimization using

this framework [18]. It is worth mentioning that we have prepared a software package based on the results

of this paper for threshold computation using weighted ℓ1 minimization, and it is available in [23].

The paper is organized as follows. In the next section we briefly describe the notations that we

use throughout the paper. In Section 3 we describe the model and state the principal assumptions of

nonuniform sparsity that we are interested in. We also sketch the objectives that we are shooting for and,

clarify what we mean by recovery improvement in the weighted ℓ1 case. In Section 4, we skim through

our critical theorems and try to present the big picture of the main results. Section 5 is dedicated to the

concrete derivation of these results. In Section 6, we briefly introduce the reweighted ℓ1 minimization

algorithm, and provide some insights in how the derivations of this work can be used to analyze the

improved recovery thresholds. In Section 7 some simulation results are presented and are compared to

the analytical bounds of the previous sections. The paper ends with a conclusion and discussion of future

work in Section 8.

2 Basic Definitions and Notations

Throughout the paper, vectors are denoted by small boldface letters x,w, z, · · · , scalars are shown by

small regular letters a, b, α, · · · , and matrices are denoted by bold capital letters(A, I, · · · ). For referring
to geometrical objects and subspaces, we use Calligraphic notation, e.g. Z,F ,G,P, C, · · · . This includes
the notations that we use to indicate the faces of a high dimensional polytope, or the polytope itself.

Sets and random variables are denoted by regular capital letters(K,S, · · · ). The normal distribution with

mean µ and variance σ2 is denoted by N (µ, σ2). For functions we use both little and capital letters and

it should be generally clear from the context. We use the phrases RHS and LHS as abbreviations for

Right Hand Side and Left Hand Side respectively throughout the paper.

Definition 1. A random variable Y is said to have a Half Normal distribution HN(0, σ2) if Y = |X|
where X is a zero mean normal variable X ∼ N (0, σ2).

3 Problem Description

We first define the signal model. For completeness, we present a general definition.

Definition 2. Let K = {K1,K2, ...,Ku} be a partition of {1, 2, · · · , n}, i.e. (Ki ∩Kj = ∅ for i 6= j, and
⋃u
i=1Ki = {1, 2, ..., n}), and P = {p1, p2, · · · , pu} be a set of positive numbers in [0, 1]. A n × 1 vector
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Figure 1: Illustration of a nonuniformly sparse signal.

x = (x1, x2, · · · , xn)T is said to be a random nonuniformly sparse vector with sparsity fraction pi

over the set Ki for 1 ≤ i ≤ u, if x is generated from the following random procedure:

• Over each set Ki, 1 ≤ i ≤ u, the set of nonzero entries of x is a random subset of size pi|Ki|. In

other words, a fraction pi of the entries are nonzero in Ki. pi is called the sparsity fraction over Ki.

The values of the nonzero entries of x can arbitrarily be selected from any symmetric distribution.

We can choose N (0, 1) for simplicity.

In Figure 1, a sample nonuniformly sparse signal with Gaussian distribution for nonzero entries is

plotted. The number of sets is considered to be u = 2 and both classes have the same size n
2 , with

n = 1000. The sparsity fraction for the first class K1 is p1 = 0.3, and for the second class K2 is p2 = 0.05.

In fact, the signal is much sparser in the second half than it is in the first half. The advantageous feature

of this model is that all the resulting computations are independent of the actual distribution on the

amplitude of the nonzero entries. However, as expected, it is not independent of the properties of the

measurement matrix. We assume that the measurement matrix A is a m×n matrix with i.i.d. standard

Gaussian distributed N (0, 1) entries, with m
n = δ < 1. The measurement vector is denoted by y and

obeys the following:

y = Ax. (1)

As mentioned in Section 1, ℓ1 minimization can recover a randomly selected vector x with k = µn

nonzero entries with high probability, provided µ is less than a known function of δ. ℓ1 minimization has

the following form:

min
Ax=y

‖x‖1. (2)

The reference [1] provides an explicit relationship between µ and the minimum δ that guarantees success

of ℓ1 minimization recovery in the case of Gaussian measurements and provides the corresponding nu-

merical curve. The optimization in (2) is a linear program and can be solved polynomially fast (O(n3)).
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However, it fails to encapsulate additional prior information of the signal nature, might there be any such

information available. One can simply think of modifying (2) to a weighted ℓ1 minimization as follows:

min
Ax=y

‖x‖w,1 = min
Ax=y

n
∑

i=1

wi|xi| (3)

The index, w, on the norm is an indication of the n× 1 positive weight vector. Now the questions are i)

what is the optimal set of weights for a certain set of available prior information?, and ii) can one improve

the recovery threshold using the weighted ℓ1 minimization of (3) by choosing a set of optimal weights?

We have to be more clear with our objective at this point and clarify what we mean by improving the

recovery threshold. Generally speaking, if a recovery method can reconstruct all signals of a certain model

with certainty, then that method is said to be strongly successful on that signal model. If we have a

class of models that can be identified with a parameter θ, and if for all models corresponding to θ < θ0

a recovery scheme is strongly successful, then the threshold θ0 is called a strong recovery threshold

for the parameter θ. For example, for fixed m
n , if k < n is sufficiently small, then ℓ1 minimization can

provably recover all k-sparse signals, provided that appropriate linear measurements have been made from

the signal. The maximum such k is called the strong recovery threshold of the sparsity for the success of ℓ1

minimization. Likewise, for a fixed ratio µ = k
n , the minimum ratio of measurements to ambient dimension

m
n for which, ℓ1 minimization always recovers k-sparse signals from the given m linear measurements is

called the strong recovery threshold for the number of measurements for ℓ1 minimization. In contrast,

one can also look into the weak recovery threshold, defined as the threshold below which, with very

high probability a random vector generated from the model is recoverable. For the nonuniformly sparse

model, the quantity of interest is the overall sparsity fraction of the model defined as (
∑u

i=1 pini

n ). The

question we ask is whether by adjusting wi’s according to pi’s one can extend the strong or weak recovery

threshold for sparsity fraction to a value above the known threshold of ℓ1 minimization. Equivalently,

for given classes K1, · · · ,Ku and sparsity fractions pi’s, how much can the strong or weak threshold be

improved for the minimum number of required measurements, as apposed to the case of uniform sparsity

with the same overall sparsity fraction.

4 Summary of Main Results

We state the two problems more formally using the notion of recovery thresholds that we defined in the

previous section. We only consider the case of u = 2.

• Problem 1 Consider the random nonuniformly sparse model with two classesK1,K2 of cardinalities

n1 = γ1n and n2 = γ2n respectively, and given sparsity fractions p1 and p2. Let w be a given weight

vector. As n → ∞, what is the weak (strong) recovery threshold for δ = m
n so that a randomly
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chosen vector (all vectors) x0 selected from the nonuniformly sparse model is successfully recovered

by the weighted ℓ1 minimization of (3) with high probability?

Upon solving Problem.1, one can exhaustively search for the weight vector w that results in the minimum

recovery threshold for δ. This is what we recognize as the optimum set of weights. So the second problem

can be stated as:

• Problem 2 Consider the random nonuniformly sparse model defined by classes K1,K2 of cardi-

nalities n1 and n2 respectively, with γ1 = n1
n and γ2 = n2

n , and given sparsity fractions p1 and p2.

What is the optimum weight vector w in (3) that results in the minimum number of measurements

for almost sure recovery of signals generated from the given random nonuniformly sparse model?

We will fully solve these problems in this paper. We first connect the misdetection event to the properties

of the measurement matrix. For the non-weighted case, this has been considered in [16] and is known as

the null space property. We generalize this result to the case of weighted ℓ1 minimization, and mention

a necessary and sufficient condition for (3) to recover the original signal of interest. The theorem is as

follows

Theorem 4.1. For all n×1 vectors x∗ supported on the set K ⊆ {1, 2, ..., n}, x∗ is the unique solution to

the linear program minAx=y

∑n
i=1wi|xi| with y = Ax∗, if and only if for every vector z = (z1, z2, · · · , zn)T

in the null space of A, the following holds:
∑

i∈K wi|zi| ≥
∑

i∈K wi|zi|.

This theorem will be proved in Section 5. As will be explained in Section 5.1, Theorem 4.1 along with

known facts about the null space of random Gaussian matrices, help us interpret the probability of

recovery error in terms of a high dimensional geometrical object called the complementary Grassmann

angle; namely the probability that a uniformly chosen (n−m)-dimensional subspace Z shifted by a point

x of unity weighted ℓ1-norm,
∑n

i=1wixi = 1, intersects the weighted ℓ1-ball Pw = {y ∈ Rn |∑n
i=1 wi|yi| ≤

1} nontrivially at some other point besides x. The shifted subspace is denoted by Z + x. The fact that

we can take for granted, without explicitly proving it, is that due to the identical marginal distribution

of the entries of x in each of the sets K1 and K2, the entries of the optimal weight vector take at most

two (or in the general case u) distinct values wK1 and wK2 depending on their index. In other words

∀i ∈ {1, 2, · · · , n} wi =







wK1 if i ∈ K1

wK2 if i ∈ K2

(4)

Leveraging on the existing techniques for computing the complementary Grassmann angle [14, 15], we

will be able to state and prove the following theorem along the same lines, which upper bounds the

probability that the weighted ℓ1 minimization does not recover the signal. Please note that in the following

theorem, the rigorous mathematical definitions to some of the terms (internal angle and external angle)
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is not presented, due to the extent of descriptions. They will however be defined rigorously later in the

derivations of the main results in Section 5.

Theorem 4.2. Let K1 and K2 be two disjoint subsets of {1, 2, · · · , n} such that |K1| = n1, |K2| = n2,

and p1 and p2 be real numbers in [0, 1]. Also, let k1 = p1n1, k2 = p2n2, and E be the event that a random

nonuniformly sparse vector x0 (Definition 2) with sparsity fractions p1 and p2 over the sets K1 and K2

respectively is recovered via the weighted ℓ1 minimization of (3) with y = Ax0. Also, let Ec denote the

complement event of E. Then

P{Ec} ≤
∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m − k1 − k2 + 1

2t1+t2+1

(

n1 − k1
t1

)(

n2 − k2
t2

)

β(k1, k2|t1, t2)ζ(t1 + k1, t2 + k2) (5)

where β(k1, k2|t1, t2) is the internal angle between a (k1 + k2 − 1)-dimensional face F of the weighted

ℓ1-ball Pw = {y ∈ Rn|∑n
i=1 wi|yi| ≤ 1} with k1 vertices supported on K1 and k2 vertices supported on

K2, and another (k1 + k2 + t1 + t2 − 1)-dimensional face G that encompasses F and has t1 + k1 vertices

supported on K1 and the remaining t2 + k2 vertices supported on K2. ζ(d1, d2) is the external angle

between a face G supported on set L with |L ∩K1| = d1 and |L ∩K2| = d2 and the weighted ℓ1-ball Pw.

See Section 5.1 for the definitions of integral and external angles.

The proof of this theorem will be given in Section 5.2. We are interested in the regimes that make

the above upper bound decay to zero as n → ∞, which requires the cumulative exponent in (5) to be

negative. We are able to calculate sharp upper bounds on the exponents of the terms in (5) by using

large deviations of sums of normal and half normal variables. More precisely, for small enough ǫ, if we

assume that the sum of the terms corresponding to particular indices t1 and t2 in (5) is denoted by

F (t1, t2), and define τ1 = t1
n and τ2 = t2

n , then we are able to find and compute an exponent function

ψtot(τ1, τ2) = ψcom(τ1, τ2)− ψint(τ1, τ2)− ψext(τ1, τ2) so that 1
n log F (t1, t2) ∼ ψtot(τ1, τ2) as n→ ∞. The

terms ψcom(·, ·), ψint(·, ·) and ψext(·, ·) are contributions to the cumulative exponent ψtot by the so called

combinatorial, internal angle and external angle terms respectively, existing in the upper bound (5). The

derivations of these terms will be elaborated in Section 5.2.3. Consequently, we state a key theorem that

is the implicit answer to Problem 1.

Theorem 4.3. Let δ = m
n be the ratio of the number of measurements to the signal dimension, γ1 = n1

n

and γ2 = n1
n . For fixed values of γ1, γ2, p1, p2, ω =

wK2
wK1

, define E to be the event that a random

nonuniformly sparse vector x0 (Definition 2) with sparsity fractions p1 and p2 over the sets K1 and K2

respectively with |K1| = γ1n and |K2| = γ2n is recovered via the weighted ℓ1 minimization of (2) with

y = Ax0. There exists a critical threshold δc = δc(γ1, γ2, p1, p2, ω) such that if δ = m
n ≥ δc, then P{Ec}
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decays exponentially to zero as n→ ∞. Furthermore, δc is given by

δc = min{δ | ψcom(τ1, τ2)− ψint(τ1, τ2)− ψext(τ1, τ2) < 0 ∀ 0 ≤ τ1 ≤ γ1(1− p1),

0 ≤ τ2 ≤ γ2(1− p2), τ1 + τ2 > δ − γ1p1 − γ2p2}

where ψcom, ψint and ψext are obtained from the following expressions:

Define g(x) = 2√
π
e−x

2
, G(x) = 2√

π

∫ x
0 e

−y2dy and let ϕ(.) and Φ(.) be the standard Gaussian pdf and cdf

functions respectively.

1. (Combinatorial exponent)

ψcom(τ1, τ2) =

(

γ1(1− p1)H(
τ1

γ1(1− p1)
) + γ2(1− p2)H(

τ2
γ2(1− p2)

) + τ1 + τ2

)

log 2 (6)

where H(·) is the entropy function defined by H(x) = −x log x− (1− x) log(1− x).

2. (External angle exponent) Define c = (τ1 + γ1p1) + ω2(τ2 + γ2p2), α1 = γ1(1 − p1) − τ1 and

α2 = γ2(1− p2)− τ2. Let x0 be the unique solution to x of the following:

2c− g(x)α1

xG(x)
− ωg(ωx)α2

xG(ωx)
= 0

Then

ψext(τ1, τ2) = cx20 − α1 logG(x0)− α2 logG(ωx0) (7)

3. (Internal angle exponent) Let b = τ1+ω2τ2
τ1+τ2

, Ω′ = γ1p1+ω
2γ2p2 and Q(s) = τ1ϕ(s)

(τ1+τ2)Φ(s) +
ωτ2ϕ(ωs)

(τ1+τ2)Φ(ωs) .

Define the function M̂(s) = − s
Q(s) and solve for s in M̂(s) = τ1+τ2

(τ1+τ2)b+Ω′ . Let the unique solution

be s∗ and set y = s∗(b− 1
M̂(s∗)

). Compute the rate function Λ∗(y) = sy− τ1
τ1+τ2

Λ1(s)− τ2
τ1+τ2

Λ1(ωs)

at the point s = s∗, where Λ1(s) =
s2

2 + log(2Φ(s)). The internal angle exponent is then given by:

ψint(τ1, τ2) = (Λ∗(y) +
τ1 + τ2
2Ω′ y2 + log 2)(τ1 + τ2) (8)

Theorem 4.3 is a powerful result, since it allows us to find (numerically) the optimal set of weights

for which the fewest possible measurements are needed to recover the signals almost surely. To this

end, for fixed values of γ1, γ2, p1 and p2, one should find the ratio
wK2
wK1

for which the critical threshold

δc(γ1, γ2, p1, p2,
wK2
wK1

) from Theorem 4.3 is minimum. We discuss this by some examples in Section 7. A

generalization of theorem 4.3 for a nonuniform model with an arbitrary number of classes (u ≥ 2) will be

given in Section 5.3.
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(a) p1 = 0.4, p2 = 0.05. (b) p1 = 0.65, p2 = 0.1.

Figure 2: δc as a function of ω =
wK2

wK1

for γ1 = γ2 = 0.5.

As mentioned earlier, using Theorem 4.3, it is possible to find the optimal ratio
wK2
wK1

. It however

requires an exhaustive search over the δc threshold for all possible values of ω. For γ1 = γ2 = 0.5,

p1 = 0.3 and p2 = 0.05, we have numerically computed δc(γ1, γ2, p1, p2,
wK2
wK1

) as a function of
wK2
wK1

and

depicted the resulting curve in Figure 2a. This suggests that
wK2
wK1

≈ 2.5 is the optimal ratio that one can

choose. Later we will confirm this using simulations.

Note that δc given in Theorem 4.3 is a weak bound on the ratio δ = m
n . In other words, it determines

the minimum number of measurements so that for a random sparse signal from the nonuniform sparse

model and a random support set, the recovery is successful with high probability. It is possible to obtain

a strong bound for δ, using a union bound on all possible support sets in the model, and all possible

sign patterns of the sparse vector. Similarly, a sectional bound can be defined which accounts for all

possible support sets but almost all sign patterns. Therefore, the expressions for the strong and sectional

thresholds, which we denote by δ
(S)
c and δ

(T )
c are very similar to δc in Theorem 4.3, except for a slight

modification in the combinatorial exponent term ψcom. This will be elaborated in Section 5.2.3.

It is worthwhile to consider some asymptotic cases of the presented nonuniform model and some of

their implications. First of all, when one of the subclasses is empty, e.g. γ1 = 0, then the obtained weak

and strong thresholds are equal to the corresponding thresholds of ℓ1 minimization for a sparsity fraction

p = p2. Furthermore, if the sparsity fractions p1 and p2 over the two classes are equal, and a unitary

weight ω = 1 is used, then the weak threshold δc is equal to the threshold of ℓ1 minimization for a sparsity

fraction p = p1 = p2. In other words:

δc(γ1, γ2, p, p, 1) = δc(0, 1, 0, p, 1). (9)
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This follows immediately from the derivations of the exponents in Theorem 4.3. However, the latter

is not necessarily true for the strong threshold. In fact the computation of the strong threshold for

regular ℓ1 minimization involves a union bound over a larger set of possible supports, and therefore the

combinatorial exponent becomes larger. Therefore:

δ(S)c (γ1, γ2, p, p, 1) ≤ δ(S)c (0, 1, 0, p, 1). (10)

A very important asymptotic case is when the unknown signal is fully dense over one of the subclasses,

e.g. p1 = 1, which accounts for a partially known support. This model is considered in the work of Vaswani

et al. [5], with the motivation that in some applications (or due to previous processing steps), part of the

support set can be fully identified2. If the dense subclass is K1 and K2 = Kc
1, then [5] suggests solving

the following minimization program:

min
Ax=y

‖xK2‖1. (11)

It is possible to find exact thresholds for the above problem using the weighted ℓ1 minimization machinery

presented in this paper. First, note that (11) is the asymptotic solution of the following weighted ℓ1

minimization, when ω → ∞
min
Ax=y

‖xK1‖1 + ω‖xK2‖1. (12)

Therefore the recovery threshold for (11) can be given by δc(γ1, γ2, 1, p2, ω) for ω → ∞. We prove the

following theorem about the latter threshold:

Theorem 4.4. If ω → ∞, then δc(γ1, γ2, 1, p2, ω) → γ1 + γ2δc(0, 1, 0, p2, 1). In other words, when a

subset of entries of size γ1n are known to be nonzero, the minimum number of measurements that is

required for almost surely successful recovery using (11) is equal to the total number of measurements

needed if we were allowed to independently make measurements from the two parts and recover each using

ℓ1 minimization.

The proof of this theorem is given in Appendix E.

A very important factor regarding the performance of any recovery method is its robustness. In other

words, it is important to understand how resilient the recovery is in the case of compressible signals or

in the presence of noise or model mismatch(i.e. incorrect knowledge of the the sets or sparsity factors).

We address this in the following theorem.

Theorem 4.5. Let K1 and K2 be two disjoint subsets of {1, 2, · · · , n}, with |K1| = γ1n,|K2| = γ2n

and γ1 + γ2 = 1. Also suppose that the dimensions of the measurement matrix A satisfy δ = m
n ≥

δ
(S)
c (γ1, γ2, p1, p2, ω) for positive real numbers p1 and p2 in [0, 1] and ω > 0. For positive ǫ1, ǫ2, assume

2Thanks to anonymous reviewers for pointing this out to us!
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that L1 and L2 are arbitrary subsets of K1 and K2 with cardinalities (1 − ǫ1)γ1p1n and (1 − ǫ2)γ2p2n

respectively. With high probability, for every vector x0, if x̂ is the solution to the following linear program:

min
Ax=Ax0

‖xK1‖1 + ω‖xK2‖1. (13)

Then the following holds

‖(x0 − x̂)K1‖1 + ω‖(x0 − x̂)K2‖1 ≤ Cǫ1,ǫ2

(

‖(x0)L1∩K1
‖1 + ω‖(x0)L2∩K2

‖1
)

, (14)

where

Cǫ1,ǫ2 =
1 +min( ǫ1p11−p1 ,

ǫ2p2
1−p2 )

1−min( ǫ1p11−p1 ,
ǫ2p2
1−p2 )

.

The above theorem has the following implications. First, if x0 is a (compressible) vector, such that

its “significant” entries follow a nonuniform sparse model, then the recovery error of the corresponding

weighted ℓ1 minimization can be bounded in terms of the ℓ1 norm of the “insignificant” part of x0(i.e. the

part where a negligible fraction of the energy of the signal is located or most entries have significantly small

values, compared to the other part that has an overall large norm). Theorem 4.5 can also be interpreted

as the robustness of weighted ℓ1 scheme to the model mismatch. If K1,K2, p1, p2 are the estimates of an

actual nonuniform decomposition for x0 (based on which the minimum number of required measurements

have been estimated), then the recovery error can be relatively small if the model estimation error is slight.

Theorem 4.5 will be proved in Section 5.4.

5 Derivation of the main results

In this section we provide detailed proofs to the claims of Section 4. Let x0 be a random nonuniformly

sparse signal with sparsity fractions p1 and p2 over the index subsets K1 and K2 respectively (Definition

2), and let |K1| = n1 and |K2| = n2 . Also let K be the support of x. Let E be the event that x is

recovered exactly by (3), and Ec be its complimentary event. In order to bound the conditional error

probability P{Ec} we adopt the idea of [16] to interpret the failure recovery event (Ec) in terms of the

null space of the measurement matrix A. This is stated in Theorem 4.1, which we prove here.

proof of Theorem 4.1. Suppose the mentioned null space condition holds and define x̂ = argminAx=y

∑n
i=1wi|xi|.

Let W = diag(w1, w2, · · · , wn). By triangular inequality, we have:

12



‖Wx̂‖1 = ‖(Wx̂)K‖1 + ‖(Wx̂)K‖1 = ‖(Wx∗ +Wx̂−Wx∗)K‖1 + ‖(Wx̂)K‖1
≥ ‖(Wx∗)K‖1 − ‖(Wx̂ −Wx∗)K‖1 + ‖(Wx̂ −Wx∗)K‖1
≥ ‖Wx∗‖1

Where the last inequality is a result of the fact that x̂ − x∗ is in the null space of A and satisfies the

mentioned null space condition. However, by assumption if x̂ 6= x∗ then ‖Wx̂‖1 ≤ ‖Wx∗‖1. This implies

that x̂ = x∗. Conversely, suppose there is some vector z in N (A) such that ‖(Wz)K‖1 > ‖(Wz)K‖1.
Taking define x∗ = (zK 0)T and x̂ = (0 zK)T implies that Ax∗ = Ax̂ and ‖Wx∗‖1 > ‖Wx̂‖1. Therefore,
x∗ cannot be recovered from the weighted ℓ1 minimization.

From this point on, we follow closely the steps towards calculating the upper bound on the failure

probability from [4], but with appropriate modifications. The key to our derivations is the following

lemma which will be proven in Appendix A.

Lemma 5.1. For a certain subset K ⊆ {1, 2, ..., n} with |K| = k, the event that the null-space N (A)

satisfies
∑

i∈K
wi|zi| ≤

∑

i∈K

wi|zi|,∀z ∈ N (A), (15)

is equivalent to the event that for each x supported on the set K (or a subset of K)

∑

i∈K
wi|xi + zi|+

∑

i∈K

wi|zi| ≥
∑

i∈K
wi|xi|,∀z ∈ N (A). (16)

5.1 Upper Bound on the Failure Probability

Knowing Lemma 5.1, we are now in a position to derive the probability that condition (15) holds for a

support set K with |K| = k, if we randomly choose an i.i.d. Gaussian matrix A. In the case of a random

i.i.d. Gaussian matrix, the distribution of null space of A is right-rotationally invariant, and sampling

from this distribution is equivalent to uniformly sampling a random (n − m)-dimensional subspace Z
from the Grassmann manifold Gr(n−m)(n). The Grassmann manifold Gr(n−m)(n) is defined as the set

of all (n − m)-dimensional subspaces of Rn. We need to upper bound the complementary probability

P = P{Ec}, namely the probability that the (random) support set K of x (of random sign pattern) fails

the null space condition (16). We denote the null space of A by Z. Because Z is a linear space, for every

vector z ∈ Z, αz is also in Z for all α ∈ R. Therefore, if for a z ∈ Z and x condition (16) fails, by a

simple re-scaling of the vectors, we may assume without loss of generality that x lies on the surface of

13



(a) (b)

Figure 3: A weighted ℓ1-ball, Pw, in R3 (a), and a linear hyperplane Z passing through a point x in the interior of a one dimensional
face of Pw (b).

any convex ball that surrounds the origin. Therefore we restrict our attention to those vectors x from

the weighted ℓ1-sphere:

{x ∈ Rn |
n
∑

i=1

wi|xi| = 1}

that are only supported on the set K , or a subset of it. Since we are assuming that the distribution of

the nonzero entries of x is symmetric, we can write:

P = PK,− (17)

where PK,− is the probability that for a specific support set K , there exist a k-sparse vector x of a specific

sign pattern which fails the condition (16). By symmetry, without loss of generality, we assume the signs

of the elements of x to be non-positive. Now we can focus on deriving the probability PK,−. Since x is

a non-positive k-sparse vector supported on the set K and can be restricted to the weighted ℓ1-sphere

{x ∈ Rn | ∑n
i=1 wi|xi| = 1}, x is also on a (k−1)-dimensional face, denoted by F , of the weighted ℓ1-ball

Pw:

Pw = {y ∈ Rn |
n
∑

i=1

wi|yi| ≤ 1} (18)

The subscript w in Pw is an indication of the weight vector w = (w1, w2, · · · , wn)T . Figure 3a shows

Pw in R3 for some nontrivial weight vector w. Now the probability PK,− is equal to the probability that

14



there exists an x ∈ F , and there exists a z ∈ Z (z 6= 0) such that

∑

i∈K
wi|xi + zi|+

∑

i∈K̄
wi|zi| ≤

∑

i∈K
wi|xi| = 1. (19)

We start by studying the case for a specific point x ∈ F and, without loss of generality, we assume x

is in the relative interior of this (k − 1)-dimensional face F . For this particular x on F , the probability,

denoted by P ′
x, that there exists a z ∈ Z (z 6= 0) such that

∑

i∈K
wi|xi + zi|+

∑

i∈K̄
wi|zi| ≤

∑

i∈K
wi|xi| = 1. (20)

is essentially the probability that a uniformly chosen (n − m)-dimensional subspace Z shifted by the

point x, namely (Z + x), intersects the weighted ℓ1-ball Pw non-trivially, namely, at some other point

besides x (Figure 3b). From the fact that Z is a linear subspace, the event that (Z + x) intersects Pw

is equivalent to the event that Z intersects nontrivially with the cone Cw(x) obtained by observing the

weighted ℓ1-ball Pw from the point x. (Namely, Cw(x) is conic hull of the point set (Pw − x) and of

course Cw(x) has the origin of the coordinate system as its apex.) However, as noticed in the geometry

for convex polytopes [12, 13], the cones Cw(x) are identical for any x lying in the relative interior of the

face F . This means that the probability PK,− is equal to P ′
x, regardless of the fact that x is only a single

point in the relative interior of the face F . There are some singularities here because x ∈ F may not be

in the relative interior of F , but it turns out that the Cw(x) in this case is only a subset of the cone we

get when x is in the relative interior of F . So we do not lose anything if we restrict x to be in the relative

interior of the face F , namely we have

PK,− = P ′
x.

Now we only need to determine P ′
x. From its definition, P ′

x is exactly the complementary Grassmann

angle [12] for the face F with respect to the polytope Pw under the Grassmann manifold Gr(n−m)(n):

a uniformly distributed (n −m)-dimensional subspace Z from the Grassmannian manifold Gr(n−m)(n)

intersecting non-trivially with the cone Cw(x) formed by observing the weighted ℓ1-ball Pw from the

relative interior point x ∈ F .

Building on the works by L.A. Santalö [14] and P. McMullen [15] in high dimensional geometry

and convex polytopes, the complementary Grassmann angle for the (k − 1)-dimensional face F can be

explicitly expressed as the sum of products of internal angles and external angles [13]:

2×
∑

s≥0

∑

G∈ℑm+1+2s(Pw)

β(F ,G)ζ(G,Pw), (21)

where s is any nonnegative integer, G is any (m + 1 + 2s)-dimensional face of the Pw (ℑm+1+2s(Pw) is
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the set of all such faces), β(·, ·) stands for the internal angle and ζ(·, ·) stands for the external angle, and

are defined as follows [13, 15]:

• An internal angle β(F1,F2) is the fraction of the hypersphere S covered by the cone obtained by

observing the face F2 from the face F1.
3 The internal angle β(F1,F2) is defined to be zero when

F1 * F2 and is defined to be one if F1 = F2.

• An external angle ζ(F3,F4) is the fraction of the hypersphere S covered by the cone of outward

normals to the hyperplanes supporting the face F4 at the face F3. The external angle ζ(F3,F4) is

defined to be zero when F3 * F4 and is defined to be one if F3 = F4.

In order to calculate the internal and external angles, it is important to use the symmetrical properties

of the weighted cross-polytope Pw. First of all, Pw is nothing but the convex hull of the following set of

2n vertices in Rn

Pw = conv{± ei

wi
| 1 ≤ i ≤ n} (22)

where ei 1 ≤ i ≤ n is the standard unit vector in Rn with the ith entry equal to 1. Every (k − 1)-

dimensional face F of Pw is simply the convex hull of k of the linearly independent vertices of Pw.

In that case we say that F is supported on the index set K of the k indices corresponding to the

nonzero coordinates of the vertices of F in Rn. More precisely, if F = conv{j1 ei1
wi1

, j2
ei2
wi2

, · · · , jk
eik
wik

} with

ji ∈ {−1,+1} ∀1 ≤ i ≤ k, then F is said to be supported on the set K = {i1, i2, · · · , ik}.

5.2 Special Case of u = 2

The derivations of the previous section were for a general weight vector w. We now restrict ourselves to

the case of two classes, i.e. u = 2, namely K1 and K2 with |K1| = n1 and |K2| = n2. For this case, we

may assume that w′
is have the following particular form

∀i ∈ {1, 2, · · · , n} wi =







wK1 if i ∈ K1

wK2 if i ∈ K2

(23)

proof of Theorem 4.2. The choice ofw as in (23) results in Pw having two classes of geometrically identical

vertices, and many of faces of Pw being isomorphic. In fact, two faces F and F ′ of Pw that are respectively

supported on the sets K and K ′ are geometrically isomorphic 4 if |K ∩K1| = |K ′ ∩K1| and |K ∩K2| =
|K ′ ∩ K2|5. In other words the only thing that distinguishes the morphology of the faces of Pw is the

3Note the dimension of the hypersphere S here matches the dimension of the corresponding cone discussed. Also, the
center of the hypersphere is the apex of the corresponding cone. All these defaults also apply to the definition of the external
angles.

4This means that there exists a rotation matrix Θ ∈ Rn×n which is unitary i.e. ΘTΘ = I , and maps F isometrically to
F

′ i.e. F
′ = ΘF .

5Remember that K1 and K2 are the same sets as defined in the model description of Section 3.
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proportion of their support sets that is located in K1 or K2. Therefore for two faces F and G with F
supported onK and G supported on L (K ⊆ L), β(F ,G) is only a function of the parameters k1 = |K∩K1|,
k2 = |K∩K2|, k1+t1 = |L∩K1| and k2+t1 = |K∩K2|. So, instead of β(F ,G) we may write β(k1, k2|t1, t2)
to indicate the internal angle internal angle between a (k1 + k2 − 1)-dimensional face F of Pw with k1

vertices supported on K1 and k2 vertices supported on K2, and a (k1 + k2 + t1 + t2 − 1)-dimensional

face G that encompasses F and has t1 + k1 vertices supported on K1 and the remaining t2 + k2 vertices

supported on K2. Similarly instead of ζ(G,Pw) we write ζ(t1 + k1, t2 + k2) to denote the external angle

between a face G supported on set L with |L∩K1| = d1 and |L∩K2| = d2, and the weighted ℓ1-ball Pw.

Using this notation and recalling the formula (21) we can write

PK,− = 2
∑

s≥0

∑

G∈ℑm+1+2s(SP)

β(F ,G)ζ(G,Pw)

=
∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m − k1 − k2 + 1

2t1+t2+1

(

n1 − k1
t1

)(

n2 − k2
t2

)

β(k1, k2|t1, t2)ζ(t1 + k1, t2 + k2),

(24)

where in (24) we have used the fact that the number of faces G of Pw of dimension k1+k2+t1+t2−1 that

encompass F and have k1 + t1 vertices supported on K1 and its remaining k2 + t2 are vertices supported

on K2 is 2t1+t2
(n1−k1

t1

)(n2−k2
t2

)

. In fact G has k1 + k2 + t1 + t2 vertices including the k1 + k2 vertices of F .

The remaining t1 + t2 vertices can each be independently in the positive or negative orthant, therefore

resulting in the term 2t1+t2 . The two other combinatorial terms are the number of ways one can choose

t1 vertices supported on the set K1 −K and t2 vertices supported on K2 −K. From (24) and (17) we

can conclude theorem 4.2.

In the following sub-sections we will derive the internal and external angles for a face F , and a face

G containing F , and will provide closed form upper bounds for them. We combine the terms together

and compute the exponents using the Laplace method in Section 5.2.3, and derive thresholds for the

negativity of the cumulative exponent.

5.2.1 Computation of Internal Angle

Theorem 5.1. Let Z be a random variable defined as

Z = (k1w
2
K1

+ k2w
2
K2

)X1 − w2
K1

t1
∑

i=1

X ′
1 − w2

K2

t2
∑

i=1

X ′′
1 ,

17



where X1 ∼ N(0, 1
2(k1w2

K1
+k2w2

K2
)
) is a normal distributed random variable, X ′

i ∼ HN(0, 1
2w2

K1

) 1 ≤
i ≤ t1 and X ′′

i ∼ HN(0, 1
2w2

K2

) 1 ≤ i ≤ t2 are independent (from each other and from X1) half

normal distributed random variables. Let pZ(·) denote the probability distribution function of Z and

c0 =
√
π

2l−k

(

(k1 + t1)w
2
K1

+ (k2 + t2)w
2
K2

)1/2
. Then

β(k1, k2|t1, t2) = c0pZ(0) (25)

We now prove this Theorem. Suppose that F is a (k − 1)-dimensional face of the weighted ℓ1-ball

Pw = {y ∈ Rn |
n
∑

i=1

wi|yi| ≤ 1}

supported on the subset K with |K| = k = k1 + k2. Let G be a l − 1 dimensional face of Pw supported

on the set L with F ⊂ G. Also, let |L ∩K1| = k1 + t1 and |L ∩K2| = k2 + t2.

We first state the following lemma the proof of which is given in Appendix B.

Lemma 5.2. Let F be a (k − 1)-dimensional face of Pw supported on the set K = {1, 2, · · · , k}, and G
be a l− 1-dimensional face of Pw that contains F and is supported on the set L = {1, 2, · · · , l}.Let CF⊥,G

be the positive cone of all the vectors x ∈ Rn that take the form:

−
k
∑

i=1

biei +

l
∑

i=k+1

biei, (26)

where bi, 1 ≤ i ≤ l are nonnegative real numbers and

k
∑

i=1

wibi =

l
∑

i=k+1

wibi,
b1
w1

=
b2
w2

= · · · = bk
wk
.

Then

∫

CF⊥,G

e−‖x‖2 dx = β(F ,G) · π(l−k)/2. (27)

From (27) we can find the expression for the internal angle. Define U ⊆ Rl−k+1 as the set of all

nonnegative vectors (x1, x2, · · · , xl−k+1) satisfying:

(
∑k

r=1w
2
r)x1 =

∑l
r=k+1w

2
rxr−k+1

and define f(x1, · · · , xl−k+1) : U → CF⊥,G to be the following linear and bijective map:

f(x1, · · · , xl−k+1) = −
k
∑

r=1

x1wrer +

l
∑

r=k+1

xr−k+1wrer.

18



Then

∫

CF⊥,G

e−‖x′‖2 dx′ =
∫

U
e−‖f(x)‖2 df(x) = |J(M)|

∫

Γ
e−‖f(x)‖2 dx2 · · · dxl−k+1

= |J(M)|
∫

Γ
e−(

∑k
r=1w

2
r)x

2
1−

∑l
r=k+1w

2
rx

2
r−k+1 dx2 · · · dxl−k+1 (28)

Γ is the region described by

(

k
∑

r=1

w2
r)x1 =

l
∑

r=k+1

w2
rxr−k+1, xr ≥ 0 2 ≤ r ≤ l − k + 1 (29)

where |J(M)| is due to the change of integral variables and is essentially the determinant of the Jacobian

of the variable transform given by the l × (l − k) matrix M below:

Mi,j =















− 1
Ωwiw

2
k+j 1 ≤ i ≤ k, 1 ≤ j ≤ l − k

wi k + 1 ≤ i ≤ l, j = i− k

0 Otherwise

(30)

where Ω =
∑k

r=1w
2
r . The Jacobian is obtained by |J(M)| = det(MTM)1/2. By finding the eigenvalues

of MTM we obtain:

|J(M)| = wt1K1
wt2K2

(
Ω + t1w

2
K1

+ t2w
2
K2

Ω
)1/2 (31)

Now we define a random variable

Z = (

k
∑

r=1

w2
r)X1 −

l
∑

r=k+1

w2
rXr−k+1

where X1,X2, · · · ,Xl−k+1 are independent random variables, with Xr ∼ HN(0, 1
2w2

r+k−1
), 2 ≤ r ≤

(l−k+1), are half-normal distributed random variables and X1 ∼ N(0, 1
2
∑k

r=1 w
2
r

) is a normal distributed

random variable. Then by inspection, (28) is equal to c1pZ(0), where pZ(·) is the probability density

function for the random variable Z and pZ(0) is the probability density function pZ(·) evaluated at the

point Z = 0, and

c1 =

√
π
l−k+1

2l−k

l
∏

q=k+1

1

wq
(

k
∑

r=1

w2
r)

1/2 |J(A)| =
√
π
l−k+1

2l−k
((k1 + t1)w

2
K1

+ (k2 + t2)w
2
K2

)1/2 (32)

Combining these results, the proof of Theorem 5.1 is complete.
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5.2.2 Computation of External Angle

Theorem 5.2. The external angle ζ(G,Pw) = ζ(d1, d2) between the face G and Pw , where G is supported

on the set L with |L ∩K1| = d1 and |L ∩K2| = d2 is given by:

ζ(d1, d2) = π−
n−l+1

2 2n−l
∫ ∞

0
e−x

2

(

∫

wK1
x

ξ(d1,d2)

0
e−y

2
dy

)r1 (
∫

wK2
x

ξ(d1,d2)

0
e−y

2
dy

)r2

dx, (33)

Where ξ2(d1, d2) =
∑

i∈L w
2
i = d1w

2
K1

+ d2w
2
K2

, r1 = n1 − d1 and r2 = n2 − d2.

Proof. Without loss of generality, assume that the support set of G is given by L = {n − l + 1, n − l +

2, · · · , n} and consider the (l − 1)-dimensional face

G = conv{ en−l+1

wn−l+1
, ...,

en−k
wn−k

,
en−k+1

wn−k+1
, ...,

en

wn
}

of the weighted ℓ1-ball P. The 2n−l outward normal vectors of the supporting hyperplanes of the facets

containing G are given by

{
n−l
∑

i=1

jiwiei +

n
∑

p=n−l+1

wiei, ji ∈ {−1, 1}}.

Then the outward normal cone C⊥
G,Pw

at the face G is the positive hull of these normal vectors. Thus

∫

C⊥
G,Pw

e−‖x‖2 dx = ζ(G,Pw)Vn−l(S
n−l)

∫ ∞

0
e−r

2
rn−l dx

= ζ(G,Pw).π
(n−l+1)/2, (34)

where Vn−l(Sn−l) is the spherical volume of the (n − l)-dimensional unit sphere Sn−l. Now define U to

be the set

{x ∈ Rn−l+1 | xn−l+1 ≥ 0, |xi/wi| ≤ xn−l+1, 1 ≤ i ≤ (n− l)}

and define f(x1, · · · , xn−l+1) : U → C⊥
G,Pw

to be the linear and bijective map

f(x1, · · · , xn−l+1) =

n−l
∑

i=1

xiei +

n
∑

i=n−l+1

wixn−l+1ei.
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Then

∫

C⊥
G,Pw

e−‖x′‖2

dx′ = |J(M)|
∫

U

e−‖f(x)‖2

dx

= |J(M)|
∫ ∞

0

∫ wK1
xn−l+1

−wK1
xn−l+1

· · ·
∫ wn−lxn−l+1

−wn−lxn−l+1

e−x2
1−···−x2

n−l−(
∑

n
i=n−l+1

w2
i )x

2
n−l+1 dx1 · · · dxn−l+1

= |J(M)|
∫ ∞

0

e−(
∑

n
i=n−l+1

w2
i )x

2

(

∫ wK1
x

−wK1
x

e−y2

dy

)n1−d1
(

∫ wK2
x

−wK2
x

e−y2

dy

)n2−d2

dx (35)

M is the n × (n − l + 1) change of variable matrix given by M =





In−l 0

0 wL



, where wL =

(wn−l+1, wn−l+2, · · · , wn)T . Therefore J(M) = det(MTM)
1/2

= (d1w
2
K1

+ d2w
2
K2

)1/2. Replacing this and

a change of variable for x (replace ξx with x) in (35), along with (34), complete the proof.

5.2.3 Derivation of the Critical Weak and Strong δc Threshold

So far we have proved that the probability of the failure event is bounded by the formula

P{Ec} ≤
∑

0 ≤ t1 ≤ n1 − k1

0 ≤ t2 ≤ n2 − k2

t1 + t2 > m − k1 − k2 + 1

2t1+t2+1

(

n1 − k1
t1

)(

n2 − k2
t2

)

β(k1, k2|t1, t2)ζ(t1 + k1, t2 + k2), (36)

where we gave expressions for β(t1, t2|k1, k2) and ζ(t1+k1, t2, k2) in Sections 5.2.1 and 5.2.2, respectively.

Now our objective is to show that the R.H.S of (36) will exponentially decay to 0 as n → ∞, provided

that δ = m
n is greater than a critical threshold δc, which we are trying to evaluate. To do this end we

bound the exponents of the combinatorial, internal angle and external angle terms in (36), and find the

values of δ for which the net exponent is strictly negative. The maximum such δ will give us δc. Starting

with the combinatorial term, we use Stirling approximating on the binomial coefficients to achieve the

following as n→ ∞ and ǫ → 0

1

n
log

(

2t1+t2+1

(

n1 − k1
t1

)(

n2 − k2
t2

))

→
(

γ1(1− p1)H(
τ1

γ1(1− p1)
) + γ2(1 − p2)H(

τ2
γ2(1− p2)

) + τ1 + τ2

)

log 2,

(37)

where τ1 =
t1
n and τ2 =

t2
n .

For the external angle and internal angle terms we prove the following two exponents

1. Let g(x) = 2√
π
e−x

2
, G(x) = 2√

π

∫ x
0 e

−y2dy. Also define c = (τ1 + γ1p1) + ω2(τ2 + γ2p2), α1 =

γ1(1− p1)− τ1 and α2 = γ2(1− p2)− τ2. Let x0 be the unique solution to x of the following:

2c− g(x)α1

xG(x)
− ωg(ωx)α2

xG(ωx)
= 0
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Define

ψext(τ1, τ2) = cx20 − α1 logG(x0)− α2 logG(ωx0) (38)

2. Let b = τ1+ω2τ2
τ1+τ2

and ϕ(.) and Φ(.) be the standard Gaussian pdf and cdf functions respectively.

Also let Ω′ = γ1p1+ω
2γ2p2 and Q(s) = τ1ϕ(s)

(τ1+τ2)Φ(s)+
ωτ2ϕ(ωs)

(τ1+τ2)Φ(ωs) . Define the function M̂(s) = − s
Q(s)

and solve for s in M̂(s) = τ1+τ2
(τ1+τ2)b+Ω′ . Let the unique solution be s∗ and set y = s∗(b − 1

M̂(s∗)
).

Compute the rate function Λ∗(y) = sy − τ1
τ1+τ2

Λ1(s) − τ2
τ1+τ2

Λ1(ωs) at the point s = s∗, where

Λ1(s) =
s2

2 + log(2Φ(s)). The internal angle exponent is then given by:

ψint(τ1, τ2) = (Λ∗(y) +
τ1 + τ2
2Ω′ y2 + log 2)(τ1 + τ2). (39)

We now state the following lemmas, which are proved in Appendix C and D.

Lemma 5.3. Fix δ, ǫ > 0. There exists a finite number n0(δ, ǫ) such that

1

n
log(ζ(t1 + k1, t2 + k2)) < −ψext(τ1, τ2) + ǫ, (40)

uniformly in 0 ≤ t1 ≤ n1 − k1, 0 ≤ t2 ≤ n2 − k2 and t1 + t2 ≥ m− k1 − k2 + 1, n ≥ n0(δ, ǫ).

Lemma 5.4. Fix δ, ǫ > 0. There exists a finite number n1(δ, ǫ) such that

1

n
log(β(t1, t2|k1, k2)) < −ψint(τ1, τ2) + ǫ, (41)

uniformly in 0 ≤ t1 ≤ n1 − k1, 0 ≤ t2 ≤ n2 − k2 and t1 + t2 ≥ m− k1 − k2 + 1, n ≥ n1(δ, ǫ).

Combining Lemmas 5.3 and 5.4, (37), and the bound in (36) we readily get the critical bound for δc

as in the Theorem 4.3.

Derivation of the strong and sectional threshold can be easily done using union bounds to account

for all possible support sets and/or all sign patterns. The corresponding upper bound on the failure

probability for the strong threshold is given by:

(

n1
k1

)(

n2
k2

)

2kPK,− (42)

It then follows that the strong threshold of δ is given by δc in Theorem 4.3, except that the combinatorial

exponent ψcom(·, ·) must be corrected by adding a term

(γ1p1 + γ2p2 + γ1H(p1) + γ2H(p2)) log 2, (43)

to the RHS of (6). Similarly, for the sectional threshold, which deals with all possible support sets but
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almost all sign patterns, the modification in the combinatorial exponent term is as follows:

(γ1H(p1) + γ2H(p2)) log 2. (44)

5.3 Generalizations

Except for some subtlety in the large deviation calculations, the generalization of the results of the

previous section to an arbitrary u ≥ 2 classes of entries is straightforward. Consider a nonuniform sparse

model with u classes K1, · · · ,Ku where |Ki| = ni = γin, and the sparsity fraction over the set Ki is pi,

and a recovery scheme based on weighted ℓ1 minimization with weight ωi for the set Ki. The bound in

(21) is general and can always be used. Due to isomorphism, the internal and external angles β(F ,G)
and ζ(G,Pw) only depend on the number of vertices that the supports of F and G have in common with

each Ki. Therefore, a generalization to (5) would be:

P{Ec} ≤ 2
∑

0 ≤ t ≤ n − k

1
T
t > m − 1

T
k + 1

Π1≤i≤u2
ti

(

ni − ki
ti

)

β(k|t)ζ(t + k) (45)

Where t = (t1, · · · , tu)T , k = (k1, · · · , ku)T and 1 is a vector of all ones. Invoking generalized forms of

Theorems 5.2 and 5.1 to approximate the terms β(k|t) and ζ(k+ t), we conclude the following Theorem.

Theorem 5.3. Consider a nonuniform sparse model with u classes K1, · · · ,Ku with |Ki| = ni =

γ1n, and sparsity fractions p1, p2, · · · , pu, where n is the signal dimension. Also, let the functions

g(.), G(.), ψ(.),Ψ(.) be as defined in Theorem 4.3. For positive values {ωi}ui=1, the recovery thresholds

(weak,sectional and strong) of the weighted ℓ1 minimization program:

min
Ax=y

u
∑

i=1

ωi‖xKi
‖1,

is given by the following expression:

δc = min{δ | ψcom(τ)− ψint(τ)− ψext(τ) < 0 ∀τ = (τ1, · · · , τu)T :

0 ≤ τi ≤ γi(1− pi)∀1 ≤ i ≤ u,
u
∑

i=1

τi > δ −
u
∑

i=1

γipi}

where ψcom, ψint and ψext are obtained from the following expressions:

1. ψcom(τ) = log 2
∑u

i=1 γi(1− pi)H( τi
γi(1−pi)) + τi, for the weak threshold. For sectional threshold this

must be modified by adding a term log 2
∑u

i=1 γiH(pi). For strong threshold, it must be also added

with
∑u

i=1 γipi.
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2. ψext(τ) = cx20 −
∑u

i=1 αi logG(ωix0), where c =
∑u

i=1 ω
2
i (τi + γipi), αi = γi(1 − pi) − τi and x0 is

the unique solution of 2c =
∑u

i=1 ωi
g(ωix0)αi

x0G(ωx0)
,

3. ψint(τ) = λ(Λ∗(y)+ λy2

2
∑u

i=1 ω
2
i γipi

+log 2), where λ =
∑u

i=1 τi, and y and Λ∗(y) are obtained as follows.

Let b =
∑u

i=1 ω
2
i τi

λ , Q(s) =
∑u

i=1
τiϕ(s)
λΦ(s) . Let s∗ be the solution to s in −Q(s)

s = b +
∑u

i=1 ω
2
i γipi

λ , and

y = s∗(b− 1
M̂(s∗)

). Then Λ∗(y) = s∗y − 1/λ
∑u

i=1 τi

(

ω2
i s

∗2

2 + log(2Φ(ωis
∗))
)

.

5.4 Robustness

proof of Theorem 4.5. We first state the following lemma, which is very similar to Theorem 2 of [4]. We

skip its proof for brevity.

Lemma 5.5. Let K ⊂ {1, 2 · · · , n} and the weight vector w = (w1, w2, · · · , wn)T be fixed. Define

W = diag(w1, w2, · · · , wn) and suppose C > 1 is given. For every vector x0 ∈ Rn×1, the solution x̂ of

(3) satisfies

‖W(x0 − x̂)‖1 ≤ 2
C + 1

C − 1

∑

i∈K

wi|(x0)i|, (46)

if and only if for every z ∈ N (A) the following holds:

C
∑

i∈K
wi|zi| ≤

∑

i∈K

wi|zi|. (47)

Let z = (z1, · · · , zn)T be a vector in the null space of A, and assume that

C ′ ∑

i∈L1∪L2

wi|zi| =
∑

i∈L1∩L2

wi|zi|. (48)

Let Kǫ1 and Kǫ2 be the solutions of the following problems

Kǫ1 : max
Kǫ1⊂K1∩L1,|Kǫ1 |=ǫ1γ1p1n

∑

i∈Kǫ1

wi|zi|, (49)

Kǫ2 : max
Kǫ2⊂K2∩L2,|Kǫ2 |=ǫ2γ2p2n

∑

i∈Kǫ2

wi|zi|. (50)

Let L′
1 = L1 ∪Kǫ1 and L′

2 = L2 ∪Kǫ2 . From the definition of Kǫ1 and Kǫ2 , it follows that

∑

i∈Kǫ1

wi|zi| ≥ ǫ1p1
1− p1

∑

i∈L′
1∩K1

wi|zi|, (51)

∑

Ki∈ǫ2

wi|zi| ≥ ǫ2p2
1− p2

∑

i∈L′
2∩K2

wi|zi|. (52)
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Adding C ′
(

∑

Kǫ1
wi|zi|+

∑

Kǫ2
wi|zi|

)

to both sides of (48) and using (51) and (52), we can write:

C ′ ∑

i∈L′
1∪L′

2

wi|zi| ≥
∑

i∈L1∩L2

wi|zi|+ C ′







ǫ1p1
1− p1

∑

i∈L′
1∩K1

wi|zi|+
ǫ2p2
1− p2

∑

i∈L′
2∩K2

wi|zi|






(53)

≥
(

1 + (C ′ + 1)min(
ǫ1p1
1− p1

,
ǫ2p2
1− p2

)

)

∑

i∈L′
1∩L′

2

wi|zi|. (54)

Note that |L′
1| = γ1p1n and |L′

2| = γ2p2n. Therefore, since δ = m
n ≥ δ

(S)
c (γ1, γ2, p1, p2, ω), we know that

∑

i∈L′
1∪L′

2
wi|zi| ≤

∑

i∈L′
1∩L′

2
wi|zi|. From this and (54) we conclude that

C ′ ≥
(

1 + (C ′ + 1)min(
ǫ1p1
1− p1

,
ǫ2p2
1− p2

)

)

, (55)

or equivalently

C ′ ≥
1 + min( ǫ1p11−p1 ,

ǫ2p2
1−p2 )

1−min( ǫ1p11−p1 ,
ǫ2p2
1−p2 )

. (56)

Using Lemma 5.5 and the above inequality, we conclude (14).

6 Approximate Support Recovery and Reweighted ℓ1

Using the analytical tools of this paper, it is possible to prove that a class of reweighted ℓ1 minimization

algorithms have a strictly higher recovery thresholds for sparse signals whose nonzero entries follow certain

classes of distributions (e.g. Gaussian). The technical details of this claim is not brought here, since it

stands beyond the scope of this paper. However, we briefly mention how a simple post processing on

the output of ℓ1 minimization results in a nonuniform sparsity model with u = 2 classes close to the one

we introduced for the unknown signal. A more comprehensive study on this can be found in [11]. The

reweighted ℓ1 recovery algorithm proposed in [11] is composed of two steps. In the first step a standard

ℓ1 minimization is done, and based on the output, a set of entries where the signal is likely to reside (the

so-called approximate support) is identified. The unknown signal can thus be thought of as two classes,

one with a relatively high fraction of nonzero entries, and one with a small fraction. The second step is

a weighted ℓ1 minimization step where entries outside the approximate support set are penalized with a

constant weight larger than 1. The algorithm is as follows:

Algorithm 1.
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1. Solve the ℓ1 minimization problem:

x̂ = argmin ‖z‖1 subject to Az = Ax. (57)

2. Obtain an approximation for the support set of x: find the index set L ⊂ {1, 2, ..., n} which corre-

sponds to the largest k elements of x̂ in magnitude.

3. Solve the following weighted ℓ1 minimization problem and declare the solution as output:

x∗ = argmin ‖zL‖1 + ω‖zL‖1 subject to Az = Ax. (58)

For a given number of measurements, if the support size of x, namely k = |K|, is slightly larger than

the sparsity threshold of ℓ1 minimization, then a so-called robustness of ℓ1 minimization helps find a

lower bound f1 for |L∩K|
|L| , i.e. the sparsity fraction of x over the set L. If f1 is sufficiently close to 1, the

number of measurements could satisfy:

δ ≥ max
f ′1≥f1,f ′1k+f ′2(n−k)=k

δ(T )c (
k

n
, 1− k

n
, f ′1, f

′
2, ω). (59)

Then the recovery is successful in the second step with high probability. Recall that δ
(T )
c is the sectional

threshold, which accounts for all possible support sets. Therefore, the condition for strict improvement

in the reweighted ℓ1 minimization is that:

δ(0, 1, 0,
k

n
, 1) ≥ max

f ′1≥f1,f ′1k+f ′2(n−k)=k
δ(T )c (

k

n
, 1− k

n
, f ′1, f

′
2, ω). (60)

7 Simulation Results

We demonstrate by some examples that appropriate weights can boost the recovery percentage. In Figure

4 we have shown the empirical recovery threshold of weighted ℓ1 minimization for different values of the

weight ω =
wK1
wK2

, for two particular nonuniform sparse models. Note that the empirical threshold is

somewhat identifiable with naked eye, and is very similar to the theoretical curve of Figure 2 for similar

settings. In another experiment, we fix p2 and n = 2m = 200, and try ℓ1 and weighted ℓ1 minimization

for various values of p1. We choose n1 = n2 =
n
2 . Figure 5a shows one such comparison for p2 = 0.05 and

different values of wK2 . Note that the optimal value of wK2 varies as p1 changes. Figure 5b illustrates

how the optimal weighted ℓ1 minimization surpasses the ordinary ℓ1 minimization. The optimal curve is

basically achieved by selecting the best weight of Figure 5a for each single value of p1. Figure 6 shows the

result of simulations in another setting where p2 = 0.1 and m = 0.75n (similar to the setting of Section
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(a) γ1 = γ2 = 0.5, p1 = 0.4 and p2 = 0.05. (b) γ1 = γ2 = 0.5, p1 = 0.65 and p2 = 0.1.

Figure 4: Empirical recovery percentage of weighed ℓ1 minimization for different weight values ω, and different number of measure-

ments δ = m
n

and n = 200. Signals have been selected from a nonuniform sparse models. White indicates perfect recovery..

4). Note that these results very well match the theoretical results of Figures 2a and 2b.

In Figure 7, we have displayed the performance of weighted ℓ1 minimization in the presence of noise.

The original signal is a nonuniformly sparse vector with sparsity fractions p1 = 0.4, p2 = 0.05 over two

subclasses γ1 = γ2 = 0.5. However, a white Gaussian noise vector is added before compression. Figure 7

shows a scatter plot of all output signal to recovery error ratios as a function of the input SNR, for all

simulations. In Figure 8 the average curves are compared together for different values of weight ω.

We have done some experiments with regular ℓ1 and weighted ℓ1 minimization recovery on some real

world data. We have chosen a pair of satellite images (Figure 9) taken at two different years, 1989 (left)

and 2000 (right), from the New Britain rainforest in Papua Guina. These images are generally recorded

to evaluate environmental effects such as deforestation. The difference of images taken at different times

is generally not very significant, and thus can be thought of as compressible. In addition, the difference is

usually more substantial over certain areas, e.g. forests. Therefore, it can be cast in a nonuniform sparse

model. We have applied ℓ1 minimization to recover the difference image over two subframes, identified

by green and red rectangles in Figure 9. In addition, a weighted ℓ1 minimization is also applied where

the frame pixels are divided into two classes of equal sizes, where the concentration of the forestal area

is larger over one of the classes, and hence the difference image is less sparse. For the right frame (red),

the two classes are bottom half and top half of the frame, and for the left frame (green), they are left half

and right half. We casually assign the weight value ω = 2 for the sparser region for weighted ℓ1 recovery,

and unitary weight to the denser region. The recovery errors for the two methods are displayed in Figure

10. The error is averaged over 50 realizations of i.i.d. Gaussian measurement matrix for each δ. As can
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Figure 5: Empirical probability of successful recovery for weighted ℓ1 minimization with different weights (unitary weight for the first

subclass and ω for the other one) and suboptimal weights in a nonuniform sparse setting. p2 = 0.05, γ1 = γ2 = 0.5 and m = 0.5n = 100.

ω∗ is (b) is the optimum value of ω for each p1 among the values shown in (a).
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Figure 6: Empirical probability of successful recovery for different weights. p2 = 0.1,γ1 = γ2 = 0.5 and m = 0.75n = 150.

be seen, even with this value of weight chosen intuitively, the recovery improvement is significant in the

weighted ℓ1 minimization.

In figure 11, we have compared the recovery performance for the regular ℓ1 minimization and the

reweighted ℓ1 minimization of Algorithm 1, for different sparsity levels and different distributions for the

nonzero entries. Here the signal dimension is n = 200, and the number of measurements ism = 112, which

corresponds to a value of δ = 0.5555. We generated random sparse signals with iid entries coming from

certain distributions; Gaussian, uniform, Rayleigh , square root of χ-square with 4 degrees of freedom and,

square root of χ-square with 6 degrees of freedom. Solid lines represent the simulation results for ordinary

ℓ1 minimization, and different colors indicate different distributions. Dashed lines are used to show the

results for Algorithm 1. The reason why these distributions are selected and compared is elaborated in

[11], as they demonstrate various levels of improvement. Note that for Gaussian and uniform distributions
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(a) ω = 1.
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(b) ω = 3.
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(c) ω = 5.

Figure 7: Signal to recovery error ratio for weighted ℓ1 minimization with weight ω vs. input SNR for nonuniform sparse signals

with γ1 = γ2 = 0.5, p1 = 0.4, p2 = 0.05 superimposed with Gaussian noise.

that are flat and nonzero at the origin, the reweighted algorithm shows an impressive more than 20%

improvement in the weak threshold (from 45 to 55).

8 Conclusion and Future Work

We analyzed the performance of the weighted ℓ1 minimization for nonuniform sparse models. We com-

puted explicitly the phase transition curves for the weighted ℓ1 minimization, and showed that with

proper weighting, the recovery threshold for weighted ℓ1 minimization can be higher than that of regular

ℓ1 minimization. We provided simulation results to verify this both in the noiseless and noisy situation.

Some of our simulations were performed on real world data of satellite images, where the nonuniform

sparse model is a valid assumption. A further interesting question to be addressed in future work would be

to characterize the gain in recovery percentage as a function of the number of distinguishable classes u in

the nonuniform model. In addition, we have used the results of this paper to build iterative reweighted ℓ1

minimization algorithms that are provably strictly better than ℓ1 minimization, when the nonzero entries

of the sparse signals are known to come from certain distributions (in particular Gaussian distributions)

[11, 18]. The basic idea there is that a simple post processing procedure on the output of ℓ1 minimization

results, with high probability, in a hypothetical nonuniform sparsity model for the unknown signal, which
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Figure 8: Average signal to recovery error ratio for weighted ℓ1 minimization with weight ω vs. input SNR for nonuniform sparse

signals with γ1 = γ2 = 0.5, p1 = 0.4, p2 = 0.05 superimposed with Gaussian noise.

Figure 9: Satellite images taken from the New Britain rainforest in Papua Guina at 1989 (left) and 2000 (right). Image originally
belongs to Royal Society for the Protection of Birds and was taken from the Guardian archive, an article on deforestation..

can be exploited for improved recovery.
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Figure 10: Average Recovery Error for ℓ1 and weighted ℓ1 minimization recovery of the difference between the subframes of a pair
of satellite images shown in Figure 9. (a) corresponds to the right(red) subframe in Figure 9, and (b) corresponds to the left(green)
frame. Data is averaged over 50 realizations of measurement matrices for each δ.
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Appendix. Proof of Important Lemmas

A Proof of Lemma 5.1

First, let us assume that
∑

i∈K wi|zi| ≤
∑

i∈K wi|zi|,∀z ∈ N (A). Note that by assumption wis are all

nonnegative. Using the triangular inequality for the weighted ℓ1 norm (or for each absolute value term
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on the LHS) we obtain

∑

i∈K
wi|xi + zi|+

∑

i∈K

wi|zi| ≥
∑

i∈K
wi|xi| −

∑

i∈K
wi|zi|+

∑

i∈K

wi|zi|

≥
∑

i∈K
wi|xi|.

thus proving the forward part of this lemma. Now let us assume instead that ∃z ∈ N (A), such that
∑

i∈K wi|zi| >
∑

i∈K wi|zi|. Then we can construct a vector x supported on the set K (or a subset of

K), with xK = −zK (i.e. xi = −zi ∀i ∈ K). Then we have

∑

i∈K
wi|xi + zi|+

∑

i∈K

wi|zi| = 0 +
∑

i∈K

wi|zi| <
∑

i∈K
wi|xi|

proving the reverse part of this lemma.

B Proof of Lemma 5.2

Without loss of generality, assume that F has the following k vertices: { er
wr
, 1 ≤ r ≤ k}, where er is

the n-dimensional standard unit vector with the r-th element equal to 1. Also assume that the (l − 1)-

dimensional face G is the convex hull of the following l vertices: er
wr
, 1 ≤ r ≤ l. Then the cone CF ,G

formed by observing the (l− 1)-dimensional face G of the weighted ℓ1-ball Pw from an interior point xF

of the face F is the positive cone of the vectors:

ej

wj
− ei

wi
, for all j ∈ J\K, i ∈ K, (61)

and also the vectors
ei1
wi1

− ei2
wi2

, for all i1 ∈ K, i2 ∈ K, (62)

where L = {1, 2, ..., l} is the support set for the face G. So the cone CF ,G is the direct sum of the linear

hull LF = lin{F − xF} formed by the vectors in (62) and the cone CF⊥,G = CF,G
⋂L⊥

F , where L⊥
F is the

orthogonal complement to the linear subspace LF . Then CF⊥,G has the same (relative) spherical volume

as CF ,G , and by definition the internal angle β(F ,G) is the relative spherical volume of the cone CF ,G .
Now let us analyze the structure of CF⊥,G . We notice that the vector e0 =

∑k
r=1wrer is in the linear

space L⊥
F and is also the only such a vector (up to linear scaling) supported on K. Thus a vector x in

the positive cone CF⊥,G must take the form

−
k
∑

i=1

biei +

l
∑

i=k+1

biei, (63)
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where bi, 1 ≤ i ≤ l are nonnegative real numbers and

k
∑

i=1

wibi =

l
∑

i=k+1

wibi
b1
wK1

=
b2
wK2

= · · · = bk
wk
.

Now that we have identified CF⊥,G we try to calculate its relative spherical volume with respect to

the sphere surface Sl−k−1 to derive β(F ,G). First, we notice that CF⊥,G is a (l − k)-dimensional cone.

Also, all the vectors (x1, · · · , xn) in the cone CF⊥,G take the form in (63). From [22],

∫

CF⊥,G

e−‖x‖2 dx = β(F ,G)Vl−k−1(S
l−k−1)

∫ ∞

0
e−r

2
rl−k−1 dx = β(F ,G) · π(l−k)/2,

where Vl−k−1(S
l−k−1) is the spherical volume of the (l − k − 1)-dimensional sphere Sl−k−1 and is given

by the well-known formula

Vi−1(S
i−1) =

iπ
i
2

Γ( i2 + 1)
,

where Γ(·) is the usual Gamma function. This completes the proof.

C Proof of Lemma 5.3

Let G denote the cumulative distribution function of a half-normal HN(0, 1/2) random variable, i.e. a

random variable X = |Z| where Z ∼ N(0, 1/2), and G(x) = P{X ≤ x}. Since X has density function

g(x) = 2√
π
exp(−x2), we know that

G(x) =
2√
π

∫ x

0
e−y

2
dy; (64)

and so G is just the classical error function erf(·). We now justify the external angle exponent computa-

tions in Theorem 4.3 and Lemma 5.3 using Laplace methods [3]. Using the same set of notations as in

Theorem 4.3, let t1 = τ1n, t2 = τ2n. Also define c = (τ1 + γ1p1)+ω2(τ2 + γ2p2), α1 = γ1(1− p1)− τ1 and

α2 = γ2(1− p2)− τ2. Let x0 be the unique solution to x of the following:

2c− g(x)α1

xG(x)
− ωg(ωx)α2

xG(ωx)
= 0 (65)

Since xG(x) is a smooth strictly increasing function ( ∼ 0 as x → 0 and ∼ x as x → ∞), and g(x) is

strictly decreasing, the function g(x)α1

xG(x) +
ωg(ωx)α2

xG(ωx) is one-one on the positive axis, and x0 is a well-defined

function of τ1 and τ2. Hence, we denote it as x0(τ1, τ2). Then

ψext(τ1, τ2) = cx20 − α1 logG(x0)− α2 logG(ωx0). (66)
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To prove Lemma 5.3, we start from the explicit integral formula

ζ(d1, d2) = π−
n−l+1

2 2n−l
∫ ∞

0
e−x

2

(

∫

wK1
x

ξ(d1,d2)

0
e−y

2
dy

)r1 (
∫

wK2
x

ξ(d1,d2)

0
e−y

2
dy

)r2

dx, (67)

After a changing of integral variables (Noticing that wK1 = 1, wK2 = ω, n1−d1
n = α1, and

n2−d2
n = α2 ),

we have

ζ(t1 + k1, t2 + k2) =
√

cn/π

∫ ∞

0
e−n(cx

2−α1 log(G(x))−α2 log(G(ωx)) dx. (68)

This suggests that we should use Laplace’s method; we define

fτ1,τ2,n = e
−nψt′

1
,t′
2
(y) ·

√

cn/π (69)

with

ψt′1,t′2(y) = cy2 − c1 logG(y) − α2 logG(ωy)

We note that the function ψt′1,t′2 is smooth and convex. Applying Laplace’s method to ψt′1,t′2 , but taking

care about regularity conditions and remainders as in [3], gives a result with the uniformity in (t′1, t
′
2).

Lemma C.1. For t′1, t
′
2, let x0(τ1, τ2) denote the minimizer of ψt′1,t′2 . Then

∫ ∞

0
ft′1,t′2,n(x) dx ≤ e

−nψt′
1
,t′
2
(x0(t′1,t

′
2))(1 +Rn(t

′
1, t

′
2)),

where for any δ, η > 0,

sup
0≤t′1≤γ1−ρ1,0≤τ2≤(γ2−ρ2),δ−ρ1−ρ2≤τ1+τ2≤(1−ρ1−ρ2−η)

Rn(t
′
1, t

′
2) = o(1) as n→ ∞.

where ρ1 = k1/n, ρ2 = k2/n, n1/n = γ1 and n2/n = γ2.

In fact, in this lemma, the minimizer x0(t
′
1, t

′
2) is exactly the same x0(t

′
1, t

′
2) defined earlier in (65) and

the corresponding minimum value is the same as the defined exponent ψext:

ψext(t
′
1, t

′
2) = ψt′1,t′2(xt′1 , xt′2). (70)

We can derive Lemma 5.3 from Lemma C.1. We note that as t′1 + t′2 + γ1 + γ2 → 1, x0(t
′
1, t

′
2) → 0 and

ψext(t
′
1, t

′
2) → 0. For given ǫ > 0 in the statement of Lemma 5.3, there is a largest ηǫ < 1 such that as
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long as τ1 + τ2 + ρ1 + ρ2 > ηǫ, ψext(t
′
1, t

′
2) < ǫ. Note that ζ(G,Pw) ≤ 1, so that for τ1 + τ2 + ρ1 + ρ2 > ηǫ,

n−1 log(ζ(t1 + k1, t2 + k2)) ≤ 0 < −ψext(t′1, t′2) + ǫ,

for n ≥ 1. Applying the uniformity in t′1, t
′
2 given in Lemma C.1, we have as n→ ∞, uniformly over the

feasible region for t′1, t
′
2,

n−1 log(ζ(t1 + k1, t2 + k2)) ≤ −ψext(t′1, t′2) + o(1). (71)

Then Lemma 5.3 follows.

D Proof of Lemma 5.4

Recall Theorem 5.1. By applying the large deviation techniques as in [3], we have

pZ(0) ≤
2√
πΩ

(
∫ µm′

0
ve−v

2−m′Λ∗(
√

2Ω
m′ v) dv + e−µ

2
m′

)

, (72)

where Ω is the same as defined in Section 5.2.1, wK1 = 1, wK2 = ω, m′ = t1+ t2, µm′ = (t1 + t2ω)
√

1
πΩ is

the expectation of 1√
Ω′ (w

2
K1

∑t1
i=1X

′
i − w2

K2

∑t2
i=1X

′′
i ), (X

′
i and X

′′
i are defined as in Theorem 5.1), and

Λ∗(y) = max
s

sy − t1
t1 + t2

Λ1(s)−
t2

t1 + t2
Λ2(s),

with

Λ1(s) =
s2

2
+ log(2Φ(s)), Λ2(s) = Λ1(ωs).

In fact, the second term in the sum can be argued to be negligible [3]. After a changing of variables

y =
√
2Ω
m′ v, we know that the first term of (72) is upper-bounded by

2√
π
· 1√

Ω
· m

′2

2Ω
·
∫

t1+t2ω
t1+t2

√
2/π

0
ye−m

′(m
′

2Ω
)y2−m′Λ∗(y) dy. (73)

As we know, m′ in the exponent of (73) is t1 + t2. Similar to evaluating the external angle decay

exponent, we will resort to the Laplace’s method in evaluating the internal angle decay exponent.

Define the function

ft1,t2(y) = ye−m
′(m

′
2Ω

)y2−m′Λ∗(y).

If we apply similar arguments as in proving Lemma C.1 and take care of the uniformity, we have the

following lemma:
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Lemma D.1. Let yt1,t2∗ denotes the minimizer of (m
′

2Ω)y
2 + Λ∗(y). Then

∫ ∞

0
ft1,t2(x) dx ≤ e

−m′
(

(m
′

2Ω
)yt1,t2∗2+Λ∗(yt1,t2∗)

)

·Rm′(t1, t2)

where for η > 0

m′−1 sup
t1,t2

log(Rm′(t1, t2)) = o(1) as m′ → ∞.

This means that

pZ(0) ≤ e
−m′

(

(m
′

2Ω
)yt1,t2∗2+Λ∗(yt1,t2∗)

)

· Rm′(t1, t2),

where m′−1 sup (t1+t2)
n

∈[δ−ρ1−ρ2,1]
log(Rm′(t1, t2)) = o(1) as m′ → ∞.

Now in order to find a lower bound on the decay exponent for pZ(0),(ultimately the decay exponent

ψint(τ1, τ2)), we need to focus on finding the minimizer yt1,t2∗ for (m
′

2Ω)y
2+Λ∗(y). On this way, by setting

the derivative of (m
′

2Ω )y
2+Λ∗(y) with respect to y to 0, and also noting the derivative Λ∗′(y) = s, we have

s = −m
′

Ω
y. (74)

At the same time, the s maximizing Λ∗(y) must satisfy

y =
t1

t1 + t2
Λ′
1(s) +

t2
t1 + t2

Λ′
2(s), (75)

namely, (by writing out (75)),

y =
t1 + ω2t2
t1 + t2

s+Q(s), (76)

where Q(s) is defined as in Theorem 5.1. By combining (74) and (75), we can solve for the s and y, thus

resulting in the decay exponent for ψint(τ1, τ2) as calculated in Theorem 5.1

E Proof of Theorem 4.4

Let δ′ = δc(γ1, γ2, 1, p2, ω) and δ
′′ = δc(0, 1, 0, p2, 1). From Theorem 4.3 we know that:

δ′ = min{δ | ψ′
com(0, τ2)− ψ′

int(0, τ2)− ψ′
ext(0, τ2) < 0 ∀ 0 ≤ τ2 ≤ γ2(1− p2)

, τ2 > δ − γ1 − γ2p2},

= γ2 min{δ | ψ′
com(0, γ2τ2)− ψ′

int(0, γ2τ2)− ψ′
ext(0, γ2τ2) < 0 ∀ 0 ≤ τ2 ≤ 1− p2

, τ2 > δ − p2}+ γ1, (77)

37



and

δ′′ = min{δ | ψ′′
com(0, τ2)− ψ′′

int(0, τ2)− ψ′′
ext(0, τ2) < 0 ∀ 0 ≤ τ2 ≤ 1− p2

, τ2 > δ − p2}, (78)

where the exponents ψ′
com,ψ

′
int,ψ

′
ext,ψ

′′
com,ψ

′′
int and ψ

′′
ext can be found using Theorem 4.3. Here, we basically

show that when ω → ∞:

ψ′
com(0, γ2τ2) = γ2ψ

′′
com(0, τ2), (79)

ψ′
int(0, γ2τ2) = γ2ψ

′′
int(0, τ2), (80)

ψ′
ext(0, γ2τ2) = γ2ψ

′′
ext(0, τ2). (81)

(79) follows immediately from the definition of ψcom in (6). On the other hand, from (7), for ω → we

know that

ψ′
ext(0, γ2τ2) = c′x′0

2 − α′
2 logG(ωx

′
0),

ψ′′
ext(0, τ2) = c′′x′′0

2 − α′′
2 logG(x

′′
0).

Following the details of derivations as in Theorem 4.3, we realize that:

c′ = γ2ω
2c′′, ωx′0 = x′′0, α

′
2 = γ2α

′′
2 , (82)

which implies that ψ′
ext(0, γ2τ2) = γ2ψ

′′
ext(0, τ2). Finally, from (8), we know that

ψ′
int(0, γ2τ2) = (Λ∗(y′) +

γ2τ2
2Ω′ y

′2 + log 2)γ2τ2,

ψ′′
int(0, τ2) = (Λ∗(y′′) +

τ2
2Ω′′ y

′′2 + log 2)τ2.

Following the details of derivations as in Theorem 4.3, we realize that for ω → ∞:

y′ = y′′, Ω′ = γ2Ω
′′. (83)

which implies that ψ′
int(0, γ2τ2) = γ2ψ

′′
int(0, τ2). From (77), (78) and (79)-(81) it follows that

δ′ = γ2δ
′′ + γ1. (84)
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