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1. Introduction

Let Y be a smooth projective curve (defined over the ground field C) with an
action of a finite group Γ. Let X be the smooth projective curve Y/Γ and let
p : Y → X be the quotient morphism. Let G be a reductive algebraic group over
C. We say that E is a (Γ, G)–bundle on Y if E is an algebraic principal G–bundle
over Y and the action of Γ on Y lifts to an action on E.

If G is the full-linear group, the (Γ, G)–bundles on Y have an equivalent descrip-
tion as Γ–vector bundles on Y . Recall ([27], [18]) that if V is a Γ–vector bundle on
Y , the vector bundle W = pΓ

∗
(V )(invariant direct image by p) on X acquires a par-

abolic structure which consists of the data assigning a flag to the fibre of W at every
ramification point in X for the covering p together with a tuple of weights; further,

Key words and phrases. Stable vector bundles, parahoric groups, parabolic bundles, group
schemes, principal bundles, unitary representations.
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the “invariant direct image” functor V 7→ pΓ
∗
(V ) gives an equivalence of categories

between the category of Γ–vector bundles on Y and the category of parabolic vector
bundles on X (morphisms being taken as isomorphisms). This translates easily into
an equivalent description of (Γ, Gl(n))–bundles on Y as principal GL(n)–bundles
on X with parabolic structures. Now one can define the concepts of stability (resp.
semistability, polystability) for Γ–vector bundles (or equivalently parabolic bundles
on X) and construct the corresponding moduli spaces of isomorphism classes of
polystable objects (fixing some invariants) as a normal projective variety. Further,
for these moduli spaces the underlying topological spaces can be identified with
isomorphism classes of certain unitary representations of Fuchsian groups (see [18],
[27]), which generalize the results in [19] and [26].

The purpose of this paper is to generalize the above results when the group G is
no longer the full-linear group. Since there are a number of papers which partially
address this issue and some of them erroneously, we give a somewhat elaborate and
leisurely introduction, which also views the problem from a proper historical perspec-
tive. Let us suppose hereafter that the group G is semisimple and simply connected
(over C) unless otherwise stated. One can again give an equivalent description of
(Γ, G)–bundles on Y as certain intrinsically defined objects on X . However, this is
somewhat subtler than the case when G is the full-linear group ; in particular, it
is not possible, in general, to associate in a natural manner a principal G–bundle
on X to a (Γ, G)–bundle on Y . We call these objects on X which give an equiv-
alent description of (Γ, G)–bundles on Y , as “parahoric bundles”. These parahoric
bundles are describable as pairs (E , w), where E is a point of a double coset space
resembling the adèlic description of usual principal G–bundles, together with an ad-
ditional structure w which we term weights (see Definition 5.1), in accordance with
the classical terminology. Equivalently, these objects can be described as torsors on
X under a Bruhat-Tits group scheme, together with weights (see Definition 5.10).
We construct also moduli spaces of these objects; they are projective varieties and
their points are isomorphism classes of polystable (Γ, G)–bundles. This construction
is broadly along the lines of [2]. However, the connection with parahoric bundles
plays a key role and leads to stronger and more precise results.

The parahoric bundles that we consider here have also been defined by Pappas
and Rapoport, without however the notion of weights (see [21] and [22]). Heinloth
has since settled many of their conjectures (see [11] which is over arbitrary ground
fields). We were led independently to the description of these parahoric bundles in
trying to interpret (Γ, G)–bundles on Y as objects on X (inspired by A. Weil’s work
[33], as was the case in [18] and [27]). The connection with (Γ, G)–bundles leads
to some stronger results than [11], when we work over C, e.g the construction of
moduli spaces as projective varieties. In [11] Heinloth works with the moduli stacks
and proves his results in that setting. The paper [12] considers some related issues
from a symplectic perspective.
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We shall give a detailed outline of the contents of this paper.

1.1. Let q1 : H → Y be a simply connected covering of Y . Then the fundamental
group πo of Y acts freely on H and Y = H/πo. We have the following commutative
diagram:

H

q2
  @

@@
@@

@@

q1
// Y

p
~~~~

~~
~~

~~

X

(1.0.1)

with q2 = p ◦ q1.

Let R
p
⊂ X be the points of X over which the map p is ramified and let nx be

the ramification index at x ∈ R
p
. Let m = |R

p
|. Then q2 : H → X is characterized

by the property that H is simply connected, and q2 has ramification index nx over
x ∈ R

p
and is unramified elsewhere. Let us suppose that H is the upper half-

plane (this is the case when the genus of Y is ≥ 2). Then Aut(H) is isomorphic to
PSL(2,R) and furthermore, X = H/π, π being a discrete subgroup of PSL(2,R)
acting freely on q−1

2 (X − R
p
). Let z ∈ H lie over x ∈ R

p
. Then it is well-known

that the isotropy subgroup πz at z is a cyclic group of order nx. Note that π is a
Fuchsian group in PSL(2,R). We see that πo identifies with a normal subgroup of
π and Γ = π/πo. On the other hand if we start with a covering q2 : H → X with
the above properties, then there is a normal subgroup π′

o of π of finite index such
that π′

o acts freely on H so that if we set Γ′ = π/π′
o, Y

′ = H/π′
o and q′1 : H → Y ′

the canonical quotient map, we have X = Y ′/Γ′ and a commutative diagram as
(1.0.1) above. Note that since the action of πo on H is free, the set of isomorphism
classes of (π,G)–bundle on H gets identified with the set of isomorphism classes of
(Γ, G)–bundles on Y .

The map q1 : H → Y is a local isomorphism; in fact, if z ∈ H maps to y ∈ Y , then
q1 induces an isomorphism πz

∼
−→ Γy of isotropy subgroups of π and Γ respectively,

as well as an isomorphism of a sufficiently small (analytic) neighbourhood of z onto
that of y, respecting the actions of the isotropy groups. Now a (Γ, G)–bundle E on
Y is locally a (Γy, G)–bundle at y. Recall that this (Γy, G)–bundle is defined by a
representation (see for example [27], [33], [9, Proposition 1, page 06] and also more
recently [30, Lemma 2.5]); i.e, if N

y
is a sufficiently small Γy–stable neighbourhood

of y, then this bundle is isomorphic to the (Γy, G)–bundle Ny
× G, for the twisted

action of Γ
y
-action on E × G given by a representation ρy : Γ

y
−→ G, defined as

follows:

γ · (u, g) = (γu, ρy(γ)g), u ∈ N
y
, γ ∈ Γ

y
.(1.0.2)

It is easily seen that these (Γy, G)–bundles given by representations are isomorphic
as (Γy, G)–bundles if and only if the defining representations are equivalent. We call
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the representations ρy the local representations associated to a (Γ, G)–bundle. We
observe that for a (Γ, G)–bundle E, the equivalence class of the local representation
ρy is an invariant of its isomorphism class.

1.2. Definition. The local type of E at y is defined as the equivalence class of the
local representation ρy and is denoted by τ y.

If E is represented by a (π,G)–bundle E ′ on H, we see that its local type at a
point z ∈ H is the same as that of E at the image y ∈ Y of z. Now if y, y′ ∈ Y lie
over x ∈ R

p
, inner conjugation by a suitable element γ ∈ Γ induces an isomorphism

γ∗ : Γy → Γy′ and one sees that

γ∗ : Γy → Γy′(1.0.3)

is a well-determined isomorphism i.e independent of the choice of γ. This is a
consequence of the fact, which is easily seen, that the normalizer of Γy in Γ coincides
with Γy itself and also the fact that Γy is abelian. Thus if we choose a subset R

∗
p
⊂ Y ,

which maps bijectively onto R
p
, we see that the local type of E at any ramification

point is determined, once we know the local type of E at every y ∈ R∗
p
. We denote

by τ (R∗
p
) the set {τ y | y ∈ R∗

p
}. Let us denote by

Bun
τ (R∗

p
)

Y (π,G) =

{

isomorphism classes of (π,G) bundles
with fixed local type τ (R∗

p
)

}

(1.0.4)

1.3. Let g be the genus of X. Recall that π can be identified with the group on the
letters A1, B1, . . . , Ag, Bg, C1, . . . , Cm, modulo the relations

[A1, B1] · · · [Ag, Bg] · C1 · · ·Cm = I.(1.0.5)

Cn1
1 = Cn2

2 = · · · = Cnm
m = I.(1.0.6)

Let πi be the cyclic subgroup of π of order ni generated by Ci. Then one can identify
πi with the isotropy at some zi ∈ H such that the set {zi | 1 ≤ i ≤ m}, maps
bijectively onto R

p
. Let yi be the image of zi in Y and let R∗

p
= {yi | 1 ≤ i ≤ m}.

Let ρ : π → G be a homomorphism. Let E(ρ) denote the (π,G)–bundle on H

defined by the twisted action given by (1.0.2).

1.4. Definition.The type of a representation ρ is defined to be the set of conjugacy
classes in G of the images ρ(Ci) and is denoted by {τ i}.

We observe that the local type τ i of the bundle E(ρ) at yi in the sense of Definition
1.2 is equivalently given by the conjugacy class of ρ(Ci) in G. Thus if τ (R

∗
p
) = {τ i},

then we have

ρ is of type {τ i} ⇐⇒ E(ρ) is of local type τ (R∗
p
)(1.0.7)
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Fix a maximal compact subgroup KG of G. If the representation ρ factors through
KG, one says that E(ρ) is a unitary (π,G)–bundle. Let Rτ (π,KG) be the set of
unitary representations of type τ (R∗

p
). Then we get a canonical map

ψ : Rτ (R∗

p
)(π,KG) → Bun

τ (R∗

p
)

Y (π,G)(1.0.8)

1.5. Let D
x
= Spec(A), where A is the complete discrete valuation ring obtained

by taking the completion of the local ring O
X,x

and let K = Kx be its quotient field.
Similarly, for y ∈ R∗

p
, let N

y
= Spec(B), where B is the integral closure of A in

L = K(ω), where ω is a primitive dth–root of z, z being the uniformizer of A. Let
p : N

y
→ D

x
be the totally ramified covering projection. Let E be the (Γ, G)–bundle

on Y and y ∈ R∗
p
. Consider the restriction of E to N

y
. Then as we have seen above

in (1.0.2), as a (Γ
y
, G) bundle we can identify E|

Ny
with the trivial bundle N

y
×G

together with the twisted Γ
y
–action.

1.6. Definition. Define Uy to be the group:

Uy = Aut
(Γy ,G)

(E|
Ny
)(1.0.9)

of (Γ
y
, G) automorphisms of E over N

y
. We call Uy the unit group (or more precisely

the local unit group at y ∈ Y ) associated to E.

In Theorem 2.3 we prove the basic fact that the unit group Uy determines a
parahoric subgroup (in the sense of Bruhat-Tits ([6]) of G(K), K being the quotient
field of A. Conversely, we show that any parahoric subgroup ofG(K) can be obtained
in this manner and the conjugacy class of Uy is in fact independent of the choice of
y ∈ Y above x ∈ X . In Section 3, we place this result in the more general setting
of Bruhat-Tits theory.

For every x ∈ R
p
, let us choose a Ux in the conjugacy class of Uy for y ∈ Y above

x ∈ X . Call Ux “a unit group at x” associated to E. We remind the reader that
only the conjugacy class of Ux is well-determined associated to a point x ∈ X .

Then we have the following identification of Bun
τ (R∗

p
)

Y (π,G) with the adèlic type
double coset space (see Section 4 below)

Bun
τ (R∗

p
)

Y (π,G) ≃
[

∏

x∈Rp

Ux\

∏

x∈Rp
G(Kx)

/G(K(X))
]

(1.0.10)

Kx being the quotient field of the local rings at x ∈ R
p
and K(X) being the quotient

field of X .

For simplicity of notation, we fix a single point x ∈ R
p
, noting however that

everything of what we state works for an arbitrary set R
p
of ramifications. Let

K = Kx. Fix an abstract parahoric subgroup P
Ω
(K) ⊂ G(K) (see (3.0.6) for the
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definitions). Consider the double coset space

M
X
(P

Ω
(K)) =

[

P
Ω
(K)\G(K)/G(X − x)

]

We call an element of E ∈ M
X
(P

Ω
(K)) a quasi-parahoric bundle on X (Definition

4.2). The notion of a weight provides an identification w
θ
: P

Ω
(K)) ≃ Uy (see

(5.0.1)). Equivalently, a weight is given by fixing θ ∈ Y (T )⊗Q i.e a rational 1-PS.
The pair (E , w

θ
) is called a parahoric bundle (see Definition 5.1). In other words, a

quasi-parahoric structure identifies the double coset space and the weight isolates a
specific unit group Uy in the conjugacy class. We remark that in the classical setting
of parabolic vector bundles, the notion of weight, apart from providing the correct
stability properties, plays the key role in providing the polarization on a suitable
total family for carrying out the geometric invariant theoretic construction of the
moduli space of parabolic bundles.

Now we can translate the notion of local type τ (or more generally τ (R∗
p
)) of

a (Γ, G)–bundle E into that of weights for the quasi-parahoric bundle E on X as-
sociated to E by (1.0.10). An isomorphism between parahoric bundles therefore
means that they have the same weights and are isomorphic as quasi-parahoric bun-
dles. Thus parahoric bundles on X are indeed the objects which give an equivalent
description of (Γ, G)–bundles on Y .

1.7. Recall that there is an affine Bruhat-Tits group scheme G
Ω,X

of finite type over
X (see Definition 4.5). Let Bun

X
(G

Ω,X
) denote the set (or more precisely the stack)

of isomorphism classes of G
Ω,X

–torsors on X (see [11, Proposition 1, page 502]).
Then one has the following identification (4.0.22)

M
X
(P

Ω
(K)) ≃ Bun

X
(G

Ω,X
)

The notion of weight again gives us the defintion of parahoric G
Ω,X

–torsors (Defi-
nition 5.10) and therefore, the set of isomorphism classes of parahoric G

Ω,X
–torsors

(E,w
θ
) is an equivalent description for the double coset space Bunτ

Y
(π,G).

Note that if for every x ∈ R
p
the unit group Ux gets identified with the canonical

“hyperspecial” parahoric subgroup G(O
X,x

) (upto conjugacy by elements of G(Kx))
(see 3.0.5), then the double coset space (1.0.10) identifies with the set of isomorphism
classes of principal G–bundles on X , which is indeed the usual adèlic way of defining
G–bundles. If on the other hand, Ux ( G(O

X,x
) for every x ∈ R

p
, then under the

evaluation map ev : G(O
X,x

) → G(C), the subgroup Ux maps to a standard parabolic
subgroup of G, so that in this case a quasi-parahoric bundle could indeed be called
a quasi-parabolic G–bundle in the familiar sense of the term when G is the full-linear
group, i.e the data consists of a principal G–bundle on X together with a parabolic
subgroup of G (“a flag”) for every x ∈ R

p
.

6



In general there is a third case, namely there are parahoric subgroups of G(Kx)
which cannot be conjugated to subgroups of G(O

X,x
) and indeed, most parahoric

subgroups of G(Kx) fall under this third category (see [6]). It is this case which
highlights the precise reason why we need to give a subtler description of (Γ, G)–
bundles on Y as parahoric bundles on X which do not support a principal G–bundle
on X . Evidence to this effect was shown using Tannakian considerations in [2],
leading to the definition of a ramified bundle in [3]. More concrete examples were
shown in [28] indicating what to expect in general. In this context note that [30,
Theorem 2.3] is incorrect.

We remark that in the classical case when G is the full-linear group, every para-
horic subgroup of G(Kx) is in fact conjugate to a subgroup of G(O

X,x
), which ex-

plains why in this case we get only the usual parabolic structures. The striking cases
which arise out of the present study are the “non-hyperspecial” maximal parahoric
subgroups where a number of new phenomena seem to show up. These correspond,
on the side of the representations of the Fuchsian group (see 1.0.5), to those maps
ρ : π → KG such that centralizers of the images of the elements ρ(Ci) are semisimple
and seem linked to the classical questions of non-existence of complex structures to
homogeneous spaces under KG. For these and other connections we refer the reader
to the last section.

1.8.One defines the notion of stable (resp. semistable, polystable) (Γ, G)–bundles on
Y following A. Ramanathan (see [3]). This can be translated into intrinsic definitions
of such notions for parahoric bundles or equivalently for parahoric G–torsors and the
notion of weights is indispensable for these notions as in [18].

Let M
τ (R∗

p
)

Y (Γ, G) (resp. M
X
(G)) denote the set of isomorphism classes of

polystable (Γ, G)–bundles on Y of local type τ (R∗
p
) (resp. parahoric G–bundles

with fixed weights w
θ
). We summarize the main results on moduli spaces in the

following theorem:

1.9. Theorem.

(1) (Corollary 7.19) Let G
Ω,X

be an affine Bruhat-Tits group scheme of finite
type over X (see Definition 4.5). Then, there is an equivalence of categories
between stable parahoric G

Ω,X
–torsors, (E,w

θ
) and stable (Γ, G)–bundles of

local type τ as well as with irreducible unitary representations of type τ of
the group π.

(2) (Theorem 7.15) There is a canonical structure of an irreducible normal pro-

jective variety on M
τ (R∗

p
)

Y (Γ, G) (equivalently on M
X
(G)). The set of points

of this variety is non-empty and there is a stable object if the genus of X is
larger than 1.

7



(3) (Theorem 6.4 and Theorem 7.5) For simplicity, let |Rp| = 1 and let
Mτ (α)

Y
(Γ, G) be the moduli space of (Γ, G)–bundles of local type τ (α) (see Def-

inition 6.3). Then the dimension of the moduli space is given by dim(G)(g−
1) + dim( G

Pα
)− µ(α) where µ(α) = #{r ∈ R+ | r = cα.α+

∑

β 6=α xβ.β}, and

where P
α
⊂ G is the standard parabolic subgroup associated to the simple

root α (see (3.0.3) for the definition of cα).
(4) (Corollary 7.17) Let KG = KG/centre. If η : π → G is a unitary represen-

tation of type τ (R∗
p
), then the bundle E(η) lies in M

τ (R∗

p
)

Y (Γ, G); moreover,

the map ψ defined in (1.0.8) induces a map ψ∗:

ψ∗ : Rτ (R∗

p
)(π,KG)/KG →M

τ (R∗

p
)

Y (Γ, G)(1.0.11)

which is a homeomorphism of the underlying topological spaces.

We have assumed above that the group G is semisimple and simply connected. In
fact, the construction of the moduli spaces when G is reductive (not just semisimple
and simply connected) can be carried out as an easy consequence of the semisimple
and simply connected case. However, if G is not simply connected, the moduli stack
need not be connected (see 7.22).

In the context of the identification (1.0.11), we came across a very interesting
unpublished note by V. Drinfeld on the conjugacy classes of elements of G whose
centralizers are semisimple. There are some striking parallels with the present paper
and some interesting connections. We have summarized these in the final remarks.

The parahoric moduli spaces are linked to each other by Hecke correspondences
(see 4.0.24). These relations are easily expressed in the language of stacks. It would
be interesting to express these relations as morphisms between moduli spaces which
have been constructed above as projective varieties.

Acknowledgements: The first author thanks Gopal Prasad for some helpful dis-
cussions on Bruhat-Tits theory.

2. Fonctions non-abéliennes et bornologie

2.0.1. Some preliminaries. Let G be a semisimple, simply connected algebraic
group defined over C and we fix a maximal torus T of G. Let X(T ) := Hom(T,Gm)
be the character group and Y (T ) := Hom(Gm, T ) the group of 1-parameter sub-
groups of T . Let S be a system of simple roots and let R = R(T,G) ⊂ X(T ) be the
root system associated to the adjoint representation of G.

Denote by ( , ) : Y (T ) × X(T ) → Z the canonical bilinear form. The set S
determines a system of positive roots R+ ⊂ R and a Borel subgroup B ⊂ G with
unipotent radical U . We now order the set R+ = {ri}, i = 1, . . . , q. We then have a
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family {u
r
: Ga → G | r ∈ R} of root homomorphisms of groups such that one gets

an isomorphism:
∏

i=1,...,q

u
ri
:

∏

i=1,...,q

Ga → U(2.0.1)

For every root r ∈ R, we denote by T
r
= Ker(r)0, and Z

r
= ZG(Tr

). The derived
group [Z

r
, Z

r
] is of rank 1 and there exists a unique 1PS, r∨ : Gm → T ∩ [Z

r
, Z

r
]

such that T = Im(r∨).T
r
and (r∨, r) = 2. The element r∨ is the coroot (or 1–PS)

associated to r. The {r∨ | r ∈ R} form a system of roots R∨.

For each r ∈ R the root homomorphism

u
r
: Ga → G(2.0.2)

is such that

t.u
r
(a).t−1 = u

r
(r(t).a)(2.0.3)

for any C–algebra A and for any t ∈ T (A), a ∈ A such that the tangent map du
r

induces an isomorphism

du
r
: Lie(Ga) → (LieG)

r

The functor A 7→ u
r
(Ga) = u

r
(A) gives U

r
(A) ⊂ G(A). This determines a closed

subgroup U
r
of G and is called the root group corresponding to r.

Denote by {α∗ | α ∈ S} to be the basis dual to {α ∈ S}, i.e (α∗, r) = δα,r. Define

E := Y (T )⊗Z R(2.0.4)

E′ := X(T )⊗Z R(2.0.5)

Most often, we in fact work with X(T )⊗Z Q and Y (T )⊗Z Q.

2.0.2. Parahoric subgroups. Let K be a field equipped with a discrete valuation
v : K× → Z and we shall also assume that K is complete. Let A be the ring of
integers, with residue field C.

A subset M ⊂ G(K) is said to be bounded if for any regular function f ∈ K[G],
the values v(f(m)) is bounded below, when m runs over all elements of M . In
particular, we may talk of bounded subgroups. A subgroup M ⊂ G(K) is therefore
bounded if the “order of poles” of elements of M is bounded. This can be made
precise by taking a faithful representation of G →֒ GL(n) so that elements of M are
represented by matrices with entries in K.

Let θ ∈ E be an element of E. Denote by P
θ
(K) ⊂ G(K) the subgroup generated

by T (A) and the root groups Ur(z
mrA) for all the roots r ∈ R, where

mr = mr(θ) = −[(θ, r)](2.0.6)
9



the notation [h] stands for the biggest integer smaller than h. In other words, we
have:

P
θ
(K) = 〈T (A), Ur(z

mr(θ)A), r ∈ R〉(2.0.7)

The group P
θ
(K) is a bounded subgroup, more precisely it is a parahoric subgroup

of G(K) in the sense of Bruhat-Tits and conversely, any parahoric subgroup is
bounded in the above sense (cf. [6]) . In fact, since we work with a semisimple and
simply connected group G, all parahoric groups are, upto conjugacy by elements of
G(K), precisely the collection of groups {P

θ
(K)}θ∈E, and as such we will work with

these groups (see [32, Page 662]). In particular, associated to the “origin” 0 ∈ E

we have the group P0(K), which is nothing but the maximal bounded subgroup
G(A) ⊂ G(K). We will return to this in greater generality in §3.

Note that if θ ∈ Y (T ) itself, then there exists t ∈ T (K) such that

P
θ
(K) = t.P0(K).t−1(2.0.8)

2.0.3. Non-abelian functions and parahoric subgroups. Let X and Y be as in
the introduction and let p : Y → X be the covering projection. Let Γ = Gal(Y/X).
Let E be a (Γ, G)–bundle on Y . We stick to the notations in 1.5 in Section 1. We
can identify D

x
and N

y
with analytic discs with centres (0) which correspond to

analytic neighbourhoods of points x ∈ X and y ∈ Y , for Riemann surfaces X and
Y . We denote the stabilizer of the Γ–action at y ∈ Y by Γ

y
.

Observe that D
x
= N

y
/Γ

y
. In other words, ω is the coordinate function on N

y
so

that z = ωd is a coordinate function on D
x
, where d is the order of the cyclic group

Γ
y
.

Consider the restriction of E to N
y
. Then, by (1.0.2), as a (Γ

y
, G) bundle we can

identify E with the trivial bundle N
y
×G (G action given by multiplication on the

right and twisted action of Γy). Let Uy be the unit group at y ∈ Y (see Definition
1.6).

We work with notations fixed above. Let ρ : Γ
y
→ G be a representation, where

Γ
y
is a cyclic group of order d. Let ℓ = rank(G) and we represent the maximal torus

T ⊂ G in the diagonal form as follows:

T =









t1 0
.
.

0 tℓ









(2.0.9)

Since Γ
y
is cyclic, we can suppose that the representation ρ of Γ

y
in G factors

through T (by a suitable conjugation).
10



2.1. Lemma. Let Γ
y
be a cyclic group of order d acting on N

y
as above. Then we

have a canonical identification

Hom(Γ
y
, T ) ≃

(1

d
Y (T )

)

(mod Y (T ))(2.0.10)

Proof: The action of Γ
y
on N

y
canonically determines a character as follows. Since

N
y
is “1–dimensional”, the action determines an action of Γ

y
on the tangent space

T
y
to N

y
at y. We denote this character by χ

o
. Fix a generator γ in Γ

y
. We can

choose the coordinate function ω of N
y
. Then the character χ

o
is given by:

χ
o
(γ).ω = ζ.ω

where ζ is a primitive dth–root of unity.

Given a representation ρ ∈ Hom(Γ
y
, T ), the image ρ(γ) takes the form

ρ(γ) =









χ
o
(γ)a1 0

.
.

0 χ
o
(γ)aℓ









(2.0.11)

i.e ρ(γ) takes the form

ρ(γ) =









ζa1 0
.
.

0 ζaℓ









with ai ∈ Z.(2.0.12)

We can suppose that |ai| < d for all i (or even 0 ≤ ai < d) and take

ηi = ai/d, so that |ηi| < 1(2.0.13)

Note that the numbers {a1, a2, . . . , aℓ} are determined uniquely modulo d.

In terms of the local coordinates ω and z, we may identify the function ωai with
zηi where z = ωd. Define the “meromorphic” (or “rational”) map ∆ : N

y
−→ T , or

equivalently a morphism on the punctured disc N
y
− (0) as follows:

∆ = ∆(ω) =









ωa1 0
.
.

0 ωaℓ









=









zη1 0
.
.

0 zηℓ









(2.0.14)

Then we have

∆(γu) = ρ(γ)∆(u), u ∈ N
y

(2.0.15)

where ∆ can be taken as a function ∆ : N
y
−→ G (through T →֒ G).

11



Consider the restriction of ∆ to the punctured disc and view it as a 1PS, i.e
∆|

Spec(L)
: Gm,L → G. More precisely, the data of giving the function ∆ together

with its Γ
y
–equivariance automatically gives a rational 1–PS of G, i.e an element

θ
∆
∈ Y (T )⊗Q and the key point to note is that

d.θ
∆
= ∆(2.0.16)

i.e θ
∆

∈
(

1
d
Y (T )

)

(mod Y (T )). Thus, the association ρ 7→ θ
∆

gives the required
identification.

Q.E.D

2.2. Remark. We note that the tuple of numbers {a1, a2, . . . , aℓ} are determined
uniquely modulo d through the above identification.

Recall the definition of the unit group Uy (Definition 1.6). The aim of this section
is to prove the following:

2.3. Theorem. The unit group Uy is isomorphic to a parahoric subgroup P
θ∆
(K)

of G(K) associated to the element θ
∆

∈ Y (T ) ⊗ Q. Conversely, if P
θ
(K) is any

parahoric subgroup of G(K) then there exists a positive integer d, a field extension
L = K(ω) of degree d over K such that

P
θ
(K) ≃ Uy(2.0.17)

Proof: We first give a different description of the elements of Uy. By (1.0.2) a
(Γ

y
, G)–bundle on Y gets a Γ

y
-equivariant trivialization; in other words, the Γ

y
-

action on N
y
×G is given by a representation ρ : Γ

y
−→ G

γ · (u, g) = (γu, ρ(γ)g), u ∈ N
y
, γ ∈ Γ

y
.(2.0.18)

Let φ0 ∈ Uy. Then we see that the map

φ0 : Ny
×G −→ N

y
×G.(2.0.19)

is equivariant for the Γ
y
–action. This implies that

φ0(u, g) = (u, φ(u)g)

where φ : N
y
−→ G is a regular map satisfying the following:

φ(γ · u) = ρ(γ)φ(u)ρ(γ)−1, u ∈ N
y
.(2.0.20)

We may thus identify Uy with the following:

Uy = {φ : N
y
→ G | (2.0.20) holds}(2.0.21)

Observe that we can view Uy ⊂ G(B) ⊂ G(L).

Let ∆ be as in (2.0.14). Consider the inner automorsphism defined by ∆:

i
∆
: G(L) → G(L)(2.0.22)

12



given by i
∆
(η) = ∆−1.η.∆. Define

U
′
y := i

∆
(Uy)(2.0.23)

Let ψ = i
∆
(φ) = ∆−1.φ.∆ with φ ∈ Uy. Then we observe that

ψ(γu) = ψ(u)

so that ψ ∈ G(L)Γy . That is, it descends to a rational function ψ̃ : D
x
−→ G, where

ψ̃(z) := ψ(ω). In other words, we get

U
′
y ⊂ G(K) = G(L)Γy(2.0.24)

Then we claim the following:

U
′
y = P

θ∆
(K)(2.0.25)

where θ
∆

∈ Y (T ) ⊗ Q is as in (2.0.16). Recall the definition of the parahoric
subgroup:

P
θ∆
(K) = 〈T (A), Ur(z

mr(θ∆)A), r ∈ R〉(2.0.26)

Let ψ ∈ U
′
y and let ψ = i

∆
(φ), with φ ∈ Uy. Thus,

φ = ∆ψ∆−1.

We can describe φ =
(

φr(u)
)

r∈R
and ψ =

(

ψr(u)
)

r∈R
, where the

{φr, ψr : Ga,L → G | r ∈ R}

satisfy the following:

φr(ω) = ∆ψr(ω)∆
−1.(2.0.27)

i.e

φr(ω) = ψr(ω)ω
r(∆)(2.0.28)

In terms of ψ̃, this gives:

φr(ω) = ψ̃r(z)z
r(∆)
d(2.0.29)

Now interpreting the condition that ψ̃ should satisfy so that the φ’s are regular
functions in the variable ω at ω = 0, we see that the order of pole for ψr(z) at z = 0,

is bounded above by [ r(∆)
d

] (the biggest integer smaller than r(∆)
d

) . In other words
∀r ∈ R,

ψ̃r(z) ∈ Ur(z
−[r(θ

∆
)]A) = Ur(z

mr(θ∆)A)(2.0.30)

and hence ψ̃ ∈ P
θ∆
(K). This proves the claim (2.0.25).

Conversely, we show that any parahoric subgroup of G(K) can be identified, upto
conjugation by a g ∈ G(K), with a unit group Uy. Let θ ∈ E and let P

θ
(K) be a

13



parahoric subgroup. We would like to modify θ to a θ
∆
for a suitable ∆ ∈ Y (T ) so

that, interpreted as unit groups we get P
θ
(K) ≃ P

θ∆
(K) ≃ Uy.

We observe firstly that the parahoric subgroup P
θ
(K) given by θ ∈ E remains

the same when another choice of θ is made in a neighbourhood. In other words, we
may assume without loss of generality that θ ∈ Y (T ) ⊗ Q. Expressing it in terms
of generators and clearing denominators, we see that there exists a positive integer
d so that d.θ ∈ Y (T ). Then the obvious choice is ∆ = d.θ which therefore forces
∆ ∈ Y (T ).

Now we view ∆ as a “rational” map ∆ : N
y
→ T and hence can be expressed as

in (2.0.14), the ai’s being determined by the following considerations: for r ∈ R be
any root we define

r(∆) = d.(θ, r)

By Lemma 2.1 and Remark 2.2, the numbers {a1, a2, . . . , aℓ} are determined
uniquely modulo d. Once this is done, then we may define the representation ρ
in terms of these ai’s by the Lemma 2.1. More precisely, the representation ρ is
determined by its action on the root groups Ur(B) ⊂ G(B) which are given by (see
2.0.3):

ρ(γ).Ur(B).ρ(γ)−1 = Ur(ζ
r(∆)B)(2.0.31)

Retracing the steps in the first half of the proof, it is easy to see that P
θ
(K) ≃ Uy

completing the proof of the theorem.

Q.E.D

2.4. Remark. In the next section we will see the entire discussion carried out above
in the more general setting of Bruhat-Tits theory. In fact, since ∆ ∈ Y (T ), the
parahoric subgroup P

∆
(L) ⊂ G(L) can be identified with G(B), upto conjugation

by an element t ∈ T (L) (see (2.0.8)). The Galois group Γ
y
acts on the Bruhat-Tits

building as well as the parahoric subgroups and we see that P
θ
∆
(K) = P

∆
(L)Γy .

The identification of the elements of Uy as ψ’s forces the containment ψ ∈ P
∆
(L)Γy

and hence the identification Uy = P
θ
∆
(K).

2.5. Definition. Let θ ∈ Y (T ) ⊗ Q. Let ∆ = d.θ as above. To this data, we
associate a representation ρ

θ
: Γ

y
→ G defined by the ai’s and given by Lemma 2.1

and which acts on the root groups by (2.0.31). In particular, let α ∈ S be a simple
root. Let θ

α
= α∗

cα
(see (3.0.7) below). We denote the representation ρ

θα
by ρ

α
.

2.6. Remark. It is remarked in [28, Page 8] that it was not clear whether the unit
group in case III considered there is a parahoric subgroup at all. In fact, this is the
case as can be seen by Theorem 2.3. Moreover, it is not too hard to check by some
elementary computations that in the case considered there the unit group contains
the standard Iwahori but after a conjugation by a suitable element of G(K) .
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2.7. Example. Let us now take G = GL(m). We invite the reader to compare this

discussion with the one in Weil ([33, page 56]). Then we can write φ = ||φij(ω)||, ψ̃ =

||ψ̃ij(z)||, 1 ≤ i, j ≤ m (as matrices). Then (2.0.29) takes the form

φij(ω) = ψ̃ij(z)z
αi−αj .(2.0.32)

We can suppose that 0 ≤ α1 ≤ α2 ≤ · · · ≤ αm < 1. Since |αi − αj | < 1, we deduce

easily that ψ̃ij are regular i.e. Uy ⊂ G(A). To see this suppose that ψ̃ij is not
regular. Then considered as a function in ω (z = ωd), ψij has a pole of order ≥ d,
whereas zαi−αj could have only a pole of order d (as a function in ω). But φij(ω) is
regular, which leads to a contradiction.

3. Relationship with Bruhat-Tits theory

Let the notations be as in the beginning of §2. Recall from §2 (2.0.4) the notations
E and E′. Denote by Q(resp Q∨) the lattice of R (resp R∨), i.e the subgroup of X(T )
(resp Y (T )) generated by R (resp R∨), i.e, the root lattice and the coroot lattice
respectively. Denote by

P =
{

x ∈ E′ | (β∨, x) ∈ Z ∀ β∨ ∈ R∨
}

(3.0.1)

the weight lattice and

P ∨ =
{

x ∈ E | (x, β) ∈ Z ∀ β ∈ R
}

= ⊕
α∈S

Zα∗(3.0.2)

We have the inclusions Q∨ ⊂ Y (T ) ⊂ P ∨. It is known that the quotient P ∨/Q∨ ≃
centre(G). If we assume G to be simply connected, then we have

Q∨ = Y (T ).

Let α
max

denote the highest root. Then

α
max

=
∑

α∈S

cα · α(3.0.3)

with cα ∈ Z+.

3.1. Definition. Define

d1 = exponent(P ∨/Q∨)(3.0.4)

and

d2 = lcmα∈S{cα}(3.0.5)
15



3.0.4. Parahoric subgroups. Let Ω ⊂ E be a nonempty subset of E. Denote by
P

Ω
(K) ⊂ G(K) the subgroup generated by T (A) and the root groups Ur(z

mrA) for
all the roots r ∈ R, where

mr = mr(Ω) = −[inf
θ∈Ω

(θ, r)](3.0.6)

The group P
Ω
(K) is a parahoric subgroup. The precise relationship of these

parahoric subgroups with the general ones occurring in Bruhat-Tits theory has been
given in the paragraph following(2.0.7) and (2.0.8).

3.0.5. Hyperspecial Parahorics. In Bruhat-Tits theory, we encounter the so-
called hyperspecialmaximal parahorics which have the following characterizing prop-
erty: each parahoric group P

Ω
(K) is identified with G

Ω
(A), the A–valued points of a

certain canonically defined smooth group scheme G
Ω
defined over A. It is a fact that

the parahoric subgroup P
θα
(K) is hyperspecial if and only if cα = 1 in the descrip-

tion of the long root α
max

. This can be checked by an inspection of the tables and
some easy computations. In particular, type-wise we have the following description
upto conjugation by G(K):

(1) In type An, all the n + 1 maximal parahoric subgroups are hyperspecial
parahorics.

(2) In types Bn, Cn we have exactly 2 hyperspecial maximal parahoric subgroups.
(3) Type Dn, has exactly 4 hyperspecials maximal parahoric subgroups.
(4) Type E6 has exactly 3 maximal parahoric subgroups.
(5) Type E7 has exactly 2 maximal parahoric subgroups.
(6) In types G2, F4, E8, we have only one hyperspecial maximal parahoric sub-

group each.

3.2. Remark. The hyperspecial simple roots correspond precisely to the dual notion
of minuscule coweights.

3.0.6. Standard parahorics. Following the loop group terminology, the standard
parahoric subgroups of G(K) are parahoric subgroups of the canonical hyperspecial
parahoric subgroup G(A). These are realized as inverse images under the evaluation
map

ev : G(A) → G(k)

of standard parabolic subgroups PI ⊂ G, where I ⊂ S is any subset of the simple
roots. In particular, the Iwahori subgroup I is a standard parahoric and indeed, I =
ev−1(B), B ⊂ G being the standard Borel subgroup containing the fixed maximal
torus T .

Since we have assumed that G is semisimple and simply connected, it is known
(see for example [31, Section 3.1, page 50]) that every parahoric subgroup of G(K),
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upto conjugation by an element of G(K), can be identified with a P
θ
(K) for a

suitable θ ∈ E. If furthermore, for every α ∈ S, we define

θα =
α∗

cα
∈ E,(3.0.7)

then in fact, {P
θα
(K) | α ∈ S} and the group P0(K) represent the conjugacy classes

under G(K) of all maximal parahoric subgroups of G(K) (see the last paragraph
in [32, Page 662]). In other words, these are indexed precisely by the vertices of the
extended Dynkin diagram.

Since the standard parahoric subgroups of G(A) are also indexed by the subsets of
the set of simple roots, to avoid any confusion, we will henceforth denote the standard
parahoric subgroups of G(A) by Pst

I
(K) for every subset I ⊂ S. For instance let

α ∈ S. Then P
α
⊂ G is a maximal parabolic subgroup while ev−1(P

α
) = Pst

α
(K) is

a standard parahoric, and we have the obvious inclusions:

I ⊂ Pst
α
(K) ⊂ P

θα
(K) ∩P0(K)(3.0.8)

These standard parahorics will play a role when we re-look at Hecke correspondences.

3.0.7. Galois action on buildings. For the notion of Bruhat-Tits buildings and
their behaviour under field extensions (cf. [31, Page 43]). Let ω be the primitive
d-th root of z, where z is the uniformizer of K. Let L = Kd and B = A[ω] the
integral closure of A in L. Let G = Gal(L/K), which is a cyclic group of order d.

Thus, G(K) ⊂ G(L). Consider the multiplication d : E → E. Then, if Ω ⊂ E is a
subset, denote by d(Ω) its image in E; then one has the relation

P
Ω
(K) ⊂ P

d(Ω)(L)

The choice of T identifies E with an apartment in the building B(G,K) as well as
one in B(G,L). Further, it is known that there is a canonical injection of buildings:

iK,L : B(G,K) ⊂ B(G,L)

which maps an apartment in B(G,K) into one in B(G,L) and the image of B(G,K)
is fixed pointwise by G (since we are in the tamely ramified case). If App(G,K)
denotes an apartment in B(G,K) associated to T , then every vertex and barycenter
of a facet of the apartment App(G,K) becomes, in App(G,L), a translate of the
hyperspecial vertex (corresponding to P0(K)) by Y (T ) and hence a conjugate by
an element of T (L). If we fix an origin in App(G,K), then one can identify it with
the vector space E. Fix a facet F in App(G,K) = E and let θ ∈ F be a point in
general position. Then d.θ lies in App(G,L).

In fact, we have:

P
θ
(K) =

[

P
d.θ
(L)

]G

(3.0.9)
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To see this, we now consider the action of G(L) on the apartment E, and let G(L)
d.θ

denote the stabilizer of d.θ by the canonical action of G(L) ⋉ G on the building
B(G,L). Then by the general theory of Bruhat-Tits, since P

d.θ
(L) = G(L)d.θ, we

have
[

P
d.θ
(L)

]G

=
[

G(L)
d.θ

]G

=
[

G(L)G
]

θ
= G(K)

θ
= P

θ
(K)(3.0.10)

3.3. Remark. Compare this discussion with Remark 2.4.

3.4. Proposition. Let P
Ω
(K) be any parahoric subgroup of G(K). Then there

exists a positive integer d, a field extension L = K(ω) of degree d over K and a
g ∈ G(L) such that

g.P
Ω
(K).g−1 ⊂ G(B)(3.0.11)

Moreover,if G = Gal(L/K), the action of G lifts to the Bruhat-Tits building over
the field L and we have:

[

g−1.G(B).g
]G

= P
Ω
(K)(3.0.12)

Proof: (following [8, Lemma I.1.3.2], [17, Lemma 2.4] and [25, Proposition 8, p.
546]) Each parahoric subgroup containing a fixed Iwahori can be identified with
the stabilizer of a facet of the building B(G,K). Furthermore, the stabilizer for the
G(K)–action of a facet can be realized as the stabilizer of a general point on the facet
(cf. [31, §3.1, page 50]). In particular, we may assume that Ω = {θ}, i.e a singleton
and express it as a rational linear combination of the θα’s, say θ =

∑

α∈S bα.θα. If
the parahoric is P

0
(K) = G(A), there is nothing to check.

Observe that cα.θα = α∗ and therefore cα.θα ∈ P ∨. Again, since d1 =
exponent(P ∨/Q∨), it follows that d1.P

∨ ⊂ Q∨ ⊂ Y (T ).

Thus, d1.cα.θα ∈ Y (T ) and a fortiori, d1.d2.θα ∈ Y (T ). Choose, m = lcm of
denominators of bα, then clearly d.θ ∈ Y (T ), where d = d1.d2.m.

By (2.0.8), this implies that there exists a t ∈ T (L) such that t.P
d.θ
(K).t−1 =

P0(L) = G(B). Then by going to this d–sheeted ramified cover, with d = d1.d2.m,
we see that d.θ is actually hyperspecial. Hence, by (3.0.9), we get the required
proposition.

Q.E.D

4. The moduli stack of parahoric bundles

We stick to the notations in 1.5 and in Theorem 2.3. For the sake of simplicity
we will assume that |R

p
| = 1 and we fix x ∈ R

p
in the set of ramifications.
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4.0.8. The adèlic picture. We shall now describe (Γ, G) bundles on Y in terms of
objects on X , where Γ = Gal(Y/X) as before.

Two (Γ, G) bundles on Y are said to be locally isomorphic at x if they are isomor-
phic as (Γ, G) bundles over p−1(D

x
) = V1, Dx

a sufficiently small analytic nighbour-
hood of x as above. We can suppose that V1 is a disjoint union of discs of the form
N

y
i.e. each disc contains a unique point of Y lying over x. We denote the stabilizer

of the Γ–action at y ∈ Y by Γ
y
. Observe that N

y
is a Γ

y
-invariant neighbourhood

of y, y being a point of Y lying over x. We see that two such bundles are locally
isomorphic at x if and only if their restrictions to N

y
are isomorphic as Γ

y
-bundles.

Recall (1.0.2), that (Γy, G)–bundles are locally given by

γ · (u, g) = (γu, ρ(γ)g), u ∈ N
y
, γ ∈ Γ

y
.(4.0.1)

Let E ∈ Bunτ

Y
(Γ, G) be a (Γ, G) bundle on Y of local type τ (see Definition 1.2).

Let

X1 = X − x, and Y1 = p−1(X1)(4.0.2)

Now Γ acts freely on Y1 so that the restriction of E to X1 goes down to a principal
G-bundle on X1 which is trivial (in the algebraic sense) since G is semi-simple.
Hence we have:

E|Y1 ≃ Y1×G with the action of Γ given by γ ·(u, g) =
(γu, g), γ ∈ Γ and u ∈ Y1.

(4.0.3)

Let

E|
V1

= E1 and E|Y1 = E2(4.0.4)

We note that E1|Ny
is given by (4.0.1) and E2|Ny

by (4.0.3).

The (Γ, G)–bundle E is given by a (Γ, G)–isomorphism

ϑ : E2|V1∩Y1 −→ E1|V1∩Y1.(4.0.5)

Let s be a Γ-invariant rational section of E over Y1. Let s1 be the restriction of s
to a section of E1|V1∩Y1

and s2 the restriction of s to a section of E2|V1∩Y1
.

Note that s exists, since the restriction of E to Y1 descends to the G-bundle on
X1 which is trivial in the algebraic sense.

By (4.0.5), the isomorphism ϑ takes s2 to s1. We write this in this form:

ϑs2 = s1.(4.0.6)

Observe that if Q is any (Γ, G)–bundle in Bunτ

Y (Γ, G), then Q|V1 ≃ E1 and Q|
Y1

≃
E2 as (Γ, G)–bundles by (4.0.1) and (4.0.3) above sinceQ|

V1
is completely determined

by Q|
Ny
. Thus Q is defined by an isomorphism as in (4.0.5) above. Let us denote it

by φ. Then E is (Γ, G)–isomorphic to Q if and only if we have the following:

λ ϑ µ = φ(4.0.7)
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where λ is a (Γ, G)–automorphism of E1 and µ a (Γ, G)–automorphism of E2 .

Observe that by (4.0.3) the map µ is given by a morphism:

Y1 ×G −→ Y1 ×G,
(u, g) → (u, µ∗(u)g),

(4.0.8)

where µ∗(γ ·u) = µ(u), γ ∈ Γ. In other words, the map µ∗ goes down to a morphism
X1 −→ G.

We now trace the various identifications by restricting the above picture to the
punctured disc N∗

y
= N

y
− (0) →֒ V1 ∩ Y1; note that the (Γ, G)–isomorphism ϑ is

completely characterized by its restriction to N∗
y
.

We observe by (4.0.3) that the restriction of E2 toN
∗
y
is the (Γ

y
, G)–bundle N∗

y
×G

over N∗
y
with the action of Γ

y
given by

γ : N∗
y
×G −→ N∗

y
×G, γ ∈ Γ

y

γ(u, g) = (γu, g).
(4.0.9)

The restriction of E1 to N∗
y
is the (Γ

y
, G)–bundle N∗

y
×G on N∗

y
with the action of

Γ
y
given by

γ : N∗
y
×G −→ N∗

y
×G

γ(u, g) = (ρu, ρ(γ)g), γ ∈ Γ
y
.

(4.0.10)

The restriction of ϑ to N∗
y
is then a (Γ

y
, G)–isomorphism of the bundle in (4.0.8)

with the one of (4.0.7). We see easily that ϑ is defined by the map:

N∗
y
×G −→ N∗

y
×G

(u, g) −→ (u, ϑ∗(u)g)
(4.0.11)

where ϑ∗ : N∗
y
→ G is such that ϑ∗(γ · u) = ρ(γ)ϑ(u).

Recall that the map ∆ as in (2.0.15) is a morphism N∗
y
−→ G and has similar

properties. Thus we can write

ϑ∗ = ∆ϑ∗∗ such that ϑ∗∗(γu) = ϑ∗∗(u)(4.0.12)

i.e. ϑ∗∗ descends to a regular map D∗
x
−→ G, D∗

x
= D

x
− (0).

Note the following

ϑ∗∗ extends to a meromorphic map N
y
−→ G. It

is furthermore regular on N∗
y
and hence by (4.0.12)

descends to a meromorphic map D
x
−→ G which is

regular on D∗
x
.

(4.0.13)

This is an easy consequence of (4.0.6) with s1, s2 representing a rational section of
E over Y (we could do explicit computations for ϑ∗, s1, s2 by restriction to N

y
etc.

as we did above).
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Now the (Γ, G)–automorphisms of E1 can be identified with the (Γ
y
, G)–

automorphisms of the restriction of E1 to N
y
i.e. of the (Γ

y
, G)–bundle on N

y

given by (4.0.1). Thus λ identifies with an element λ∗ of the unit group at x (i.e. an
element as in (4.0.13) above before its identification as a subgroup of G(Kx)). The
equivalence relation (4.0.7) therefore takes the following form:

λ∗(∆ϑ∗∗)µ∗ = ∆φ∗∗(4.0.14)

which implies

(∆−1λ∗∆)ϑ∗∗µ∗∗ = φ∗∗.(4.0.15)

Let us denote by G(Kh
x) the set of germs of holomorphic maps D∗

x
−→ G which

extend to meromorphic maps D
x
−→ G. We have an inclusion G(Kh

x) ⊂ G(Kx).

Set Uhx = Ux ∩ G(Kh
x ) i.e. we work in the holomorphic and meromorphic setup

instead of the “formal” one (see Definition 1.6 and the paragraphs following this for
the definition of Ux). Observe that ϑ∗∗ ∈ G(Kh

x ) and (∆−1λ∗∆) ∈ Uhx. Further µ∗∗

is a regular map X1 −→ G i.e. µ∗∗ ∈ G(X − x). Thus from (4.0.15) we deduce the
following identification of Bunτ

Y
(Γ, G) with a double coset space:

Bunτ

Y
(Γ, G) ≃

[

Uhx\
G(Kh

x )/G(X − x)
]

(4.0.16)

4.1. Remark. Recall that, by Theorem 2.3, any parahoric subgroup of G(K) is iso-
morphic to a unit group Uy. Let us fix a Ux in its conjugacy class for every x ∈ R

p
.

So we can talk of the unit group at x and denote it by Ux. The discussion carried out
above in the analytic setting carries over without serious difficulty to the “formal”
setting. In other words, the moduli stack Bunτ

Y
(Γ, G) can be identified with

[

Ux\
G(Kx)/G(X − x)

]

(4.0.17)

or in adèlic language with:
∏

p∈X

G(Cp)\
G(A)/G(K(X))(4.0.18)

where A denotes the adèles, K(X) the function field of X , and G(Cp) = G(Op) for
p 6= x and G(Cx) = Ux.

On the other hand, a choice of a parahoric subgroup P
Ω
(K) ⊂ G(K) defines

canonically the double coset space

M
X
(P

Ω
(K)) :=

[

P
Ω
(K)\G(K)/G(X − x)

]

(4.0.19)

The above description immediately allows us to make the following definition in
accordance with the notion of a quasi-parabolic structure in [18]. Recall from §2.0.2
the notion of “boundedness” of subsets of G(K).

21



4.2. Definition.Fix a parahoric subgroup P
Ω
(K) ⊂ G(K). A quasi-parahoric bun-

dle is an element E ∈ M
X
(P

Ω
(K)); equivalently, giving E is giving an isomorphism

of principal homogeneous spaces:

ψ : E
K
≃ G× Spec(K)(4.0.20)

together with the bounded subset ψ∗(P
Ω
(K)) ⊂ E

K
(K).

An isomorphism of quasi-parahoric bundles is given by a diagram:

E
K

ψ
%%L

LLLLLLLLLL

f
// E ′

K

φ
yyrrrrrrrrrrr

G× Spec(K)

(4.0.21)

such that the bounded subsets ψ∗(P
Ω
(K)) and φ∗(P

Ω
(K)) get identified by f .

4.3. Remark. In fact, if we work in the analytic category, it is not hard to see that in
the above arguments, with the parameter t ∈ T thrown in, we get an identification
of a T–valued point of Bunτ

Y
(Γ, G) with a T–point in the double coset space. One

needs a Γ–invariant local trivialization for families and the details can be seen in
the proof of Theorem 4.6 below.

4.4. Remark. The moduli stack Bunτ

Y
(Γ, G) clearly depends only on the unit group

Ux and not on the explicit nature of the representation ρ. We can therefore denote
Bunτ

Y
(Γ, G) as M(Ux).

4.0.9. Bruhat-Tits group schemes. By the main theorem of Bruhat-Tits ([6]), there
exist smooth group schemes G

Ω
over Spec(A) such that the group G

Ω
(A) = P

Ω
(K).

4.5. Definition. (following Pappas and Rapoport [21]) The Bruhat-Tits group
scheme G

Ω,X
on the curve X is the one obtained by gluing the group scheme G

Ω

on Spec(A) with the trivial group scheme (X − x)×G.

Let Bun
X
(G

Ω,X
) denote the moduli stack of principal homogeneous spaces under

G
Ω,X

. We then have the following obvious set-theoretic identification:

M
X
(P

Ω
(K)) ≃ Bun(G

Ω,X
)(4.0.22)

Let P
Ω
(K) ⊂ G(K) be a parahoric subgroup. Suppose that we fix the identifica-

tion w
θ
: P

Ω
(K) ≃ P

θ
(K) (see (5.0.1) for the notion of weights). Then we have the

following:

4.6. Theorem. There exists a ramified cover p : Y → X ramified at x ∈ X, such
that we have an isomorphism of the stacks Bun(G

Ω,X
) and Bunτ

Y
(Γ, G).
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Proof: The identification w
θ
: P

Ω
(K) ≃ P

θ
(K) together with Theorem 2.3 im-

mediately gives the ramified cover p : Y → X and the set-theoretic identification of
the points of the respective stacks. We need to show that we have an isomorphism
of the corresponding functors. The smooth Artin stack structure on Bun(G

Ω,X
) has

been given in [11].

Let T be a finite type scheme over C. The question boils down to defining a family
of (Γ, G)–bundles of local type τ . Let E = E

T
→ Y ×T be a family of (Γ, G)–bundles.

Then by [30, Lemma 2.5], for any t ∈ T , there exists an étale neighbourhood Tt of
t and a formal neighbourhood Ñy of y ∈ Y , such that the action of Γ on E|

Ñy×Tt

gets a uniform trivialization by a representation ρ : Γy → G. Thus, there exists an
étale covering T ′ → T such that the pull-back E|

Ñy×T ′
has uniform local type τ . By

Theorem 2.3 we get a GA–torsor E|Dx×Tt
, where Dx = Spec(A). The Γ–equivariant

triviality of E on (Y−p−1(x))×T ′ gives a trivial G–torsor on (X−x)×T ′ (which is the
result of Drinfeld-Simpson ([7]). Gluing, we get a G–torsor on X×T ′. The converse
follows similarly by using [11, Theorem 1] and we get the desired isomorphism of
functors.

Q.E.D

4.7. Remark. If P
Ω
(K) = P0(K) is the hyperspecial parahoric G(A) ⊂ G(K), then

the double coset space M
X
(P0(K)) is simply the usual moduli stack M

X
(G) of

principal G–bundles on X .

4.8. Definition. (see 3.0.6) Define the standard Iwahori subgroup I ⊂ G(K) as

I = P
S
(K)

S being the set of simple roots in R.

In what follows, we consider parahoric subgroups P
Ω
(K) of G(K) such that I ⊂

P
Ω
(K). The next proposition shows that the moduli stack depends only on the

conjugacy class of the parahoric subgroup.

4.9. Proposition. Let g ∈ G(K) and consider parahoric subgroups P
Ω
(K)g =

g.P
Ω
(K).g−1 and P

Ω
(K) of G(K). Then there is a natural isomorphism

φg : MX
(P

Ω
(K)g) → M

X
(P

Ω
(K))(4.0.23)

Proof: This is follows easily from the following observation. Given a g ∈ G(K),
define the map

φg : MX
(P

Ω
(K)g) → M

X
(P

Ω
(K))

by φg(θ) = g.θ. That this defines an isomorphism of double coset spaces is easy to
check.

Q.E.D
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4.0.10. Hecke Correspondence. Using (3.0.8), we get I ⊂ Pst
α
(K) ⊂ P

θα
(K) ∩

P0(K) and natural maps which are in fact morphisms at the level of stacks and get
the following generalized Hecke correspondences. The dimension formulae obtained
later (see Theorem 7.5 below) reflect the picture accurately.

M
X
(I)

M
X
(Pst

β
))

M
X
(P

θβ
) M

X
(P0)

M
X
(Pst

α
)

M
X
(P0) M

X
(P

θα
)

(4.0.24)

4.10. Remark. It is an interesting and important problem to analyse the above mor-
phisms on the substack of stable (resp semistable) objects and the condition needed
in terms of weights for the morphism to descend to a morphism of moduli schemes.

5. Stability and semistability

5.0.11. Notion of weights. We will now define the concept of weights on points
of the moduli stack staying within the realm of adèlic spaces alone.

Consider the double coset space M
X
(P

Ω
(K)). Once we fix a root datum for G,

we see that we have a choice of an affine apartment and this identifies a parahoric
subgroup P

Ω
(K) ⊂ G(K) as the stabilizer subgroup of G(K) of a facet of the affine

apartment App(G,K). Again, as we have seen earlier, we could in turn take any
point in general position in the facet and consider the parahoric as the stabilizer
of that point. Thus one can make an identification P

Ω
(K) ≃ P

θ
(K) for a general

element θ in the facet determined by Ω.

By a weight, we will mean an element θ ∈ Y (T )⊗Q modulo Y (T ). Observe that
this automatically gives rise to an identification

w
θ
: P

Ω
(K) ≃ P

θ
(K) ≃ Uy(5.0.1)

of the parahoric subgroup P
Ω
(K) with a specific parahoric P

θ
(K) (and hence a local

unit group Uy and not just the conjugacy class Ux) (see Theorem 2.3). Hence, in par-
ticular, it determines an “underlying” quasi-parahoric structure (see Definition 4.2).
One might therefore say that, fixing the identification w

θ
endows every point of the

double coset space M
X
(P

Ω
(K)) ≃ M

X
(P

θ
(K)) with weights. Note further that

fixing weights w
θ
therefore automatically fixes the local type τ of the (Γ, G)–bundle

coming from the identification (4.0.16). Recall the notion of a quasi-parahoric bundle
from Definition 4.2.
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5.1. Definition.A parahoric bundle is the pair (E , w
θ
) of a quasi-parahoric bundle

E together with weights w
θ
. A parahoric structure on E is giving a “weight” θ ∈

Y (T )⊗Q mod Y (T ) or equivalently a map w
θ
.

5.2. Remark. Recall from Theorem 2.3 that given a θ ∈ Y (T )⊗Q, it automatically
gives a parahoric subgroup P

θ
(K) ⊂ G(K) as well as an identification with a specific

local unit group Uy. In particular, this identifies a Bruhat-Tits group scheme and
also the moduli stack of quasi-parahoric bundles.

5.3. Remark.This is the precise analogue of the classical weight for a parabolic vector
bundle.

5.0.12. Stability of points on the double coset space. We begin the discussion
with a remark.

5.4. Remark. (cf. [24, Remark 3.5.7]) Observe that in the usual situation of prin-
cipal G–bundles, a reduction of structure group of a principal G–bundle E to P
gives canonically a reduction also to g.P.g−1. Furthermore, it is easy to see that
any character χ : P → Gm, gives a character χg : g.P.g−1 → Gm defined by
χg(g.p.g

−1) := χ(p). This therefore gives a line bundle L|χg
on E/g.P.g−1 such that

deg(L|χg
) = deg(Lχ).

For a parahoric bundle (E , w
θ
) ∈ M

X
(P

θ
(K)) defining the notion of reduction of

structure group to a parabolic subgroup P ⊂ G is a little tricky. This parallels the
notion of an induced parabolic structure on a subbundle (cf. [18]).

Let P
θ
(K)) be a fixed parahoric subgroup of G(K) and observe that we have

chosen the θ in the facet determining the parahoric in the fixed affine apartment
App(G,K). Choice of this weight entails a choice of a maximal torus T ⊂ G. Let
P ⊂ G be a parabolic subgroup. Then by a conjugation by an element g ∈ G,
we can ensure that the maximal torus T chosen for defining P

θ
(K)) is contained

in g.P.g−1. Hence moving P in its conjugacy class, we now take the intersection
P

θ
(K)) ∩ g.P.g−1.

Let (E , w
θ
) ∈ M

X
(P

θ
(K)). Let P ⊂ G be a parabolic subgroup. Let χ : P → Gm

be a dominant character. Let E
P
be a reduction of structure group of E on X − x.

Choose g ∈ G so that g.P.g−1 contains the maximal torus T . Let E
g.P.g−1 be the

induced reduction to g.P.g−1 on X − x.

The character χg : g.P.g
−1 → Gm maps the bounded subgroup P

θ
(K))∩g.P.g−1 to

one inGm. Furthermore, it induces a map Y (T )⊗Q → Y (Gm)⊗Q, i.e a weight. This
datum defines a parabolic line bundle Lχg

i.e a line bundle together with weights.
We denote this parabolic line bundle by EP (χ). Recall that a parabolic line bundle
is merely a rank 1 parabolic vector bundle and, by the general correspondence of Γ–
bundles and parabolic bundles, a parabolic line bundle is realizable as an invariant
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direct image of a Γ–line bundle (see proofs of Theorem 5.6 and Proposition 5.11
below).

We can define stability of (E , w
θ
) as follows (see also Definition 5.12 and Corollary

5.13):

5.5. Definition. A parahoric bundle (E , w
θ
) is called stable (resp. semistable) if

for every maximal parabolic Pβ ⊂ G, and dominant character χ : Pβ → Gm, and
for every reduction of structure group EP of E to Pβ, we have pardeg(EP (χ)) >
0 (resp. ≥ 0).

5.6. Theorem. The identification

M
X
(P

θ
(K)) ≃ Bunτ

Y
(Γ, G)

given by Theorem 4.6 identifies stable (resp. semistable) objects in M
X
(P

θ
(K)) with

stable (resp. semistable) (Γ, G)–bundles of local type τ on the ramified cover Y .

Proof: By Theorem 2.3 and Proposition 3.4 that we have a Galois covering
p : Y → X with Galois group Γ such that P

θ
(K)) ≃ G(B)Γ. Furthermore, the

correspondence shows that we have a (Γ, G)–bundle Q on Y of local type τ corre-
sponding to E.

Recall that a (Γ, G)–bundle Q on Y is stable if (i) for every parabolic subgroup
P ⊂ G, and (ii) dominant character χ : P → Gm, and (iii) a Γ–equivariant reduction
of structure group Q

P
of Q such that the local type given by the representation

ρ : Γy → G factors through ρ′ : Γy → P , the associated Γ–line bundle Q
P
(χ) has

degree > 0.

For a given parabolic P ⊂ G, the representation ρ need not factor via P but if
we allow a conjugate by a g ∈ G, then we can realize ρ via a maximal torus sitting
inside g.P.g−1. By Remark 5.4, the stability of Q can be tested by the reduction to
g.P.g−1.

The theorem now follows by the simple observation that the parabolic line bun-
dle E

P
(χ) is nothing but the invariant direct image pΓ∗ (QP

(χ)) (cf. the proof of
Proposition 5.11 below).

Q.E.D

5.0.13. Parabolic subgroup scheme of Bruhat-Tits group schemes. Let G
Ω,X

be a Bruhat-Tits group scheme on the curve X which is obtained by gluing the
Bruhat-Tits group scheme G

Ω
for a disc D = Spec(A) around the point x ∈ X and

the split semisimple group scheme G× (X − x). Following Heinloth [11, Definition
17], we have:
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5.7. Definition. A maximal parabolic subgroup P ⊂ G
Ω,X

of the group scheme G
Ω,X

is defined as the flat closure of a maximal parabolic subgroup of the generic fibre GK
of G

Ω,X
.

Let E be a G
Ω,X

–torsor on X . Then we have (Heinloth [11, Lemma 23])

5.8. Lemma. Let PK ⊂ GK be a maximal parabolic subgroup and let E be a GΩ,X–
torsor on X. Any choice of reduction section sK ∈ EK(GK/PK) = EK/PK defines
a maximal parabolic subgroup P ′ ⊂ G

Ω,X
together with a reduction s′ of E to P ′.

Proof: This follows immediately from [11].

5.9. Remark. Note however that G
Ω,X
/P need not be a projective scheme over A for

all parahorics. It is so for instance if G
Ω,X

is a hyperspecial parahoric.

5.0.14. Weights and parahoric torsors. Recall that, locally, the group scheme
G = G

Ω,X
is canonically determined by the parahoric subgroup G(A) ⊂ G(K).

Thus, by (4.0.22), giving a G–torsor E is therefore equivalent to giving a quasi-
parahoric bundle E . If further, we fix an identification

w
θ
: G(A) ≃ P

θ
(K) ≃ Uy(5.0.2)

of the parahoric subgroup G(A) with a specific parahoric P
θ
(K), then we endow

the torsor E with weights. In other words, fixing the identification w
θ
endows every

point of the double coset space Bun
X
(G) ≃ M

X
(P

θ
(K)) with weights.

5.10. Definition. A parahoric G–torsor is a pair (E,w
θ
), where E is a G–torsor

and w
θ
a weight as in (5.0.2).

Recall further (by Theorem 4.6) that fixing w
θ
gives the following identification:

Bun
X
(G) ≃ Bunτ

Y
(Γ, G)(5.0.3)

for a suitably defined covering p : Y → X with Galois group Γ.

Let χ : PK → Gm,K be a dominant character of the parabolic subgroup PK .
Then one knows that this defines an ample line bundle L

χ
on GK/PK . Of course,

the quotient G
Ω,X
/P for a flat closure of PK is not projective over X but GK/PK is

projective over K. Following Ramanathan, we see that χ defines a line bundle L
χ

on EK/PK as well and using a reduction section sK , we therefore get a line bundle
s∗K(Lχ

) on X − x.

5.11. Proposition. Suppose that we are given the Bruhat-Tits group scheme G =
G

Ω,X
extending the generic group GK . Suppose further that we are given weights

i.e w
θ
: G(A) ≃ P

θ
(K) with θ ∈ Y (T ) ⊗ Q, a point in general position in the

facet determined by the parahoric subgroup G(A). Let sK be a generic reduction of
structure group of EK to PK . Then the line bundle s∗K(Lχ

) on X−x has a canonical
extension Lθ

χ
to X as a parabolic line bundle.
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Proof: By Theorem 2.3 and Proposition 3.4, once the identification w
θ
is fixed

along with the choice of θ ∈ Y (T ) ⊗ Q, we have a ramified cover p : Y → X with
Γ = Gal(Y/X) so that G

Ω,X
(A) = G(B)Γ. The data (E,w

θ
), of a G–torsor together

with weights is therefore equivalent to giving a (Γ, G)–principal bundle F on Y .

The maximal parabolic subgroup PK ⊂ GK immediately gives a maximal par-
abolic Q ⊂ G and the reduction sK gives in turn a Γ–equivariant reduction of
structure group tL of FL/QL, where L denotes the quotient field of B the local ring
in Y over x ∈ X . By virtue of the projectivity of Y , the reduction section tL extends
to a Γ–equivariant reduction of structure group t ∈ F/Q. The dominant character
χ gives a dominant character η of Q and the section t gives a Γ–line bundle t∗(L

η
).

Now observe that the GIT quotient of F/Q by the finite group Γ gives a natural
compactification of G

Ω,X
/P ′. It is easy to see that the invariant direct image

pΓ
∗
(t∗(L

η
))

gives the required extension of s∗K(Lχ
). This is by the definition of the invariant

direct image, a parabolic line bundle.

Q.E.D

5.12.Definition.Let G = G
Ω,X

. A parahoric G–torsor (E,w
θ
) is called stable (resp.

semistable) if for every maximal parabolic PK ⊂ GK , for the dominant character χ
as above, for every reduction of structure group sK , we have:

pardeg(Lθ
χ
) > 0(resp. ≥ 0)

5.13. Corollary.The notions of stability of a parahoric G
Ω,X

–torsor (E,w
θ
) and a

parahoric bundle (E , w
θ
) given by Definition 5.5 and Definition 5.12 are equivalent.

Proof: Follows immediately from the above discussions.

6. Unitary representations of π

6.0.15. Manifold of irreducible unitary representations of π. Notations in
this section are as in the introduction 1.1 and 1.3 (see also (1.0.5) and (1.0.6)).
Recall also the notion of local type of unitary representations ρ : π → KG from
Definition 1.4.

We now recall the following result from [34, Page 157].

6.1. Proposition. Let ρ be a representation of π on a vector space V (over R)
such that d = dimV and ρ is unitary (or more generally leaving invariant a non-
degenerate bilinear form on V ). Then we have

dimRH
1(π, ρ) = 2d(g − 1) + 2 dimRH

0(π, ρ) +
m
∑

ν=1

eν
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where eν is the rank of the endomorphism (I − ρ(Cν)) of V.

Let KG be the maximal compact subgroup of G and κ
G
its Lie algebra which is a

real vector space of dimension d, where d = dim(G).

As in the introduction, we assume that X = H/π, with x ∈ X corresponding to
z ∈ H. Let πz be the stabilizer at z (cyclic of order nx) and let γ be a generator of
πz and let ρ : π → KG be a unitary representation of π.

Let α ∈ S and let ρ
α
be as in Definition 2.5. Let ρ

α
(γ) ∈ KG be the image of the

generator γ of πz. Note that the choice of the simple root α and identification of
the representation ρ with ρ

α
amounts to fixing the local type of the representation

ρ : π → KG, i.e the conjugacy class of ρ(γ) in KG.

We denote by Ad ρα, the adjoint transformation on κ
G
, namely if M ∈ κ

G
, M 7→

ρ
α
(γ)Mρ

α
(γ)−1.

Then we have:

6.2. Proposition. Let e(α) denote the rank of (Id - Ad ρα) on κG
. Then

e(α) = dimR(KG)− 2µ(α) − 2ν(α) − ℓ = 2.(dim
C
(G/Pα))− µ(α))(6.0.1)

where Pα is the maximal parabolic subgroup of G associated to α and

µ(α) = #{r ∈ R+ | r = cα.α+
∑

β 6=α

xβ .β}(6.0.2)

ν(α) = #{r ∈ R− | r involves simple roots 6= α}(6.0.3)

and ℓ = #S.

Proof. Make KG operate on itself by inner conjugation. Then, rank of (Id-Ad ρ
α
)

on κ
G
= the dimension of the orbit through ρ

α
(γ) for the action of KG on itself by

inner conjugation.

We may assume for the purpose of this computation that ρ
α
(γ) lies in the maximal

torus. We firstly compute the number roots r ∈ R so that the corresponding root
group Ur(B) is centralized by ρ

α
(γ). Recall from Definition 2.5 that the action of

ρ
α
(γ) on Ur is given as follows:

ρ
α
(γ).Ur(B).ρ

α
(γ)−1 = Ur(ζ

r(∆α)B)(6.0.4)

where as seen earlier, r(∆
α
) = d.(θ

α
, r). Since ζ is a primitive dth–root of unity, we

need to compute the # {r ∈ R | (θ
α
, r) = ±1 or 0}. It is easy to see that

{r ∈ R | (θ
α
, r) = ±1 or 0} =

4
⋃

i=1

Ai(α)(6.0.5)
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where for i = 1, 2,

Ai(α) = {r ∈ R± | r = ±cα.α +
∑

β 6=α

±xβ .β}(6.0.6)

A3(α) = {r ∈ R− | r involves simple roots 6= α}(6.0.7)

and

A4(α) = {r ∈ R+ | r involves simple roots 6= α}(6.0.8)

Since the maximal torus centralizes ρ
α
(γ), we see that the dimension of the central-

izer of ρ
α
(γ) is

#{r ∈ R | (θ
α
, r) = ±1 or 0}+#S(6.0.9)

Observe that |A4| = |A3| and |A1| = |A2| . To compute the rank of (Id - Ad ρ
α
),

we simply subtract the above number (6.0.9) from the dim
R
(KG) to get the first

expression for e(α). We see that

ν(α) = dim
C
(P

α
/B)(6.0.10)

where P
α
is the maximal parabolic subgroup of G defined by the simple root α ∈ S.

Thus,

dim
R
(KG)− 2.ν(α)− ℓ = dim

C
(G)− 2.ν(α)− ℓ = 2.dim

C
(G/P

α
).

since 2.dim(B)− ℓ = dim(G).

Hence, e(α) = 2.(dim
C
(G/P

α
))− µ(α)) and the proposition now follows.

Q.E.D

6.3. Remark. Fix a simple root α ∈ S. Recall from Definition 1.4 that a representa-
tion ρ of π → KG is said to be of type τ (α), if the conjugacy classes of ρ(C) are
fixed and given by ρ(C) = ρ

α
(γ) for some α ∈ S, where ρ

α
is as in Definition 2.5.

Let Rτ (α)(π,KG) be the set all such representations of type τ (α).

6.4. Theorem.The subset Ro ⊂ Rτ (α)(π,KG), of irreducible representations is open
and non-empty and is further smooth of real dimension equal to

(2g − 1)dim(KG) + e(α).(6.0.11)

Let KG act on Rτ (α)(π,KG) by inner conjugation. Let KG = KG/centre. Then the
equivalence classes of irreducible representations corresponds to the quotient space
Ro/KG and has the natural structure of a complex analytic orbifold of dimension

dim
C
(Ro/KG) = dim

C
(G)(g − 1) +

1

2
e(α)(6.0.12)

Proof: This follows in much the same fashion as in [27, Page 180] and is an
immediate consequence of Proposition 6.2.
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Q.E.D

6.5. Remark.One can obtain similar dimension formulas for the case when we work
with representation of type τ (I), for any subset I ⊂ S. It is given by the following:

dim
C
(Ro(I)/KG) = dim

C
(G)(g − 1) +

1

2
e(I)(6.0.13)

where e(I) = 2.
(

dim(G/P
I

)

− µ(I)) and µ(I) = #{r ∈ R+ =
∑

α∈I cα.α + . . .}.

7. The moduli space of parahoric bundles

In this section we study the moduli space of (Γ, G)–bundles on Y and prove the
basic geometric properties of this space. We use these to conclude similar facts
about the stack of parahoric bundles. Certain parts of the proofs in [2] needed the
developments in this paper to be made complete. A few of the arguments from [2]
therefore have been repeated to make this article self-contained.

The notions of stability and semistability of (Γ, G)–bundles is defined in the in-
troduction and follows the one given by A.Ramanathan ([23]). It is shown in [2,
Theorem 5.8] that the moduli space Mτ

Y
(Γ, G) of semistable (Γ, G)–bundles of local

type τ is realized as a good quotient QG//G of a suitably defined Quot scheme QG.
In this paper we show that this scheme Mτ

Y
(Γ, G) is normal and projective.

7.0.16. The irreducibility of the moduli space.

7.1. Theorem. Let G be semisimple and simply connected. Then the moduli stacks
M

X
(P

Ω
(K)) and Bun(G

Ω,X
) are irreducible for any Ω.

Proof: Observe that from Ramanathan [23] (see also [7]), it follows that for the
standard parahoric P0(K) = G(A), the moduli stack M

X
(P0) ≃ Bun

X
(G) is irre-

ducible because G is simply connected. Further, the morphism M
X
(I) → M

X
(P0)

is surjective and has fibre G/B, B being the Borel subgroup. Hence, M
X
(I) is

irreducible. Now observe that the map M
X
(I) → M

X
(P

Ω
(K)) given by (4.0.24) is

obviously set-theoretically surjective since it comes from the inclusion I ⊂ P
Ω
(K).

By Theorem 2.3, we now make the identification P
Ω
(K) ≃ Ux for x ∈ X . Hence

the stack structure on M
X
(P

Ω
(K)) comes from the identification M

X
(P

Ω
(K)) ≃

Bunτ

Y
(Γ, G), where Γ is the Galois group of the cover Y → X associated to Ux.

Let Ei ∈ Bunτ

Y
(Γ, G), i = 1, 2 be two (Γ, G)–bundles of local type τ . Let the

images of Ei in M
X
(P

Ω
(K)) be denoted by Ei. By the set-theoretic surjection

M
X
(I) → M

X
(P

Ω
(K)), we can lift Ei to two points Fi ∈ M

X
(I). Hence by the

connectedness we get a curve T → M
X
(I) whose image contains Fi. In other words,

we have a family {Ft}t∈T . The inclusion I ⊂ P
Ω
(K) gives map T → M

X
(P

Ω
(K)).

Now we observe that the proof on Theorem 2.3 simply goes through with a parameter
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t and we get a holomorphic map T → Bunτ

Y
(Γ, G) whose image contains Ei. This

proves the connectedness. Smoothness is immediate from standard deformation
theory and we get the required irreducibility. The irreducibility of Bun(G

Ω,X
) follows

from Theorem 4.6.

Q.E.D

7.2. Remark. If we stick to the analytic category and use the language of loop
groups, we observe that the connectedness of the stack Bunτ

Y
(Γ, G) can be derived

more easily as follows: let E1, E2 be two points in Bunτ

Y
(Γ, G). By Theorem 2.3 we

see that they give points in the double coset space M
X
(Ux(K)) associated to the

unit group Ux. They give immediately lifts s1, s2 ∈ G(Kx) which can be considered
points of the loop group G(Kx).

Since G is assumed to be simply connected, we see that the loop group G(Kx) has
the structure of a connected Banach Lie group (see [15, Page 511] for an argument
due to V. Drinfeld). We can connect si be a family in G(Kx). We now remark
that a holomorphic map T → G(Kx) (which by definition can be taken to be a
holomorphic map T × Spec(Kx) → G), gives a family of bundles in Bunτ

Y
(Γ, G) by

making a choice of the unit group Uy. This follows from Remark 4.3. Since the si
are lifts of the Ei we get a family of bundles in Bunτ

Y
(Γ, G) connecting the Ei’s.

7.3. Remark.Geometric statements such as the unirationality of these moduli stacks
will follow from these morphisms. This is because, by [16] one knows that the stan-
dard moduli stack M

X
(P0) is unirational. It follows immediately that the Iwahori

moduli stack M
X
(I) is unirational and hence all the remaining ones.

7.0.17. Some remarks related to Heinloth’s work. The above irreducibility
result is proved by Heinloth (cf.[11, Theorem 2]); more precisely, he obtains it as
a consequence of a certain “uniformization theorem” and also over base fields of
arbitrary characteristics. Using the Hecke correspondence (4.0.10) and the proper-
ties of Bunτ

Y
(Γ, G), we get a different approach (when the ground field is C) for

[11, Theorem 1,2] as well as [11, Corollary 20]. By [7], it is immediate that the
uniformization statement follows from the Γ–equivariant uniformization (cf. [30] for
this). Connectedness has been shown in Theorem 7.1. Properness of the semistable
stack follows from the compactness shown in Theorem 7.15.

7.4. Proposition. The moduli stack Bunτ

Y
(Γ, G) of (Γ, G)–bundles on Y of fixed

local type τ is irreducible when the group G is semisimple and simply connected.

Proof: This is immediate from Theorem 4.6 and Theorem 7.1.

Q.E.D
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7.0.18. The dimension formula. Since M
X
(P0(K)) ≃ M

X
(G) by [24] we see that

dim(M
X
(P

0
(K)) = dim(M

X
(G)) = dim(G)(g − 1). The aim of this subsection is

to prove the following theorem:

7.5. Theorem. Let P
θα
(K) be the maximal parahoric subgroup associated to the

simple root α ∈ S. The formal dimension of the moduli stack M
X
(P

θα
(K)) is

dim(M
X
(P

θα
(K)) = dim(G)(g − 1) + dim(

G

P
α

)− µ(α)(7.0.1)

where µ(α) = #{r ∈ R+ | r = cα.α +
∑

β 6=α xβ .β}.

Moreover,

dim(M
X
(P

θα
(K)) = dim(Ro/KG)(7.0.2)

where Ro ⊂ Rτ (α)(π,KG) is the subspace of irreducible representations of π → KG,
which are of type “τ (α)” (see Definition 1.4 and Remark 6.3) and KG now being
the fixed maximal compact subgroup of G acting on Ro by inner conjugation.

Proof: To compute the formal dimension of the moduli stack, we first observe
that if I is the standard Iwahori subgroup in G(A) = P0(K), then the moduli stack
M

X
(I) is formally a G/B–fibration over M

X
(P0(K)). In particular, its formal

dimension is dim(M
X
(P0(K)) + dim(G/B). Therfore,

dim(M
X
(I)) = dim(G)(g − 1) + dim(G/B)(7.0.3)

On the other hand, the quotient
P

θα
(K)

I
is supported on the residue field C and is

finite dimensional. In fact, its dimension is

dim
(P

θα
(K)

I

)

= ν(α) + µ(α)(7.0.4)

where ν(α) and µ(α) are given by (6.0.2) and (6.0.3).

To see this, recall the definition of

P
θα
(K) = 〈T (A), Ur(z

−[(θα ,r)].A) | r ∈ R〉

and

I = 〈T (A), Ur(z
mr .A) | r ∈ R〉

where

mr =

{

1 if r ∈ R−

0 if r ∈ R+

Now, if r ∈ R+, then

[(θ
α
, r)] = 1 ⇐⇒ {r ∈ R+ | r = cα.α +

∑

β 6=α

xβ.β}
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Hence,

Ur(z
−[(θα ,r)].A)

Ur(zmr .A)
≃ Ga,k, if {r ∈ R+ | r = cα.α+

∑

β 6=α

xβ.β}

Again, if r ∈ R−, then

[(θ
α
, r)] = 0 ⇐⇒ {r ∈ R− | r involves simple roots 6= α}

Hence,

Ur(z
−[(θα ,r)].A)

Ur(zmr .A)
≃ Ga,k, if {r ∈ R− | r involves simple roots 6= α}

Putting together these data, we get (7.0.4). Now since

dim
C
M

X
(P

θα
(K)) = dim

C
M

X
(I)− dim

(P
θα
(K))

I

)

(7.0.5)

using (7.0.3), we get

dim
C
M

X
(P

θα
(K)) = dim(G)(g − 1) + dim(G/B) − ν(α)− µ(α)(7.0.6)

By (6.0.10), ν(α) = dim(G/B)− dim(G/P
α
) and we get (7.0.1) .

The equality (7.0.2) now follows by Theorem 6.4.

Q.E.D

7.6. Corollary. Let P(K)hs be a maximal parahoric subgroup in G(K) which is
hyperspecial. Then we have

dim
C
M

X
(P(K)hs) = dim(G)(g − 1)

and conversely.

Proof: By the Bruhat-Tits theory, the hyperspecial parahorics are simply the
maximal parahorics {P

θα
(K) | ∀α ∈ S,with cα = 1} upto conjugacy by G(K). In

these cases, the number µ(α) will now be

µ(α) = #{r ∈ R+ | r involves α}

since the largest possible coefficient for such an α in any positive root is 1. Hence for

the hyperspecial cases, dim
(

P
θα

(K))

I

)

= dim(G/B) and we are though by (7.0.5).

Q.E.D

7.7. Remark.Although the dimension of the moduli space is computable by the final
identification with (Ro/KG), the computation given above is of independent interest
since it is formal and works in any characteristic.
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7.8. Remark. Corollary 7.6 shows that in the case when all maximal parahorics are
hyperspecial, all the maximal parahoric moduli stacks have the same dimension.
This is so for example when G = SL(n), and the moduli stacks are the various
moduli of bundles with “fixed determinants”. For all other groups G, we always
have non-hyperspecial maximal parahorics which give a varying set of dimensions
among the maximal parahoric moduli spaces. These indeed are the new phenomena
which arise from this paper and need to be investigated further.

7.0.19. Properness of the moduli of (Γ, G)-bundles. Let H = G/Z(G), the
associated adjoint group. For such semisimple adjoint type groups we have the
following property.

7.9. Lemma. There exists a faithful irreducible representation ρ : H →֒ GL(n).

Proof: We easily reduce to the case when the group is simple (by taking the
tensor product representation for the product group). Then one can simply take
any fundamental representation for the simple factors and we are done.

Q.E.D

Fix the representation ρ : H →֒ GL(n) and a maximal compact KH of H such
that KH →֒ U(n). Consider the subset Bunτ

Y
(Γ, n)s ⊂ Bunτ

Y
(Γ, n) consisting of the

stable (Γ, GL(n))-bundles.

7.10. Lemma. Let φ : Bunτ

Y
(Γ, H) −→ Bunτ

Y
(Γ, n) be the morphism induced by the

representation ρ. Then the inverse image of the stable points φ−1(Bunτ

Y
(Γ, n)s) =

Bunτ

Y
(Γ, H)s, (when nonempty), consists of unitary (Γ, H)-bundles.

Proof: Let h = Lie(H). Consider the adjoint representation ad : H → GL(h).
Then we claim that a principal (Γ, H) bundle E is unitary if and only if the associated
(Γ, GL(h))–bundle E(h) is so. One way is obvious. Conversely, if E(h) comes from a
unitary representation of π, then we take the Lie bracket morphism E(h)⊗E(h) →
E(h). Either side comes from unitary representations of π and by local constancy
([18, Proposition 1.2]) it follows that E(h) gets a reduction of structure group to
the group A(h) = Aut(h). Note that we realize A(h) as the stabilizer of the GL(h)–
action on the tensor space h∗ ⊗ h∗ ⊗ h at the point [, ], the Lie bracket.

Since H is an adjoint group we have a short exact sequence:

1 → H → A(h) → F → 1

since H is the component of identity of A(h). Again we have a similar exact sequence
of compact groups:

1 → KH → KA(h) → F → 1

The bundle E is therefore such that E(A(h)) is a unitary bundle and comes from
a representation χ̄ : π → KA(h). Furthermore, the extended bundle E(A(h))(F ) is
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trivial since it comes with a section (giving E). By composing the representation
χ̄ with the map KA(h) → F , we see that the triviality of E(A(h))(F ) forces the
composite to be the trivial homomorphism, implying that χ̄ factors via χ : π → KH

to give the bundle E (cf.[1, Lemma 10.12]).

More generally, if ρ : H →֒ GL(n) is any faithful finite dimensional representation
we claim that a H-bundle E is unitary if and only if the associated bundle E(ρ) is
so. This assertion will be proved now.

One way is obvious. So assume that E(ρ) is unitary. Then by the earlier remark, if
we show that E(h) is unitary then we are done. First observe that since ρ is a faithful
representation of H , the adjoint representation can be realized as a H-submodule of
a direct sum of Tm,n(ρ). Further, since E(ρ) is a unitary vector bundle, the vector
bundle E(Tm,n(ρ)) is also unitary. Hence E(Tm,n(ρ)) is a polystable vector bundle
of degree zero. Since E(h) is a degree zero subbundle of a polystable bundle of
degree zero, E(h) must be polystable. Therefore, E(h) is a unitary vector bundle.
This proves the above assertion.

Now using the main theorem of [27] we see that points of Bunτ

Y
(Γ, n)s, being

stable bundles, are all unitary. Hence by the claim above the bundles in the inverse
image φ−1(Bunτ

Y
(Γ, n)s) are also unitary.

Q.E.D

7.11. Proposition. Let ρ be the faithful irreducible representation of H, as ob-
tained above in Lemma 7.9. Then the inverse image of Bunτ

Y
(Γ, n)s by the induced

morphism φ is nonempty.

Proof: Let π denote the group of holomorphic automorphisms of the universal
cover H of Y , which commute with the composition map H −→ Y −→ Y/Γ. Then
one knows that Γ is the quotient of π by a normal subgroup πo which acts freely
on Y and by [18] a Γ-bundle is stable if and only if it arises from a unitary rep-
resentation of π. The group π can be identified with the free group on the letters
A1, B1, · · · , Ag, Bg, C1, · · · , Cm modulo the relations (1.0.5) and (1.0.6).

So to prove that the inverse image φ−1(Bunτ

Y
(Γ, n)s) is nonempty, we need to

exhibit a representation
χ : π → KH

such that the composition

ρ ◦ χ : π → U(n) is irreducible.

Choose elements h1, · · · , hm ∈ KH so that they are elements of order ni, where
i = 1, · · · , m (these correspond to fixing the local type τ of our bundles).

It is a well–known fact that every element of a compact connected real semisim-
ple Lie group is a commutator. Further, by [29, Lemma 3.1] there exists a dense
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subgroup of KH generated by two general elements (α, β). Now define the represen-
tation χ as follows :

χ : π → KH

χ(A1) = α, χ(B1) = β, χ(A2) = β, χ(B2) = α

χ(Ai) = ai, χ(Bi) = bi, χ(Cj) = hj , i = 3, · · · , g, and j = 1, · · · , m

It is clear that χ gives a representation of the group π. Now, since ρ is irreducible,
and the image of χ contains a dense subgroup, the composition ρ ◦ χ gives an
irreducible representation of π in the unitary group U(n). Therefore, it gives a
stable Γ-linearized vector bundle, which comes as the extension of structure group
of a H-bundle. This completes the proof of the Proposition.

Q.E.D

7.12. Corollary. In the stack Bunτ

Y
(Γ, H) for the H-bundles, there is a non-empty

Zariski open substack consisting of unitary bundles of local type τ .

Proof: This follows immediately from the Lemma 7.10 and Proposition 7.11.

Q.E.D

We now return to G which is as before a semisimple, simply connected algebraic
group.

7.13.Proposition.In the stack Bunτ

Y
(Γ, G) for the G-bundles, there is a non-empty

Zariski open substack consisting of stable unitary bundles of local type τ .

Proof: Let ψ : Bunτ

Y
(Γ, G) → Bunτ

Y
(Γ, H) be the morphism induced by the

quotient map G → H . We claim that the required open subset of Bunτ

Y
(Γ, G) is

(φ ◦ ψ)−1(Bunτ

Y
(Γ, n)s).

Let E be a (Γ, G)–bundle in (φ ◦ ψ)−1(Bunτ

Y
(Γ, n)s). It follows that E(H) ∈

φ−1(Bunτ

Y
(Γ, n)s). By Lemma 7.10 the H–bundle E(H) comes from a unitary rep-

resentation ρ : π → KH .

Recall that, by the structure of π described above, there is a central extension

1 → Zπ̃ → π̃ → π → 1(7.0.7)

where π̃ is generated by A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cm together with a central
element J satisfying the extra relation

[A1, B1] · · · [Ag, Bg] · C1 · · ·Cm = J.(7.0.8)

It is easy (as in [19]), by adding an extra lasso around a dummy point (other than
the parabolic points) to choose a lift of ρ to a representation η : π̃ → KG so that

37



the associated (Γ, G)–bundle E(η) also maps to E(H). Thus, both E and E(η) give
E(H) under the quotient map G→ H .

Therefore, by twisting by a central character of π̃, we get a representation π̃ → KG

which gives the (Γ, G)–bundle E (cf. [23, Page 148]).

We claim that this representation π̃ → KG in fact descends to a representation
π → KG. This follows from the fact that the local type of E at the dummy point is
trivial.

Thus, all bundles in (φ ◦ ψ)−1(Bunτ

Y
(Γ, n)s) are unitary (cf. [1, Lemma 10.12]).

Furthermore, it is easy to see that a (Γ, G)–bundle is stable if and only if the
associated (Γ, H)–bundle is so (cf. [23, Proposition 7.1]). It follows that all points
of (φ ◦ ψ)−1(Bunτ

Y
(Γ, n)s) are also stable (Γ, G)–bundles.

Q.E.D

By the categorical quotient property of the moduli spaceMτ

Y
(Γ, G) it can be shown

that there is a continuous map ψ : Rτ (π,KG) →Mτ

Y
(Γ, G). Let f : Bunτ

Y
(Γ, G)ss →

Mτ

Y
(Γ, G) be the canonical quotient map.

7.14. Remark. In fact, this open substack obtained in Proposition 7.13 gets identified
with the open subspace of Mτ

Y
(Γ, G) of (Γ, G)–bundles with full holonomy and is

hence smooth since such bundles have trivial automorphism groups.

7.15. Theorem. The above map ψ is surjective and hence Mτ

Y
(Γ, G) is compact.

Thus the variety Mτ

Y
(Γ, G) gets a structure of a projective variety. Moreover, this

implies that the stack Bunτ

Y
(Γ, G)ss is proper.

Proof: Consider the canonical categorical quotient map f : Bunτ

Y
(Γ, G) →

Mτ

Y
(Γ, G). Let

Bunτ

Y
(Γ, G)s := (φ ◦ ψ)−1(Bunτ

Y
(Γ, n)s)

Since f is surjective (and hence dominant), by Chevalley’s lemma, the image
f(Bunτ

Y
(Γ, G)s) in Mτ

Y
(Γ, G) contains a Zariski open subset.

By the Proposition 7.13 above the subset Bunτ

Y
(Γ, G)s is nonempty and consists

entirely of unitary bundles. That is, the image f(Bunτ

Y
(Γ, G)s) is a subset of the

image ψ(Rτ (π,KG)) in Mτ

Y
(Γ, G). Thus, it follows that ψ(Rτ (π,KG)) contains a

Zariski open subset of Mτ

Y
(Γ, G). But then, since Rτ (π,KG) is compact the image

ψ(Rτ (π,KG)) is closed in Mτ

Y
(Γ, G) and contains a dense subset, and is therefore

the whole of Mτ

Y
(Γ, G), since these moduli spaces Mτ

Y
(Γ, G) are irreducible (by

Proposition 7.4).

This proves that Mτ

Y
(Γ, G) is topologically compact and hence by GAGA a pro-

jective variety.
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That this implies the properness of the stack Bunτ

Y
(Γ, G)ss follows for instance

from [4, Lemma 3.1].

Q.E.D

7.16. Corollary. Let P
θ
(K) ⊂ G(K) be a parahoric subgroup. Then the moduli

stack Mss
X
(P

θ
(K)), of semistable parahoric bundles is irreducible and proper.

Proof: This is immediate from Theorem 7.1, Theorem 4.6, Theorem 5.6, Propo-
sition 7.4 and Theorem 7.15.

Q.E.D

7.17. Corollary. The map ψ : Rτ (π,KG) → Mτ

Y
(Γ, G) defined above descends to

a map
ψ∗ : Rτ (π,KG)/KG →Mτ

Y
(Γ, G)

which gives a homemorphism of topological spaces. Further, the subset Ro/KG of
equivalence classes of irreducible unitary representations maps bijectively onto the
subset of stable (Γ, G)-bundles.

Proof: Follows from the above discussions. The fact that irreducible representa-
tions give stable bundles follows exactly as in [23].

Q.E.D

7.18. Corollary. Fix the local type τ = τ (α) (see Definition 1.4). Then the
dimension of the moduli space Mτ

Y
(Γ, G) is given by dim(G)(g−1)+dim( G

Pα
)−µ(α)

where µ(α) = #{r ∈ R+ | r = cα.α+
∑

β 6=α xβ .β} and P
α
⊂ G the standard parabolic

subgroup associated to the simple root α.

Proof: This follows from Theorem 7.5 and the irreducibility of the stack, or equiv-
alently from Theorem 6.4 and the Corollary 7.17 .

We get as an immediate consequence of Corollary 7.17 the following important
conclusion:

7.19. Corollary. There is an equivalence of categories between stable parahoric
G

Ω,X
–torsors, (E,w

θ
) and stable (Γ, G)–bundles of local type τ and hence with irre-

ducible unitary representations of type τ of the group π. This induces an isomor-
phism of the moduli stack M

X
(P

θ
(K))s of stable parahoric torsors with the moduli

space Mτ

Y
(Γ, G)s of stable (Γ, G)–bundles of local type τ as well as a bijection with

the set Ro/KG of equivalence classes of irreducible unitary representations.

7.20. Remark. Following A. Ramanathan, it is natural to expect that the points of
the moduli space Mτ

Y
(Γ, G) are precisely certain S–equivalence classes of bundles.

This together with a suitable interpretation of this equivalence for G
Ω,X

–torsors on
X can be given with suitable modifications of the classical ones.
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7.21. Remark.A proof of properness of the functor of (Γ, G)-semistable bundles along
the lines of [4] or [10] can also be given.

7.22.Extension to the case when the structure group is reductive.: LetH be
a connected reductive algebraic group. Let S = [H,H ] be the derived group, i.e the
maximal connected semisimple subgroup of H . Let Z0 be the connected component
of the centre of H (which is a torus) and one know that S and Z0 together generate
H . In fact, Z0 × S → H is a finite covering map. It is easy to see (following [23,
page 145]) that (Γ, G)–bundles gives rise to (Γ, H)–bundles and the stability and
semistability of the associated (Γ, H)–bundles follows immediately from that of the
(Γ, G)–bundles.

The problem of handling the reductive group G reduces to the problem of handling
the semisimple groupH but which is not simply connected. Let G be the semisimple,
simply connected algebraic group which is the covering group of H .

We are in the situation of Proposition 7.13. Recall the central extension (7.0.7).
By adding a dummy point other than the parabolic point, the theory of (π,H)–
bundles is recovered from that of (π̃, G)–bundles. Notice that a homomorphism
π → KH has as many liftings π̃ → KG as the order of the centre of G. It follows
quite easily, following arguments as in Lemma 7.10, that the number of connected
components of the moduli space in the non-simply connected case is given by the
order of the centre of G. In fact, Hom(π̃, KG) is a union of spaces labelled by
elements of the centre of G. Let Z0 = Ker(G → H). Then, there is an action of
H1(X,Z0) on a specific labelled subset of Hom(π̃, KG). A component of the moduli
space of representations into KH can be obtained as a quotient of each of these by
the action of H1(X,Z0). Details of these ideas are again found in [23, page 148]
and follow the ideas of Narasimhan and Seshadri [19], where the data over a dummy
point is called a “special parabolic structure”.

8. More remarks

We begin with some well-known remarks on centralizers of semisimple elements
in a simply connected semisimple group G. We have benefitted from a manuscript
of V.Drinfeld on this.

Recall that any Levi subgroup L ⊂ G can be realized as the centralizer Z
G
(g)

for some semisimple element g ∈ G. If G = SL(n), then the centralizer of any
semisimple element is a Levi subgroup but this is not true for a general simply
connected semisimple G. There are some natural examples which illustrate this.

However, our interest is in centralizers Z
G
(g) which are not merely reductive,

but are in fact semisimple. A Levi subgroup of G cannot be semisimple unless it
equals G, while there are plenty of examples of centralizers which are semisimple
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and hence not Levi subgroups. Let us assume that G is also simple for the rest of
the discussion.

Let A(G) be the following:

A(G) = {conjugacy classes of g ∈ G such that g and Z
G
(g) are semisimple.}

in particular we note that since g lies in the centre of Z
G
(g) it is of finite order. Let

B(G) = {set of vertices of the extended Dynkin diagram}

We follow the notations in §3. Let α
max

denote the highest root and c
αi

be the
coefficients (see (3.0.3)). Choose an isomorphism e : Q/Z → {roots of unity in k×}.

There is a bijection

ℓ : B(G)
∼
−→ A(G)(8.0.1)

given as follows: the vertex corresponding to α
max

goes to 1 ∈ G. The vertex
corresponding to α

i
is sent to g

αi
, where

g
αi

:= ω̌i(e(
1

c
αi

))

and where ω̌1, . . . , ω̌r are the fundamental co-weights i.e (αi, ω̌j) = δij and moreover,
we view ω̌i as a morphism ω̌i : Gm → T (cf. Borel-de Siebenthal [5] and Victor Kac
[13]) .

8.1. Remark.Drinfeld remarks that there are two surprises in this bijection ℓ. Firstly,
for each n ∈ Z, one has the map fn : A(G) → A(G) defined by fn(g) = gn. This map
is hard to realize on the side of B(G). Secondly, instead of considering ω̌i(e(

1
cαi

)),

one could consider ω̌i(e(q)) for q ∈ Q/Z. It is not apparent as to why this element
comes from B(G). We remark that Theorem 2.3 gives a proper justification of this
and places this fact in the context of “weights ” developed in §5 of this paper.

8.2.Recall that the set of simple roots in R was denoted by S. Out of this set S one
can construct the Dynkin diagram in the usual manner: the vertices of the diagram
are the elements of S and the nature of the link viz, empty set, single stroke or
oriented double or triple stroke, between two vertices α and β is determined by the
value α̌(β) or β̌(α). Let S = S(G) also denote the Dynkin diagram of the group
G. Let α0 = −α

max
, the opposite of the highest root, that is, the only root such

that, for all α ∈ R, α − α0 is a linear combination with positive coefficients of the
elements of S. The set of roots S ∪ {α0} also gives rise to a Dynkin diagram, called

the extended Dynkin diagram of G, or of R and denoted by S̃.

Let α
∗
∈ S (thought of as a vertex of the Dynkin diagram) and set S ′ = S̃−{α

∗
} =

S ∪ {α0}− {α
∗
}. Let H be the subgroup of G generated by the root groups U

α
and

U
−α for α ∈ S ′. The group H is a semisimple subgroup of G containing T and its

Dynkin diagram is S ′.
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Let G
θα∗

be the Bruhat-Tits group scheme associated to the simple root α
∗
∈ S,

then recall that the group G
θα∗

(A) is a maximal parahoric subgroup P
θα
(K) of

G(K) = G
θα∗

(K).

It is shown in [32, Page 662] that

(G
θα∗

)
k
/unipotent radical ≃ H(8.0.2)

In other words, for vertices of the Dynkin diagram the closed fibre of the Bruhat-Tits
group schemes modulo the unipotent radical is actually semisimple and its Dynkin
diagram is given by S ′.

Let Y (T ), as above, denote the group generated by the coroots α̌i. Then one has
the identifications:

{Elements of finite order}/conjugation ≃ {Elements of finite order in T}/W

and this is the same as

(Y (T )⊗Q/Z)/W ≃ (Y (T )⊗Q)/W
aff

where W
aff is the affine Weyl group. Further, (Y (T )⊗Q)/W

aff gets identified with
the simplex

∆ := {x ∈ Y (T )⊗Q | (x, α
max

) ≤ 1, (x, αi) ≥ 0, 1 ≤ i ≤ r}

We now tie this with the theory developed in this paper. Recall that each vertex
x ∈ ∆, corresponds to a simple root α in the extended Dynkin diagram S̃ and
there is a maximal parahoric subgroup P

θα
(K) ⊂ G(K). The theory developed

in this paper associates to each such maximal parahoric subgroup a moduli stack
M

X
(P

θα
(K))s of stable parahoric torsors under a Bruhat-Tits group scheme G

θα
.

We therefore have a set-map Ms
B(G) → B(G) with fibres M

X
(P

θα
(K))s.

The “unitary correspondence” established in Theorem 2.0.11 shows that, for every
such moduli stack M

X
(P

θα
(K)), there is a corresponding unitary moduli space of ir-

reducible representations Ro/KG
⊂ Rτ (α)(π,KG)/KG

and we have an identification
of the moduli spaces given by Corollary 7.19.

Note that to each g
α
∈ A(G), as a part of the datum in the moduli space of

“unitary representations” Rτ (α)(π,KG) the conjugacy class of g
α
determines the

“type” τ (α). We again have a set-map Rirr
A(G) → A(G) with fibres Ro/KG

.
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The main result of the paper can be interpreted as the “lifting” of the bijection
ℓ : B(G) → A(G) to a diagram:

Ms
B(G)

ℓ̄
//

��

Rirr
A(G)

��

B(G)
ℓ

// A(G)

(8.0.3)

In fact, as a consequence of the results proved in this paper, one has a larger picture,
namely the bijection extends even over the interior points of the simplex ∆. We recall
here the classical theorem attributed to Borel-de Siebenthal and Dynkin.

8.3. Theorem. (Borel-de Siebenthal, Dynkin) The Dynkin diagram of Z
G
(g

αi
) is

obtained from the extended Dynkin diagram of G by omitting the ith–vertex.

The next observation (possibly well-known to experts), which is essentially a
piecing together of facts from Bruhat-Tits theory, explains the bijection between
B(G) and A(G) somewhat more canonically.

8.4. Theorem.

(1) Take α ∈ B(G) and let G
θα

be the associated Bruhat-Tits group scheme. For

any vertex α , the corresponding centralizer Z
G
(g

α
) (which is semisimple) is

realized as

Gred
θα

≃ G
θα
/(unipotent radical) ≃ Z

G
(g

α
)

(2) For each α ∈ ∆hs (the “hyperspecial vertices), we have Z
G
(g

α
) = G.

(3) For each α /∈ ∆hs (the non-hyperspecial vertices) we see that Z
G
(g

α
) ( G are

proper semisimple subgroups of G.

Proof: The group Z
G
(g

αi
) is semisimple and furthermore, by Theorem 8.3, the

Dynkin diagram of Z
G
(g

αi
) is obtained from the extended Dynkin diagram of G by

omitting the ith–vertex. The first statement now follows from (8.0.2) and from this
identification, the last two are easy consequences of the theory of Bruhat-Tits.

8.5. Remark.In this context, S. Ramanan told us of a result of his on the moduli space
of stable principal G–bundles on curves. The centralizers of various automorphism
groups of stable bundles are precisely the groups occurring in the set A(G) described
above.

8.6.Remarks on the variation of weights and stability. Consider T/W which
parametrizes conujugacy classes of elements of G. In each conjugacy class with
centralizer semisimple we have an element of finite order. Stratify ∆R = ∆ ⊗ R by
the real dimension of the conjugacy class above each x ∈ ∆R. Let φ be the map
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φ : C → ∆R and we consider C as the set of conjugacy classes of elements in the
maximal compact subgroup K

G
⊂ G. Observe that each fibre

φ−1(x) ≃ K
G
/Z

K
(gx)

Let

∆d = {x ∈ ∆R | dimR(φ
−1(x)) = d}

8.7. Remark.

(1) It seems that the connected components of ∆d correspond to the non-
isomorphic parahoric moduli spaces associated to parahoric groups P

x
(K) ⊂

G(K), for x ∈ ∆d. The complex dimensions can be computed in a fashion
similar to Theorem 7.5.

(2) The strata ∆d for maximum d are precisely the “hyperspecial moduli”. These
correspond under the identification ℓ (8.0.1) to the “hyperspecial vertices”
in B(G).

(3) If the vertex x corresponds to αx = α ∈ B(G) and if c
α
6= 2, then the fibre

φ−1(x) gets an almost complex structure which is not complex.
(4) A striking example is the case when G = G2 and α = α1, cα = 3 and

φ−1(x) ≃ S6, the real 6–sphere.
(5) If c

αx
= 2, then φ−1(x) admits no invariant almost complex structure. These

results follows from the works of Borel-de Siebenthal, Wang and Hermann
written in the early 1950’s.

(6) In terms of the moduli stacks, these statements reflect the phenomenon that
there are no “forget” morphisms from the maximal parahoric moduli to the
moduli space of principal G–bundles. In other words, as mentioned in [2],
parahoric moduli are not describable as “parabolic G–bundles” as one might
erroneously expect from the linear case.
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Séminaire Bourbaki, Exposé 141, (1956-57).
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