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In Dolera, Gabetta and Regazzini [Ann. Appl. Probab. 19 (2009)
186-201] it is proved that the total variation distance between the
solution f(-,t) of Kac’s equation and the Gaussian density (0,0?) has
an upper bound which goes to zero with an exponential rate equal to
—1/4 as t — +o00. In the present paper, we determine a lower bound
which decreases exponentially to zero with this same rate, provided
that a suitable symmetrized form of fy has nonzero fourth cumulant
k4. Moreover, we show that upper bounds like 6567(1/4)tp5(t) are
valid for some ps vanishing at infinity when [, [o]*T fo(v) dv < 400
for some § in [0,2[ and k4 = 0. Generalizations of this statement are
presented, together with some remarks about non-Gaussian initial
conditions which yield the insuperable barrier of —1 for the rate of
convergence.

1. Introduction. In order to determine the rates of relaxation to equilib-
rium in kinetic theory, Kac derived the following Boltzmann-like equation,
commonly known as the Kac equation:

o 1 21
%(U’t):%/() /R[f(vcosﬂ—wsinﬂ,t)

(1) X f(vsin® +wcosb,t)
— f(v,t) - f(w,t)] dwdb (veR,t>0)

with some specific probability density function fy as initial datum. The
resulting Cauchy problem admits a unique solution within the class of all
probability density functions on R. Such a solution provides the probability
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2 E. DOLERA AND E. REGAZZINI

distribution at any time of the velocity of a single particle in a chaotic bath
of like molecules moving on the real line; see Kac (1956, 1959) and McKean
(1966). It is well known that the probability measure p(-,t) determined by
f(-,t) converges to a distinguished Gaussian law in the variational metric,
namely

(2) dTV(:u('vt);'Ya) ‘= sup |H(B7t) - 'YU(B)‘ —0 (t - +OO)
BEA(R)

where 7, denotes the Gaussian distribution with zero mean and variance
o? and, for any metric space S, %(S) stands for the Borel class on S. It
should be recalled that (2) holds true if and only if the initial datum has
finite second moment and o2 is the value of this moment. The proof of the
“if” part of this assertion is given in Dolera (2007) by adapting arguments
explained in Carlen and Lu (2003), whereas the proof of the “only if” part
is contained in Gabetta and Regazzini (2008).

In regard to the speed of approach to equilibrium, it has been proven that

(3) dTV(H('7 t); ’Ya) S C*e_(1/4)t (t 2 0)

holds, with C being some suitable constant depending only on the behavior
of fy, when fy has finite fourth moment and

(4) oo(€) == /R ¢ fo(z) dz = o(E]7)  (|€] = +o0)

is valid for some p > 0; see Dolera, Gabetta and Regazzini (2009). This
work will be refered to as DGR throughout the rest of the present paper.
Inequality (3) is known as McKean’s conjecture and the above statement
constitutes the first satisfactory support of this conjecture. Other bounds
with respect to weak metrics have been given in Gabetta and Regazzini
(2010).

At the end of Section 2.2 of DGR, the question of whether the upper
bound in (3) can be improved is posed. To the best of the authors’ knowledge,
this problem has not yet been tackled, except for a hint on page 370 of
Carlen, Carvalho and Gabetta (2005). The main proposition in the present
paper states that the answer is in the affirmative only in the rather peculiar
case in which the fourth cumulant of the density fo(z) := {fo(x)+ fo(—x)}/2
is zero. The term “fourth cumulant” of a probability distribution Q on A(R)
refers to the quantity

}i(@) = [ (0= Q)'Qwn) —3( - @2Q<dx>>2,

with Q := Jg #Q(dz), under the assumption that the fourth moment is finite.
This cumulant is zero, for example, when Q is Gaussian.
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In view of this fact, one could comment on the main proposition by noting
that improvements of the rate expressed by (3) turn out to be impossible
when fy is dissimilar to all of the members in the class of all Gaussian
probability density functions. For the sake of completeness, we recall that,
given the Fourier—Stieltjes transform ¢ of Q, the rth cumulant of Q is defined
to be the coefficient of (i€)" /r! in the Taylor expansion of log(g(§)); see, for
example, Sections 3.14-3.15 of Stuart and Ord (1987).

As a further remark on the aforementioned proposition, it is worth noting
its resemblance to well-known facts related to the approximation of the
distribution function F,, of the “standardized” sum of n independent and
identically distributed random variables with finite variance, by the standard
Gaussian distribution ®. Indeed, in general, F,, is approximated by ®, except
for terms of order 1/4/n. However, higher orders of approximation hold when
the skewness and kurtosis of the common distribution of each summand are
zero. Lyapounov (1901) was the pioneer of these kinds of problems, followed
by Cramér (1937), Esseen (1945) and others.

The structure of the paper is as follows. Section 2 contains the presen-
tation of the main results. Section 3 deals with the basic preliminary facts
which pave the way for proofs of the main results. It is split into two sub-
sections. The former consists of a brief description of the probabilistic inter-
pretation, according to which p(-,¢) can be seen as distribution of a random
weighted sum of random variables. The latter is devoted to the analysis of
the error associated with the approximation of the law of certain weighted
sums of independent random variables to the Gaussian distribution. Sec-
tion 4 contains the proofs of the main results stated in Section 2. Finally,
some purely technical details are deferred to the Appendix, together with
the proofs of two lemmas formulated in Section 3.

2. Presentation of the new results. In order to present the main results
we intend to prove in this paper, it is worth mentioning the following weak
version of Kac’s problem (1) proposed in Bobylev (1984). Taking the Fourier
transform of both sides of (1) yields

21
6)  GHen =g [ elceostun)plesing s —ple.

with initial datum ¢o(£) := [ €% fo(x) dz. It should be noted that if ¢ is
the Fourier—Stieltjes transform of any (not necessarily absolutely continuous)
probability distribution pg on Z(R), then (5) can be thought of as a new
problem which generalizes (1). In any case, (5) admits a unique solution
©(+,t), which characterizes—in the form of a Fourier—Stieltjes transform—a
probability distribution pu(-,t) which, throughout the paper, will be said to
be a solution of (5). Obviously, in problem (1), one has o (B) := [ fo(v) dv
and (B, t) := [ f(v,t)dv for every B in B(R).
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In order to formulate the new results exhaustively, let m,, and m, denote
the rth moment and the absolute rth moment of g, respectively, and let
1o be the symmetrized form of pg defined by

(6) fi(B) :={po(B) + po(=B)}/2,  BeBR),

where —B denotes the set {z|—x € B}.
A precise statement of the fact that the rate —1/4 may be the best possible
one is contained in the following theorem.

THEOREM 2.1. Suppose that g possesses finite fourth moment my and
that k4(fig) # 0. Moreover, let o2 be the value of my. There then exists a
strictly positive constant C', depending only on the behavior of pg, for which

(7) dry (u(-,t);70) > Ce™ /D

holds true for every t > 0.

The proof of this theorem, deferred to Section 4, also contains a precise
quantification of C. Since

1
sup [P(B) - Q(B)| =5 [ Ip(o) ~ (o) da
BeA(R) R
is valid whenever P and Q are absolutely continuous probability distributions
with densities p and ¢, respectively, as an immediate consequence of Theorem
2.1, it follows that
1 2 2
Fo,8) = ——e /207

®) %/R ov/2m

is true for the solution f(-,t) of (1), provided that the initial datum fj yields
a probability measure g with the same properties as in Theorem 2.1. From
(8), it plainly follows that any inequality such as

F(0,1) = —met207)

/R oor

is not valid when p vanishes at infinity. This clarifies why inequality (3) can
be viewed as sharp.
We now analyze the effect of assuming that r4(fig) = 0.

dv > Ce~ /41 (t>0)

dv < Coe=WDpt)y  (t>0)

THEOREM 2.2. Consider Kac’s equation (1) with initial datum fo such
that My 5 < 400 for some 0 in [0,2] and k4(fip) = 0. Further, let @o, the
Fourier transform of fo, satisfy the usual tail condition (4) for some strictly
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positive p. There then exist a strictly positive constant Cs = Cs(fo;p) and a
function ps:[0,+o00[— [0,400] which vanishes at infinity, for which

(9) /R f(v,t)—a\}%

In particular, if 6 belongs to ]0,2[, one can take
(10) ps(t) = exp{(—=3/4 + 2a445)t}

with o := 35— fo%r |sin6|* db.

e~/ | gy < Cse= M/ ps(t) (t>0).

Useful information for quantifying Cs can be found in Sections 4.3, 4.4
and Appendices A.2 and A.4.

Since even cumulants g, of the Gaussian distribution (0,0?%) vanish for
m > 2 and supgcg|e(€,t) — Rep(€,t)] < 2e7", one is led to think that the
approach to equilibrium of x(-,t) might become faster when the symmetrized
form of the initial datum gives an increasing number of zero even cumulants.

THEOREM 2.3.  Consider problem (1) and maintain the same notation
as before for fo, po, flo, wo and as. Further, assume that there exist an
integer x greater than 2 and a number § in [0,2[ for which:

(i) Jg [0 fo(v) dv < +oo;
(ii) the cumulants ko, of fo vanish for m=2,...,x;
(iil) g meets (4) for some strictly positive p.

There then exists a strictly positive constant UW; zax,g(fo;p) for which

1
(11) /R f(’U,t) - U\/ﬁe
holds true.

—v2/(202) dv < 6X,5€_(1_2a2x+6)t (t > O)

Useful information for quantifying C, 5 can be found in Section 4.4 and
Appendix A.2.

It should be noted that, except for the centered Gaussian law, the most
common distributions do not share condition (ii), at least for large values of
X. Therefore, it is reasonable to believe that Theorem 2.1 covers the usual
applications.

It would be interesting to check when, under suitable conditions for the
initial distribution, the value —1 for the rate of relaxation to equilibrium is
actually obtained. The following propositions resolve this issue, under the
additional condition that all moments of g are finite. It therefore remains
to check whether this moment assumption can actually be recovered from
this high order of relaxation to equilibrium. This problem will be tackled in
a forthcoming work.
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PROPOSITION 2.4. If pg possesses moments of every order and the so-
lution p(-,t) of (5) satisfies

drv(p(-,t);7.) < Ce™

for some strictly positive constant C, then

(12) ,UO(') :70(')+00(')7

where oy 1s a finite signed measure satisfying oy(A) = —os(—A) and v,(A)+
0s(A) >0 for every Borel subset A of R.

Observe that the Wild formula [cf. (13) in Section 3.1] implies that
drv(p(-,t);70) = |og|e™ when the initial datum is of the type (12). There-
fore, if one assumes there exists some p:[0,400[ — [0,+00[ vanishing at
infinity so that drv(u(-,t);7,) < Ce 'p(t), then the total variation |o,| of
oo satisfies |o,| < Cp(t) for all positive ¢, which is tantamount to asserting
that o, is the null measure. This provides a proof for the following result.

COROLLARY 2.5. If pg has moments of every order and the solution
w(-,t) of (5) satisfies

dTV(:u('v t); 'YU) < Ceitp(t)

for some p wanishing at infinity and for some positive constant C, then
(-1t) =0 () for every t > 0.

Thus, if all of the moments of g are finite, then the value for the rate of
convergence to equilibrium that one cannot sharpen is just —1, unless pg is
Gaussian.

3. Preliminaries. To pave the way for the proofs of the main statements,
this section presents some necessary preliminary facts and results. First, it
explains the probabilistic meaning of Wild’s series, originally pointed out in
McKean (1966). Second, it gives new asymptotic expansions for the charac-
teristic function of weighted sums of independent and identically distributed
random variables, which complement analogous statements formulated in,
for example, Chapter 8 of Gnedenko and Kolmogorov (1954), Chapter 6 of
Petrov (1975) and Section 3.2 of DGR.

3.1. McKean’s interpretation of Wild’s sums. Following Wild (1951),
one can express the solution ¢(-,t) of (5) as a time-dependent mixture of
characteristic functions, that is,

(13) P& t) =Y et (1—e )" Gu(& o),

n>1
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where
Q1(&0) = po(§),
1 n—1
Qnl€p0) = — > @r(Ep0) ¥ dn-k(E00)  (n>2)
k=1
and * denotes the so-called Wild product defined by

1

27
91(5)*92(5)::%/0 g1(&cosB) - ga(Esinh) db.

The Wild series, thanks to a symmetry property of the Wild product,
yields a useful decomposition of p(-,t) which we will use later. Such a de-
composition involves the symmetrized form i of a probability measure p
defined by fi(B) = [i(B) + pu(—B)]/2 for any B in A(R). It is well known
that if x(*)(-,#) denotes the solution of (5) with initial datum fig [see (6)],
then one can write

(14) ) = i) () = (e

with og(-) := po() — fio(*)-

The next description of the probabilistic reinterpretation of (13) closely
follows Section 3.1 of DGR. Accordingly, we introduce, using exactly the
same notation adopted therein, the measurable space (€2,.%) as a prod-
uct, together with its coordinate random elements v, 7, 6 := (0,,),>1, v =
(Un)n>1. We then recall the definitions of the random elements ¢;, 7; given
in terms of McKean trees and put 8 = (v, 7,0). Concerning the random vari-
ables 7;, recall the fundamental equality

v

(15) ZWJQ =1,

j=1

which holds true whenever 7 belongs to G(v).

Now, for some fixed initial datum pg for problem (5), define a family
(P¢)¢>0 of probability measures on (£2,.%#) according to (12) in DGR. Next,
consider the random variable

(16) V = Zﬂ'jvj
7j=1

and note, via the Wild formula, that
w(B,t)=P{V € B} (Be #(R),t>0)

u(+,t) being the solution of (5) with pg as initial datum.
Consequently, the random variables v,, turn out to be conditionally in-
dependent, given [, with respect to each P,. Moreover, since § and v are
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independent, one can think of the conditional probability distribution of
V given (8 as the distribution of a weighted sum of independent random
variables. Indeed, for any fixed elementary case w in €2, one can define the
random variable

v (@)
(17) V()= m@y()
j=1

on (9,.%), for which
(18) PAV <z|f}w)=P{V <z} (z€R,t>0)

holds Py-almost surely in w. This last equality plays a central role in the rest
of the paper since it allows us to work on a finite sum of independent random
variables using typical tools of the central limit problem. In this context, it is
important to examine the behavior of the moments of the random variable
V. Their evaluation essentially depends on sums of powers of the 7; via the
following identity proven in Gabetta and Regazzini (2006):

(19) e[St <o
j=1

o being the same as in Section 2.

3.2. Some asymptotic expansions for the characteristic function of weighted
sums of independent random variables. As in Section 3.2 of DGR, the sub-
ject to be investigated here is the behavior of the characteristic function of
weighted sums of independent and identically distributed random variables.
The expansions given here turn out to be more careful than the analogous
ones contained in the aforementioned work since it is now assumed that the
common probability law of the summands possesses moments of arbitrarily
high order. Cumulants will play a central role in the analysis of the remainder
terms. Finally, the study of the convergence of weighted sums will provide
appropriate conditions to improve the rate of approach to equilibrium for
solutions of (1).

In the rest of this subsection, (X;);>1 stands for a sequence of independent
and identically distributed real-valued random variables on some probability
space (E,&,Q) with common nondegenerate distribution ¢ on (R, Z(R)). It
is assumed that ¢ is symmetric [that is, ((B) = ((—B) for every Borel set
B of R] and possesses finite moments up to order k + §, where k =2y, x
being some integer greater than 1 and § being an element of the interval
[0,2]. Denote the rth moment and the absolute rth moment of ¢ by m,
and m,., respectively. Note that the variance o2 of ¢ coincides with my. Set
Y(€) == [ €**((dx), which turns out to be an even real-valued function,
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and for every positive integer n, define {c1 ,...,cnn} to be an array of real
constants such that

(20) S, =1
j=1

holds for every n. Now, let V;, be the sum of Vi ,,...,Y,, 5, where
1 .
Yjn = ;cijj,n (j=1,...,n)

and let v, be the characteristic function of V;,. Consider the rth cumulant
K, and recall that, in general, it can be defined by

r k;
(21) ﬁr:r!Z(—ns1.(5—1)!-1'[%(%) (r=1,...,k)
() =1 N

where the symbol (x) means that the sum is carried out over all nonnegative
integer solutions (k1,...,k,) of equations

k1+2/€2+"'+?”kr27‘,
ki+ke+--+k.=s

with the proviso that 0° = 1. Symmetry of ¢ implies that existing cumulants
of odd order are equal to zero.

From a technical fact proved in the Appendix, Section A.1, after defining
Yo = {[~60% + (360* 4 12m4) /2] /my}1/2 one has ¥(€) > 1/2 if |¢| < yo and

X

(22) log (€)= 3_(~1)" o€ +€" - enl©)

r=1

where €, is continuous on [—yo, yo] and differentiable on [—yo, yo] \ {0}. More-
over, this function satisfies €;(0) =0 and lim¢_,g 0x(§) =0, with gx(§) :=¢ -

€,(€). Consequently, Mék) 1= SUDP¢e[—yo,y0] [€£(§)] and Mfk) 1= SUDge[—yo,y0] |0 (§)]
are two finite constants which depend only on the behavior of the common
probability law (.

Now, following the same line of reasoning as in Chapter 6 of Petrov (1975),
we introduce the quantities

n
(23) App 1= D20 N7 2 (r=1,...,%x)

J=1

and define the polynomials

T km
(24) pr,n(f) I:Z(H ]{%ﬂ(%) >(_1)r+s£2(r+s)

() \m=1
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for r=1,...,x — 1. In addition, we introduce another family of functions

Mk,n, Which will be used to approximate the characteristic functions ),
defined by

-
(25) Men(€) =e €2 1Y Pa(€)-e 2 (ceR).

At this stage, we are in a position to state a couple of preliminary results
that play an important role in the rest of the paper.

LEMMA 3.1.  Assume that x =2 (i.e., k=4) and 6 = 0. There then ezists
a positive constant C}, depending only on the behavior of ¢, such that

(;@)],
()]

(26) [t (€) — nan(€)| < Ciete /2[ 4Zcm+2cm

(27) (€)= 1un(€)] < 1L+ £Ye €/ [Z Sat D Cin

Jj=1 j=1
and
[04,(€) = 13 ()]
(28) < CilEP(1+€8)e 2
[ St () oo (29)))]

hold true for every |{| < Ay p = Uyo(zj 1 Czln) 1A,

In (26)—(28), recall that e4 is defined by (22) with k=4, and p4(§) :=
£e4(8)-

For general k= 2y and J, we have the following result.

LEMMA 3.2. [f‘ﬂ < A Sn = UQO(Z] 163171) 1/(k+6), then

(29) () = mn(€)] < CF gpok(€)[€]FH0eE /2 (Z \cj,n\’“”)
j=1
and

* — —£2 E
(30) L&) = i n(O)] < CF spra(€) 102 (Z |cj,n\k+5>,
j=1
where C;:,a is a constant depending only on the behavior of ¢ and pox(§),
p1,k(€) are polynomials whose coefficients depend only on k.
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The proofs of these lemmata are deferred to Section A.2, in which one
can also find instructions for the evaluation of Cj, C} 5, pox(§) and pi1 x(§).
Inequalities (29) and (30) immediately entail that

Ak,5,n 1/2 n
(31) ( / |wn<5>—nk,n<£>|2d£> <c;s,aak<2|cj,n|’f+5>

_Ak,(s,n 7j=1
and
Ak,é,n 1/2 n s
(32) ( | w;@)—nzm(&)\?ds) < O s [ S lesal ).
—Ak.6,n 7j=1

where @y, is the maximum between ([p£**(1 + 52)2]93716(5)6*52 dé)'/? and
(J€ 21+ €)%} (e )2,

4. Proofs of the main results. We first prove Theorem 2.1 and then
focus on Proposition 2.4. In fact, they rest on similar arguments. We will
then provide proofs for Theorems 2.2 and 2.3 by adapting methods used in
Section 4 of DGR.

Before starting, it is worth introducing some new symbols which will
be used hereafter. First, choose a version of the conditional distribution
function P.{V < z|f} and call it F*(x). In view of (18), it does not depend
on t. F*(x)[w] will indicate dependence of F*(x) on a specific sample point
w in . The Fourier-Stieltjes transform of F*(-)[w] will be designated by
©*(+)[@]. Moreover, an integral over a measurable subset S of 2 will often
be denoted by E[-; S]. Symbols m, and m, for [z"po(dv) and [ |z|"po(dz),
respectively, will continue to be used and o2 will designate the value of mo,
while yo will stand for the quantity {[—602 4 (360 + 12m4)'/?]/my}/2.

4.1. Proof of Theorem 2.1. Assume, initially, that pg is symmetric. For
simplicity, introduce the rescaled solution py(-,t), defined by p,(B,t) :=
w(oB,t), where 0B := {y = ox|z € B} for every B in the Borel class of R.
By the homogeneity of the total variation distance, we have dpy (u(-,t);vs) =
drv (pe(+,t);7y), where «y is shorthand for the standard normal law ;. Now,
thanks to the elementary inequality

1 —
(33) dry (o (1)) = 5 suplp(/o, ) =77,
£eR

one can employ the expansions given in Section 3.2. First, observe that for
any small € in ]0, 0y, one has

sup|p(¢/o,t) — e €2
EeR
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> |p(e/o,t) —e =2
(34) A ,
= |E{Ec[eV/7|8] — e 7=/}

- / (o7 (e/0)@] - e I2)Py ().

Next, after fixing any @ in €2, substitute v () for n and 713( w) for ¢jp (=
1,2,...,n) in Lemma 3.1. ThlS way, 1, (€) changes into ¢*(£/0) and the re-

striction that Lemma 3.1 imposes on & becomes || < oy (Ey(wl) 7r4(w)) 1/4,
Clearly, this bound holds P;-almost surely for every t, Whenever € is not
greater then oyg. Hence, (26) can be applied with

v(w)
mOle)i= el (Zw )e ik

in place of 14, (€). If R} (&)[w] stands for ¢*(e/o)[w] — na(&)[w], then the last
member in (34) can be written as

v(w)
* K4 —e? — I
QR4( Bl ]Pt(dw)+—4' ele /2/ (Zﬁ@)) P, (dw)
j=1
= /RZ(E:‘) dP + 4/7—04_4546_82/26_(1/4)t
\ Fal a—e2/2,-(1/a)1

P / R} (g) dP,

where the equality follows from (19) and the inequality follows from |a +b| >
||a| — |b]|. Now, the claim is that there exists an € independent of ¢t and small
|K4] cAp—e?/2,~(1/4)t

enough to have
/ Ri(e)dPy| < IR

for every nonnegative t. To this end, recall the following: that ¢4 [see (22)]
is a continuous function depending only on the initial datum pg so that
€4(0) = 0; that |k4] is strictly positive; that the constant C} = Cj(up) can
never be chosen equal to zero. The inequality

9

(36)

|al
(@)l < ey
is surely satisfied for every x belonging to a suitable nondegenerate interval
[, 7] included in [—yo, yo]. Thus, taking (26) into account, one can write

e (1)

v(w)

e ¢ /2Z7T

] Py (dw)
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(37)

|K4] 4 —£2/2 —(1/4)t
34'4!04568/6 (1/4)

for every ¢ in |0,07Z] and t > 0. Moreover,

_ — Ky 4 —e2/2_—(1/4)t
C*e8e 52/26 (1/4)t | cte—e?/2o—(
4 = 44104
is valid for every nonnegative ¢, provided that ¢ is chosen not greater than

T = (s )Y/%. Thus, in view of (26), (36) is satisfied for & in ]0, min{o7; F}].
4
To conclude the proof in the symmetric case, fix € as above in order to have
(36) and use the following elementary fact: if |b| < |a|/2, then ||a| — |b|| =

la| —|b| > |a|/2. Applying this to (35), we get
K] choe?/2,— 1/t _ > |k 546752/267(1/4)2

Alo /QR‘*(E) Pl = 5 100

which, in view of (34), provides a lower bound for drv (i(-,1);v,). When pg
is symmetric, the constant C', which appears in Theorem 2.1, can be taken
to be equal to %546_82/2 with ¢ in ]0, min{oZ; T }].

When g is not symmetric, we employ its symmetrized form fig and recall
(14) to obtain

1 (B, 1)~ 70(B)| = |u(B.1) — 0p(B)e™" —74(B)|
< [1(B.t) = 7o(B)| +2¢7!
< drv(u( t)i) + 207 (B € B(R)),

which plainly entails
(38) dov () (-, 1);90) < dv (-5 1);v0) +2¢ 7.
From the first part of the proof, one can find a constant C(jig) < 2 for which
dry (1) (-, 1);76) > C(jig)e /Y,
Hence,
dry (1(-51):70) 2 doy (1) (-, 1);75) — 2¢ 7
> Ofi)e VA — 2¢7t > 10 (ig)e= 1/

holds, provided that t > := —log[(C (jip)/4)*/?], where  is strictly positive.
To conclude the proof, observe that (7) is valid, taking, for example,

L 1 -
C=C(w) = min{§C([Lo); inf dTV(u(~,t);'yU)}.
t€[0,1]

Finally, infte[o,ﬂ drv(p(-,t);7,) is strictly positive in view of the existence of
the minimum combined with the uniqueness of the solution of Kac’s equa-
tion. This point is clarified in Appendix A.3.
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4.2. Proof of Proposition 2.4. 'To prove this proposition under the as-
sumption that all of the moments of pg are finite, it will suffice to prove
that all of the cumulants Ko, of even order of fig are zero for m=23,....
Thanks to (38), the inequality, which appears in the statement of Proposi-
tion 2.4, can be rewritten as

(39) drv (1) (-, 1);70) < (C +2)e™

In view of this fact, we can assume, without real loss of generality, that g
is symmetric. Then, supposing that ko, =0 form=2,...,s—1 and kg5 # 0
for some integer s greater than 2, we have contradicted (39).

As in the previous subsection, write

2drv (p(-t);70) = Zuﬂg\w(i/a’ 1) — e €12
S

(40)
> ‘/Q{SO*(E/U)W — e YPy(dw) |,

where € is any positive constant not greater than oyg. Following the general
lines of Section 3.2, define

v(w)
(] i 4 (1) e (Z e )523 <

After setting R3,(£)[@] := ¢*(¢/0)[wW] — n2s(&)[@], the last part of (40) be-

comes

/Q Ry (£ @) + (-1)° e /2 / (Zw% )Pt %)

@) =| [ Ree)dPy (1) et i

|K2s| o —£2/2 —(1—2ca)t / *
> 2s R dPy||.
- ' (28)!025€ c c Q 23(6) !

Now, if |e|] < oy, an application of (29), with k =2s and § =1 combined

with (19), yields
< / ([R5 (0)] dPy
Q

(42) e A e R S

R5(¢) dP,
Q

< C5, 1 e HO(1 + (o) M) e /2 (17202t
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for every nonnegative t. Here, h(s) := 2s? — s and the term [9(1 + |¢|"(®))] is
an upper bound for the polynomial pg j in (29); see also (81) in the Appendix.
If € satisfies the further restriction

1 1 ‘/ﬁ:25|

< .
el < 205, 9(1+ (0yp)s))  (2s)lo2s’

then one can rewrite (42) as

|Kos| 2s —e2/2 —(1—2a4)t
S o—5:€ 200,
— 2-(2s)lo?s ‘ ‘

w | [ e,
Q
Hence, inequalities (41) and (43) entail that

|#2s|

e 2s —52/2 7(1720125)t <2d . t . <2 2 ¢
2 (2s)lo2° ¢ € < 2drv (p(-1);70) < 2(C +2)e

for every nonnegative ¢, which contradicts the fact that (1 — 2aq;) is strictly
smaller than 1. Thus, kos must vanish, implying that pg = 7, since v, is
uniquely determined by its moments. Finally, if pg is not symmetric, then

Ao =Yo-

4.3. Proof of Theorem 2.2 when k+ § =4. We shall closely follow the
proof of Theorem 2.1 in DGR. First, let us assume that the condition

(H) fo and, consequently, f(-,t) are even functions

holds. This does not limit the generality of subsequent reasoning, thanks
to (9)-(10) of DGR. Since d%F*(v) represents a version of the conditional
probability density function of V' given g, in view of basic properties of
conditional expectation, one has

Fo,1) — —e?/20%)

N~

(44) = 10,0 = 9o (0l || 5 F 0 = 900

| ]

where g, (v) dv =7, (dv). Moreover, from Proposition 2.2 of DGR, which can
be applied to fp, thanks to the hypotheses in Theorem 2.2 and (H), there
exist a and A for which

2 «a
(15) el < (re)

dv

]

LF(ov) ~ a1 (0)
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holds true for every real . In particular, one can set o= (2-[2/p])~ !, p
being the same as in (4) and [s| standing for the least integer not less than
s. Define U C €2 by

(46) U::{I/Sﬁ}u{ﬁﬂ'j:O}U{i:ﬂ'}lzg}
j=1 7=1
with m=17-[2/p] and

- . 1 o8 1
0 =minq —; N
2mnl’ 16y5mg | — 2nml

Next, check that U belongs to .# and rewrite the last term in (44) as
(47) Et[ ;U]—i—Et[ ;UC}
1 1

By the same arguments as the ones used to prove (22) in DGR, one obtains

LF(o0) — g1 (v) LF(o0) — 1 (v)

P {v <m} <me ! and Pt{Hﬂj :0} =0.

j=1
As for the third component of the union in the definition of U, one can
combine Markov’s (with power 2) and Lyapunov’s inequalities to get

g ene|(£) [ ae Bl <5

The exponent 3/8 follows from the application of (19) with m = 6. Now,
combining all of the above computations leads to an estimate for the prob-
ability of U under Py, that is,

(48) P(U)<[m+1/3%e” B/ (t>0).
Inequality (48) leads immediately to the upper bound

@) & SFen a0

;U} <2P(U) < 2[m + 1/6%)e~G/31,
1

To control the integral over U¢ appearing in (47), we invoke the Beurling
inequality formulated in Proposition 4.1 of DGR to obtain

d
E U°
t[ dv 1’ ]

\—F*wv) ()
L 2 12 1/2. c:|
< QEt[{/Rw d£+/R\A\d£} e,

(50)
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where A :=¢*(¢/0) — e€"/2 and A/ = d%A. Applicability of this result is
justified by the fact that the restriction to U of the conditional characteristic
function & — ¢*(€) := [ €*® dF*(z) belongs to H'(R). To see this, note that
0*(&)[@] = o(|€]73*) is valid for [¢| — +oc and for @ in U¢. Indeed, thanks
to conditional independence and (45), one has

v < T2\
o <s>|gjnl(vﬂ?§2>

and the claimed “tail behavior” of ¢* follows from the definitions of 7 and
«, together with the fact that the random numbers 7; do not vanish on U*.
To complete the argument for H'(R) regularity, use Remark A.2 in Section
A.3 of the Appendix of DGR.

Now, the expectation in the right-hand side of (50) is dominated by

1/2 1/2
E A2d§> ;UC}JFE K A2d§> ;UC]
t[</{§SA}‘ | t /{|f|zA}| |
1/2 1/2
+Et[</ \M%zg) ;UC] +Et[</ \A/\ng) ;UC]
{l€]<A} {l€1>A}

A=A(B):= —(Z;{Uly%;)l/zi.

At this stage, we apply (27) to the evaluation of the first integral in (51)

with

after observing that the function 74,(£) here equals e~¢%/2 almost surely
since k4 = 0. This leads to

{‘E‘S‘k}

o <oy (Y )
j=1

2 1/2

+V2C; / 58(1+£4>26‘52( ) €4<7i£)> df]

R j 7
7j=1
with
1 2 /)2 — N

) ogpo(z) + (o 24)33 (ka/4))z , if 0 < |z| < oyo,

64(.’,1;‘) = €4(0_y0)7 if |.’E‘ > g0,

0, if =0.
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Note that é4 is a bounded continuous function. Take expectations of both
sides of (52) and recall (19) to obtain

1/2
€, ( / \APdg)
{]€|<A}

(53) <2/20(17/2)Cie B/®)

/§81+§“—5< m
1

]:

+V2C5E,

)"

In view of Section A.4,

(54) lim p{"(t) =0,

t——+o0

where

2 1/2
o=l fenserce(See(F)) o]

Similarly, apply (28) to evaluate the second integral in (51) as follows:

1/2
{‘f‘SA}

<44/T'(19/2)C; (i@)
j=1

v

Jj=1

(55)
y 2 91/2
+2v2C; /56 (1+€2)e” (ij a(Eg) ) df]
J=1 7
y 2 91/2
% 6 12 —&2 4|~ [(m5€
+2\/§C’4 (14 mi|ea( =2 d¢
R -
L j=1
with
d . .
x—=é4(x), if 0 < |z| < oyo,
_ dx
04(z) := § 1= lim dy(u), if || > oyo,
uloyo
0, if z=0.

Once again, take expectations of both sides of (55) and use (19) to get

1/2
€, ( / \A'Pds)
{]€I<A}
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<44/T(19/2)CLe=G/®)
‘ 2 1/2
+2V2C;E /561+£12 (Z 4<%§>D df]
2 1/2
5 @(Ef)') df] .
— g

7j=1
+2V2C5E, /56(1+512)e—f2 (Z
| /R j=1

(56)

Another application of Section A.4 leads us to state the following important
facts:

X (2) _ . (3) —
o7 A b0 = T g () =0,
where
3} 2 1/2
p(2)(t) o 6(1/4)tE [/ 66(1 _'_612)675 (ZTI’;L 64(%) ‘) dé‘]
= -
j=1

v

P (t) = /Y, [/ (142 (Z m
R

J=1

2 q1/2
)"

After determining upper bounds for integrals of the type || (l€]<A}’ it remains
to examine the remaining summands in (51). Minkowski’s inequality yields

1/2 1/2 ) 1/2
( / \APds) < ( / \90*(5/0)\261£> ; ( [ e /Q\Qdﬁ)
{|¢|>A} {|¢|>A} {|¢|>A}

and
1/2
( / |A’|2dg)
{lel>A)
2 1/2 1/2
< + e €122 ) :
</{|s|>A} de” e(&/o) ) </{5>A}‘§ T

From a well-known inequality, proved i in, for example, Lemma 2 of VIL.1 in
Feller (1968), and since max,>qz"e~ 22® — [k /(2ea)]*/2, one obtains

) 1/2 15 15/4
o) =(3) e ow 2
{l€l>A} 2

P 1/2 2+\/— /4
</{|§|>A}§2€ f d£> B <2> 15/4 8ZW6'

and
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Equation (19) can then be applied to obtain

) 1/2 15\ 15/4
(58) E: (/ e ¢ dg) < <?> e~ 15/4(gyp) "B~ (B/8)t
{lel=A}

and

12 4 5 717\ 17/4
(59) E; </ 526—52 d§> < +2f (;) 6_15/4(0y0)_86_(3/8)t,
{l§[=A}

At this point, to control the remaining integrals over {|¢| > A}, we proceed
as in formula (30) of DGR to write
2 1/2
> } e

K/{IEIZA} e/l d£> : i </{|£|>A}

400 1/2
<2va( [ Tieeiolie) 1o+ VAT 1o

For @w in U¢€, the bound

v (§/0)

dg”

3

213 1) | (@)

holds true, thanks to the definition of § and the Lyapunov inequality. Thus,
Lemma 12 in Chapter 6 of Petrov (1975) can be applied to the characteristic
function ¢*(£/0) with b=1/2 to deduce

VAFTATR)] < Ve 412 < /(48 /e)' A
=/2(48/e) (oyo) 8 Z 7'('?,
j=1

A@) <

which entails that

(61) Eiv/2l0 (AJo)] < V2(48/e)* (oyo) Se /91,

It remains to analyze
+00 1/2 too V y 1/2
([ emtae) " ave=( [T TTleo(7E)|ac) a0
A Ao
An estimate of this term is made using Proposition 2.2 in DGR, together
with (33), (34) and (35) therein, with €= 1/(2n!). We then have

+00 . 1/2 +00 1 a 1/2
([ et aue< oo [ ()

5 (2Ma—1)/8
=D (Z 71'?) .
j=1
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The definition of 7 in (46) yields (2am — 1)/8 = 2. Moreover,
1 ()\0)17/2

Di=—_ 27
=a/2 8
(63) 4g (oy0)
(3 17/4 9 17/4 7o
with
Ly :=supl[¢]” - o (£)]]
£eR
and
M= ex {_ 32 ( V20 >2}
~ UG ()2 \8T2/p] 08 + 40myT2/pTma ) S

Taking expectation in (62) gives

(64) =/ e €/o) 3 " fye| < De O

The claimed upper bound (9) follows from (49), (53), (56), (58), (59), (61)
and (64).

4.4. Proof of Theorems 2.2 and 2.3 when 2x + d > 4. This proof differs
from the previous one only in the choice of the constants. One can start
from (44) under hypothesis (H). Thanks to (H) and the hypotheses of the
theorems to be proven, one can apply Proposition 2.2 of DGR to get (45)

with o= (2-[2/p]) 7!
Now, define U exactly as in (46) with 7 = [k(k + 2) + 1] - [2/p] and

- . 1 o8 1
0 =minq — — (S
2!’ 16ygms 2nm!

The probability of U is then estimated, under each P, using the facts that

P{v <m} <me ! and Pt{HT('j :0} =0,

J=1

whereas, for the third component of the union in the definition of U, one
can combine Markov’s (with exponent k/2) and Lyapounov’s inequalities to

get
- k/2
4
L \j=1

1 1
< ——k Zﬂ_k+2] < —75¢ —(1—2ap42)t
51@/2 = 5/
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Thus,
(65) P (U) < [+ 1/6F/2e= (022t (> 0),

Now, split the term Et[H%F*(m}) — ¢g1(v)|]1] into the sum of two contribu-
tions, exactly as in (47), and note that (65) entails that

d*av— v
) & 77 o0 a0

To control the integral over U¢, we once again invoke Beurling’s inequality
(see Proposition 4.1 in DGR) to write (50). Applicability of this result rests
on the same arguments as those provided in Section 4.3. The right-hand side
of (50) is split into a sum of four terms, exactly as in (51), with

Y
A=A(B):= (Zl{:l%l(;u(kw) '

j
Now, apply (31) to the evaluation of the first integral in (51), noting that

the function 7y, ,(§) equals e~¢%/2 almost surely since ko, =0 for r=2,..., .
This leads to

1/2-
(67) E: [(/ A df) < Cj say - e~ (1=20245)t
{lgl<A} J

and

1/21
(68) Et |:</ ‘A/|2 d§> S C];k’&ak . 67(172042X+5)t.
{l¢I<A} J

After determining upper bounds for integrals of the type || (l€]<A}’ it remains

;U} <2P,(U) <2[n+ 1/8k/2]e*(1*201k+2)t'

to examine the remaining summands in (51). Minkowski’s inequality gives

1/2 1/2 , 1/2
(/ \AFd&) <</ \90*(5/0)\2605) +(/ \e—f/QPds)
{|€|>A} {|€|>A} {|€|>A}
d

and
1/2 2 1/2
([ amae) < ([ i)
{l€[>A} (g1l d€
1/2
+</ |g652/2|2d§> .
(€[> A}

Integrals involving the Gaussian density are controlled as in the previous
subsection, giving

, 1/2
([
{le|>A}

_ (k(k+2)—1)/4
- <k(k: +2) 1)
- 2e

v (&/0)

(Jyo)—k(k+2)/267(1*201k+2)t
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. 1/2
E, ( / €2 df)
{|¢|>A}

(70)
<

and

(o) ~FE+2)/2e—(120k42)t,
2 2e

To control the remaining integrals over the region {|{| > A}, we proceed as
before, writing (60). For @ in U€, the bound

o3

AW) < — o s
2mg Zj:l | (@)]

holds true, thanks to the definition of § and the Lyapunov inequality. We
then set b=1/2 in Lemma 12 from Chapter 6 of Petrov (1975) to deduce
that

2|p*(A/o)]
< \/56—,42/12

(k(k+2))/4
<\/§<3k(k:+2)> (Uyo)(k(ku))/z( W;;

(&

(k(k+2))/4 v
< \/§<3k(k + 2)> (o)~ (RE+2)/2 . < w;?”)
1

AN
SN—
—
ol
—
ol
-
no
N
N
~
—~
no
—~
ol
-
[=2]
=
=

(&

S,
Il

and, therefore,

3k(k + 2) K2/ k(k+2))/2
B2 (AJo)] < V2 (7) (o)~ K2/

71
( ) X 6—(1—2ak+2)t.

Finally, in regard to ( :OO lo* (€/0)| d€)/? - 1ye, one can write

(27a—1)/8

(72) ( / et eso) dg) R (g w?») |

where the constant Dy, is given by

Ao (2l [ A e/
2am — 1 (%) '
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The definition of @ given at the beginning of this subsection yields (2am —
1)/8 > k/2. Now, taking expectation in (72) entails that

+oo 1/2
(73) E, |:</A |¢*(§/J)‘ dg) . 1[ch| < Dke—(l—Qak_‘_Q)t‘

To obtain (11), it will suffice to combine the previous inequalities.

APPENDIX

This appendix contains all of the elements which are necessary to complete
the proofs given in Section 4. It is split into four parts. The first focuses on
a quantification of the numbers yp such that the Fourier—Stieltjes transform
of a symmetric probability law turns out to be greater than 1/2 on [—yo, yo].
The second presents the proofs of Lemmas 3.1 and 3.2. The third aims to
clarify the conclusion of the proof of Proposition 2.4. Finally, the fourth
provides a proof for (54) and (57).

A.1. Specification of ygo. Let @ be the Fourier—Stieltjes transform of a
symmetric probability law ¢ on (R, B(R)), namely (&) = [ e (dx) for
every real £. Assume that my := [ x4 (dx) is finite and put o? := J 22((dx),

yo == {[—60% + (360* + 12my) /2] /my }1/2. If €] < o, then ¥(€) > 1/2.

PrOOF. By the Taylor expansion for characteristic functions, one can
write (&) =1 — (02/2)€2 + R(&) with |R(€)] < (my/24)&4; see, for example,
Section 8.4 in Chow and Teicher (1997). The desired bound is obtained if

2
1— =& - —=¢t>2
2 ¢ 24f 2
holds true for every ¢ belonging to some interval. Now, one can note that
the biquadratic equation mg&* + 1202€2 — 12 = 0 possesses exactly two real
solutions, namely +vg, and the previous inequality is satisfied for every & in

[_y07 Z/O] U

A.2. Proofs of Lemmas 3.1 and 3.2.

ProOOF OF LEMMA 3.1. Set 1;, for the characteristic function of Y},
(j=1,2,...,n) and use the definition of V;,, combined with independence,
to write

6n(€) =jf[1¢j,n<5> =]Hl¢<fo)
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If |£] < A4, then it easily follows that

n —1/4
Cj,;n9Yo Z 4
o Cr,n
r=1

Now, using elementary properties of the logarithm, one can combine expan-
sion (22) with property (20) of each array {cip,...,cnn} to obtain

¢jné
o

<

< %o.

log ¥n(€) = > log . (€)
j=1

+al€4 0_4 + 0_4

3 [ L S TS (ca',nf)]
—=0" €4
=1

=58+ L Ry(g),

where

= c4n£4 ng
Ru(€) = ; ey (CJ,U >

Inverting the logarithm, one gets

(74) 0l = oxp{ et o)

It is easily verified that the restrictions |u| := |Ag,&*/4! < Kqyo/4! and

IRy(&)] < M{Yy4 hold true when €] < Ay, and that Xy ,&%/41 = Py, (€).
Finally, set F'(z):=e” —1 — x. At this point, we have all the tools needed
to prove (26) and (27). Indeed,

[0 (€) — 140 (€)| = €6 /?|e" exp{Ra ()} — 1 — u|
= e &2|et exp{Ry(€)} — e + F(u)|
< e 2e exp{Ry(€)} — 1| + e €/ F(u)).

By elementary arguments, if  is any real number satisfying |x| < ¢, one has

c1
le” —1]<el?l —1< <e )|x\
c

This fact can be applied to R4(§) to get

(R} - 11 <€t () (L
J
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o(5)

Jj=1

Moreover, since the inequality

|F(u)] < max [i;:)

|| <rayo /4!

X

holds, one can conclude that

W}n(g) - 774,11(6)‘
9 4 M(g4)y61 -1 n
(15) <et/h exp{ KZ?!JO } <€ otyd ) ' <Z i

Jj=1

n 2
Jeo(32en)-
j=1
After setting

4 M(4)y4
K e’o Yo —1
CZ*::exp{ 4y0}< T >+ max [ },
4l o'y |e| <rayd/4!

the derivation of (26) and (27) follows by rewriting (75) in a more conve-
nient form. To get (26), it is enough to observe that > ", c;{n <1, while to
deduce (27), one can combine the inequality (37, ¢}n)? < > i1 %, with
max{1;€'} < (1+ €.

To prove (28), we start from (74) and take the derivative with respect to
&. Thus, one obtains

[ (&) = 73,0 (6]

< exp{Ra()} - |RY(E)] - [nan(€) + Flu)e ¢/
+ 1y (€)] - [ exp{Ra(€)} — 1]

o(25)))

F(z)

—|—€_§2/2 max [
2

x| <kayg /4!

F(x)

22

Feptiule)} ‘d%F (W) /2 +exp{Ra(€)} - [F(w)] - |€le /2,

Arguing as in the first part of this proof, we have
My ()] - [exp{R4(§)} — 1]

(76) < eMé‘l)y(% —1 14 K4 |£‘5(1 n 54) —£2/2
e — . —_— e
- olys 4ot

n
4
X chm €

J=1
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and
exp{R4(€)} - |F(u)] - |€|e~*"/?
(77) 2
F(.Q;‘) (4) 4 9 _52/2 n .
x<rré4a;§/4!|: J)Q :|eXp{M0 yO}‘ﬂ € jZ:;ij .
Moreover,
exp{R4(&)} |RY(E)] - [nan(€) + F(u)e <72
= exp{Ry(€)} - |R4(€)] - €& /e
(78)
<eXp{J\40 yO} ex p{ 4'90 }40_4\§|3e_52/2-
x [Zc;%n <ms>‘+z Lo < Uf)”
j=1
and
d —@ 3(u
d{F( u) 31 £ (e" = 1),
whence
d 2
exp{Ra(©)} - ‘d_gF u)] - e-e
(79) 2
( exp{rayg/4} — 1 - n
Now, set
M 1 Fl)
e _ (€0 0 1 . K4 « F(x) . @ 4
o= () (1 ) * o[ ot

K4, -
—i—exp{M(g Yo} - ex p{ 4,0}40 1

-1
o, exp{rud/
+eXp{ 0}3'4' 8 < /€4y0/4'

and combine (76), (77), (78) and (79), after noting that [£]>(1 + &%) + || +
1€2 +1€]7 < 4]€]2 (1 +£5) holds for every &. Finally, in order to have the same
multiplicative constant in the right-hand sides of (26), (27) and (28), replace
Cy* and 407 with C} := max{C;*;4C;**}. O
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Proor or LEMMA 3.2. In view of the independence of the random
variables X ,, and (22), one gets

log tn (&) = ——52 + Z ’'{ A 52’“ + Riys(8),
where
Ri15(8) == ]Z; cgi’;fk €k+6 <cj(’:€> )
whence
(80)  wn(€) =e /2 exp{zx;—l)" é’;’)‘! 5%} cexp{Ri15(6)}-
Now, consider the function z r—>}§(z) =exp{ge(2)} with
1 -
ge(2) i= le(_l)rJrl %g(wl)zr

and its Taylor polynomial of order (x —1) at z =0, say py—1(2). Then, recall
the Faa di Bruno formula, that is,

exp{(y(t))}
_ Z /-61'/62 exp{( (t )H(@)kl <%>k2 - (%)M

with (*) meaning that the sum is carried out over all nonnegative integer
solutions (k1,...,ky) of the equation ky +2ks+- - -+ xk, = x. An application
of this formula entails that

A
dt(x

pxl —1+ZPrn a

the functions P, (€) having been defined in (24). Thus, when z = 1, the
Lagrange remainder can be written with a suitable u € [0, 1] as

(1) k (2) k (x) k
ge " (W)\ " /g (u)\ g () "
fg = Jelu Zkl'kZ <§1! ) <£2! > “'<§X! ) ’

which, after repeated apphcatlon of the multinomial formula, leads to

‘f(X) ZH X OO
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with Ap ., (€) = (—1)ht™ (h+:;l_1) (Q)E’;ZT;;L’)L)@Z(}”FM). We can then introduce

X o X
W,y = [H max{—iz; 1}]
o
s=2

to obtain, after an application of the Lyapunov inequality,

> Al (€) - AT (©)]

{l1++lx—m:km}

the quantity

n 2mkm [k
W (€2 4 €2 ( cﬁ?) ,
j=1

whence

1
S

< felu) XX WETIER(2 + €722 + (€2 + €F2)N]. ( c?ﬁ)

j=1
and, using the bound |£| < Ay 5,
X
|9e(W)] <~ kasyp® == By,
s=2

Then,

() = Mo (6]
< e 2 [fe(1) = pyo1(1)] + [efrro©) — 1]}

(81)
n
= leBXXXQ W + €727+ (€ + €72 ( C?ZQ>

j=1

k+0 — n

N eXP{M(g+)y(l)€}_1 XMt s Z|c' e | e
AEFO), K klgk+o Jn .
o Yo j=1

Aftter observing that €¥[(€2 + £572)2 + (£2 + €572 < [¢[+0(1 + €2)[2¢7 +
262h=6 4 oxeh=2 4 oxexk=F=2] for every £, one can take Po,k in (29) to be
equal to 1+ (1 + &2)[2€2 4 2¢2k—6 1 oxgh=2 4 oxgxh—k=2]

As for [y, —m;, [, note that the inequality

WL(E) = ()
1€ [0 (€) = Mo (©)] + €12 d%fg(l)‘ exp{Russ(©)) — 1]

(82)
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_¢2
+et /2|f5(1)|eXP{RH&(f)}\RZM(fN

re | Ly - pxlu))'

dg

obtains. As regards the first summand, it will suffice to multiply the upper
bound stated in (81) for |¢, — k| by |£]. The latter factor in the second
addend of (82) can be dominated by the last addend in (81), while, for the
former factor, one has

+1

s < exp{Bx}Z s

As for the third addend, recall that |f¢(1)] < exp{By} and |Rp4s5(&)| <
Y M Moreover, R}, 5(6)| < Y0y o F ey {klerss(cin€ /o)) +
|€o7 ejn X €], 5(¢jn€/0)|} and, in view of Theorem 1 in Section 8.4 of Chow
and Teicher (1997), (|exys(z)|+ [we) 5(7)]) < 4wy 5lz)®/(k —1)!. Tt remains
to deal with the last summand in (82). Since (%px_l is a Taylor polynomial

for a% fe¢, one can use the Bernstein integral form of the remainder to obtain

S = pya (D)

_(x—l)/ (L=w™ 12( >

2(x—1+1) 2
% ZC (x— Z |£‘2r+1
j=1

r=x—I

oul fe(u)\d

_ km
Ko(r .
- BXZHk ,<m.2 o W”)

=0 ( (¥); m=1 r=m
K n
2 1) 2(x—1+1
« Z ‘§|2r+1 (r+1) 02l+2 . C-(X +1) )
2(T+1 J,m J,n
r=x—I 7j=1 7j=1

To conclude, think of the last two sums of the ¢;,,’s as moments of order 2/
and 2(y — ), respectively, and apply the Lyapunov inequality to each sum

to write
n n
2042 | | x I+1) k+2
Cin ¢, < Zc . -
j=1 j=1
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A.3. A complement to the proof of Theorem 2.1. We clarify why
infte[o,ﬂ drv(p(-,t);7,) must be strictly positive under the hypothesis that
r4(fio) is different from zero. Suppose, on the contrary, that infy o 3 drv (u(-,?);
Yo) =0. Then, as t — dpv(u(-,t);7,) is continuous on [0, +oc[, by the Wild
expansion, there exists ¢* in [0,7] such that dpv(u(-,t*);7) = 0. On the
one hand, if t* =0, then po coincides with v, and this contradicts the hy-
pothesis that x4(fip) is different from zero. On the other hand, if ¢* >0,
then one can conclude, in view of the Wild expansion, that g possesses
moments of every order and is symmetric. A direct consequence of (1)
is that mog(t fR wu(dz,t) satisfies an ordinary first order differential
equation, Wthh admits the constant fo kvs(dz) as a stationary solution.
Hence, since we are assuming that my(t*) is equal to such a constant, the
uniqueness of the solutions of the equations under consideration implies that
moy ( fo Yo (dzx) for every t in [0,00] and every positive integer k. In
other Words 1o commdes with ~,, which once again contradicts the fact
that rk4(fig) is different from zero.

A.4. The proofs of (54) and (57). The proofs of (54) and (57) follow from
the following proposition. Let g: R — [0, +o00o[ be an integrable function and
e:R — R be a continuous, bounded function with €(0) = 0. Then

v 2 1/2
tilgrnooH(t) = 6(1/4)tEt{ (/Rg(ﬁ) LZITF?‘E(WJf”] dg) } =0.

PROOFS OF (54) AND (57). We fix an arbitrary small positive 6 and
show that there exists a value ¢5 for which |H(t)| <6, for every t > ts. First,
in view of the fact that €(-) is continuous and €(0) = 0, there exists a strictly
posityve number T such that the inequality

@) <
e(z)] < ———
3v/llglh
holds for every z in [-Z, 7] with ||g|l1 = [ g(§) d€. Set T := max;<j<, m; and
B :=7/|x|. B is well defined since, due to (15), 7 # 0. Now,

{/ [Z” ”ﬁ] ds}m )
<{/{|£|§B} [Z” 7@5] dg}

7j=1

» 2 1/2
e T d .
+{/{QB}9<§>[Z el 5>|] s}

Jj=1
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For the integral over the internal region, one can write

{/{IHSB} [ZW mr }I/QSg,;sm(ji;ﬁ)\/m

7=1

and, taking expectation,

5 2 1/2
e<1/4>tEt{( /{ G [Zw;ﬂe(mfn] dé) }<5/3,
< =1

after a standard application of (19). At this point, we define M to be the
maximum of |¢| and determine a positive value s such that

/{5>§}g(§) = <3LM>2

Given S :={w|[7(w)| <T/5}, we write

y 2 1/2
6(1/4)tEt mile j d
{</{5>3}g(5)[j21 1e( 5>|] s) }
y 2 71/2
= 6(1/4)tEt 71';-1 e(m; d S
{[/{03}9@[2 ¥ 5>|] s] }

7j=1

12 q1/2
+e(1/4)tEt{ l/ [ wle(rm;6)] dg] ;SC}.
(el=ny” 2 mlelm

Jj=1
One can observe that B(w) > for w in S. We then have

-1/2
(1/a)tg / 11e(m ) ] -S}
(& t ™ 7T ’
{ teey’ Lz; ’

(1/4) 1/2 v ,
t B
= {/{lﬂzs}g(é) df} ME, L;W]] <4/3.

For the remaining term,

y 2 q1/2
e<1/4>tEt{ [ / 9(¢) [Z W?\e(mfﬂ] dg] ;SC} < VYVM /gl Pe(S).
{125}

J=1

An application of Markov’s inequality with exponent 6 yields an upper
bound for the probability of S€¢, that is,

risrzeiet) () <] () <o ()
j=1
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Hence,
—\ 6
AT < e VTl (3)

Taking t5 = max{—8log[(3/3) - (F/5)¢ - M~||g|l;*/*];1} makes the right-

hand side of the last inequality smaller than §/3 for every t > ts. This
completes the proof. [
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