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In Dolera, Gabetta and Regazzini [Ann. Appl. Probab. 19 (2009)
186–201] it is proved that the total variation distance between the
solution f(·, t) of Kac’s equation and the Gaussian density (0, σ2) has
an upper bound which goes to zero with an exponential rate equal to
−1/4 as t→+∞. In the present paper, we determine a lower bound
which decreases exponentially to zero with this same rate, provided
that a suitable symmetrized form of f0 has nonzero fourth cumulant
κ4. Moreover, we show that upper bounds like Cδe

−(1/4)tρδ(t) are
valid for some ρδ vanishing at infinity when

∫
R
|v|4+δf0(v)dv <+∞

for some δ in [0,2[ and κ4 = 0. Generalizations of this statement are
presented, together with some remarks about non-Gaussian initial
conditions which yield the insuperable barrier of −1 for the rate of
convergence.

1. Introduction. In order to determine the rates of relaxation to equilib-
rium in kinetic theory, Kac derived the following Boltzmann-like equation,
commonly known as the Kac equation:

∂f

∂t
(v, t) =

1

2π

∫ 2π

0

∫

R

[f(v cos θ−w sin θ, t)

× f(v sinθ+w cos θ, t)(1)

− f(v, t) · f(w, t)]dwdθ (v ∈R, t > 0)

with some specific probability density function f0 as initial datum. The
resulting Cauchy problem admits a unique solution within the class of all
probability density functions on R. Such a solution provides the probability
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2 E. DOLERA AND E. REGAZZINI

distribution at any time of the velocity of a single particle in a chaotic bath
of like molecules moving on the real line; see Kac (1956, 1959) and McKean
(1966). It is well known that the probability measure µ(·, t) determined by
f(·, t) converges to a distinguished Gaussian law in the variational metric,
namely

dTV(µ(·, t);γσ) := sup
B∈B(R)

|µ(B, t)− γσ(B)| → 0 (t→+∞)(2)

where γσ denotes the Gaussian distribution with zero mean and variance
σ2 and, for any metric space S, B(S) stands for the Borel class on S. It
should be recalled that (2) holds true if and only if the initial datum has
finite second moment and σ2 is the value of this moment. The proof of the
“if” part of this assertion is given in Dolera (2007) by adapting arguments
explained in Carlen and Lu (2003), whereas the proof of the “only if” part
is contained in Gabetta and Regazzini (2008).

In regard to the speed of approach to equilibrium, it has been proven that

dTV(µ(·, t);γσ)≤C∗e
−(1/4)t (t≥ 0)(3)

holds, with C∗ being some suitable constant depending only on the behavior
of f0, when f0 has finite fourth moment and

ϕ0(ξ) :=

∫

R

eiξxf0(x)dx= o(|ξ|−p) (|ξ| →+∞)(4)

is valid for some p > 0; see Dolera, Gabetta and Regazzini (2009). This
work will be refered to as DGR throughout the rest of the present paper.
Inequality (3) is known as McKean’s conjecture and the above statement
constitutes the first satisfactory support of this conjecture. Other bounds
with respect to weak metrics have been given in Gabetta and Regazzini
(2010).

At the end of Section 2.2 of DGR, the question of whether the upper
bound in (3) can be improved is posed. To the best of the authors’ knowledge,
this problem has not yet been tackled, except for a hint on page 370 of
Carlen, Carvalho and Gabetta (2005). The main proposition in the present
paper states that the answer is in the affirmative only in the rather peculiar
case in which the fourth cumulant of the density f̃0(x) := {f0(x)+f0(−x)}/2
is zero. The term “fourth cumulant” of a probability distribution Q on B(R)
refers to the quantity

κ4(Q) :=

∫

R

(x−Q)4Q(dx)− 3

(
∫

R

(x−Q)2Q(dx)

)2

,

with Q :=
∫

R
xQ(dx), under the assumption that the fourth moment is finite.

This cumulant is zero, for example, when Q is Gaussian.
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In view of this fact, one could comment on the main proposition by noting
that improvements of the rate expressed by (3) turn out to be impossible
when f0 is dissimilar to all of the members in the class of all Gaussian
probability density functions. For the sake of completeness, we recall that,
given the Fourier–Stieltjes transform q of Q, the rth cumulant of Q is defined
to be the coefficient of (iξ)r/r! in the Taylor expansion of log(q(ξ)); see, for
example, Sections 3.14–3.15 of Stuart and Ord (1987).

As a further remark on the aforementioned proposition, it is worth noting
its resemblance to well-known facts related to the approximation of the
distribution function Fn of the “standardized” sum of n independent and
identically distributed random variables with finite variance, by the standard
Gaussian distribution Φ. Indeed, in general, Fn is approximated by Φ, except
for terms of order 1/

√
n. However, higher orders of approximation hold when

the skewness and kurtosis of the common distribution of each summand are
zero. Lyapounov (1901) was the pioneer of these kinds of problems, followed
by Cramér (1937), Esseen (1945) and others.

The structure of the paper is as follows. Section 2 contains the presen-
tation of the main results. Section 3 deals with the basic preliminary facts
which pave the way for proofs of the main results. It is split into two sub-
sections. The former consists of a brief description of the probabilistic inter-
pretation, according to which µ(·, t) can be seen as distribution of a random
weighted sum of random variables. The latter is devoted to the analysis of
the error associated with the approximation of the law of certain weighted
sums of independent random variables to the Gaussian distribution. Sec-
tion 4 contains the proofs of the main results stated in Section 2. Finally,
some purely technical details are deferred to the Appendix, together with
the proofs of two lemmas formulated in Section 3.

2. Presentation of the new results. In order to present the main results
we intend to prove in this paper, it is worth mentioning the following weak
version of Kac’s problem (1) proposed in Bobylev (1984). Taking the Fourier
transform of both sides of (1) yields

∂ϕ

∂t
(ξ, t) =

1

2π

∫ 2π

0
ϕ(ξ cos θ, t) ·ϕ(ξ sin θ, t)dθ−ϕ(ξ, t)(5)

with initial datum ϕ0(ξ) :=
∫

R
eiξxf0(x)dx. It should be noted that if ϕ0 is

the Fourier–Stieltjes transform of any (not necessarily absolutely continuous)
probability distribution µ0 on B(R), then (5) can be thought of as a new
problem which generalizes (1). In any case, (5) admits a unique solution
ϕ(·, t), which characterizes—in the form of a Fourier–Stieltjes transform—a
probability distribution µ(·, t) which, throughout the paper, will be said to
be a solution of (5). Obviously, in problem (1), one has µ0(B) :=

∫

B f0(v)dv
and µ(B, t) :=

∫

B f(v, t)dv for every B in B(R).
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In order to formulate the new results exhaustively, let mr and mr denote
the rth moment and the absolute rth moment of µ0, respectively, and let
µ̃0 be the symmetrized form of µ0 defined by

µ̃0(B) := {µ0(B) + µ0(−B)}/2, B ∈B(R),(6)

where −B denotes the set {x|−x ∈B}.
A precise statement of the fact that the rate −1/4 may be the best possible

one is contained in the following theorem.

Theorem 2.1. Suppose that µ0 possesses finite fourth moment m4 and
that κ4(µ̃0) 6= 0. Moreover, let σ2 be the value of m2. There then exists a
strictly positive constant C, depending only on the behavior of µ0, for which

dTV(µ(·, t);γσ)≥Ce−(1/4)t(7)

holds true for every t≥ 0.

The proof of this theorem, deferred to Section 4, also contains a precise
quantification of C. Since

sup
B∈B(R)

|P(B)−Q(B)|= 1

2

∫

R

|p(x)− q(x)|dx

is valid whenever P and Q are absolutely continuous probability distributions
with densities p and q, respectively, as an immediate consequence of Theorem
2.1, it follows that

1

2

∫

R

∣

∣

∣

∣

f(v, t)− 1

σ
√
2π
e−v2/(2σ2)

∣

∣

∣

∣

dv ≥Ce−(1/4)t (t≥ 0)(8)

is true for the solution f(·, t) of (1), provided that the initial datum f0 yields
a probability measure µ0 with the same properties as in Theorem 2.1. From
(8), it plainly follows that any inequality such as

∫

R

∣

∣

∣

∣

f(v, t)− 1

σ
√
2π
e−v2/(2σ2)

∣

∣

∣

∣

dv ≤C∗e
−(1/4)tρ(t) (t≥ 0)

is not valid when ρ vanishes at infinity. This clarifies why inequality (3) can
be viewed as sharp.

We now analyze the effect of assuming that κ4(µ̃0) = 0.

Theorem 2.2. Consider Kac’s equation (1) with initial datum f0 such
that m4+δ < +∞ for some δ in [0,2[ and κ4(µ̃0) = 0. Further, let ϕ0, the
Fourier transform of f0, satisfy the usual tail condition (4) for some strictly
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positive p. There then exist a strictly positive constant Cδ =Cδ(f0;p) and a
function ρδ : [0,+∞[→ [0,+∞[ which vanishes at infinity, for which

∫

R

∣

∣

∣

∣

f(v, t)− 1

σ
√
2π
e−v2/(2σ2)

∣

∣

∣

∣

dv ≤Cδe
−(1/4)tρδ(t) (t≥ 0).(9)

In particular, if δ belongs to ]0,2[, one can take

ρδ(t) = exp{(−3/4 + 2α4+δ)t}(10)

with αs :=
1
2π

∫ 2π
0 |sinθ|s dθ.

Useful information for quantifying Cδ can be found in Sections 4.3, 4.4
and Appendices A.2 and A.4.

Since even cumulants κ2m of the Gaussian distribution (0, σ2) vanish for
m≥ 2 and supξ∈R|ϕ(ξ, t) − Reϕ(ξ, t)| ≤ 2e−t, one is led to think that the
approach to equilibrium of µ(·, t) might become faster when the symmetrized
form of the initial datum gives an increasing number of zero even cumulants.

Theorem 2.3. Consider problem (1) and maintain the same notation
as before for f0, µ0, µ̃0, ϕ0 and αs. Further, assume that there exist an
integer χ greater than 2 and a number δ in [0,2[ for which:

(i)
∫

R
|v|2χ+δf0(v)dv <+∞;

(ii) the cumulants κ2m of f̃0 vanish for m= 2, . . . , χ;
(iii) ϕ0 meets (4) for some strictly positive p.

There then exists a strictly positive constant Cχ,δ =Cχ,δ(f0;p) for which
∫

R

∣

∣

∣

∣

f(v, t)− 1

σ
√
2π
e−v2/(2σ2)

∣

∣

∣

∣

dv ≤Cχ,δe
−(1−2α2χ+δ)t (t≥ 0)(11)

holds true.

Useful information for quantifying Cχ,δ can be found in Section 4.4 and
Appendix A.2.

It should be noted that, except for the centered Gaussian law, the most
common distributions do not share condition (ii), at least for large values of
χ. Therefore, it is reasonable to believe that Theorem 2.1 covers the usual
applications.

It would be interesting to check when, under suitable conditions for the
initial distribution, the value −1 for the rate of relaxation to equilibrium is
actually obtained. The following propositions resolve this issue, under the
additional condition that all moments of µ0 are finite. It therefore remains
to check whether this moment assumption can actually be recovered from
this high order of relaxation to equilibrium. This problem will be tackled in
a forthcoming work.
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Proposition 2.4. If µ0 possesses moments of every order and the so-
lution µ(·, t) of (5) satisfies

dTV(µ(·, t);γσ)≤Ce−t

for some strictly positive constant C, then

µ0(·) = γσ(·) + oσ(·),(12)

where oσ is a finite signed measure satisfying oσ(A) =−oσ(−A) and γσ(A)+
oσ(A)≥ 0 for every Borel subset A of R.

Observe that the Wild formula [cf. (13) in Section 3.1] implies that
dTV(µ(·, t);γσ) = |oσ|e−t when the initial datum is of the type (12). There-
fore, if one assumes there exists some ρ : [0,+∞[ → [0,+∞[ vanishing at
infinity so that dTV(µ(·, t);γσ) ≤ Ce−tρ(t), then the total variation |oσ| of
oσ satisfies |oσ| ≤ Cρ(t) for all positive t, which is tantamount to asserting
that oσ is the null measure. This provides a proof for the following result.

Corollary 2.5. If µ0 has moments of every order and the solution
µ(·, t) of (5) satisfies

dTV(µ(·, t);γσ)≤Ce−tρ(t)

for some ρ vanishing at infinity and for some positive constant C, then
µ(·, t) = γσ(·) for every t≥ 0.

Thus, if all of the moments of µ0 are finite, then the value for the rate of
convergence to equilibrium that one cannot sharpen is just −1, unless µ0 is
Gaussian.

3. Preliminaries. To pave the way for the proofs of the main statements,
this section presents some necessary preliminary facts and results. First, it
explains the probabilistic meaning of Wild’s series, originally pointed out in
McKean (1966). Second, it gives new asymptotic expansions for the charac-
teristic function of weighted sums of independent and identically distributed
random variables, which complement analogous statements formulated in,
for example, Chapter 8 of Gnedenko and Kolmogorov (1954), Chapter 6 of
Petrov (1975) and Section 3.2 of DGR.

3.1. McKean’s interpretation of Wild’s sums. Following Wild (1951),
one can express the solution ϕ(·, t) of (5) as a time-dependent mixture of
characteristic functions, that is,

ϕ(ξ, t) =
∑

n≥1

e−t(1− e−t)n−1q̂n(ξ;ϕ0),(13)
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where










q̂1(ξ;ϕ0) := ϕ0(ξ),

q̂n(ξ;ϕ0) =
1

n− 1

n−1
∑

k=1

q̂k(ξ;ϕ0) ⋆ q̂n−k(ξ;ϕ0) (n≥ 2)

and ⋆ denotes the so-called Wild product defined by

g1(ξ) ⋆ g2(ξ) :=
1

2π

∫ 2π

0
g1(ξ cos θ) · g2(ξ sinθ)dθ.

The Wild series, thanks to a symmetry property of the Wild product,
yields a useful decomposition of µ(·, t) which we will use later. Such a de-
composition involves the symmetrized form µ̃ of a probability measure µ
defined by µ̃(B) := [µ(B) + µ(−B)]/2 for any B in B(R). It is well known
that if µ(s)(·, t) denotes the solution of (5) with initial datum µ̃0 [see (6)],
then one can write

µ(·, t)− µ(s)(·, t) = o0(·)e−t(14)

with o0(·) := µ0(·)− µ̃0(·).
The next description of the probabilistic reinterpretation of (13) closely

follows Section 3.1 of DGR. Accordingly, we introduce, using exactly the
same notation adopted therein, the measurable space (Ω,F ) as a prod-
uct, together with its coordinate random elements ν, τ , θ := (θn)n≥1, υ :=
(υn)n≥1. We then recall the definitions of the random elements δj , πj given
in terms of McKean trees and put β = (ν, τ, θ). Concerning the random vari-
ables πj , recall the fundamental equality

ν
∑

j=1

π2j ≡ 1,(15)

which holds true whenever τ belongs to G(ν).
Now, for some fixed initial datum µ0 for problem (5), define a family

(Pt)t≥0 of probability measures on (Ω,F ) according to (12) in DGR. Next,
consider the random variable

V =
ν
∑

j=1

πjυj(16)

and note, via the Wild formula, that

µ(B, t) = Pt{V ∈B} (B ∈ B(R), t≥ 0)

µ(·, t) being the solution of (5) with µ0 as initial datum.
Consequently, the random variables υn turn out to be conditionally in-

dependent, given β, with respect to each Pt. Moreover, since β and υ are
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independent, one can think of the conditional probability distribution of
V given β as the distribution of a weighted sum of independent random
variables. Indeed, for any fixed elementary case ω in Ω, one can define the
random variable

V (·) :=
ν(ω)
∑

j=1

πj(ω)υj(·)(17)

on (Ω,F ), for which

Pt{V ≤ x|β}(ω) = Pt{V ≤ x} (x ∈R, t≥ 0)(18)

holds Pt-almost surely in ω. This last equality plays a central role in the rest
of the paper since it allows us to work on a finite sum of independent random
variables using typical tools of the central limit problem. In this context, it is
important to examine the behavior of the moments of the random variable
V . Their evaluation essentially depends on sums of powers of the πj via the
following identity proven in Gabetta and Regazzini (2006):

Et

[

ν
∑

j=1

|πj |m
]

= e−(1−2αm)t,(19)

αm being the same as in Section 2.

3.2. Some asymptotic expansions for the characteristic function of weighted
sums of independent random variables. As in Section 3.2 of DGR, the sub-
ject to be investigated here is the behavior of the characteristic function of
weighted sums of independent and identically distributed random variables.
The expansions given here turn out to be more careful than the analogous
ones contained in the aforementioned work since it is now assumed that the
common probability law of the summands possesses moments of arbitrarily
high order. Cumulants will play a central role in the analysis of the remainder
terms. Finally, the study of the convergence of weighted sums will provide
appropriate conditions to improve the rate of approach to equilibrium for
solutions of (1).

In the rest of this subsection, (Xj)j≥1 stands for a sequence of independent
and identically distributed real-valued random variables on some probability
space (E,E ,Q) with common nondegenerate distribution ζ on (R,B(R)). It
is assumed that ζ is symmetric [that is, ζ(B) = ζ(−B) for every Borel set
B of R] and possesses finite moments up to order k + δ, where k = 2χ, χ
being some integer greater than 1 and δ being an element of the interval
[0,2[. Denote the rth moment and the absolute rth moment of ζ by mr

and mr, respectively. Note that the variance σ2 of ζ coincides with m2. Set
ψ(ξ) :=

∫

R
eiξxζ(dx), which turns out to be an even real-valued function,
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and for every positive integer n, define {c1,n, . . . , cn,n} to be an array of real
constants such that

n
∑

j=1

c2j,n = 1(20)

holds for every n. Now, let Vn be the sum of Y1,n, . . . , Yn,n, where

Yj,n :=
1

σ
cj,nXj,n (j = 1, . . . , n)

and let ψn be the characteristic function of Vn. Consider the rth cumulant
κr and recall that, in general, it can be defined by

κr = r!
∑

(∗)

(−1)s−1 · (s− 1)! ·
r
∏

l=1

1

kl!

(

ml

l!

)kl

(r = 1, . . . , k)(21)

where the symbol (∗) means that the sum is carried out over all nonnegative
integer solutions (k1, . . . , kr) of equations

k1 + 2k2 + · · ·+ rkr = r,

k1 + k2 + · · ·+ kr = s

with the proviso that 00 = 1. Symmetry of ζ implies that existing cumulants
of odd order are equal to zero.

From a technical fact proved in the Appendix, Section A.1, after defining
y0 := {[−6σ2 + (36σ4 +12m4)

1/2]/m4}1/2, one has ψ(ξ)≥ 1/2 if |ξ| ≤ y0 and

logψ(ξ) =

χ
∑

r=1

(−1)r
κ2r
(2r)!

ξ2r + ξk · ǫk(ξ),(22)

where ǫk is continuous on [−y0, y0] and differentiable on [−y0, y0]\{0}. More-
over, this function satisfies ǫk(0) = 0 and limξ→0 ̺k(ξ) = 0, with ̺k(ξ) := ξ ·
ǫ′k(ξ). Consequently,M

(k)
0 := supξ∈[−y0,y0]|ǫk(ξ)| andM

(k)
1 := supξ∈[−y0,y0]|̺k(ξ)|

are two finite constants which depend only on the behavior of the common
probability law ζ .

Now, following the same line of reasoning as in Chapter 6 of Petrov (1975),
we introduce the quantities

λ̃r,n :=
κ2r
σ2r

n
∑

j=1

c2rj,n (r= 1, . . . , χ)(23)

and define the polynomials

P̃r,n(ξ) :=
∑

(∗)

(

r
∏

m=1

1

km!

(

λ̃m+1,n

(2m+ 2)!

)km
)

(−1)r+sξ2(r+s)(24)



10 E. DOLERA AND E. REGAZZINI

for r = 1, . . . , χ− 1. In addition, we introduce another family of functions
ηk,n, which will be used to approximate the characteristic functions ψn,
defined by

ηk,n(ξ) = e−ξ2/2 +

χ−1
∑

r=1

P̃r,n(ξ) · e−ξ2/2 (ξ ∈R).(25)

At this stage, we are in a position to state a couple of preliminary results
that play an important role in the rest of the paper.

Lemma 3.1. Assume that χ= 2 (i.e., k = 4) and δ = 0. There then exists
a positive constant C∗

4 , depending only on the behavior of ζ, such that

|ψn(ξ)− η4,n(ξ)| ≤ C∗
4ξ

4e−ξ2/2

[

ξ4
n
∑

j=1

c4j,n +

n
∑

j=1

c4j,n

∣

∣

∣

∣

ǫ4

(

cj,nξ

σ

)
∣

∣

∣

∣

]

,(26)

|ψn(ξ)− η4,n(ξ)| ≤ C∗
4ξ

4(1 + ξ4)e−ξ2/2

[

n
∑

j=1

c6j,n +

n
∑

j=1

c4j,n

∣

∣

∣

∣

ǫ4

(

cj,nξ

σ

)
∣

∣

∣

∣

]

(27)

and

|ψ′
n(ξ)− η′4,n(ξ)|

≤C∗
4 |ξ|3(1 + ξ6)e−ξ2/2(28)

×
[

n
∑

j=1

c6j,n +
n
∑

j=1

c4j,n

(∣

∣

∣

∣

ǫ4

(

cj,nξ

σ

)∣

∣

∣

∣

+

∣

∣

∣

∣

̺4

(

cj,nξ

σ

)∣

∣

∣

∣

)

]

hold true for every |ξ| ≤A4,n := σy0(
∑n

j=1 c
4
j,n)

−1/4.

In (26)–(28), recall that ǫ4 is defined by (22) with k = 4, and ρ4(ξ) :=
ξǫ′4(ξ).

For general k = 2χ and δ, we have the following result.

Lemma 3.2. If |ξ| ≤Ak,δ,n := σy0(
∑n

j=1 c
4
j,n)

−1/(k+δ), then

|ψn(ξ)− ηk,n(ξ)| ≤C∗
k,δp0,k(ξ)|ξ|k+δe−ξ2/2

(

n
∑

j=1

|cj,n|k+δ

)

(29)

and

|ψ′
n(ξ)− η′k,n(ξ)| ≤C∗

k,δp1,k(ξ)|ξ|k−1+δe−ξ2/2

(

n
∑

j=1

|cj,n|k+δ

)

,(30)

where C∗
k,δ is a constant depending only on the behavior of ζ and p0,k(ξ),

p1,k(ξ) are polynomials whose coefficients depend only on k.
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The proofs of these lemmata are deferred to Section A.2, in which one
can also find instructions for the evaluation of C∗

4 , C
∗
k,δ, p0,k(ξ) and p1,k(ξ).

Inequalities (29) and (30) immediately entail that

(
∫ Ak,δ,n

−Ak,δ,n

|ψn(ξ)− ηk,n(ξ)|2 dξ
)1/2

≤C∗
k,δak

(

n
∑

j=1

|cj,n|k+δ

)

(31)

and
(
∫ Ak,δ,n

−Ak,δ,n

|ψ′
n(ξ)− η′k,n(ξ)|2 dξ

)1/2

≤C∗
k,δak

(

n
∑

j=1

|cj,n|k+δ

)

,(32)

where ak is the maximum between (
∫

R
ξ2k(1 + ξ2)2p20,k(ξ)e

−ξ2 dξ)1/2 and

(
∫

R
ξ2k−2(1 + ξ2)2p21,k(ξ)e

−ξ2 dξ)1/2.

4. Proofs of the main results. We first prove Theorem 2.1 and then
focus on Proposition 2.4. In fact, they rest on similar arguments. We will
then provide proofs for Theorems 2.2 and 2.3 by adapting methods used in
Section 4 of DGR.

Before starting, it is worth introducing some new symbols which will
be used hereafter. First, choose a version of the conditional distribution
function Pt{V ≤ x|β} and call it F∗(x). In view of (18), it does not depend
on t. F∗(x)[ω] will indicate dependence of F∗(x) on a specific sample point
ω in Ω. The Fourier–Stieltjes transform of F∗(·)[ω] will be designated by
ϕ∗(·)[ω]. Moreover, an integral over a measurable subset S of Ω will often
be denoted by E[·;S]. Symbols mr and mr for

∫

xrµ0(dv) and
∫

|x|rµ0(dx),
respectively, will continue to be used and σ2 will designate the value of m2,
while y0 will stand for the quantity {[−6σ2 + (36σ4 +12m4)

1/2]/m4}1/2.

4.1. Proof of Theorem 2.1. Assume, initially, that µ0 is symmetric. For
simplicity, introduce the rescaled solution µσ(·, t), defined by µσ(B, t) :=
µ(σB, t), where σB := {y = σx|x ∈B} for every B in the Borel class of R.
By the homogeneity of the total variation distance, we have dTV(µ(·, t);γσ) =
dTV(µσ(·, t);γ), where γ is shorthand for the standard normal law γ1. Now,
thanks to the elementary inequality

dTV(µσ(·, t);γ)≥
1

2
sup
ξ∈R

|ϕ(ξ/σ, t)− e−ξ2/2|,(33)

one can employ the expansions given in Section 3.2. First, observe that for
any small ε in ]0, σy0], one has

sup
ξ∈R

|ϕ(ξ/σ, t)− e−ξ2/2|
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≥ |ϕ(ε/σ, t)− e−ε2/2|
(34)

= |Et{Et[e
iεV/σ|β]− e−ε2/2}|

=

∣

∣

∣

∣

∫

Ω
{ϕ∗(ε/σ)[ω]− e−ε2/2}Pt(dω)

∣

∣

∣

∣

.

Next, after fixing any ω in Ω, substitute ν(ω) for n and πj(ω) for cj,n (j =
1,2, . . . , n) in Lemma 3.1. This way, ψn(ξ) changes into ϕ

∗(ξ/σ) and the re-

striction that Lemma 3.1 imposes on ε becomes |ε| ≤ σy0 (
∑ν(ω)

j=1 π
4
j (ω))

−1/4.
Clearly, this bound holds Pt-almost surely for every t, whenever ε is not
greater then σy0. Hence, (26) can be applied with

η4(ξ)[ω] := e−ξ2/2 +
κ4
4!σ4

(ν(ω)
∑

j=1

π4j (ω)

)

ξ4e−ξ2/2

in place of η4,n(ξ). If R
∗
4(ξ)[ω] stands for ϕ

∗(ε/σ)[ω]− η4(ξ)[ω], then the last
member in (34) can be written as

∣

∣

∣

∣

∣

∫

Ω
R∗

4(ε)[ω]Pt(dω) +
κ4
4!σ4

ε4e−ε2/2

∫

Ω

(

ν(ω)
∑

j=1

π4j (ω)

)

Pt(dω)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
R∗

4(ε)dPt +
κ4
4!σ4

ε4e−ε2/2e−(1/4)t

∣

∣

∣

∣

(35)

≥
∣

∣

∣

∣

|κ4|
4!σ4

ε4e−ε2/2e−(1/4)t −
∣

∣

∣

∣

∫

Ω
R∗

4(ε)dPt

∣

∣

∣

∣

∣

∣

∣

∣

,

where the equality follows from (19) and the inequality follows from |a+b| ≥
||a|− |b||. Now, the claim is that there exists an ε independent of t and small
enough to have

∣

∣

∣

∣

∫

Ω
R∗

4(ε)dPt

∣

∣

∣

∣

≤ |κ4|
2 · 4!σ4 ε

4e−ε2/2e−(1/4)t(36)

for every nonnegative t. To this end, recall the following: that ǫ4 [see (22)]
is a continuous function depending only on the initial datum µ0 so that
ǫ4(0) = 0; that |κ4| is strictly positive; that the constant C∗

4 = C∗
4 (µ0) can

never be chosen equal to zero. The inequality

|ǫ4(x)| ≤
|κ4|

4 · 4!σ4C∗
4

is surely satisfied for every x belonging to a suitable nondegenerate interval
[−x,x] included in [−y0, y0]. Thus, taking (26) into account, one can write

∫

Ω

[

C∗
4ε

4e−ε2/2

ν(ω)
∑

j=1

π4j (ω)

∣

∣

∣

∣

∣

ǫ4

(

π4j (ω)ε

σ

)

∣

∣

∣

∣

∣

]

Pt(dω)
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(37)

≤ |κ4|
4 · 4!σ4 ε

4e−ε2/2e−(1/4)t

for every ε in ]0, σx] and t≥ 0. Moreover,

C∗
4ε

8e−ε2/2e−(1/4)t ≤ |κ4|
4 · 4!σ4 ε

4e−ε2/2e−(1/4)t

is valid for every nonnegative t, provided that ε is chosen not greater than

x := ( |κ4|
4·4!C∗

4σ
4 )

1/4. Thus, in view of (26), (36) is satisfied for ε in ]0,min{σx;x}].
To conclude the proof in the symmetric case, fix ε as above in order to have

(36) and use the following elementary fact: if |b| ≤ |a|/2, then ||a| − |b|| =
|a| − |b| ≥ |a|/2. Applying this to (35), we get

∣

∣

∣

∣

|κ4|
4!σ4

ε4e−ε2/2e−(1/4)t −
∣

∣

∣

∣

∫

Ω
R∗

4(ε)dPt

∣

∣

∣

∣

∣

∣

∣

∣

≥ |κ4|
2 · 4!σ4 ε

4e−ε2/2e−(1/4)t,

which, in view of (34), provides a lower bound for dTV(µ(·, t);γσ). When µ0
is symmetric, the constant C̃, which appears in Theorem 2.1, can be taken

to be equal to |κ4|
4·4!σ4 ε

4e−ε2/2 with ε in ]0,min{σx;x}].
When µ0 is not symmetric, we employ its symmetrized form µ̃0 and recall

(14) to obtain

|µ(s)(B, t)− γσ(B)|= |µ(B, t)− o0(B)e−t − γσ(B)|
≤ |µ(B, t)− γσ(B)|+2e−t

≤ dTV(µ(·, t);γσ) + 2e−t(B ∈B(R)),

which plainly entails

dTV(µ
(s)(·, t);γσ)≤ dTV(µ(·, t);γσ) + 2e−t.(38)

From the first part of the proof, one can find a constant C̃(µ̃0)≤ 2 for which

dTV(µ
(s)(·, t);γσ)≥ C̃(µ̃0)e

−(1/4)t.

Hence,

dTV(µ(·, t);γσ)≥ dTV(µ
(s)(·, t);γσ)− 2e−t

≥ C̃(µ̃0)e
−(1/4)t − 2e−t ≥ 1

2C̃(µ̃0)e
−(1/4)t

holds, provided that t≥ t̂ :=− log[(C̃(µ̃0)/4)
4/3], where t̂ is strictly positive.

To conclude the proof, observe that (7) is valid, taking, for example,

C̃ = C̃(µ0) := min

{

1

2
C̃(µ̃0); inf

t∈[0,t̂]
dTV(µ(·, t);γσ)

}

.

Finally, inft∈[0,t̂] dTV(µ(·, t);γσ) is strictly positive in view of the existence of
the minimum combined with the uniqueness of the solution of Kac’s equa-
tion. This point is clarified in Appendix A.3.
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4.2. Proof of Proposition 2.4. To prove this proposition under the as-
sumption that all of the moments of µ0 are finite, it will suffice to prove
that all of the cumulants κ̃2m of even order of µ̃0 are zero for m= 2,3, . . . .
Thanks to (38), the inequality, which appears in the statement of Proposi-
tion 2.4, can be rewritten as

dTV(µ
(s)(·, t);γσ)≤ (C +2)e−t.(39)

In view of this fact, we can assume, without real loss of generality, that µ0
is symmetric. Then, supposing that κ2m = 0 for m= 2, . . . , s− 1 and κ2s 6= 0
for some integer s greater than 2, we have contradicted (39).

As in the previous subsection, write

2dTV(µ(·, t);γσ)≥ sup
ξ∈R

|ϕ(ξ/σ, t)− e−ξ2/2|
(40)

≥
∣

∣

∣

∣

∫

Ω
{ϕ∗(ε/σ)[ω]− e−ε2/2}Pt(dω)

∣

∣

∣

∣

,

where ε is any positive constant not greater than σy0. Following the general
lines of Section 3.2, define

η2s(ξ)[ω] := e−ξ2/2 + (−1)s
κ2s

(2s)!σ2s

(ν(ω)
∑

j=1

π2sj (ω)

)

ξ2se−ξ2/2.

After setting R∗
2s(ξ)[ω] := ϕ∗(ε/σ)[ω] − η2s(ξ)[ω], the last part of (40) be-

comes
∣

∣

∣

∣

∣

∫

Ω
R∗

2s(ε)[ω]Pt(dω) + (−1)s
κ2s

(2s)!σ2s
ε2se−ε2/2

∫

Ω

(ν(ω)
∑

j=1

π2sj (ω)

)

Pt(dω)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
R∗

2s(ε)dPt + (−1)s
κ2s

(2s)!σ2s
ε2se−ε2/2e−(1−2α2s)t

∣

∣

∣

∣

(41)

≥
∣

∣

∣

∣

|κ2s|
(2s)!σ2s

ε2se−ε2/2e−(1−2α2s)t −
∣

∣

∣

∣

∫

Ω
R∗

2s(ε)dPt

∣

∣

∣

∣

∣

∣

∣

∣

.

Now, if |ε| ≤ σy0, an application of (29), with k = 2s and δ = 1 combined
with (19), yields

∣

∣

∣

∣

∫

Ω
R∗

2s(ε)dPt

∣

∣

∣

∣

≤
∫

Ω
|R∗

2s(ε)|dPt

≤C∗
2s,1|ε|2s+1[9(1 + |ε|h(s))]e−ε2/2e−(1−2α2s+1)t(42)

≤C∗
2s,1|ε|2s+1[9(1 + (σy0)

h(s))]e−ε2/2e−(1−2α2s+1)t
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for every nonnegative t. Here, h(s) := 2s2 − s and the term [9(1 + |ε|h(s))] is
an upper bound for the polynomial p0,k in (29); see also (81) in the Appendix.
If ε satisfies the further restriction

|ε| ≤ 1

2C∗
2s,1

· 1

9(1 + (σy0)h(s))
· |κ2s|
(2s)!σ2s

,

then one can rewrite (42) as
∣

∣

∣

∣

∫

Ω
R∗

2s(ε)dPt

∣

∣

∣

∣

≤ |κ2s|
2 · (2s)!σ2s ε

2se−ε2/2e−(1−2α2s)t.(43)

Hence, inequalities (41) and (43) entail that

|κ2s|
2 · (2s)!σ2s ε

2se−ε2/2e−(1−2α2s)t ≤ 2dTV(µ(·, t);γσ)≤ 2(C +2)e−t

for every nonnegative t, which contradicts the fact that (1− 2α2s) is strictly
smaller than 1. Thus, κ2s must vanish, implying that µ0 = γσ since γσ is
uniquely determined by its moments. Finally, if µ0 is not symmetric, then
µ̃0 = γσ .

4.3. Proof of Theorem 2.2 when k + δ = 4. We shall closely follow the
proof of Theorem 2.1 in DGR. First, let us assume that the condition

f0 and, consequently, f(·, t) are even functions(H)

holds. This does not limit the generality of subsequent reasoning, thanks
to (9)–(10) of DGR. Since d

dvF
∗(v) represents a version of the conditional

probability density function of V given β, in view of basic properties of
conditional expectation, one has

∫

R

∣

∣

∣

∣

f(v, t)− 1

σ
√
2π
e−v2/(2σ2)

∣

∣

∣

∣

dv

=: ‖f(v, t)− gσ(v)‖1 ≤ Et

[
∥

∥

∥

∥

d

dv
F∗(v)− gσ(v)

∥

∥

∥

∥

1

]

(44)

= Et

[∥

∥

∥

∥

d

dv
F∗(σv)− g1(v)

∥

∥

∥

∥

1

]

,

where gσ(v)dv = γσ(dv). Moreover, from Proposition 2.2 of DGR, which can
be applied to f0, thanks to the hypotheses in Theorem 2.2 and (H), there
exist α and λ for which

|ϕ0(ξ)| ≤
(

λ2

λ2 + ξ2

)α

(45)
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holds true for every real ξ. In particular, one can set α = (2 · ⌈2/p⌉)−1, p
being the same as in (4) and ⌈s⌉ standing for the least integer not less than
s. Define U ⊂Ω by

U := {ν ≤ n} ∪
{

ν
∏

j=1

πj = 0

}

∪
{

ν
∑

j=1

π4j ≥ δ

}

(46)

with n= 17 · ⌈2/p⌉ and

δ =min

{

1

2nn!
;

σ8

16y40m
4
3

}

≤ 1

2nn!
.

Next, check that U belongs to F and rewrite the last term in (44) as

Et

[∥

∥

∥

∥

d

dv
F∗(σv)− g1(v)

∥

∥

∥

∥

1

;U

]

+ Et

[∥

∥

∥

∥

d

dv
F∗(σv)− g1(v)

∥

∥

∥

∥

1

;U c

]

.(47)

By the same arguments as the ones used to prove (22) in DGR, one obtains

Pt{ν ≤ n} ≤ ne−t and Pt

{

ν
∏

j=1

πj = 0

}

= 0.

As for the third component of the union in the definition of U , one can
combine Markov’s (with power 2) and Lyapunov’s inequalities to get

Pt

{

ν
∑

j=1

π4j ≥ δ

}

≤ 1

δ2
Et

[(

ν
∑

j=1

π4j

)2]

≤ 1

δ2
Et

[

ν
∑

j=1

π6j

]

≤ 1

δ2
e−(3/8)t.

The exponent 3/8 follows from the application of (19) with m = 6. Now,
combining all of the above computations leads to an estimate for the prob-
ability of U under Pt, that is,

Pt(U)≤ [n+1/δ2]e−(3/8)t (t≥ 0).(48)

Inequality (48) leads immediately to the upper bound

Et

[∥

∥

∥

∥

d

dv
F∗(σv)− g1(v)

∥

∥

∥

∥

1

;U

]

≤ 2Pt(U)≤ 2[n+ 1/δ2]e−(3/8)t.(49)

To control the integral over U c appearing in (47), we invoke the Beurling
inequality formulated in Proposition 4.1 of DGR to obtain

Et

[
∥

∥

∥

∥

d

dv
F∗(σv)− g1(v)

∥

∥

∥

∥

1

;U c

]

(50)

≤ 1√
2
Et

[{
∫

R

|∆|2 dξ +
∫

R

|∆′|2 dξ
}1/2

;U c

]

,
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where ∆ := ϕ∗(ξ/σ) − e−ξ2/2 and ∆′ := d
dξ∆. Applicability of this result is

justified by the fact that the restriction to U c of the conditional characteristic
function ξ 7→ ϕ∗(ξ) :=

∫

R
eiξx dF∗(x) belongs to H1(R). To see this, note that

ϕ∗(ξ)[ω] = o(|ξ|−34) is valid for |ξ| →+∞ and for ω in U c. Indeed, thanks
to conditional independence and (45), one has

|ϕ∗(ξ)| ≤
n
∏

j=1

(

λ2

λ2 + π2j ξ
2

)α

and the claimed “tail behavior” of ϕ∗ follows from the definitions of n and
α, together with the fact that the random numbers πj do not vanish on U c.
To complete the argument for H1(R) regularity, use Remark A.2 in Section
A.3 of the Appendix of DGR.

Now, the expectation in the right-hand side of (50) is dominated by

Et

[(
∫

{|ξ|≤A}
|∆|2 dξ

)1/2

;U c

]

+ Et

[(
∫

{|ξ|≥A}
|∆|2 dξ

)1/2

;U c

]

(51)

+ Et

[(
∫

{|ξ|≤A}
|∆′|2 dξ

)1/2

;U c

]

+ Et

[(
∫

{|ξ|≥A}
|∆′|2 dξ

)1/2

;U c

]

with

A=A(β) :=
σy0

(
∑ν

j=1 π
4
j )

1/4
.

At this stage, we apply (27) to the evaluation of the first integral in (51)

after observing that the function η4,n(ξ) here equals e−ξ2/2 almost surely
since κ4 = 0. This leads to

(
∫

{|ξ|≤A}
|∆|2 dξ

)1/2

≤ 2
√

2Γ(17/2)C∗
4

(

ν
∑

j=1

π6j

)

(52)

+
√
2C∗

4

[

∫

R

ξ8(1 + ξ4)2e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

ǫ̃4

(

πjξ

σ

)
∣

∣

∣

∣

)2

dξ

]1/2

with

ǫ̃4(x) :=











logϕ0(x) + (σ2/2)x2 − (κ4/4!)x
4

x4
, if 0< |x| ≤ σy0,

ǫ̃4(σy0), if |x|> σy0,
0, if x= 0.
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Note that ǫ̃4 is a bounded continuous function. Take expectations of both
sides of (52) and recall (19) to obtain

Et

(
∫

{|ξ|≤A}
|∆|2 dξ

)1/2

≤ 2
√

2Γ(17/2)C∗
4e

−(3/8)t(53)

+
√
2C∗

4Et

[

∫

R

ξ8(1 + ξ4)2e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

ǫ̃4

(

πjξ

σ

)
∣

∣

∣

∣

)2

dξ

]1/2

.

In view of Section A.4,

lim
t→+∞

ρ
(1)
0 (t) = 0,(54)

where

ρ
(1)
0 (t) := e(1/4)tEt

[

∫

R

ξ8(1 + ξ4)2e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

ǫ̃4

(

πjξ

σ

)∣

∣

∣

∣

)2

dξ

]1/2

.

Similarly, apply (28) to evaluate the second integral in (51) as follows:
(
∫

{|ξ|≤A}
|∆′|2 dξ

)1/2

≤ 4
√

Γ(19/2)C∗
4

(

ν
∑

j=1

π6j

)

(55)

+ 2
√
2C∗

4

[

∫

R

ξ6(1 + ξ12)e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

ǫ̃4

(

πjξ

σ

)
∣

∣

∣

∣

)2

dξ

]1/2

+2
√
2C∗

4

[

∫

R

ξ6(1 + ξ12)e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

˜̺4

(

πjξ

σ

)
∣

∣

∣

∣

)2

dξ

]1/2

with

˜̺4(x) :=















x
d

dx
ǫ̃4(x), if 0< |x|< σy0,

l := lim
u↑σy0

˜̺4(u), if |x| ≥ σy0,

0, if x= 0.

Once again, take expectations of both sides of (55) and use (19) to get

Et

(
∫

{|ξ|≤A}
|∆′|2 dξ

)1/2
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≤ 4
√

Γ(19/2)C∗
4e

−(3/8)t

(56)

+ 2
√
2C∗

4Et

[

∫

R

ξ6(1 + ξ12)e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

ǫ̃4

(

πjξ

σ

)
∣

∣

∣

∣

)2

dξ

]1/2

+ 2
√
2C∗

4Et

[

∫

R

ξ6(1 + ξ12)e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

˜̺4

(

πjξ

σ

)∣

∣

∣

∣

)2

dξ

]1/2

.

Another application of Section A.4 leads us to state the following important
facts:

lim
t→+∞

ρ
(2)
0 (t) = lim

t→+∞
ρ
(3)
0 (t) = 0,(57)

where

ρ
(2)
0 (t) := e(1/4)tEt

[

∫

R

ξ6(1 + ξ12)e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

ǫ̃4

(

πjξ

σ

)
∣

∣

∣

∣

)2

dξ

]1/2

and

ρ
(3)
0 (t) := e(1/4)tEt

[

∫

R

ξ6(1 + ξ12)e−ξ2

(

ν
∑

j=1

π4j

∣

∣

∣

∣

˜̺4

(

πjξ

σ

)∣

∣

∣

∣

)2

dξ

]1/2

.

After determining upper bounds for integrals of the type
∫

{|ξ|≤A}, it remains

to examine the remaining summands in (51). Minkowski’s inequality yields
(
∫

{|ξ|≥A}
|∆|2 dξ

)1/2

≤
(
∫

{|ξ|≥A}
|ϕ∗(ξ/σ)|2 dξ

)1/2

+

(
∫

{|ξ|≥A}
|e−ξ2/2|2 dξ

)1/2

and
(
∫

{|ξ|≥A}
|∆′|2 dξ

)1/2

≤
(
∫

{|ξ|≥A}

∣

∣

∣

∣

d

dξ
ϕ∗(ξ/σ)

∣

∣

∣

∣

2

dξ

)1/2

+

(
∫

{|ξ|≥A}
|ξe−ξ2/2|2 dξ

)1/2

.

From a well-known inequality, proved in, for example, Lemma 2 of VII.1 in
Feller (1968), and since maxx≥0 x

ke−αx2
= [k/(2eα)]k/2 , one obtains

(
∫

{|ξ|≥A}
e−ξ2 dξ

)1/2

≤
(

15

2

)15/4

e−15/4(σy0)
−8

ν
∑

j=1

π6j

and
(
∫

{|ξ|≥A}
ξ2e−ξ2 dξ

)1/2

≤ 2 +
√
2

2

(

17

2

)17/4

e−15/4(σy0)
−8

ν
∑

j=1

π6j .
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Equation (19) can then be applied to obtain

Et

(
∫

{|ξ|≥A}
e−ξ2 dξ

)1/2

≤
(

15

2

)15/4

e−15/4(σy0)
−8e−(3/8)t(58)

and

Et

(
∫

{|ξ|≥A}
ξ2e−ξ2 dξ

)1/2

≤ 2 +
√
2

2

(

17

2

)17/4

e−15/4(σy0)
−8e−(3/8)t.(59)

At this point, to control the remaining integrals over {|ξ| ≥A}, we proceed
as in formula (30) of DGR to write

[(
∫

{|ξ|≥A}
|ϕ∗(ξ/σ)|2 dξ

)1/2

+

(
∫

{|ξ|≥A}

∣

∣

∣

∣

d

dξ
ϕ∗(ξ/σ)

∣

∣

∣

∣

2

dξ

)1/2]

· 1Uc

(60)

≤ 2
√
2

(
∫ +∞

A
|ϕ∗(ξ/σ)|dξ

)1/2

· 1Uc +
√

2|ϕ∗(A/σ)| · 1Uc .

For ω in U c, the bound

A(ω)≤ σ3

2m3
∑ν(ω)

j=1 |πj(ω)|3

holds true, thanks to the definition of δ and the Lyapunov inequality. Thus,
Lemma 12 in Chapter 6 of Petrov (1975) can be applied to the characteristic
function ϕ∗(ξ/σ) with b= 1/2 to deduce

√

2|ϕ∗(A/σ)| ≤
√
2e−A2/12 ≤

√
2(48/e)4A−8

=
√
2(48/e)4(σy0)

−8
ν
∑

j=1

π6j ,

which entails that

Et

√

2|ϕ∗(A/σ)| ≤
√
2(48/e)4(σy0)

−8e−(3/8)t.(61)

It remains to analyze

(
∫ +∞

A
|ϕ∗(ξ/σ)|dξ

)1/2

· 1Uc =

(

∫ +∞

A

ν
∏

j=1

∣

∣

∣

∣

ϕ0

(

πjξ

σ

)
∣

∣

∣

∣

dξ

)1/2

· 1Uc .

An estimate of this term is made using Proposition 2.2 in DGR, together
with (33), (34) and (35) therein, with ε= 1/(2n!). We then have

(
∫ +∞

A
|ϕ∗(ξ/σ)|dξ

)1/2

· 1Uc ≤
[

λσ

∫ +∞

A/λσ

(

1

εη2n

)α

dη

]1/2

(62)

=D

(

ν
∑

j=1

π4j

)(2nα−1)/8

.
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The definition of n in (46) yields (2αn− 1)/8 = 2. Moreover,

D :=
1

4εα/2
(λσ)17/2

(σy0)8
(63)

≤ 213/4
[(

3

2σ2

)17/4

+

(

2

1−M

)17/4

(Lp)
17/2p

]

with

Lp := sup
ξ∈R

[|ξ|p · |ϕ0(ξ)|]

and

M = exp

{

− 3π2

64(3 + (Lp)4/p)2

(
√
2σ

8⌈2/p⌉σ3 +40π
√

⌈2/p⌉m4

)2}

.

Taking expectation in (62) gives

Et

[(
∫ +∞

A
|ϕ∗(ξ/σ)|dξ

)1/2

· 1UC

]

≤De−(3/8)t.(64)

The claimed upper bound (9) follows from (49), (53), (56), (58), (59), (61)
and (64).

4.4. Proof of Theorems 2.2 and 2.3 when 2χ+ δ > 4. This proof differs
from the previous one only in the choice of the constants. One can start
from (44) under hypothesis (H). Thanks to (H) and the hypotheses of the
theorems to be proven, one can apply Proposition 2.2 of DGR to get (45)
with α= (2 · ⌈2/p⌉)−1.

Now, define U exactly as in (46) with n= [k(k+ 2) + 1] · ⌈2/p⌉ and

δ =min

{

1

2nn!
;

σ8

16y40m
4
3

}

≤ 1

2nn!
.

The probability of U is then estimated, under each Pt, using the facts that

Pt{ν ≤ n} ≤ ne−t and Pt

{

ν
∏

j=1

πj = 0

}

= 0,

whereas, for the third component of the union in the definition of U , one
can combine Markov’s (with exponent k/2) and Lyapounov’s inequalities to
get

Pt

{

ν
∑

j=1

π4j ≥ δ

}

≤ 1

δk/2
Et

[(

ν
∑

j=1

π4j

)k/2]

≤ 1

δk/2
Et

[

ν
∑

j=1

πk+2
j

]

≤ 1

δ
k/2

e−(1−2αk+2)t.
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Thus,

Pt(U)≤ [n+1/δk/2]e−(1−2αk+2)t (t≥ 0).(65)

Now, split the term Et[‖ d
dvF

∗(σv)− g1(v)‖1] into the sum of two contribu-
tions, exactly as in (47), and note that (65) entails that

Et

[
∥

∥

∥

∥

d

dv
F∗(σv)− g1(v)

∥

∥

∥

∥

1

;U

]

≤ 2Pt(U)≤ 2[n+ 1/δ
k/2

]e−(1−2αk+2)t.(66)

To control the integral over U c, we once again invoke Beurling’s inequality
(see Proposition 4.1 in DGR) to write (50). Applicability of this result rests
on the same arguments as those provided in Section 4.3. The right-hand side
of (50) is split into a sum of four terms, exactly as in (51), with

A=A(β) :=
σy0

(
∑ν

j=1 π
4
j )

1/(k+δ)
.

Now, apply (31) to the evaluation of the first integral in (51), noting that

the function ηk,n(ξ) equals e
−ξ2/2 almost surely since κ2r = 0 for r = 2, . . . , χ.

This leads to

Et

[(
∫

{|ξ|≤A}
|∆|2 dξ

)1/2]

≤C∗
k,δak · e−(1−2α2χ+δ)t(67)

and

Et

[(
∫

{|ξ|≤A}
|∆′|2 dξ

)1/2]

≤C∗
k,δak · e−(1−2α2χ+δ)t.(68)

After determining upper bounds for integrals of the type
∫

{|ξ|≤A}, it remains

to examine the remaining summands in (51). Minkowski’s inequality gives
(
∫

{|ξ|≥A}
|∆|2 dξ

)1/2

≤
(
∫

{|ξ|≥A}
|ϕ∗(ξ/σ)|2 dξ

)1/2

+

(
∫

{|ξ|≥A}
|e−ξ2/2|2 dξ

)1/2

and
(
∫

{|ξ|≥A}
|∆′|2 dξ

)1/2

≤
(
∫

{|ξ|≥A}

∣

∣

∣

∣

d

dξ
ϕ∗(ξ/σ)

∣

∣

∣

∣

2

dξ

)1/2

+

(
∫

{|ξ|≥A}
|ξe−ξ2/2|2 dξ

)1/2

.

Integrals involving the Gaussian density are controlled as in the previous
subsection, giving

Et

(
∫

{|ξ|≥A}
e−ξ2 dξ

)1/2

(69)

≤
(

k(k+ 2)− 1

2e

)(k(k+2)−1)/4

(σy0)
−k(k+2)/2e−(1−2αk+2)t
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and

Et

(
∫

{|ξ|≥A}
ξ2e−ξ2 dξ

)1/2

(70)

≤ 2 +
√
2

2

(

k(k+ 2) + 1

2e

)(k(k+2)+1)/4

(σy0)
−k(k+2)/2e−(1−2αk+2)t.

To control the remaining integrals over the region {|ξ| ≥A}, we proceed as
before, writing (60). For ω in U c, the bound

A(ω)≤ σ3

2m3
∑ν(ω)

j=1 |πj(ω)|3

holds true, thanks to the definition of δ and the Lyapunov inequality. We
then set b= 1/2 in Lemma 12 from Chapter 6 of Petrov (1975) to deduce
that
√

2|ϕ∗(A/σ)|

≤
√
2e−A2/12

≤
√
2

(

3k(k +2)

e

)(k(k+2))/4

(σy0)
−(k(k+2))/2 ·

(

ν
∑

j=1

π4j

)(k(k+2))/(2(k+δ))

≤
√
2

(

3k(k +2)

e

)(k(k+2))/4

(σy0)
−(k(k+2))/2 ·

(

ν
∑

j=1

πk+2
j

)

and, therefore,

Et

√

2|ϕ∗(A/σ)| ≤
√
2

(

3k(k +2)

e

)(k(k+2))/4

(σy0)
−(k(k+2))/2

(71)
× e−(1−2αk+2)t.

Finally, in regard to (
∫ +∞
A |ϕ∗(ξ/σ)|dξ)1/2 · 1Uc , one can write

(
∫ +∞

A
|ϕ∗(ξ/σ)|dξ

)1/2

· 1Uc =Dk

(

ν
∑

j=1

π4j

)(2nα−1)/8

,(72)

where the constant Dk is given by
√

λσ(2n!)α

2αn− 1

(

λ

y0

)(2αn−1)/2

.
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The definition of n given at the beginning of this subsection yields (2αn−
1)/8> k/2. Now, taking expectation in (72) entails that

Et

[(
∫ +∞

A
|ϕ∗(ξ/σ)|dξ

)1/2

· 1UC

]

≤Dke
−(1−2αk+2)t.(73)

To obtain (11), it will suffice to combine the previous inequalities.

APPENDIX

This appendix contains all of the elements which are necessary to complete
the proofs given in Section 4. It is split into four parts. The first focuses on
a quantification of the numbers y0 such that the Fourier–Stieltjes transform
of a symmetric probability law turns out to be greater than 1/2 on [−y0, y0].
The second presents the proofs of Lemmas 3.1 and 3.2. The third aims to
clarify the conclusion of the proof of Proposition 2.4. Finally, the fourth
provides a proof for (54) and (57).

A.1. Specification of y0. Let ψ be the Fourier–Stieltjes transform of a
symmetric probability law ζ on (R,B(R)), namely ψ(ξ) :=

∫

R
eiξxζ(dx) for

every real ξ. Assume that m4 :=
∫

R
x4ζ(dx) is finite and put σ2 :=

∫

R
x2ζ(dx),

y0 := {[−6σ2 + (36σ4 + 12m4)
1/2]/m4}1/2. If |ξ| ≤ y0, then ψ(ξ)≥ 1/2.

Proof. By the Taylor expansion for characteristic functions, one can
write ψ(ξ) = 1− (σ2/2)ξ2 +R(ξ) with |R(ξ)| ≤ (m4/24)ξ

4; see, for example,
Section 8.4 in Chow and Teicher (1997). The desired bound is obtained if

1− σ2

2
ξ2 − m4

24
ξ4 ≥ 1

2

holds true for every ξ belonging to some interval. Now, one can note that
the biquadratic equation m4ξ

4 + 12σ2ξ2 − 12 = 0 possesses exactly two real
solutions, namely ±y0, and the previous inequality is satisfied for every ξ in
[−y0, y0]. �

A.2. Proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. Set ψj,n for the characteristic function of Yj,n
(j = 1,2, . . . , n) and use the definition of Vn, combined with independence,
to write

ψn(ξ) =
n
∏

j=1

ψj,n(ξ) =
n
∏

j=1

ψ

(

cj,nξ

σ

)

.
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If |ξ| ≤A4,n, then it easily follows that

∣

∣

∣

∣

cj,nξ

σ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

cj,nσy0
σ

(

n
∑

r=1

c4r,n

)−1/4∣
∣

∣

∣

∣

≤ y0.

Now, using elementary properties of the logarithm, one can combine expan-
sion (22) with property (20) of each array {c1,n, . . . , cn,n} to obtain

logψn(ξ) =
n
∑

j=1

logψj,n(ξ)

=

n
∑

j=1

[

−1

2
σ2
c2j,nξ

2

σ2
+

1

4!
κ4
c4j,nξ

4

σ4
+
c4j,nξ

4

σ4
ǫ4

(

cj,nξ

σ

)]

=−1

2
ξ2 +

λ̃2,n
4!

ξ4 +R4(ξ),

where

R4(ξ) :=
n
∑

j=1

c4j,nξ
4

σ4
ǫ4

(

cj,nξ

σ

)

.

Inverting the logarithm, one gets

ψn(ξ) = e−ξ2/2 · exp
{

λ̃2,n
4!

ξ4
}

· exp{R4(ξ)}.(74)

It is easily verified that the restrictions |u| := |λ̃2,nξ4|/4! ≤ κ4y0/4! and

|R4(ξ)| ≤M
(4)
0 y40 hold true when |ξ| ≤ A4,n, and that λ̃2,nξ

4/4! = P̃1,n(ξ).
Finally, set F (x) := ex − 1− x. At this point, we have all the tools needed
to prove (26) and (27). Indeed,

|ψn(ξ)− η4,n(ξ)|= e−ξ2/2|eu exp{R4(ξ)} − 1− u|

= e−ξ2/2|eu exp{R4(ξ)} − eu + F (u)|

≤ e−ξ2/2eu| exp{R4(ξ)} − 1|+ e−ξ2/2|F (u)|.
By elementary arguments, if x is any real number satisfying |x| ≤ c, one has

|ex − 1| ≤ e|x| − 1≤
(

ec − 1

c

)

|x|.

This fact can be applied to R4(ξ) to get

| exp{R4(ξ)} − 1| ≤ ξ4 ·
(

eM
(4)
0 y40 − 1

σ4y40

)

·
(

n
∑

j=1

c4j,n

∣

∣

∣

∣

ǫ4

(

cj,nξ

σ

)∣

∣

∣

∣

)

.
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Moreover, since the inequality

|F (u)| ≤ max
|x|≤κ4y0/4!

[
∣

∣

∣

∣

F (x)

x2

∣

∣

∣

∣

]

ξ8

(

n
∑

j=1

c4j,n

)2

holds, one can conclude that

|ψn(ξ)− η4,n(ξ)|

≤ e−ξ2/2ξ4 · exp
{

κ4y
4
0

4!

}(

eM
(4)
0 y40 − 1

σ4y40

)

·
(

n
∑

j=1

c4j,n

∣

∣

∣

∣

ǫ4

(

cj,nξ

σ

)
∣

∣

∣

∣

)

(75)

+ e−ξ2/2 max
|x|≤κ4y40/4!

[∣

∣

∣

∣

F (x)

x2

∣

∣

∣

∣

]

ξ8

(

n
∑

j=1

c4j,n

)2

.

After setting

C∗∗
4 := exp

{

κ4y
4
0

4!

}(

eM
(4)
0 y40 − 1

σ4y40

)

+ max
|x|≤κ4y40/4!

[∣

∣

∣

∣

F (x)

x2

∣

∣

∣

∣

]

,

the derivation of (26) and (27) follows by rewriting (75) in a more conve-
nient form. To get (26), it is enough to observe that

∑n
j=1 c

4
j,n ≤ 1, while to

deduce (27), one can combine the inequality (
∑n

j=1 c
4
j,n)

2 ≤∑n
j=1 c

6
j,n with

max{1; ξ4} ≤ (1 + ξ4).
To prove (28), we start from (74) and take the derivative with respect to

ξ. Thus, one obtains

|ψ′
n(ξ)− η′4,n(ξ)|

≤ exp{R4(ξ)} · |R′
4(ξ)| · |η4,n(ξ) +F (u)e−ξ2/2|

+ |η′4,n(ξ)| · | exp{R4(ξ)} − 1|

+ exp{R4(ξ)} ·
∣

∣

∣

∣

d

dξ
F (u)

∣

∣

∣

∣

· e−ξ2/2 + exp{R4(ξ)} · |F (u)| · |ξ|e−ξ2/2.

Arguing as in the first part of this proof, we have

|η′4,n(ξ)| · | exp{R4(ξ)} − 1|

≤
(

eM
(4)
0 y40 − 1

σ4y40

)

·
(

1 +
κ4
4!σ4

)

|ξ|5(1 + ξ4)e−ξ2/2(76)

×
(

n
∑

j=1

c4j,n

∣

∣

∣

∣

ǫ4

(

cj,nξ

σ

)∣

∣

∣

∣

)
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and

exp{R4(ξ)} · |F (u)| · |ξ|e−ξ2/2

(77)

≤ max
|x|≤κ4y0/4!

[
∣

∣

∣

∣

F (x)

x2

∣

∣

∣

∣

]

exp{M (4)
0 y40}|ξ|9e−ξ2/2

(

n
∑

j=1

c4j,n

)2

.

Moreover,

exp{R4(ξ)} · |R′
4(ξ)| · |η4,n(ξ) + F (u)e−ξ2/2|

= exp{R4(ξ)} · |R′
4(ξ)| · e−ξ2/2eu

(78)

≤ exp{M (4)
0 y40} · exp

{

κ4y
4
0

4!

}

4σ−4|ξ|3e−ξ2/2 ·

×
[

n
∑

j=1

c4j,n

∣

∣

∣

∣

ǫ4

(

cj,nξ

σ

)
∣

∣

∣

∣

+
n
∑

j=1

c4j,n

∣

∣

∣

∣

̺4

(

cj,nξ

σ

)
∣

∣

∣

∣

]

and

d

dξ
F (u) =

λ̃2,n
3!

ξ3(eu − 1),

whence

exp{R4(ξ)} ·
∣

∣

∣

∣

d

dξ
F (u)

∣

∣

∣

∣

· e−ξ2/2

(79)

≤ exp{M (4)
0 y40}

κ24
3!4!σ8

(

exp{κ4y40/4!} − 1

κ4y40/4!

)

|ξ|7e−ξ2/2

(

n
∑

j=1

c4j,n

)2

.

Now, set

C∗∗∗
4 :=

(

eM
(4)
0 y40 − 1

σ4y40

)

·
(

1 +
κ4
4!σ4

)

+ max
|x|≤κ4y0/4!

[
∣

∣

∣

∣

F (x)

x2

∣

∣

∣

∣

]

exp{M (4)
0 y40}

+ exp{M (4)
0 y40} · exp

{

κ4y
4
0

4!

}

4σ−4

+ exp{M (4)
0 y40}

κ24
3!4!σ8

(

exp{κ4y40/4!} − 1

κ4y40/4!

)

and combine (76), (77), (78) and (79), after noting that |ξ|5(1+ ξ4)+ |ξ|9 +
|ξ|3+ |ξ|7 ≤ 4|ξ|3(1+ ξ6) holds for every ξ. Finally, in order to have the same
multiplicative constant in the right-hand sides of (26), (27) and (28), replace
C∗∗
4 and 4C∗∗∗

4 with C∗
4 := max{C∗∗

4 ; 4C∗∗∗
4 }. �
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Proof of Lemma 3.2. In view of the independence of the random
variables Xj,n and (22), one gets

logψn(ξ) =−1

2
ξ2 +

χ
∑

r=2

(−1)r
λ̃r,n
(2r)!

ξ2r +Rk+δ(ξ),

where

Rk+δ(ξ) :=

n
∑

j=1

ckj,nξ
k

σk
ǫk+δ

(

cj,nξ

σ

)

,

whence

ψn(ξ) = e−ξ2/2 · exp
{

χ
∑

r=2

(−1)r
λ̃r,n
(2r)!

ξ2r

}

· exp{Rk+δ(ξ)}.(80)

Now, consider the function z 7→ fξ(z) = exp{gξ(z)} with

gξ(z) :=

χ−1
∑

r=1

(−1)r+1 λ̃r+1,n

(2r+2)!
ξ2(r+1)zr

and its Taylor polynomial of order (χ−1) at z = 0, say pχ−1(z). Then, recall
the Faà di Bruno formula, that is,

d(χ)

dt(χ)
exp{(y(t))}

=
∑

(∗)

χ!

k1!k2! · · ·kχ!
exp{(y(t))}

(

y(1)(t)

1!

)k1(y(2)(t)

2!

)k2

· · ·
(

y(χ)(t)

χ!

)kχ

with (∗) meaning that the sum is carried out over all nonnegative integer
solutions (k1, . . . , kχ) of the equation k1+2k2+ · · ·+χkχ = χ. An application
of this formula entails that

pχ−1(z) = 1+

χ−1
∑

r=1

P̃r,n(ξ)z
r,

the functions P̃r,n(ξ) having been defined in (24). Thus, when z = 1, the
Lagrange remainder can be written with a suitable u ∈ [0,1] as

1

χ!
f
(χ)
ξ (u) = fξ(u)

∑

(∗)

1

k1!k2! · · ·kχ!

(

g
(1)
ξ (u)

1!

)k1(g
(2)
ξ (u)

2!

)k2

· · ·
(

g
(χ)
ξ (u)

χ!

)kχ

,

which, after repeated application of the multinomial formula, leads to
∣

∣

∣

∣

1

χ!
f
(χ)
ξ (u)

∣

∣

∣

∣

≤ fξ(u)
∑

(∗)

χ−1
∏

m=1

∑

{l1+···+lχ−m=km}

|Al1
1,m(ξ) · · ·Alχ−m

χ−m,m(ξ)|
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with Ah,m(ξ) := (−1)h+m
(h+m−1

m

) λ̃h+m,n

(2(h+m))! ξ
2(h+m). We can then introduce

the quantity

Wχ :=

[

χ
∏

s=2

max

{

κ2s
σ2s

; 1

}

]χ

to obtain, after an application of the Lyapunov inequality,
∑

{l1+···+lχ−m=km}

|Al1
1,m(ξ) · · ·Alχ−m

χ−m,m(ξ)|

≤ χχWχξ
2mkm(ξ2 + ξk−2)km ·

(

n
∑

j=1

ck+2
j,n

)2mkm/k

,

whence
∣

∣

∣

∣

1

χ!
f
(χ)
ξ (u)

∣

∣

∣

∣

≤ fξ(u) ·χχ2
W χ−1

χ ξk[(ξ2 + ξk−2)2 + (ξ2 + ξk−2)χ] ·
(

n
∑

j=1

ck+2
j,n

)

and, using the bound |ξ| ≤Ak,δ,n,

|gξ(u)| ≤
χ
∑

s=2

κ2sy
2s
0 :=Bχ.

Then,

|ψn(ξ)− ηk,n(ξ)|
≤ e−ξ2/2{[fξ(1)− pχ−1(1)] + [eRk+δ(ξ) − 1]}

(81)

≤ e−ξ2/2

[

eBχχχ2
W χ−1

χ ξk[(ξ2 + ξk−2)2 + (ξ2 + ξk−2)χ] ·
(

n
∑

j=1

ck+2
j,n

)

+

(

exp{M (k+δ)
0 yk0} − 1

M
(k+δ)
0 yk0

)

2mk+δ

k!σk+δ

(

n
∑

j=1

|cj,n|k+δ

)

|ξ|k+δ

]

.

After observing that ξk[(ξ2 + ξk−2)2 + (ξ2 + ξk−2)χ] ≤ |ξ|k+δ(1 + ξ2)[2ξ2 +
2ξ2k−6 + 2χξk−2 + 2χξχk−k−2] for every ξ, one can take p0,k in (29) to be
equal to 1 + (1 + ξ2)[2ξ2 +2ξ2k−6 +2χξk−2 +2χξχk−k−2].

As for |ψ′
n − η′k,n|, note that the inequality

|ψ′
n(ξ)− η′k,n(ξ)|

≤ |ξ| · |ψn(ξ)− ηk,n(ξ)|+ e−ξ2/2

∣

∣

∣

∣

d

dξ
fξ(1)

∣

∣

∣

∣

· | exp{Rk+δ(ξ)} − 1|
(82)
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+ e−ξ2/2|fξ(1)| exp{Rk+δ(ξ)}|R′
k+δ(ξ)|

+ e−ξ2/2

∣

∣

∣

∣

d

dξ
(fξ(1)− pχ−1(1))

∣

∣

∣

∣

obtains. As regards the first summand, it will suffice to multiply the upper
bound stated in (81) for |ψn − ηk,n| by |ξ|. The latter factor in the second
addend of (82) can be dominated by the last addend in (81), while, for the
former factor, one has

∣

∣

∣

∣

d

dξ
fξ(1)

∣

∣

∣

∣

≤ exp{Bχ}
χ−1
∑

r=1

κ2r+2y
2r+1
0

(2r+1)!σ
.

As for the third addend, recall that |fξ(1)| ≤ exp{Bχ} and |Rk+δ(ξ)| ≤
yk0M

(k+δ)
0 . Moreover, |R′

k+δ(ξ)| ≤
∑n

j=1 σ
−kξk−1|cj,n|k{k|ǫk+δ(cj,nξ/σ)| +

|ξσ−1cj,n× ǫ′k+δ(cj,nξ/σ)|} and, in view of Theorem 1 in Section 8.4 of Chow

and Teicher (1997), (|ǫk+δ(x)|+ |xǫ′k+δ(x)|)≤ 4mk+δ|x|δ/(k− 1)!. It remains

to deal with the last summand in (82). Since ∂
∂ξpχ−1 is a Taylor polynomial

for ∂
∂ξfξ, one can use the Bernstein integral form of the remainder to obtain

∣

∣

∣

∣

∂

∂ξ
(fξ(1)− pχ−1(1))

∣

∣

∣

∣

≤ 1

(χ− 1)!

∫ 1

0
(1− u)χ−1

χ
∑

l=0

(

χ
l

)∣

∣

∣

∣

∂l

∂ul
fξ(u)

∣

∣

∣

∣

du

×
n
∑

j=1

c
2(χ−l+1)
j,n

χ−1
∑

r=χ−l

|ξ|2r+1 κ2(r+1)

σ2(r+1)

≤
χ
∑

l=0

1

(χ− l)!
eBχ

∑

(∗)l

l
∏

m=1

1

km!

(

1

m!

χ−1
∑

r=m

κ2(r+1)

σ2(r+1)
|ξ|2r+2

)km

×
χ−1
∑

r=χ−l

|ξ|2r+1 κ2(r+1)

σ2(r+1)

(

n
∑

j=1

c2l+2
j,n

)

·
(

n
∑

j=1

c
2(χ−l+1)
j,n

)

.

To conclude, think of the last two sums of the cj,n’s as moments of order 2l
and 2(χ− l), respectively, and apply the Lyapunov inequality to each sum
to write

(

n
∑

j=1

c2l+2
j,n

)

·
(

n
∑

j=1

c
2(χ−l+1)
j,n

)

≤
n
∑

j=1

ck+2
j,n .

�
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A.3. A complement to the proof of Theorem 2.1. We clarify why
inft∈[0,t̂] dTV(µ(·, t);γσ) must be strictly positive under the hypothesis that

κ4(µ̃0) is different from zero. Suppose, on the contrary, that inft∈[0,t̂] dTV(µ(·, t);
γσ) = 0. Then, as t 7→ dTV(µ(·, t);γσ) is continuous on [0,+∞[, by the Wild
expansion, there exists t∗ in [0, t̂] such that dTV(µ(·, t∗);γσ) = 0. On the
one hand, if t∗ = 0, then µ0 coincides with γσ and this contradicts the hy-
pothesis that κ4(µ̃0) is different from zero. On the other hand, if t∗ > 0,
then one can conclude, in view of the Wild expansion, that µ0 possesses
moments of every order and is symmetric. A direct consequence of (1)
is that m2k(t) :=

∫

R
x2kµ(dx, t) satisfies an ordinary first order differential

equation, which admits the constant
∫

R
x2kγσ(dx) as a stationary solution.

Hence, since we are assuming that m2k(t
∗) is equal to such a constant, the

uniqueness of the solutions of the equations under consideration implies that
m2k(t) =

∫

R
x2kγσ(dx) for every t in [0,∞[ and every positive integer k. In

other words, µ0 coincides with γσ , which once again contradicts the fact
that κ4(µ̃0) is different from zero.

A.4. The proofs of (54) and (57). The proofs of (54) and (57) follow from
the following proposition. Let g :R→ [0,+∞[ be an integrable function and
ǫ :R→R be a continuous, bounded function with ǫ(0) = 0. Then

lim
t→+∞

H(t) := e(1/4)tEt

{(

∫

R

g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

)1/2}

= 0.

Proofs of (54) and (57). We fix an arbitrary small positive δ and
show that there exists a value tδ for which |H(t)|< δ, for every t > tδ. First,
in view of the fact that ǫ(·) is continuous and ǫ(0) = 0, there exists a strictly
posityve number x such that the inequality

|ǫ(x)| ≤ δ

3
√

‖g‖1
holds for every x in [−x,x] with ‖g‖1 =

∫

R
g(ξ)dξ. Set π := max1≤j≤ν πj and

B := x/|π|. B is well defined since, due to (15), π 6= 0. Now,
{

∫

R

g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

}1/2

≤
{

∫

{|ξ|≤B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

}1/2

+

{

∫

{|ξ|≥B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

}1/2

.
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For the integral over the internal region, one can write
{

∫

{|ξ|≤B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

}1/2

≤ δ

3
√

‖g‖1

(

ν
∑

j=1

π4j

)

√

‖g‖1

and, taking expectation,

e(1/4)tEt

{(

∫

{|ξ|≤B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

)1/2}

≤ δ/3,

after a standard application of (19). At this point, we define M to be the
maximum of |ǫ| and determine a positive value s such that

∫

{|ξ|≥s}
g(ξ)dξ ≤

(

δ

3M

)2

.

Given S := {ω||π(ω)|< x/s}, we write

e(1/4)tEt

{(

∫

{|ξ|≥B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

)1/2}

= e(1/4)tEt

{[

∫

{|ξ|≥B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

]1/2

;S

}

+ e(1/4)tEt

{[

∫

{|ξ|≥B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

]1/2

;Sc

}

.

One can observe that B(ω)> s for ω in S. We then have

e(1/4)tEt

{[

∫

{|ξ|≥B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

]1/2

;S

}

≤ e(1/4)t
{
∫

{|ξ|≥s}
g(ξ)dξ

}1/2

MEt

[

ν
∑

j=1

π4j

]

≤ δ/3.

For the remaining term,

e(1/4)tEt

{[

∫

{|ξ|≥B}
g(ξ)

[

ν
∑

j=1

π4j |ǫ(πjξ)|
]2

dξ

]1/2

;Sc

}

≤ e(1/4)tM
√

‖g‖1Pt(S
c).

An application of Markov’s inequality with exponent 6 yields an upper
bound for the probability of Sc, that is,

Pt(S
c)≤ Et[|π|6] ·

(

s

x

)6

≤ Et

[

ν
∑

j=1

π6j

]

·
(

s

x

)6

≤ e−(3/8)t ·
(

s

x

)6

.
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Hence,

e(1/4)tM
√

‖g‖1Pt(S
c)≤ e−(1/8)tM

√

‖g‖1 ·
(

s

x

)6

.

Taking tδ = max{−8 log[(δ/3) · (x/s)6 ·M−1‖g‖−1/2
1 ]; 1} makes the right-

hand side of the last inequality smaller than δ/3 for every t > tδ. This
completes the proof. �
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