
ar
X

iv
:1

00
9.

34
14

v1
  [

m
at

h.
L

O
] 

 1
7 

Se
p 

20
10

APPROXIMATIONS AND LIPSCHITZ CONTINUITY IN p-ADIC

SEMI-ALGEBRAIC AND SUBANALYTIC GEOMETRY

RAF CLUCKERS AND IMMANUEL HALUPCZOK

Abstract. It was already known that a p-adic, locally Lipschitz continuous semi-
algebraic function is piecewise Lipschitz continuous, where the pieces can be taken
semi-algebraic. We prove that if the function has locally Lipschitz constant 1,
then it is also piecewise Lipschitz continuous with the same Lipschitz constant
1. We do this by proving the following fine preparation results for p-adic semi-
algebraic functions in one variable. Any such function can be well approximated
by a monomial with fractional exponent such that moreover the derivative of the
monomial is an approximation of the derivative of the function. We also prove
these results in parametrized versions and in the subanalytic setting.

Introduction

In several senses, p-adic manifolds do not have curvature, they are flat. For
example, any p-adic analytic submanifold of Qn

p is locally analytically isometric to
an open ball in p-adic Euclidean space. In this paper we show another phenomenon
related to this absence of curvature, namely related to Lipschitz continuity. On the
reals, a locally Lipschitz continuous function with constant ε, say on a sufficiently
nice domain X in Rn, can be expected to be globally Lipschitz continuous, but
usually this happens only with a bigger Lipschitz constant C > ε; see e.g. [11] or
Example 1 below. The increase of the Lipschitz constant when passing from local
to global in the reals can happen for example for a function defined on a circle. In
the context of semi-algebraic or subanalytic sets on the p-adics, one does not need
to increase the Lipschitz constant to pass from local to global, but to encompass
the total disconnectedness, one has to break the domain into finitely many pieces on
each of which the function becomes Lipschitz continuous (with the original Lipschitz
constant). More precisely, we prove:

1. Theorem. Let f : X ⊂ Qn
p → Qp be a semi-algebraic function. Suppose that,

locally around each point x ∈ X, the function f is Lipschitz continuous with Lipschitz
constant ε. Then there exists a finite partition of X into semi-algebraic parts Ai such
that each of the restrictions f|Ai

is Lipschitz continuous with constant ε (globally
on the part Ai). The same property is true when one replaces semi-algebraic by
subanalytic.

In fact we prove a parametrized version of Theorem 1, see Theorem 3.5. Theo-
rem 1 is false if one would replace Qp by R; see Example 1 below.

Let us sketch the p-adic context. Let K be a finite field extension of the field of
p-adic numbers Qp. One of the main results of [3] states that if f : X ⊂ Kn → K
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2 RAF CLUCKERS AND IMMANUEL HALUPCZOK

is a semi-algebraic (resp. subanalytic) function which is locally Lipschitz continu-
ous with constant ε, then there exists a finite partition of X into semi-algebraic
(resp. subanalytic) pieces A such that the restriction f|A of f to any of the pieces is
globally Lipschitz continuous with possibly some bigger Lipschitz constant C; this
is the p-adic analogue of one of Kurdyka’s results in [11]. Theorem 1 states that
one can choose the finite partition in such a way that one can take C = ε. As in
[3], this is proved by induction on n, and hence, a family (that is, parametrized)
version of this Lipschitz continuity result is more natural and flexible to work with,
see Theorem 3.5.

The main ingredient in [3] is a preparation result stating that the domain of a
definable function f can be cut into nice pieces (cells) on which f behaves nicely.
The proof of our Theorem 3.5 is essentially the same, the main difference being
that we need a finer piecewise preparation result for f . Indeed, the preparation
result used in [3] is Proposition 3.12 of [3] (which is finer than the more classical
cell decomposition results); this proposition in some sense gives a compatible cell
decomposition of the domain of f : X ⊂ Qn

p → Qp and its image, when n = 1.
We refine that proposition to get a Preparation Theorem 3.3 which allows one to
approximate f in a piecewise way by monomials with fractional exponents such
that at the same time the derivative of f is approximated by the derivatives of the
monomials, still for n = 1. In fact, the Preparation Theorem 3.3 treats this property
in semi-algebraic, resp. subanalytic, families.

The real situation is different, as is shown by the following example.

1. Example. Let g : S1 → R be the function on the unit circle in the real plane
that sends z ∈ S1 to the arc length between z and a fixed point on S1. Let X
be the open annulus {x ∈ R2 | 1 < |x| < 2} and let f : X → R be the function
which sends x ∈ X to g(z)/r, where x = r · z with z ∈ S1 and 1 < r < 2. Then f
is globally subanalytic and locally Lipschitz continuous with constant 1, but there
does not exist a finite partition of X into parts on which f is Lipschitz continuous
with constant 1. One is obliged to replace 1 by e for some real e > 1 in order to find
a finite partition of X into parts on which f is e-Lipschitz continuous.

1. Some general definitions

Let K be a valued field, with (additively written) value group Γ and valuation
map ord: K× → Γ. Put the valuation topology on Kn for n ≥ 1. For X ⊂ K open,
a function f : X → K is called C1 if f is differentiable at each point of X and the
derivative f ′ : X → K of f is continuous (this notion of C1 is more naive than the
one of H. Glöckner [10], but suffices for our purposes).

Write OK for the valuation ring of K, with maximal ideal MK . Further, write
RVK for the union of the quotient K×/(1+MK) with {0}, and rv : K → RVK for the
natural quotient map K× → K×/(1+MK) extended by rv(0) = 0. Similarly, write
RVK,n for the union of the quotient K×/(1 +Mn

K) with {0}, and rvn : K → RVK,n

for the natural map.
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A ball in K is by definition a set of the form {t ∈ K | ord(t− a) ≥ z} for some
a ∈ K and some z ∈ Γ.

1.1. Definition (Jacobian property). Let F : B1 → B2 be a function with B1, B2 ⊂
K. Say that F has the Jacobian property if the following conditions (a) up to (d)
hold:

(a) F is a bijection B1 → B2 and B1 and B2 are balls;
(b) F is C1 on B1;
(c) ord(∂F/∂x) is constant (and finite) on B1;
(d) for all x, y ∈ B1 with x 6= y, one has

ord(∂F/∂x) + ord(x− y) = ord(F (x)− F (y)).

1.2. Definition (n-Jacobian property). Let F : B1 → B2 be a function with B1, B2 ⊂
K and let n > 0 be an integer. Say that F has the n-Jacobian property if F has
the Jacobian property, and moreover the following stronger versions of conditions
(c) and (d) hold:

(c’) rvn(∂F/∂x) is constant (and nonzero) on B1;
(d’) for all x, y ∈ B1 one has

rvn(∂F/∂x) · rvn(x− y) = rvn(F (x)− F (y)).

For convenience, 0-Jacobian property will just mean Jacobian property.

1.3. Definition (Local n-Jacobian property). Let f : X → Y be a function with
X, Y ⊂ K and let n > 0 be an integer. Say that f has the local n-Jacobian property
if f is a bijection and for each ball B ⊂ X and for each ball B′ ⊂ Y , the restrictions
f|B : B → f|B(B) and (f−1)|B′ : B′ → f−1

|B′(B′) have the n-Jacobian property.

1.4. Definition (Lipschitz continuity). Given two metric spaces (X, dX) and (Y, dY ),
where dX denotes the metric on the set X and dY the metric on Y , a function
f : X → Y is called Lipschitz continuous if there exists a real constant C ≥ 0 such
that, for all x1 and x2 in X,

dY (f(x1), f(x2)) ≤ C · dX(x1, x2).

In the above case, we also call f Lipschitz continuous with Lipschitz constant C, or
just C-Lipschitz continuous. If there is a constant C such that each x ∈ X has a
neighbourhood on which the function f is C-Lipschitz continuous, then f is called
locally Lipschitz continuous with constant C, or just locally C-Lipschitz continuous.

2. Definable sets over the p-adics

From now on, let K be a finite field extension of Qp with valuation ring OK and

valuation map ord: K× → Z. We set |x| := q
− ord(x)
K and |0| = 0, where qK is the

cardinality of the residue field of K. Further we choose a uniformizer πK of OK

and for each integer n > 0, we let acn : K → OK/(π
n
K) be the multiplicative map

sending 0 to 0 and any nonzero x to xπ
− ord(x)
K mod (πn

K).
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We recall the notion of (globally) subanalytic subsets of Kn and of semi-algebraic
subsets of Kn. Let LMac = {0, 1,+,−, ·, {Pn}n>0} be the language of Macintyre and
Lan = LMac ∪ {−1,

⋃

m>0K{x1, . . . , xm}}, where Pn stands for the set of nth powers
in K×, where −1 stands for the field inverse extended to 0 by 0−1 = 0, where
K{x1, . . . , xm} is the ring of restricted power series over K (that is, formal power
series over K converging on Om

K), and each element f of K{x1, . . . , xm} is interpreted
as the restricted analytic function Km → K given by

(2.0.1) x 7→

{

f(x) if x ∈ Om
K

0 else.

By subanalytic we mean Lan-definable and by semi-algebraic we mean LMac-definable
with parameters from K. Note that semi-algebraic, resp. subanalytic, sets can be
given by a quantifier free formula with parameters from K in the language LMac,
resp. Lan by [12], resp. [8] and [9].

From now on we choose one of the two notions: semi-algebraic or subanalytic,
and by definable we will mean semi-algebraic, resp. subanalytic, according to our
fixed choice.

For integers m > 0 and n > 0, let Qm,n be the (definable) set

Qm,n := {x ∈ K× | ord(x) ∈ nZ, acm(x) = 1}.

For λ ∈ K let λQm,n denote {λx | x ∈ Qm,n}. The sets Qm,n are a variant of Mac-
intyre’s predicates Pℓ of ℓth powers; the corresponding notions of cells are slightly
different but equally powerful and similar in usage, since any coset of Pℓ is a finite
disjoint union of cosets of some Qm,n and vice versa.

2.1. Definition (p-adic cells). Let Y be a definable set. A cell A ⊂ K × Y over Y
is a (nonempty) set of the form
(2.1.1)
A = {(t, y) ∈ K × Y | y ∈ Y ′, |α(y)| �1 |t− c(y)| �2 |β(y)|, t− c(y) ∈ λQm,n},

with Y ′ a definable set, constants n > 0, m > 0, λ in K, α, β : Y ′ → K× and
c : Y ′ → K all definable functions, and �i either < or no condition, and such that
A projects surjectively onto Y ′ ⊂ Y . We call c the center of the cell A, λQm,n the
coset of A, α and β the boundaries of A, and Y ′ the base of A. If λ = 0 we call A
a 0-cell and if λ 6= 0 we call A a 1-cell. Call a 1-cell A unbounded if at least one of
the �i in (2.1.1) is no condition.

Sometimes, one additionally requires that Y ′ is a K-analytic manifold or a cell,
but for the purposes of this article, this is not necessary.

3. The main results

In the following two definitions, we introduce some new notions which will be
needed to formulate our version of the Preparation Theorem. The first notion is that
of a “fractional monomial”—the functions by which we will approximate arbitrary
definable functions. A fractional monomial (“with center 0”) is supposed to be
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something like t 7→ etq for some e ∈ K and q ∈ Q. The following definition makes
this precise and moreover allows for parameters.

3.1. Definition (Fractional monomials). Let A ⊂ K × Y be a cell over Y with
center c, as in (2.1.1). A fractional monomial on A with center c is a continuous,
definable function m : A → K such that there exist a definable map e : Y → K and
coprime integers a and b with b > 0 such that for all (t, y) ∈ A

m(t, y)b = e(y)(t− c(y))a.

We use the conventions that b = 1 whenever a = 0, that a = 0 whenever A is a
0-cell, and that 00 = 1. If furthermore e(y) is nonzero for some y and some t with
(t, y) ∈ A, then a/b is independent of any choices and we call a/b the exponent of
m. In any case we call e the coefficient of m.

Note that, although the center c of a cell A is usually not unique, we assume
that cells and fractional monomials on the cells have the same (sometimes implicitly
fixed) centers.

Now we define what it should mean for a function to be approximated by another
function, e.g. a fractional monomial. This notion only makes sense on cells, and it
only makes sense if both functions “are compatible” with that cell; our notion of
0-compatibility is essentially the same as the compatibility notion of Proposition
3.12 of [3].

3.2. Definition. Let A ⊂ K × Y be a 1-cell over Y , let f : A → K be definable,
and let n ≥ 0 be an integer. Write

f × id : A → K × Y : (t, y) 7→ (f(t, y), y)

and
Af = (f × id)(A).

Say that f is n-compatible with the cell A if either Af is a 0-cell over Y , or the
following holds: Af is a 1-cell over Y and for each y ∈ Y , the function fy : Ay →
fy(Ay) : t 7→ f(t, y) has the local n-Jacobian property.

If g : A → K is a second function which is n-compatible with the cell A and if we
have

Af = Ag and rvn(
∂f(t, y)

∂t
) = rvn(

∂g(t, y)

∂t
) on A,

then we say that f and g are n-equicompatible with A.
If A′ ⊂ K × Y is a 0-cell over Y (instead of a 1-cell), any definable function

h : A′ → K is said to be n-compatible with A′, and h and k : A′ → K are n-
equicompatible with A′ if and only if h = k.

3.3. Theorem (n-Preparation Theorem). Let X ⊂ K × Y and fj : X → K be
definable for j = 1, . . . , r and let n ≥ 0 be an integer. Then there exists a finite
partition of X into cells A over Y such that the restriction fj|A is n-compatible with
A for each cell A over Y and for each j, and if one writes dj for the center of Afj ,
then there exists a fractional monomial mj on A such that the functions dj+mj and
fj|A are n-equicompatible with A.
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If moreover A is unbounded, then the fractional monomials mj are unique.

In the above theorem, the center dj of Afj is identified with the function on Afj

sending (t, y) ∈ Afj to dj(y).
One can compare our results to the classically known cell decomposition theorem

(due to Cohen [5], Denef [6], [7], and the first author [2]).

3.4. Theorem (Classical p-adic Cell Decomposition). Let X ⊂ K×Y and fj : X →
K be definable for j = 1, . . . , r and let n ≥ 1 be an integer. Then there exist a
finite partition of X into cells A over Y and for each occurring 1-cell A fractional
monomials mj on A such that

rvn(fj(t, y)) = rvn(mj(t, y)) for each (t, y) ∈ A.

We indicate how Theorem 3.4 follows from our new Theorem 3.3. (In fact, also
the stronger Proposition 3.12 of [3] follows from Theorem 3.3.) Take a partition of
X into cells A as in Theorem 3.3. By the definition of cells (applied to Afj ) we
may suppose that either dj is identically zero or that rvn(fj) = rvn(dj) on A. In
the second case one is done since clearly dj is a fractional monomial on A, and in
the first case one has rvn(fj) = rvn(mj) on A and one is also done. Proposition
3.12 of [3] is as the Cell Decomposition Theorem 3.4 with r = 1 and f = f1 and
with the extra property that for each 1-cell A in the partition the restriction f|A is
0-compatible with A. In fact, Proposition 3.12 of [3] and Theorem 3.4 will be used
to prove Theorem 3.3.

Theorem 3.3 allows us to improve the main results (Theorems 2.1 and 2.3) of [3]
to the following.

3.5. Theorem (Piecewise Lipschitz continuity). Let ε > 0 be given. Let Y be a
definable set. Let f : X ⊂ Km × Y → K be a definable function such that for
each y ∈ Y the function f(·, y) : x 7→ f(x, y) is locally ε-Lipschitz continuous on
Xy = {x | (x, y) ∈ X}. Then there exists a finite definable partition of X into parts
Ai such that for each y ∈ Y and i the restriction of f(·, y) to Aiy is (globally on Aiy)
ε-Lipschitz continuous.

The main point in Theorem 3.5 is that the constant of the Lipschitz continuity
does not change when passing from the local to the piecewise global property.

4. Proofs of the main results

We prove some auxiliary results first, after recalling the Banach Fixed Point The-
orem in our setting (where we use the discreteness of the p-adic valuation to simplify
its formulation). Lemmas 4.2 and 4.3 are key points in the proof of Theorem 3.3.

4.1. Lemma (Banach Fixed Point Theorem). Suppose that a function f : On
K → On

K

is contracting in the sense that for any x1, x2 ∈ On
K with x1 6= x2, ord(f(x1) −

f(x2)) > ord(x1 − x2). Then f has exactly one fixed point, that is, a point x ∈ On
K

with f(x) = x.
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4.2. Lemma. Suppose that B,B1, B2 ⊂ K are balls, that f1 : B → B1 and f2 : B →
B2 both satisfy the Jacobian property, and that B1 ∩ B2 6= ∅. Suppose moreover
ord(f ′

1) 6= ord(f ′
2). Then there exists exactly one element b0 ∈ B such that f1(b0) =

f2(b0).

Proof. By the Jacobian property we may without loss suppose that ord(f ′
1) < ord(f ′

2)
and thus B1 ⊃ B2. Consider the map f−1

1 ◦ f2 : B → B. By the chain rule for
differentiation and the Jacobian property, this map is contracting, and thus, by the
Banach Fixed Point Theorem 4.1, it has exaclty one fixed point b0, which is the
point we are looking for. �

4.3. Lemma. Let B ⊂ K be a ball containing 0 and let f1, f2 : B 1:1−→ B be definable
functions satisfying the following for some integer n ≥ 1:

(1) both f1 and f2 have the n-Jacobian property;
(2) rvn(f

′
1) 6= rvn(f

′
2);

(3) f1(a)− f2(a) ∈ Mn−1
K B for some a ∈ B.

Then there exists exactly one element b0 ∈ B such that f1(b0) = f2(b0).

Proof. First we prove uniqueness. Suppose that f1(b) = f2(b) for some b ∈ B.
Replacing fi by t 7→ fi(t+ b)− fi(b), we may suppose that b = 0 and that fi(0) = 0
for i = 1, 2. By the n-Jacobian property,

rvn(fi(x)) = rvn(f
′
i) · rvn(x)

for all x in OK , and hence by (2), f1(x) 6= f2(x) for nonzero x in OK .
Next we prove existence. Suppose by contradiction that no such b0 exists. By

continuity of f1 and f2, this implies that there exists an upper bound in Z on the
order of f1(x)−f2(x) for x ∈ Z; consider the minimal such upper bound γ and choose
b ∈ B with ord(f1(b)− f2(b)) = γ. In fact, we may suppose b = a, and replacing fi
by t 7→ fi(t + b), we may moreover suppose that b = 0. Put c := f1(0)− f2(0) and
d := f ′

1(0)− f ′
2(0). We have, by (1),

ord(fi(x)− f ′
i(0)x− fi(0)) ≥ ord(x) + n

for i = 1, 2 and all x ∈ B, and, subtracting,

(4.3.1) ord(f1(x)− f2(x)− dx− c) ≥ ord(x) + n

for all x in B. Take the unique b′ ∈ K with db′ − c = 0. Since ord(d) < n by (1)
and (2) and since ord(c) = γ, one finds ord(b′) > γ − n, and thus from (3) follows
that b′ ∈ B. Plugging in b′ for x in (4.3.1) one finds that ord(f1(b

′)− f2(b
′)) > γ, a

contradiction to the choice of γ. �

We recall a Definition of [3].

4.4. Proposition-Definition (Balls of cells, [3]). Let Y be definable. Let A ⊂ K×Y
be a 1-cell over Y . Then, for each (t, y) ∈ A, there exists a unique maximal ball Bt,y

containing t and satisfying Bt,y × {y} ⊂ A, where maximality is under inclusion.
For fixed y0 ∈ Y we call the collection of balls {Bt,y0}{t|(t,y0)∈A} the balls of the cell
A above y0.
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4.5. Definition. Call a 1-cell A over Y thin if the collection of balls of A above any
y ∈ Y consists of at most one ball.

Theorem 3.3 relies on both Lemmas 4.2 and 4.3. The idea for the applications of
these lemmas is that they suppose a certain bad behavior on a ball in view of the
desired conclusion of Theorem 3.3, and then they yield some isolated special points.
In our definable set-up, these isolated special points form a discrete definable subset;
such sets are known to be finite, and moreover their size is uniformly bounded in
families, hence these finite sets single out a finite collection of balls, each of which
corresponds to a thin cell. On these thin cells, we prove Theorem 3.3 separately,
directly from the Jacobian property.

Proof of Theorem 3.3. By Proposition 3.12 of [3] we may suppose that for each j
separately, there is a finite partition of X into cells over Y such that the restriction
of fj to each cell in the partition is 0-compatible with that cell. In fact, by using the
n-Jacobian property of [4] instead of only the 0-Jacobian property, Proposition 3.12
also holds with n-compatibility instead of 0-compatibility, with the same proof as in
[3]. Moreover, by piecewise linearity results of Presburger functions on Presburger
sets, see e.g. [1], we may suppose that ord(∂fj(t, y)/∂t) depends linearly on ord(t−
c(y)), on each 1-cell with center c in the j-th partition of X, and this for each j. The
following statement now easily follows from the Cell Criterion 3.8 from [3]. For any
cell A in the j-th partition, and any cell B over Y with center d with B ⊂ A there
exists a finite partition of B into cells Bi, whose centers are the natural restrictions
of d, and such that fj|Bi

is n-compatible with Bi. We will use this statement five
times to simplify the set-up.

Firstly, we may suppose that X is a cell over Y such that all the fj are n-
compatible with X. If X is a 0-cell over Y , then we are already done (set mj := 0),
so we may suppose that X is a 1-cell over Y . Write dj for the center of Xfj for each
j.

Secondly, by the Classical Cell Decomposition Theorem and up to a finite parti-
tion of X, we may suppose that there exist fractional monomials mj on X for each
j such that

(4.5.1) rvn(fj − dj) = rvn(mj)

holds on X. We may moreover exclude the simple cases that fj − dj or mj are
constant.

Thirdly, by the simple form of fractional monomials (namely taking a definable
choice out of at most b roots), we may further suppose that also the mj are n-
compatible with X.

Fourthly, we may suppose for each j that either Xfj is included in Xdj+mj
or,

vice versa, Xdj+mj
is included in Xfj , by comparing the balls (in the sense of Defi-

nition 4.4) of the cells Xfj and Xdj+mj
and possibly modifying the coefficients ej of

the mj. Indeed, since Xfj and Xdj+mj
have the same center, we can choose finitely

many rj,ν ∈ K× such that for any y ∈ Y and any ball B of X above y, there exists
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a ν such that one of the balls f(B) and (dj + rj,νmj)(B) is contained in the other
one.

Now by Lemma 4.2 and fifthly, we can reduce to one of the following two cases:
either X is a thin cell, or the set Xfj equals Xdj+mj

for each j. If X is a thin
cell, then, by the n-Jacobian property, we know that, for each individual y ∈ Y
such that Xy is nonempty, fjy : Xy → fjy(Xy) : t 7→ fj(t, y) has the n-Jacobian
property and hence, there exists a linear function ℓjy : Xy → fjy(Xy) : t 7→ ajyt+ bjy
such that ℓjy and fjy are n-equicombatible with the ball Xy. By the definability
of Skolem functions (also called definability of sections), we may suppose that the
ajy and the bjy depend definably on y. Hence, we can take as our final dj +mj the
(linear) (t, y) 7→ ajyt + bjy, that is, the definable functions dj(y) = bjy on Y and
mj(t, y) = ajyt on X are as desired.

There only remains to treat the case that Xfj equals Xdj+mj
for each j (and X

is not thin). For this case, we will apply Lemma 4.3 in a similar way as we applied
Lemma 4.2 before. More precisely, by Lemma 4.3 we can exclude finitely many thin
cells (each of which can be treated as before), such that rvn(∂fj/∂t) = rvn(∂mj/∂t)
holds on the remaining part, and we are done. For this application of Lemma 4.3,
it remains to ensure that condition (3) of that lemma holds. Condition (3) of
Lemma 4.3 can indeed be ensured by further partitioning X if necessary and by
slightly modifying the coefficients ej of the monomials mj , as we already did in
fourthly. �

The following proposition specifies that one can take C = 1 for the Lipschitz
constant in Proposition 2.4 of [3].

4.6. Proposition (Cells with 1-Lipschitz continuous centers). Let Y and X ⊂ Km×
Y be definable. Then there exist a finite partition of X into definable parts A and
for each part A a coordinate projection

π : Km × Y → Km−1 × Y

such that, over Km−1 × Y along this projection π, the set A is a cell with center
c : π(A) → K and such that moreover the function

c(·, y) : (t1, . . . , tm−1) 7→ c(t1, . . . , tm−1, y)

is 1-Lipschitz continuous on π(A)y for each y ∈ Y .

As in [3], we prove Proposition 4.6 and Theorem 3.5 by a joint induction on m.
More precisely, assuming both Proposition 4.6 and Theorem 3.3 for ≤ m−1, we first
prove Proposition 4.6 for m and then Theorem 3.3 for m. Since Proposition 4.6 is
trivial for m = 1, to start the induction it suffices to prove Theorem 3.3 for m = 1.

Proof of Proposition 4.6 for m using the induction hypothesis. This proof is exactly
as the proof of Proposition 2.4 in [3], invoking our Theorem 3.5 for m− 1 instead of
Theorem 2.3 of [3] to control the Lipschitz constants, and where, in the second last
sentence of the proof of Proposition 2.4 of [3], one replaces “are bounded in norm”
by “have norms ≤ 1” and one further replaces C by 1.
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Roughly, the idea is the following: start with any cell decomposition of X along
any coordinate projection π. Consider a cell A with center c : π(A) → K. If
|∂c/∂ti| ≤ 1 for all i ≤ m− 1, then we are done; otherwise, interchange the role of
ti and the projection coordinate. We would like to say that A is still a cell using
this different coordinate projection, and that the graph of the center is the same as
before. Of course, this is not true in general, but by cutting A into pieces, this can
be easily achieved if A was a 0-cell and it can be achieved with some work if A was
a 1-cell. �

Proof of Theorem 3.5 for m = 1. We are given ε > 0, Y a definable set, and f : X ⊂
K×Y → K a definable function such that for each y ∈ Y the function f(·, y) : x 7→
f(x, y) is locally ε-Lipschitz continuous on its natural domain Xy := {x ∈ K |
(x, y) ∈ X}. Use Theorem 3.3 to partition X into finitely many cells Xi over Y . By
working piecewise we may suppose that X = X1 and that X and Xf are 1-cells over
Y . By the Jacobian property, f(·, y) is C1 and by local ε-Lipschitz continuity,

(4.6.1) |∂f(x, y)/∂x| ≤ ε

for all (x, y) ∈ X. Write c for the center of X and d for the center of Xf . Since
a function g : A ⊂ K → K is ε-Lipschitz continuous if and only if A → K : x 7→
g(x+ a) + b is ε-Lipschitz continuous for any constants a, b ∈ K, we may suppose,
after translating, that c and d are identically zero. Thus, we have that f and m are
n-equicompatible with X for a certain fractional monomial m.

Now fix y ∈ Y . Take (x1, y) and (x2, y) in X. If x1 and x2 both lie in the same
ball Bx1,y above y, then

(4.6.2) |(∂f(x1, y)/∂x) · (x1 − x2)| = |f(x1, y)− f(x2, y)|

by the Jacobian property and we are done by (4.6.1).
Next suppose that Bx1,y and Bx2,y are two different balls. By our assumption

that c and d are identically zero, we can write

(4.6.3) Bxi,y = {x ∈ K | ord(x) = axi,y, acℓ(x) = acℓλ}

for i = 1, 2 and some ℓ and axi,y, and likewise for their images under f(·, y) for
i = 1, 2:

(4.6.4)
(

f(·, y)
)

(Bxi,y) = {z ∈ K | ord(z) = bxi,y, acℓ′(z) = acℓ′µ}.

From these descriptions we get the inequalities:

ord(f(x1, y)− f(x2, y)) = min
i=1,2

(bxi,y)

and

ord(x1 − x2) = min
i=1,2

(axi,y).

On the other hand by the Jacobian property (d) one finds, by comparing the sizes
of the balls (4.6.3) and (4.6.4),

ℓ+ ord(∂f(xi, y)/∂x) + axi,y = ℓ′ + bxi,y
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for i = 1, 2. Putting this together with (4.6.1) yields:

(4.6.5) |f(x1, y)− f(x2, y)| = max
i=1,2

q
−bxi,y

K ≤ εqℓ
′−ℓ
K max

i=1,2
q
−axi,y

K = εqℓ
′−ℓ
K |x1 − x2|.

If ℓ′ − ℓ ≤ 0 then we are done by (4.6.5). Also if the exponent of the fractional
monomial m is 1, then, by the n-equicompatibility of m and f and the linearity of
m, one must have ℓ = ℓ′ and the statement follows from (4.6.5). Finally suppose
that the exponent of m is unequal to 1 and that ℓ′ − ℓ > 0. Then |∂f(x, y)/∂x|
is not constant on X, since it is equal to |∂m(x, y)/∂x|. Hence, excluding finitely
many thin cells from X, it follows that we can suppose that also

(4.6.6) |∂f(x, y)/∂x| ≤ εq
−(ℓ′−ℓ)
K

holds for all (x, y) ∈ X. Now we are done by a similar calculation as in (4.6.5), using
(4.6.6) instead of (4.6.1). Each of the remaining thin cells can be treated as separate
part and the statement on such a part follows again by (4.6.2) and (4.6.1). �

Proof of Theorem 3.5 for general m > 1. This proof is the same as the proof of The-
orem 2.3 for general m > 1 of [3]; we indicate the changes to be made. (The changes
are all related to the Lipschitz constants.) One should invoke our Proposition 4.6
for m− 1 instead of Proposition 2.4 of [3] and then use C = 1. Then, in the second
sentence after (4.1.2) of [3], one should note that the bi-Lipschitz transformation
which replaces xm by xm − c(x̂, y) but which preserves the other coordinates, is an
isometry and from the statement (∗) of the proof in [3] on, one can take C = ε.
Further the proof is the same as the proof of Theorem 2.3 in [3]. In a nutshell,
the idea in [3] is to partition the domain into cells in which one can move along
lower-dimensional subsets for which the induction hypothesis can be used. �
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