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A NOTE ON KNOTS WITH H(2)-UNKNOTTING NUMBER ONE
YUANYUAN BAO

ABSTRACT. We give an obstruction to unknotting a knot by adding a twisted band,
derived from Heegaard Floer homology.

1. INTRODUCTION

Many unknotting operations have been defined and studied in knot theory. For
example, as well-known, (a), (b) (cf. [B [7]) and (c) in Figure [0l are three types
of unknotting operations. Especially, (c) was introduced by Hoste, Nakanishi and
Taniyama [I], which they called H(n)-move. Here n is the number of arcs inside
the circle. Note that an H(n)-move is required to preserve the component number
of the diagram. The H(n)-unknotting number of a knot is the minimal number of
H(n)-moves needed to change the knot into the unknot. In this note, we focus on
the special case when n equals two. Given two knots K and K’, when K’ is obtained
from K by applying an H(2)-move, we also alternatively say that K’ is obtained from
K by adding a twisted band, as shown in Figure 2l We only choose those bands for
which the diagrams before and after represent knots. Following [I], we denote the
H(2)-unknotting number of a knot K by wus(K). In this note, we give a necessary
condition for a knot K to have us(K) = 1, by using a method introduced by Ozsvath
and Szab¢ [12].

The question whether a given knot has H(2)-unknotting number one should be
traced back to Riley. He made the conjecture that the figure-eight knot could never
be unknotted by adding a twisted band. Lickorish confirmed this conjecture in [4].
Here we give a brief review of his method. Given a knot K, let ¥(K) denote the
double-branched cover of S% along K and let \ : H(2(K)) x H (3(K)) — Q/Z be
the linking form of (K'). Lickorish proved that if the knot K can be unknotted
by adding a twisted band, then H;(X(K)) is cyclic and it has a generator g such
that A(g,g) = £1/det(K), where det(K) is the determinant of K. For the figure-
eight knot 4;, the linking form has the form \(g,g) = 2/5 for some generator g €
H,(X(41)) = Z/5Z. 1f there is another generator ¢’ = xg such that A(¢’,¢’) = £1/5,
we have 222 = +1 (mod 5). There is no such an integer x satisfing the condition.
Therefore Riley’s conjecture holds.

Now we turn to the description of our result. Consider a positive-definite symmetric
n X n matrix ) over Z. Suppose det(Q) is p. Then ) as a presentation determines a
group GG. A characteristic vector for () is an element in
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FIGURE 1. Some unknotting operations.

FIGURE 2. Adding a twisted band to a knot diagram.

char(Q) = {5 € Z"v =v'Qu  (mod 2) for any v € Z"}
={{€Z"&=Qu (mod2)}.

Two characteristic vectors € and ¢ are said to be equivalent if Q~1(¢ — () € Z".
Suppose p is odd, and consider the map (cf. [10, [12])
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FIGURE 3. The sign convention of a crossing.

defined by

Mg (o) = min

t)—1
{%‘ ¢ € char(Q), |6 = a € G} |
The map is well-defined up to an automorphism of G.

Now we recall the definition of Goeritz matrix. Given a knot diagram, color this
diagram in checkerboard fashion such that the unbounded region has black color.
Let fo, f1,..., fr denote the black regions and f; correspond to the unbounded one.
Define the sign of a crossing as in Figure Bl Then the Goeritz matrix @) is the k& x k
symmetric matrix defined as follows

(1) ) the signed count of crossings adjacent to f; if 1 =7,
4 = minus the signed count of crossings joining f; and f; if i # j

fori,j =1,2,... k.
Our result about H(2)-unknotting number is as follows:

Theorem 1.1. Let K be an alternating knot with determinant p, and let ) be the
positive-definite Goeritz matriz corresponding to a reduced alternating diagram of K
or its mirror image. Suppose G is the group presented by Q. If us(K) = 1, then there
is an isomorphism ¢ : Z/|p|Z — G and a sign € € {+1, —1} with the properties that

for alli e Z/|p|Z:
Lol i= € Molo(0) ~ 3o (PG i

and Iy.(i) <O.

—1)=0 (mod 2),

If one is familar with the work in [I2], the proof is immediate. We will give the proof
in Section 2. We study the H(2)-unknotting number of the pretzel knot P(13,4,11)
as an example, to show that the obstruction obtained here works better than other
ones that the author knows.

Corollary 1.2. The pretzel knot P(13,4,11) has H(2)-unknotting number 2.

2. PROOFS

2.1. Proof of Theorem [I.1. Given a 3-manifold Y and one of its spin®-structures
s, an invariant d(Y,s) called correction term is defined for the pair (Y,s) in [L1].
Suppose Y is an oriented rational homology sphere. When |H?*(Y,Z)| is odd, there
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exists a canonical isomorphism between the space Spin®(Y') of spin“structures on Y
and H?(Y,Z). In this case, we replace s in d(Y,s) by the corresponding element in
H2(Y,Z). Ozsvath and Szabé studied knots with unknotting number one in [12], and
here is an general result they obtained (also refer to [10]).

Theorem 2.1 (Ozsvath-Szabd[12]). Let Y be a rational homology 3-sphere which is
the boundary of a simply-connected positive-definite four-manifold W, with H*(Y,7Z)
of odd order. If the intersection form of W is represented in a basis by the matriz A

and G 4 is the group presented by A, then there exists a group isomorphism ¢ : G4 —
H*(Y,7Z) with

(2)

for all a € G 4.

d(Y, ¢(a)) < Ma(e)
and d(Y,¢(a)) = Ma(a) (mod 2)

When K is an alternating knot in S®, the correction terms for X (K) have an
extremely easy combinatorial description as follows.

Theorem 2.2 (Ozsvath-Szabd[12), 13]). If K is an alternating knot and Q) denotes
a Goeritz matrix associated to a reduced alternating projection of K, and G is the
group presented by Q, then there is an isomorphism ¢ : G — H?*(X(K),Z), with the
property that

d(X(K), p(@)) = Mg(a)
foralla € G.

Proof of Theorem [11. If the H(2)-unknotting number of K is equal to one, then by
Montesinos’s trick [6] we have Y (K) = e - S%(C) for some knot C' C S? and € €

{+1,—1}. Here p is equal to det(K’). The manifold —S ‘31)‘(0) represents the manifold
with reversed orientation. Therefore € - ¥(K) = SEA(C) bounds a four-manifold W,
which is obtained by attaching a 2-handle to a four-ball along C' with framing |p|.
The intersection form of W is A = (|p|). In this case we have that G4 = Z/|p|Z, that
W is a simply-connected 4-manifold and that H*(S},(C),Z) = Z/|p|Z.

By Theorem 1], there exists a group isomorphism ¢ : Z/|p|Z — H 2(56;|
with

(3)

(©),2)

d(e-X5(K),0(i)) = € d(X(K), ¢(i)) < Ma(z)
and € -d(X(K),¢(i)) = Ma(i) (mod 2)

for all i € Z/|p|Z. 1t is easy to check that M(i) = i(ﬁ(w —1)? —1). Now
Theorem [ 1] follows from Theorem
O

2.2. An example. The pretzel knot K = P(13,4,11) is a knot as shown in Figure @l
A Goeritz matrix associated to this diagram is

17 -4
Q:<—4 15)’

and the determinant is det(Q) = det(K) = 239. Suppose G is the group presented
by @. In fact, the group G is isomorphic to Z/239Z. In the following calculation, we
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FIGURE 4. The pretzel knot P(13,4,11).

take the vector (0,1)" as a generator of G. By calculation, it is easy to see that for
any isomorphism ¢ : Z/239Z — 7./239Z there is

I5.(0) = € - Mg((0)) — 119/2 = (e - 11 — 119)/2.

Since 1, (0) has to be an even number, therefore we have ¢ = +1. Next we obtain
that I, +1(1) = Mg(e(1)) + 119/478. To guarantee that I, (1) is an even number,
the isomorphism ¢ has to be either ¢; = 15 or ¢, = 224. By calculation, we see that
Iy, 41(1) = Iy, +1(1) = 4, a positive number, which conflicts with the necessary condi-
tion stated in Theorem [[Jl Therefore the H(2)-unknotting number of P(13,4,11) has
to be at least two. On the other hand, the knot P(13,4,11) can be changed into the
unknot by adding two twisted bands as shown in Figure[d Hence the H(2)-unknotting
number of P(13,4,11) is two. This completes the proof of Corollary [[.2

2.3. Comparisons with other criterions. There have been many criterions and
properties which can be used to bound the H(2)-unknotting number of a knot. We
want to apply them to the knot P(13,4,11) and compare the results with Corol-
lary

The first one is Lickorish’s obstruction that we recalled in the beginning. But it does
not work for the pretzel knot K = P(13,4,11). It is known that the Goeritz matrix
@ is a presentation of Hy(X(K),Z), and Q' represents the linking form \. From
Section 2.2, we known that I, 11(1) is an integer. This implies that A(g,g) = 1/239
over Q/Z for g = (0,15)". The vector g can work as a generator of H;(X(K),Z).

There are two invariants of knots which are closely related to H(2)-unknotting
number. Given a knot K C S3, the crosscap number [§] of K is defined as follows:

Y(K) = min {3 (F) }F is a non-orientable connected surface in 5* and OF = K } .

The four-dimensional crosscap number of K [9], which we denote v*(K) here, is by
name defined as follows:

7 (K) = min {@(F)

F' is a non-orientable connected smooth surface in B* and
OF =K CcoB*=53

Their relation with H(2)-unknotting number is as follows. We give a proof here since
we have not found any reference of it.

Lemma 2.3. Given a knot K C S®, we have v*(K) < us(K) < v(K).
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Proof. The knot K can be reconstructed from the unknot by adding us(K') twisted
bands successively. Let D be a disk bounded by the unknot and by, bs, ..., by, k) be

the bands added to the boundary of D. Then F := D U U;‘i(lK) b; is a non-orientable
surface in B* with OF = K. We have v*(K) < ;(F) = up(K). The second inequality
is proved as follows. Suppose S is a non-orientable surface in S® which realizes the
crosscap number of K. Namely we have 1(S) = v(K) and 0S = K. Then there
are y(K) disjoint essential arcs in S, say 71,72, -, Ty(k), such that S — 7; has one

boundary component for ¢ = 1,2,--- y(K) and S — Ujﬁf) 7; is a disk. If we add
twisted bands to K along 7; for i = 1,2, y(K), the resulting knot is the unknot.
Therefore we have uy(K) < v(K). O

Ichihara and Mizushima [2] calculated the crosscap numbers of pretzel knots. Ac-
cording to their calculation, the crosscap numbers of P(13,4,11) is two, but the
four-dimensional crosscap number of it is unknown. Therefore the H(2)-unknotting
number of P(13,4,11) cannot be determined by Lemma so far. Kanenobu and
Miyazawa [3] introduced some criterions for bounding the H(2)-unknotting number
of a knot, but their methods cannot be applied to the knot P(13,4,11), either.
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