A NOTE ON KNOTS WITH H(2)-UNKNOTTING NUMBER ONE

YUANYUAN BAO

Abstract

We give an obstruction to unknotting a knot by adding a twisted band, derived from Heegaard Floer homology.

1. Introduction

Many unknotting operations have been defined and studied in knot theory. For example, as well-known, (a), (b) (cf. [5, 7) and (c) in Figure 17 are three types of unknotting operations. Especially, (c) was introduced by Hoste, Nakanishi and Taniyama [1], which they called $\mathrm{H}(n)$-move. Here n is the number of arcs inside the circle. Note that an $\mathrm{H}(n)$-move is required to preserve the component number of the diagram. The $\mathrm{H}(n)$-unknotting number of a knot is the minimal number of $\mathrm{H}(n)$-moves needed to change the knot into the unknot. In this note, we focus on the special case when n equals two. Given two knots K and K^{\prime}, when K^{\prime} is obtained from K by applying an $\mathrm{H}(2)$-move, we also alternatively say that K^{\prime} is obtained from K by adding a twisted band, as shown in Figure 2. We only choose those bands for which the diagrams before and after represent knots. Following [1], we denote the $\mathrm{H}(2)$-unknotting number of a knot K by $u_{2}(K)$. In this note, we give a necessary condition for a knot K to have $u_{2}(K)=1$, by using a method introduced by Ozsváth and Szabó [12].

The question whether a given knot has $\mathrm{H}(2)$-unknotting number one should be traced back to Riley. He made the conjecture that the figure-eight knot could never be unknotted by adding a twisted band. Lickorish confirmed this conjecture in 4]. Here we give a brief review of his method. Given a knot K, let $\Sigma(K)$ denote the double-branched cover of S^{3} along K and let $\lambda: H_{1}(\Sigma(K)) \times H_{1}(\Sigma(K)) \rightarrow \mathbb{Q} / \mathbb{Z}$ be the linking form of $\Sigma(K)$. Lickorish proved that if the knot K can be unknotted by adding a twisted band, then $H_{1}(\Sigma(K))$ is cyclic and it has a generator g such that $\lambda(g, g)= \pm 1 / \operatorname{det}(K)$, where $\operatorname{det}(K)$ is the determinant of K. For the figureeight knot 4_{1}, the linking form has the form $\lambda(g, g)=2 / 5$ for some generator $g \in$ $H_{1}\left(\Sigma\left(4_{1}\right)\right) \cong \mathbb{Z} / 5 \mathbb{Z}$. If there is another generator $g^{\prime}=x g$ such that $\lambda\left(g^{\prime}, g^{\prime}\right)= \pm 1 / 5$, we have $2 x^{2} \equiv \pm 1(\bmod 5)$. There is no such an integer x satisfing the condition. Therefore Riley's conjecture holds.

Now we turn to the description of our result. Consider a positive-definite symmetric $n \times n$ matrix Q over \mathbb{Z}. Suppose $\operatorname{det}(Q)$ is p. Then Q as a presentation determines a group G. A characteristic vector for Q is an element in

[^0]
(a)

(b)

(c)

Figure 1. Some unknotting operations.

Figure 2. Adding a twisted band to a knot diagram.

$$
\begin{aligned}
\operatorname{char}(Q) & =\left\{\xi \in \mathbb{Z}^{n} \mid \xi^{t} v \equiv v^{t} Q v \quad(\bmod 2) \text { for any } v \in \mathbb{Z}^{n}\right\} \\
& =\left\{\xi \in \mathbb{Z}^{n} \mid \xi_{i} \equiv Q_{i i} \quad(\bmod 2)\right\}
\end{aligned}
$$

Two characteristic vectors ξ and ζ are said to be equivalent if $Q^{-1}(\xi-\zeta) \in \mathbb{Z}^{n}$. Suppose p is odd, and consider the map (cf. [10, 12])

$$
M_{Q}: G \longrightarrow \mathbb{Q}
$$

positive

negative

Figure 3. The sign convention of a crossing.
defined by

$$
M_{Q}(\alpha)=\min \left\{\left.\frac{\xi^{t} Q^{-1} \xi-n}{4} \right\rvert\, \xi \in \operatorname{char}(Q),[\xi]=\alpha \in G\right\} .
$$

The map is well-defined up to an automorphism of G.
Now we recall the definition of Goeritz matrix. Given a knot diagram, color this diagram in checkerboard fashion such that the unbounded region has black color. Let $f_{0}, f_{1}, \ldots, f_{k}$ denote the black regions and f_{0} correspond to the unbounded one. Define the sign of a crossing as in Figure 3. Then the Goeritz matrix Q is the $k \times k$ symmetric matrix defined as follows

$$
q_{i j}= \begin{cases}\text { the signed count of crossings adjacent to } f_{i} & \text { if } i=j \tag{1}\\ \text { minus the signed count of crossings joining } f_{i} \text { and } f_{j} & \text { if } i \neq j\end{cases}
$$

for $i, j=1,2, \ldots, k$.
Our result about $\mathrm{H}(2)$-unknotting number is as follows:
Theorem 1.1. Let K be an alternating knot with determinant p, and let Q be the positive-definite Goeritz matrix corresponding to a reduced alternating diagram of K or its mirror image. Suppose G is the group presented by Q. If $u_{2}(K)=1$, then there is an isomorphism $\phi: \mathbb{Z} /|p| \mathbb{Z} \longrightarrow G$ and a sign $\epsilon \in\{+1,-1\}$ with the properties that for all $i \in \mathbb{Z} /|p| \mathbb{Z}$:

$$
\begin{gathered}
I_{\phi, \epsilon}(i):=\epsilon \cdot M_{Q}(\phi(i))-\frac{1}{4}\left(\frac{1}{|p|}\left(\frac{|p|+(-1)^{i}|p|}{2}-i\right)^{2}-1\right)=0 \quad(\bmod 2), \\
\text { and } I_{\phi, \epsilon}(i) \leq 0 .
\end{gathered}
$$

If one is familar with the work in [12, the proof is immediate. We will give the proof in Section 2. We study the $H(2)$-unknotting number of the pretzel knot $P(13,4,11)$ as an example, to show that the obstruction obtained here works better than other ones that the author knows.

Corollary 1.2. The pretzel knot $P(13,4,11)$ has $H(2)$-unknotting number 2.

2. Proofs

2.1. Proof of Theorem 1.1. Given a 3 -manifold Y and one of its spin^{c}-structures s, an invariant $d(Y, s)$ called correction term is defined for the pair (Y, s) in [11. Suppose Y is an oriented rational homology sphere. When $\left|H^{2}(Y, \mathbb{Z})\right|$ is odd, there
exists a canonical isomorphism between the space $\operatorname{Spin}^{c}(Y)$ of spin^{c}-structures on Y and $H^{2}(Y, \mathbb{Z})$. In this case, we replace s in $d(Y, s)$ by the corresponding element in $H^{2}(Y, \mathbb{Z})$. Ozsváth and Szabó studied knots with unknotting number one in [12], and here is an general result they obtained (also refer to [10]).

Theorem 2.1 (Ozsváth-Szabó[12]). Let Y be a rational homology 3-sphere which is the boundary of a simply-connected positive-definite four-manifold W, with $H^{2}(Y, \mathbb{Z})$ of odd order. If the intersection form of W is represented in a basis by the matrix A and G_{A} is the group presented by A, then there exists a group isomorphism $\phi: G_{A} \rightarrow$ $H^{2}(Y, \mathbb{Z})$ with

$$
\begin{align*}
d(Y, \phi(\alpha)) & \leq M_{A}(\alpha) \\
\text { and } \quad d(Y, \phi(\alpha)) & \equiv M_{A}(\alpha) \quad(\bmod 2) \tag{2}
\end{align*}
$$

for all $\alpha \in G_{A}$.
When K is an alternating knot in S^{3}, the correction terms for $\Sigma(K)$ have an extremely easy combinatorial description as follows.

Theorem 2.2 (Ozsváth-Szabó[12, [13]). If K is an alternating knot and Q denotes a Goeritz matrix associated to a reduced alternating projection of K, and G is the group presented by Q, then there is an isomorphism $\varphi: G \rightarrow H^{2}(\Sigma(K), \mathbb{Z})$, with the property that

$$
d(\Sigma(K), \varphi(\alpha))=M_{Q}(\alpha)
$$

for all $\alpha \in G$.
Proof of Theorem 1.1. If the $\mathrm{H}(2)$-unknotting number of K is equal to one, then by Montesinos's trick [6] we have $\Sigma(K)=\epsilon \cdot S_{|p|}^{3}(C)$ for some knot $C \subset S^{3}$ and $\epsilon \in$ $\{+1,-1\}$. Here p is equal to $\operatorname{det}(K)$. The manifold $-S_{|p|}^{3}(C)$ represents the manifold with reversed orientation. Therefore $\epsilon \cdot \Sigma(K)=S_{|p|}^{3}(C)$ bounds a four-manifold W, which is obtained by attaching a 2 -handle to a four-ball along C with framing $|p|$. The intersection form of W is $A=(|p|)$. In this case we have that $G_{A}=\mathbb{Z} /|p| \mathbb{Z}$, that W is a simply-connected 4-manifold and that $H^{2}\left(S_{|p|}^{3}(C), \mathbb{Z}\right) \cong \mathbb{Z} /|p| \mathbb{Z}$.

By Theorem [2.1, there exists a group isomorphism $\phi: \mathbb{Z} /|p| \mathbb{Z} \rightarrow H^{2}\left(S_{|p|}^{3}(C), \mathbb{Z}\right)$ with

$$
\begin{align*}
d(\epsilon \cdot \Sigma(K), \phi(i))=\epsilon \cdot d(\Sigma(K), \phi(i)) & \leq M_{A}(i) \\
\text { and } \quad \epsilon \cdot d(\Sigma(K), \phi(i)) & \equiv M_{A}(i) \quad(\bmod 2) \tag{3}
\end{align*}
$$

for all $i \in \mathbb{Z} /|p| \mathbb{Z}$. It is easy to check that $M_{A}(i)=\frac{1}{4}\left(\frac{1}{|p|}\left(\frac{|p|+(-1)^{i}|p|}{2}-i\right)^{2}-1\right)$. Now Theorem 1.1 follows from Theorem 2.2.
2.2. An example. The pretzel knot $K=P(13,4,11)$ is a knot as shown in Figure 4 . A Goeritz matrix associated to this diagram is

$$
Q=\left(\begin{array}{cc}
17 & -4 \\
-4 & 15
\end{array}\right)
$$

and the determinant is $\operatorname{det}(Q)=\operatorname{det}(K)=239$. Suppose G is the group presented by Q. In fact, the group G is isomorphic to $\mathbb{Z} / 239 \mathbb{Z}$. In the following calculation, we

Figure 4. The pretzel knot $P(13,4,11)$.
take the vector $(0,1)^{t}$ as a generator of G. By calculation, it is easy to see that for any isomorphism $\phi: \mathbb{Z} / 239 \mathbb{Z} \longrightarrow \mathbb{Z} / 239 \mathbb{Z}$ there is

$$
I_{\phi, \epsilon}(0)=\epsilon \cdot M_{Q}(\phi(0))-119 / 2=(\epsilon \cdot 11-119) / 2
$$

Since $I_{\phi, \epsilon}(0)$ has to be an even number, therefore we have $\epsilon=+1$. Next we obtain that $I_{\phi,+1}(1)=M_{Q}(\phi(1))+119 / 478$. To guarantee that $I_{\phi,+1}(1)$ is an even number, the isomorphism ϕ has to be either $\phi_{1}=15$ or $\phi_{2}=224$. By calculation, we see that $I_{\phi_{1},+1}(1)=I_{\phi_{2},+1}(1)=4$, a positive number, which conflicts with the necessary condition stated in Theorem 1.1. Therefore the $\mathrm{H}(2)$-unknotting number of $P(13,4,11)$ has to be at least two. On the other hand, the knot $P(13,4,11)$ can be changed into the unknot by adding two twisted bands as shown in Figure母. Hence the $\mathrm{H}(2)$-unknotting number of $P(13,4,11)$ is two. This completes the proof of Corollary 1.2,
2.3. Comparisons with other criterions. There have been many criterions and properties which can be used to bound the $\mathrm{H}(2)$-unknotting number of a knot. We want to apply them to the knot $P(13,4,11)$ and compare the results with Corollary 1.2 .

The first one is Lickorish's obstruction that we recalled in the beginning. But it does not work for the pretzel knot $K=P(13,4,11)$. It is known that the Goeritz matrix Q is a presentation of $H_{1}(\Sigma(K), \mathbb{Z})$, and Q^{-1} represents the linking form λ. From Section 2.2, we known that $I_{\phi_{1},+1}(1)$ is an integer. This implies that $\lambda(g, g)=1 / 239$ over \mathbb{Q} / \mathbb{Z} for $g=(0,15)^{t}$. The vector g can work as a generator of $H_{1}(\Sigma(K), \mathbb{Z})$.

There are two invariants of knots which are closely related to $\mathrm{H}(2)$-unknotting number. Given a knot $K \subset S^{3}$, the crosscap number [8] of K is defined as follows:
$\gamma(K)=\min \left\{\beta_{1}(F) \mid F\right.$ is a non-orientable connected surface in S^{3} and $\left.\partial F=K\right\}$. The four-dimensional crosscap number of K [9], which we denote $\gamma^{*}(K)$ here, is by name defined as follows:
$\gamma^{*}(K)=\min \left\{\begin{array}{l|l}\beta_{1}(F) & \begin{array}{l}F \text { is a non-orientable connected smooth surface in } B^{4} \text { and } \\ \partial F=K \subset \partial B^{4}=S^{3}\end{array}\end{array}\right\}$.
Their relation with $H(2)$-unknotting number is as follows. We give a proof here since we have not found any reference of it.
Lemma 2.3. Given a knot $K \subset S^{3}$, we have $\gamma^{*}(K) \leq u_{2}(K) \leq \gamma(K)$.

Proof. The knot K can be reconstructed from the unknot by adding $u_{2}(K)$ twisted bands successively. Let D be a disk bounded by the unknot and $b_{1}, b_{2}, \ldots, b_{u_{2}(K)}$ be the bands added to the boundary of D. Then $F:=D \cup \bigcup_{i=1}^{u_{2}(K)} b_{i}$ is a non-orientable surface in B^{4} with $\partial F=K$. We have $\gamma^{*}(K) \leq \beta_{1}(F)=u_{2}(K)$. The second inequality is proved as follows. Suppose S is a non-orientable surface in S^{3} which realizes the crosscap number of K. Namely we have $\beta_{1}(S)=\gamma(K)$ and $\partial S=K$. Then there are $\gamma(K)$ disjoint essential arcs in S, say $\tau_{1}, \tau_{2}, \cdots, \tau_{\gamma(K)}$, such that $S-\tau_{i}$ has one boundary component for $i=1,2, \cdots, \gamma(K)$ and $S-\bigcup_{i=1}^{\gamma(K)} \tau_{i}$ is a disk. If we add twisted bands to K along τ_{i} for $i=1,2, \cdots, \gamma(K)$, the resulting knot is the unknot. Therefore we have $u_{2}(K) \leq \gamma(K)$.

Ichihara and Mizushima [2] calculated the crosscap numbers of pretzel knots. According to their calculation, the crosscap numbers of $P(13,4,11)$ is two, but the four-dimensional crosscap number of it is unknown. Therefore the $\mathrm{H}(2)$-unknotting number of $P(13,4,11)$ cannot be determined by Lemma 2.3 so far. Kanenobu and Miyazawa [3] introduced some criterions for bounding the $\mathrm{H}(2)$-unknotting number of a knot, but their methods cannot be applied to the knot $P(13,4,11)$, either.

References

[1] J. Hoste, Y. Nakanishi, and K. Taniyama, Unknotting operations involving trivial tangles, Osaka J. Math., 27 (1990), pp. 555-566.
[2] K. Ichihara and S. Mizushima, Crosscap numbers of pretzel knots, Topology Appl., 157 (2010), pp. 193-201.
[3] T. Kanenobu and Y. Miyazawa, H(2)-unknotting number of a knot, Commun. Math. Res., 25 (2009), pp. 433-460.
[4] W. B. R. Lickorish, Unknotting by adding a twisted band, Bull. London Math. Soc., 18 (1986), pp. 613-615.
[5] S. V. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki, 42 (1987), pp. 268-278, 345.
[6] J. M. Montesinos, Surgery on links and double branched covers of S^{3}, in Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, Princeton, N.J., 1975, pp. 227-259. Ann. of Math. Studies, No. 84.
[7] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284 (1989), pp. 75-89.
[8] H. Murakami and A. Yasuhara, Crosscap number of a knot, Pacific J. Math., 171 (1995), pp. 261-273.
[9] , Four-genus and four-dimensional clasp number of a knot, Proc. Amer. Math. Soc., 128 (2000), pp. 3693-3699.
[10] B. Owens, Unknotting information from Heegaard Floer homology, Adv. Math., 217 (2008), pp. 2353-2376.
[11] P. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math., 173 (2003), pp. 179-261.
[12] _-, Knots with unknotting number one and Heegaard Floer homology, Topology, 44 (2005), pp. 705-745.
[13] __, On the Heegaard Floer homology of branched double-covers, Adv. Math., 194 (2005), pp. 1-33.

Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan

E-mail address: bao.y.aa@m.titech.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 57M27 57M25 57M50.
 Key words and phrases. $\mathrm{H}(2)$-unknotting number, Goeritz matrix, Ozsváth-Szabó correction term, Heegaard Floer homology.

 The author is supported by scholarship from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

