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Abstract—We study the performance of estimators of a sparse
nonrandom vector based on an observation which is linearly
transformed and corrupted by additive white Gaussian noise.
Using the reproducing kernel Hilbert space framework, we derive
a new lower bound on the estimator variance for a given differen-
tiable bias function (including the unbiased case) and an almost
arbitrary transformation matrix (including the underdete rmined
case considered in compressed sensing theory). For the special
case of a sparse vector corrupted by white Gaussian noise—i.e.,
without a linear transformation—and unbiased estimation, our
lower bound improves on previously proposed bounds.

Index Terms—Sparsity, parameter estimation, sparse linear
model, denoising, variance bound, reproducing kernel Hilbert
space, RKHS.

I. I NTRODUCTION

We study the problem of estimating a nonrandom parameter
vectorx∈R

N which is sparse, i.e., at mostS of its entries are
nonzero, where1≤S<N (typically S≪N ). We thus have

x∈XS , with XS ,
{

x′∈R
N
∣

∣‖x′‖0 ≤ S
}

, (1)

where‖x‖0 denotes the number of nonzero entries ofx. While
the sparsity degreeS is assumed to be known, the set of
positions of the nonzero entries ofx (denoted bysupp(x)) is
unknown. The estimation ofx is based on the observed vector
y∈R

M given by
y = Hx+ n , (2)

with a known system matrixH ∈R
M×N and white Gaussian

noisen ∼ N (0, σ2I) with known varianceσ2>0. The matrix
H is arbitrary except that it is assumed to satisfy the standard
requirement

spark(H)> S , (3)

where spark(H) denotes the minimum number of linearly
dependent columns ofH [1]. The observation model (2)
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the National Research Network SISE, by the Israel Science Foundation under
Grant 1081/07, and by the European Commission under the FP7 Network of
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together with (1) will be referred to as thesparse linear model
(SLM). Note that we also allowM <N (this case is relevant
to compressed sensing methods [1], [2]); however, condition
(3) implies thatM≥S. The case of correlated Gaussian noise
n with a known nonsingular correlation matrix can be reduced
to the SLM by means of a noise whitening transformation. An
important special case of the SLM is given byH= I (so that
M=N ), i.e.,

y = x+ n , (4)

where againx∈XS andn ∼ N (0, σ2I). This will be referred
to as thesparse signal in noise model(SSNM).

Lower bounds on the estimation variance for the SLM have
been studied previously. In particular, the Cramér–Rao bound
(CRB) for the SLM was derived in [3]. For the SSNM (4),
lower and upper bounds on the minimum variance of unbiased
estimators were derived in [4]. A problem with the lower
bounds of [3] and [4] is the fact that they exhibit a discontinuity
when passing from the case‖x‖0=S to the case‖x‖0<S.

In this paper, we use the mathematical framework ofrepro-
ducing kernel Hilbert spaces(RKHS) [5]–[7] to derive a novel
lower variance bound for the SLM. The RKHS framework
allows pleasing geometric interpretations of existing bounds,
including the CRB, the Hammersley-Chapman-Robbins bound
[8], and the Barankin bound [9]. The bound we derive here
holds for estimators with a given differentiable bias function.
For the SSNM, in particular, we obtain a lower bound for
unbiased estimators which is tighter than the bounds in [4]
and, moreover, everywhere continuous. As we will show, RKHS
theory relates the bound for the SLM to that obtained for the
linear model without a sparsity assumption. We note that the
RKHS framework has been previously applied to estimation
[6], [7] but, to the best of our knowledge, not to the SLM.

This paper is organized as follows. In Section II, we review
some fundamentals of parameter estimation. Relevant elements
of RKHS theory are summarized in Section III. In Section IV,
we use RKHS theory to derive a lower variance bound for
the SLM. Section V considers the special case of unbiased
estimation within the SSNM. Section VI presents a numerical
comparison of the new bound with the variance of two estab-
lished estimation schemes.
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II. BASIC CONCEPTS

We first review some basic concepts of parameter estimation
[10]. Let x ∈ X ⊆ R

N be the nonrandom parameter vector
to be estimated,y ∈R

M the observed vector, andf(y;x) the
probability density function (pdf) ofy, parameterized byx. For
the SLM,X =XS as defined in (1) and

f(y;x) =
1

(2πσ2)M/2
exp

(

−
1

2σ2
‖y−Hx‖22

)

. (5)

A. Minimum-Variance Estimators

The estimation error incurred by an estimatorx̂(y) can
be quantified by the mean squared error (MSE)ε(x̂(·);x) ,

Ex

{

‖x̂(y)−x‖22
}

, where the notationEx{·} indicates that the
expectation is taken with respect to the pdff(y;x) parameter-
ized byx. Note thatε(x̂(·);x) depends on the true parameter
value,x. The MSE can be decomposed as

ε(x̂(·);x) = ‖b(x̂(·);x)‖22 + v(x̂(·);x) , (6)

with the estimator biasb(x̂(·);x) , Ex{x̂(y)} − x and the
estimator variancev(x̂(·);x) , Ex

{
∥

∥x̂(y)−Ex{x̂(y)}
∥

∥

2}
. A

standard approach to defining an optimum estimator is to fix
the bias, i.e.,b(x̂(·);x)

!
= c(x) for all x ∈X , and minimize

the variancev(x̂(·);x) for all x∈X under this bias constraint.
However, in many cases, such a “uniformly optimum” estimator
does not exist. It is then natural to consider “locally optimum”
estimators that minimizev(x̂(·);x0) only at a given parameter
value x = x0 ∈ X . This approach is taken here. Note that it
follows from (6) that once the bias is fixed, minimizing the
variance is equivalent to minimizing the MSEε(x̂(·);x0).

The bias constraintb(x̂(·);x) = c(x) can be equivalently
written as the mean constraint

Ex{x̂(y)} = γ(x) , with γ(x) , c(x) + x .

Thus, we consider the constrained optimization problem

x̂x0
(·) = arg min

x̂(·)∈Bγ

v(x̂(·);x0) , (7)

where

Bγ ,
{

x̂(·)
∣

∣Ex{x̂(y)}= γ(x), ∀x∈X
}

.

The minimum variance achieved by the locally optimum esti-
mator x̂x0

(·) at x0 will be denoted as

Vγ(x0) , v(x̂x0
(·);x0) = min

x̂(·)∈Bγ

v(x̂(·);x0) .

This is also known as theBarankin bound(for the prescribed
meanγ(x)) [9]. Using RKHS theory, it can be shown that
x̂x0

(·) exists, i.e., there exists a unique minimum for (7),
provided that there exists at least one estimator with meanγ(x)
for all x∈X and finite variance atx0 (see also Section III). For
unbiased estimation, i.e.,γ(x) ≡ x, x̂x0

(·) is called alocally
minimum variance unbiased(LMVU) estimator. Unfortunately,
Vγ(x0) is difficult to compute in many cases, including the case
of the SLM. Lower bounds onVγ(x0) are, e.g., the CRB and
the Hammersley-Chapman-Robbins bound [8].

Let xk, x̂k(y), andγk(x) denote thekth entries ofx, x̂(y),
andγ(x), respectively. We havev(x̂(·);x) =

∑N
k=1 v(x̂k(·);x)

with v(x̂k(·);x) , Ex

{[

x̂k(y) − Ex{x̂k(y)}
]2}

. Thus, (7) is
equivalent to theN scalar optimization problems

x̂x0,k(·) = arg min
x̂k(·)∈Bγk

v(x̂k(·);x0) , k = 1, . . . , N , (8)

where

Bγk
,

{

x̂(·)
∣

∣Ex{x̂(y)}= γk(x), ∀x∈X
}

.

The minimum variance achieved bŷxx0,k(·) atx0 is denoted as

Vγk
(x0) , v(x̂x0,k(·);x0) = min

x̂k(·)∈Bγk

v(x̂k(·);x0) . (9)

B. CRB of the Linear Gaussian Model

In our further development, we will make use of the CRB
for the linear Gaussian model(LGM) defined by

z = As+ n , (10)

with the nonrandom parameters∈R
S (not assumed sparse), the

observationz∈R
M, the known matrixA∈R

M×S, and white
Gaussian noisen ∼ N (0, σ2I). As before, we assume that
M ≥S; furthermore, we assume thatA has full column rank,
i.e.,ATA∈R

S×S is nonsingular. The relationship of this model
with the SLM, as well as the different notation and different
dimension (S instead ofN ), will become clear in Section IV.

Consider estimatorŝsk(z) of the kth parameter compo-
nent sk whose bias is equal to some prescribed differen-
tiable function c̃k(s), i.e., b(ŝk(·); s) = c̃k(s) or equivalently
Es

{

ŝk(z)
}

= γ̃k(s) with γ̃k(s) , c̃k(s) + sk, for all s ∈R
S.

Let V LGM
γ̃k

(s0) denote the minimum variance achievable by such
estimators at a given true parameters0. The CRBCLGM

γ̃k
(s0) is

the following lower bound on the minimum variance [10]:

V LGM
γ̃k

(s0) ≥ CLGM
γ̃k

(s0) , σ2 r̃Tk(s0)(A
TA)

−1
r̃k(s0) , (11)

wherer̃k(s) , ∂γ̃k(s)/∂s, i.e.,r̃k(s) is the vector of dimension
S whoselth entry is∂γ̃k(s)/∂sl. We note thatV LGM

γ̃k
(s0) =

CLGM
γ̃k

(s0) if γ̃k(s) is an affine function ofs. In particular, this
includes the unbiased case (γ̃k(s)≡ sk).

III. T HE RKHS FRAMEWORK

In this section, we review some RKHS fundamentals which
will provide a basis for our further development. Consider aset
X (not necessarily a linear space) and a positive semidefinite1

“kernel” functionR(x,x′) : X×X → R. For each fixedx′∈X ,
the functionfx′(x) , R(x,x′) mapsX into R. The RKHS
H(R) is a Hilbert space of functionsf : X → R which is
defined as the closure of the linear span of the set of functions
{fx′(x) = R(x,x′)}

x
′∈X . This closure is taken with respect

to the topology given by the scalar product〈· , ·〉H(R) which is
defined via thereproducing property[5]

〈

f(·), R(·,x′)
〉

H(R)
= f(x′) .

This relation holds for allf ∈ H(R) andx′∈X . The associated
norm is given by‖f‖H(R) = 〈f, f〉

1/2
H(R).

1That is, for any finite set{xk}k=1,...,P with xk ∈ X , the matrixR ∈
R
P×P with entries(R)k,l , R(xk ,xl) is positive semidefinite.



We now consider the constrained optimization problem (8)
for a given mean functionγ(x) (formerly denoted byγk(x);
we temporarily drop the subscriptk for better readability).
According to [6], [7], for certain classes of parametrized pdf’s
f(y;x) (which include the Gaussian pdf in (5)), one can
associate with this optimization problem an RKHSH(Rx0

)
whose kernelRx0

(x,x′) : X×X →R is given by

Rx0
(x,x′) , Ex0

{

f(y;x)

f(y;x0)

f(y;x′)

f(y;x0)

}

=

∫

RM

f(y;x) f(y;x′)

f(y;x0)
dy .

It can be shown [6], [7] thatγ(x) ∈ H(Rx0
) if and only if

there exists at least one estimator with meanγ(x) for all x
and finite variance atx0. Furthermore, under this condition,
the minimum varianceVγ(x0) in (9) is finite and allows the
following expression involving the norm‖γ‖H(Rx0

):

Vγ(x0) = ‖γ‖2H(Rx0
) − γ2(x0) . (12)

This is an RKHS formulation of the Barankin bound. Unfortu-
nately, the norm‖γ‖H(Rx0

) is often difficult to compute.
For the SLM in (2), (1), (5),X =XS ; the kernel here is a

mappingXS ×XS → R which is easily shown to be given by

Rx0
(x,x′) = exp

(

1

σ2
(x−x0)

T HTH(x′−x0)

)

, (13)

wherex0∈XS . An RKHS can also be defined for the LGM in
(10). Here,X = R

S , and the kernelRLGM
s0

(s, s′) with s0∈R
S

is a mappingRS×R
S→ R given by

RLGM
s0

(s, s′) = exp

(

1

σ2
(s−s0)

TATA(s′−s0)

)

. (14)

Note that these kernels differ in their domain, which isXS×XS

for Rx0
(x,x′) andRS×R

S for RLGM
s0

(s, s′).

IV. A L OWER BOUND ON THE ESTIMATOR VARIANCE

We now continue our treatment of the SLM estimation
problem. In what follows,Vγ(x0) will be understood to denote
the bias-constrained minimum variance (9)specifically for the
SLM. This means, in particular, thatX =XS , and hence the set
of admissible estimators is given by

Bγ =
{

x̂(·)
∣

∣Ex{x̂(y)} = γ(x), ∀x∈XS

}

. (15)

We will next derive a lower bound onVγ(x0).

A. Relaxing the Bias Constraint

The first step in this derivation is to relax the bias constraint
x̂(·)∈Bγ . Let K , {k1, . . . , kS} be a fixed set ofS different
indiceski ∈ {1, . . . , N} (not related tosupp(x0)), and let

XK
S , {x∈XS | supp(x) ⊆K} .

Clearly, XK
S ⊆ XS ; however, contrary toXS , XK

S is a linear
subspace ofRN. Let BK

γ be the set of all estimators with mean

γ(x) for all x∈XK
S (but not necessarily for allx∈XS ), i.e.,

BK
γ ,

{

x̂(·)
∣

∣Ex{x̂(y)} = γ(x), ∀x∈XK
S

}

.

Comparing with (15), we see thatBK
γ ⊇Bγ .

Let us now consider the minimum variance among all
estimators inBK

γ , i.e.,

V K
γ (x0) , min

x̂(·)∈BK
γ

v(x̂(·);x0) . (16)

Becausêx(·)∈BK
γ is a less restrictive constraint thanx̂(·)∈Bγ

used in the definition ofVγ(x0), we have

Vγ(x0) ≥ V K
γ (x0) , (17)

i.e., V K
γ (x0) is a lower bound onVγ(x0). A closed-form

expression ofV K
γ (x0) appears to be difficult to obtain in the

general case, becausex0 6∈ XK
S in general. Therefore, we will

use RKHS theory to derive a lower bound onV K
γ (x0).

B. Two Isometric RKHSs

An RKHS for the SLM can also be defined onXK
S , using a

kernelRK
x0

: XK
S ×XK

S → R that is given by the right-hand side
of (13) but whose argumentsx,x′ are assumed to be inXK

S
and not just inXS (however, recall thatx0 6∈XK

S in general).
This RKHS will be denotedH(RK

x0
). The minimum variance

V K
γ (x0) in (16) can then be expressed as (cf. (12))

V K
γ (x0) = ‖γ‖2H(RK

x0
) − γ2(x0) . (18)

In order to develop this expression, we define some notation.
Consider an index setI = {k1, . . . , k|I|} ⊆ {1, . . . , N}. We
denote byHI ∈ R

M×|I| the submatrix of our matrixH ∈
R

M×N whoseith column is given by theki th column ofH.
Furthermore, for a vectorx∈R

N, we denote byxI∈R
|I| the

subvector whoseith entry is theki th entry ofx.
We now introduce a second RKHS. Consider the LGM in

(10) with matrixA = HK ∈ R
M×S, and letH(RLGM

s0
) with

s0∈R
S denote the RKHS for that LGM as defined by the kernel

RLGM
s0

: RS×R
S → R in (14). Exploiting the linear-subspace

structure ofXK
S , it can be shown that our RKHSH(RK

x0
) for

a givenx0 is isometricto H(RLGM
s0

) with s0 chosen as

s0 = H
†
KHx0 . (19)

Here,H†
K , (HT

KHK)
−1HT

K ∈ R
S×M is the pseudo-inverse of

HK (recall thatM≥S, and note that(HT
KHK)

−1 is guaranteed
to exist because of our assumption (3)). More specifically, the
isometryJ : H(RK

x0
) → H(RLGM

s0
) mapping eachf ∈ H(RK

x0
)

to an f̃ ∈H(RLGM
s0

) is given by

J{f(x)} = f̃(xK) = βx0
f(x) , x∈XK

S , (20)

where

βx0
, exp

(

−
1

2σ2

∥

∥(I−PK)Hx0

∥

∥

2

2

)

. (21)

Here,PK , HKH
†
K is the orthogonal projection matrix on the

range ofHK. The factorβx0
can be interpreted as a measure

of the distance between the pointHx0 and the subpsaceXK
S

associated with the index setK. We can write (20) as



f̃(s) = βx0
f(x(s)) , s∈R

S ,

wherex(s) denotes thex∈XK
S for which xK= s (i.e., theS

entries ofs appear inx(s) at the appropriate positions within
K, and theN−S remaining entries ofx(s) are zero).

Consider now the image ofγ(x) under the mappingJ,

γ̃(s) , J{γ(x)} = βx0
γ(x(s)) , s∈R

S . (22)

Since J is an isometry, we have‖γ̃‖2H(RLGM
s0

) = ‖γ‖2H(RK
x0

).
Combining this identity with (18), we obtain

V K
γ (x0) = ‖γ̃‖2H(RLGM

s0
) − γ2(x0) . (23)

C. Lower Bound onV K
γ (x0)

We will now use expression (23) to derive a lower bound on
V K
γ (x0) in terms of the CRB for the LGM in (11). Consider the

minimum estimator variance for the LGM under the constraint
of the prescribed mean functioñγ(s), V LGM

γ̃ (s0), still for A=
HK and fors0 given by (19). We have (cf. (12))

V LGM
γ̃ (s0) = ‖γ̃‖2H(RLGM

s0
) − γ̃2(s0) .

Combining with (23), we obtain the relation

V K
γ (x0) = V LGM

γ̃ (s0) + γ̃2(s0)− γ2(x0) .

Using the CRBV LGM
γ̃ (s0) ≥ CLGM

γ̃ (s0) (see (11)) yields

V K
γ (x0) ≥ LK

γ (x0) , (24)

with

LK
γ (x0) , CLGM

γ̃ (s0) + γ̃2(s0)− γ2(x0) . (25)

Finally, using (22) and the implied CRB relationCLGM
γ̃ (s0) =

β2
x0
CLGM

γ(x(s))(s0), the lower bound (25) can be reformulated as

LK
γ (x0) = β2

x0

[

CLGM
γ(x(s))(s0) + γ2(x(s0))

]

− γ2(x0) . (26)

Here,CLGM
γ(x(s))(s0) denotes the CRB for prescribed mean func-

tion γ′(s) = γ(x(s)), which is given by (see (11))

CLGM
γ(x(s))(s0) = σ2 rT(s0)(H

T
KHK)

−1
r(s0) , (27)

wherer(s) , ∂γ(x(s))/∂s ands0 is related tox0 via (19).
To summarize, we have the following chain of lower bounds

on the bias-constrained variance atx0:

v(x̂(·);x0)
(9)
≥ Vγ(x0)

(17)
≥ V K

γ (x0)
(24)
≥ LK

γ (x0) . (28)

While LK
γ (x0) is the loosest of these bounds, it is attractive

because of its closed-form expression in (26) (together with
(27) and (19)). We note that the inequality (24) becomes an
equality if γ̃(s) is an affine function ofs, or equivalently (see
(22)), if γ(x) is an affine function ofx. In particular, this
includes the unbiased case (γ(x)≡ x).

Recalling thatv(x̂(·);x0) =
∑N

k=1 v(x̂k(·);x0) (we now
reintroduce the subscriptk), a lower bound onv(x̂(·);x0) is
obtained from (28) as

v(x̂(·);x0) ≥
N
∑

k=1

LKk
γk

(x0) .

For a high lower bound, the index setsKk should in general be
chosen such that the respective factorsβ2

x0,k
in (26) are large.

(This means that the “distances” betweenHx0 andXKk

S are
small, see (21).) Formally using the optimumKk for eachk,
we arrive at the main result of this paper.

Theorem. Let x̂(·) be an estimator for the SLM(2), (1) whose
mean equalsγ(x) for all x∈XS . Then the variance of̂x(·) at
a given parameter vectorx=x0∈XS satisfies

v(x̂(·);x0) ≥
N
∑

k=1

L∗
γk
(x0) , (29)

whereL∗
γk
(x0) , maxKk:|Kk|=S LKk

γk
(x0), with LKk

γk
(x0) given

by (26) together with(27) and (19).

V. SPECIAL CASE: UNBIASED ESTIMATION FOR THE SSNM

The SSNM in (4) is a special case of the SLM withH = I.
We now consider unbiased estimation (i.e.,γ(x) ≡ x) for the
SSNM. Since an unbiased estimator with uniformly minimum
variance does not exist [4], we are interested in a lower variance
bound at a fixedx0 ∈XS . We denote byξ(x0) and j(x0) the
value and index, respectively, of theS-largest (in magnitude)
entry ofx0; note that this is the smallest (in magnitude) nonzero
entry of x0 if ‖x0‖0=S, and zero if‖x0‖0<S.

Consider an unbiased estimatorx̂k(·). For k ∈ supp(x0),
using the lower boundLKk

γk
(x0) in (26) with any index setKk

of size |Kk|=S such thatsupp(x0)⊆Kk, one can show that

v(x̂k(·);x0) ≥ σ2 , k ∈ supp(x0) . (30)

This bound is actually the minimum variance (i.e., the variance
of the LMVU estimator) since it is achieved by the specific
unbiased estimator̂xk(y) = yk (which is the LMVU estimator
for k ∈ supp(x0)). On the other hand, fork /∈ supp(x0), the
lower boundLKk

γk
(x0) with Kk =

(

supp(x0)\{j(x0)}
)

∪ {k}
can be shown to lead to the inequality

v(x̂k(·);x0) ≥ σ2e−ξ2(x0)/σ
2

, k /∈ supp(x0) . (31)

Combining (30) and (31), a lower bound on the overall variance
v(x̂(·);x0) =

∑N
k=1 v(x̂k(·);x0) is obtained as

v(x̂(·);x0) ≥
∑

k∈supp(x0)

σ2 +
∑

k/∈supp(x0)

σ2e−ξ2(x0)/σ
2

. (32)

Thus, recalling thatv(x̂(·);x0) = ε(x̂(·);x0) for unbiased
estimators, we arrive at the following result.

Corollary. Let x̂(·) be an unbiased estimator for the SSNM in
(4). Then the MSE of̂x(·) at a givenx=x0∈XS satisfies

ε(x̂(·);x0) ≥
[

S + (N−S)e−ξ2(x0)/σ
2]

σ2. (33)



This lower bound is tighter (i.e., higher) than the lower bound
derived in [4]. Furthermore, in contrast to the bound in [4],it
is a function ofx0 that is everywhere continuous. This fact
is theoretically pleasing since the MSE of any estimator is a
continuous function ofx0 [11].

Let us consider the special case ofS =1. Here,ξ(x0) and
j(x0) are simply the value and index, respectively, of the single
nonzero entry ofx0. Using RKHS theory, one can show that
the estimator̂x(·) given componentwise by

x̂k(y) =

{

yj(x0) , k = j(x0)

α(y;x0)yk , else,

with α(y;x0) , exp
(

− 1
2σ2 [2yj(x0)ξ(x0) + ξ2(x0)]

)

, is the
LMVU estimator atx0. That is, the estimator̂x(·) is unbiased
and its MSE achieves the lower bound (33). This also means
that (33) is actually the minimum MSE (achieved by the
LMVU estimator). While x̂(·) is not very practical since it
explicitly involves the unknown true parameterx0, its existence
demonstrates the tightness of the bound (33).

VI. N UMERICAL RESULTS

For the SSNM in (4), we will compute the lower variance
bound

∑N
k=1L

∗
γk
(x0) (see (29)) and compare it with the

variance of two established estimators, namely, the maximum
likelihood (ML) estimator and the hard-thresholding (HT) es-
timator. The ML estimator is given by

x̂ML (y) , argmax
x
′∈XS

f(y;x′) = PS(y) ,

where the operatorPS retains theS largest (in magnitude)
entries and zeros out all others. The HT estimatorx̂HT(y) is
given by

x̂HT,k(y) =

{

yk , |yk| ≥ T

0 , else,
(34)

whereT is a fixed threshold.
For simplicity, we consider the SSNM forS=1. In this case,

the bound (29) can be shown to be

v(x̂(·);x0) ≥ LKj
γj
(x0) + (N−1) e−ξ2(x0)/σ

2

LKi
γi
(x0) , (35)

wherej,j(x0), i is any index different fromj(x0) (it can be
shown that all such indices equally maximize the lower bound),
Kj , {j(x0)}, andKi , {i}. (We note that (35) simplifies to
(32) for the special case of an unbiased estimator.) Since we
compare the bound (35) to the ML and HT estimators,γ(x) is
set equal to the mean of the respective estimator (ML or HT).

For a numerical evaluation, we generated parameter vectors
x0 with N=5, S=1, j(x0)=1, and differentξ(x0). (The fixed
choicej(x0)=1 is justified by the fact that neither the variances
of the ML and HT estimators nor the corresponding variance
bounds depend onj(x0).) In Fig. 1, we plot the variances
v(x̂ML (·);x0) and v(x̂HT(·);x0) (the latter for three different
choices ofT in (34)) along with the corresponding bounds (35),
as a function of the signal-to-noise ratio (SNR)ξ2(x0)/σ

2. It
is seen that for SNR larger than about 18 dB, all variances and
bounds are effectively equal (for the HT estimator, this is true
if T is not too small). However, in the medium-SNR range, the
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Figure 1. Variance of the ML and HT estimators and corresponding lower
bounds versus the SNRξ2(x0)/σ2, for the SSNM withN=5 andS=1.

variances of the ML and HT estimators are significantly higher
than the corresponding lower bounds. We can conclude that
theremight exist estimators with the same mean as that of the
ML or HT estimator but smaller variance. Note, however, that
a positive statement regarding the existence of such estimators
cannot be based on our analysis.

VII. C ONCLUSION

Using the mathematical framework of reproducing kernel
Hilbert spaces, we derived a novel lower bound on the variance
of estimators of a sparse vector under a bias constraint. The
observed vector was assumed to be a linearly transformed
and noisy version of the sparse vector to be estimated. This
setup includes the underdetermined case relevant to compressed
sensing. In the special case of unbiased estimation of a noise-
corrupted sparse vector, our bound improves on the best known
lower bound. A comparison with the variance of two established
estimators showed that there might exist estimators with the
same bias but a smaller variance.
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