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FRIEZES, STRINGS AND CLUSTER VARIABLES

IBRAHIM ASSEM, GRÉGOIRE DUPONT, RALF SCHIFFLER AND DAVID SMITH

Abstract. To any walk in a quiver, we associate a Laurent polynomial. When
the walk is the string of a string module over a 2-Calabi-Yau tilted algebra, we
prove that this Laurent polynomial coincides with the corresponding cluster
character of the string module, up to a normalising monomial factor that we
explicit.

Introduction

In the early 2000, S. Fomin and A. Zelevinsky introduced the class of cluster
algebras with the purpose of building a combinatorial framework for studying total
positivity in algebraic groups and canonical bases in quantum groups (see [29]).
Since then, the study of cluster algebras was shown to be connected to several areas
of mathematics, notably combinatorics, Lie theory, Poisson geometry, Teichmüller
theory, mathematical physics and representation theory of algebras.

A cluster algebra is a commutative algebra generated by a set of variables, called
cluster variables, obtained recursively by a combinatorial process known as muta-
tion, starting from an initial set of cluster variables, the initial cluster, and a quiver
without cycles of length at most two. One of the most remarkable facts about clus-
ter variables is that they can be expressed as Laurent polynomials in terms of the
initial cluster variables [29], this is the so-called Laurent phenomenon. Also, it is
conjectured that the coefficients in this expression are always non-negative, this is
the positivity conjecture. The problem of computing explicitly the cluster variables
is a difficult one and is the object of a wide literature. The most general results
known at the present time are in [32, 49, 46].

In order to compute cluster variables, one may use friezes. Friezes, which go back
to works of Coxeter and Coxeter-Conway [22, 20, 21], are an efficient combinatorial
tool which mimics the application of mutations on sinks or sources of the given
quiver, hence an obvious combinatorial connection with cluster algebras [18, 15, 52,
44, 5]. It is now known that connections between friezes and cluster algebras are
deeper than just combinatorics, see for instance [26, 4, 40, 8, 31, 43]. Our starting
point for the present paper was the result in [5] giving an explicit formula as a
product of 2×2 matrices for all cluster variables in coefficient-free cluster algebras of
type A and all but finitely many cluster variables in coefficient-free cluster algebras

of type Ã, thus explaining at the same time the Laurent phenomenon and positivity.
Our objective here is to show that the same technique can be used for computing
the cluster variables associated to the string modules over a 2-Calabi-Yau tilted
algebra (in the sense of [54]).
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Besides friezes, our second main tool is the notion of a cluster character. In [15],
Caldero and Chapoton noticed that cluster variables in simply-laced coefficient-free
cluster algebras of finite type can be expressed as generating series of Euler-Poincaré
characteristics of Grassmannians of submodules. Generalising this work, Caldero-
Keller [17], Palu [48] and Fu-Keller [32] introduced the notion of a cluster character
associating to each module M over a 2-Calabi-Yau tilted algebra BT a certain
Laurent polynomial XT

M allowing to compute a corresponding cluster variable (see
also [49]). In general, cluster characters are hard to compute because one first
needs to find the Euler characteristics of Grassmannians of submodules, and then
the dimensions of certain Hom-spaces in the corresponding 2-Calabi-Yau category.

One class of algebras, however, whose representation theory is reasonably well-
understood is the class of string algebras, introduced by Butler and Ringel in [14]
(see also [59]). In particular, indecomposable modules over string algebras are
partitioned into two sets: string and band modules, and only string modules can
be associated to cluster variables. The Euler characteristics of Grassmannians of
submodules of string modules were computed by Cerulli and Poettering [19, 51].
Nevertheless, their methods do not allow to compute explicitly the associated cluster
character.

The main result of this paper gives an explicit formula for the cluster character
associated to a string module over a 2-Calabi-Yau tilted algebra. This can be
stated as follows. To any walk c in a locally finite quiver Q, we associate a Laurent
polynomial Lc in the ring of Laurent polynomials in the indeterminates xi indexed
by the set of points of Q, which can be expressed as a product of 2 × 2 matrices
as in [5] (see Section 1.3 below). Now, we let T be a tilting object in a Hom-finite
triangulated 2-Calabi-Yau category C and BT = EndC (T ) the corresponding 2-
Calabi-Yau tilted algebra whose ordinary quiver is denoted by Q. Moreover, to any
string BT -module M , we associate a tuple of integers nM = (ni)i∈Q0 which we call
the normalisation of M (see Section 5.2), and the Laurent polynomial LM which
is just the Laurent polynomial Lc attached to the string c of M in the quiver Q.
Using the notation xnM =

∏
i∈Q0

xni

i , our main result (Theorem 5.11 below) can
be stated as saying that :

XT
M =

1

xnM
LM .

This result entails several interesting consequences. We first obtain the positiv-
ity of the Laurent polynomial XT

M for any string BT -module M (see Corollary 6.4),
thus reproving a result of Cerulli and Poettering [19, 51]. Our results also apply
to the cases of string modules over cluster-tilted algebras, string modules over gen-
tle algebras arising from unpunctured surfaces (see [2]) and, more generally, string
modules over finite dimensional Jacobian algebras associated to quivers with po-
tentials in the sense of [23]. We also obtain a new proof of the positivity conjecture
for cluster algebras arising from surfaces without punctures, see [56, 55].

The paper is organised as follows. Section 1 introduces the basic definitions and
presents our combinatorial formula. Section 2 introduces the concept of realisable
quadruples which is the context in which our formula will actually compute clus-
ter characters. This is closely related to the notion of triangulated 2-Calabi-Yau
realisation in the sense of Fu and Keller [32]. Section 3 recalls all the necessary
background from [48, 32] concerning cluster characters. Sections 4 and 5 contain
the proof of our main result. In Section 4, we actually prove a weaker version of
our theorem which will be used in order to prove the general case in Section 5. In
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Section 6 we present possible applications of the results to the study of positivity in
cluster algebras. In Section 7, we investigate the normalising factor and explicitly
compute it for several cases of string modules over cluster-tilted algebras. The last
section presents several detailed examples.

1. The matrix formula

1.1. Notations. Throughout the article, k denotes an algebraically closed field.
Given a quiver Q, we denote by Q0 its set of points and by Q1 its set of arrows. For
any arrow α ∈ Q1, we denote by s(α) its source and t(α) its target. We sometimes

simply write α : s(α) → t(α) or s(α)
α
−→ t(α). For any point i ∈ Q0, we set

Q1(i,−) = {α ∈ Q1 | s(α) = i} , Q1(−, i) = {α ∈ Q1 | t(α) = i}

and if F is a subset of points in Q0, we set

Q1(i, F ) = {α ∈ Q1 | s(α) = i, t(α) ∈ F} , Q1(F, i) = {α ∈ Q1 | s(α) ∈ F, t(α) = i}

and finally, for any i, j ∈ Q0, we set Q1(i, j) = Q1(i,−) ∩Q1(−, j).
To any quiver Q, we associate a family xQ = {xi|i ∈ Q0} of indeterminates over

Z. We set L (xQ) = Z[x±1
i | i ∈ Q0] to be the ring of Laurent polynomials in the

variables xi, with i ∈ Q0 and F (xQ) = Q(xi | i ∈ Q0) to be the field of rational
functions in the variables xi, with i ∈ Q0. For any d = (di)i∈Q0 ∈ ZQ0 , we set

xd
Q =

∏
i∈Q0

xdi

i .

A bound quiver is a pair (Q, I) such that Q is a finite quiver (that is, Q0 and
Q1 are finite sets) and I is an admissible ideal in the path algebra kQ of Q. Given
a finite dimensional k-algebra B, there exists a bound quiver (Q, I) such that
B ≃ kQ/I and the quiver Q is called the ordinary quiver of B (see for instance, [6] or
[7]). We always identify the category mod-B of finitely generated right B-modules
with the category rep(Q, I) of k-representations of Q satisfying the relations in I.
For a B-module M , we denote by M(i) the k-vector space at the point i ∈ Q0 and
M(α) the k-linear map at the arrow α ∈ Q1.

1.2. Walks and strings. Let Q be a quiver. As in [14], for any arrow β ∈ Q1, we
denote by β−1 a formal inverse for β, with s(β−1) = t(β), t(β−1) = s(β) and we
set (β−1)−1 = β.

A walk of length n ≥ 1 in Q is a sequence c = c1 · · · cn where each ci is an arrow or
a formal inverse of an arrow and such that t(ci) = s(ci+1) for any i ∈ {1, . . . , n− 1}.
The source of the walk c is s(c) = s(c1) and the target of the walk c is t(c) = t(cn).
We define a walk ei of length zero for any point i ∈ Q0 such that s(ei) = t(ei) = i.
For any walk c, we denote by c0 the walk of length zero c0 = es(c).

If (Q, I) is a bound quiver, a string in (Q, I) is either a walk of length zero or
a walk c = c1 · · · cn of length n ≥ 1 such that ci 6= c−1

i+1 for any i ∈ {1, . . . , n− 1}
and such that no walk of the form cici+1 · · · ct nor its inverse belongs to I for 1 ≤ i
and t ≤ n. If Q is a quiver, a string in the quiver Q is a string in the bound quiver
(Q, (0)). If B ≃ kQ/I is a finite dimensional k-algebra and c is a string in (Q, I),
then we also say that c is a string in B.

To any string in a finite dimensional k-algebra B, we can naturally associate an
indecomposable finite dimensional right B-module, called string module as in [14,
§3]. Namely, if B has ordinary quiver Q and c is either a string of length zero or a
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string of positive length of the form c = c1 . . . cn, the corresponding string module
is the module Mc obtained by setting for any x ∈ Q0,

Mc(x) =

{
k if x = t(ci) for some i ∈ {0, . . . , n} ,
0 otherwise.

and for any α ∈ Q1,

Mc(α) =

{
1k if there exists i ∈ {1, . . . , n} such that α = c±1

i ,
0 otherwise.

A string module is also called a string representation of the corresponding bound
quiver. For any string module M , we denote by s(M) the corresponding string.

1.3. A formula for walks. For any locally finite quiver Q, we define a family of
matrices with coefficients in Z[xQ] = Z[xi | i ∈ Q0] as follows.

For any arrow β ∈ Q1, we set

A(β) =

[
xt(β) 0
1 xs(β)

]
and A(β−1) =

[
xt(β) 1
0 xs(β)

]
.

Let c = c1 · · · cn be a walk of length n ≥ 1 in Q. For any i ∈ {0, . . . , n} we set

vi+1 = t(ci)

(still with the notation c0 = es(c)) and

Vc(vi) =




∏

α∈Q1(vi,−)

α6=c
±1
i ,c

±1
i−1

xt(α) 0

0
∏

α∈Q1(−,vi)

α6=c
±1
i ,c

±1
i−1

xs(α)



.

We then set

Lc =
1

xv1 · · ·xvn+1

[
1, 1

]
Vc(v1)

(
n∏

i=1

A(ci)Xc(vi+1)

)[
1
1

]
∈ L (xQ).

If c = ei is a walk of length 0 at a point i, we similarly set

Vei(i) =




∏

α∈Q1(i,−)

xt(α) 0

0
∏

α∈Q1(−,i)

xs(α)


 .

and

Lei =
1

xi

[
1, 1

]
Vei(i)

[
1
1

]
∈ L (xQ).

In other words, if c is any walk, either of length zero, or of the form c = c1 · · · cn,
we have

(1.1) Lc =
1∏n

i=0 xt(ci)

[
1, 1

]
(

n∏

i=0

A(ci)Vc(t(ci))

)[
1
1

]
∈ L (xQ)

with the convention that A(c0) is the identity matrix.
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Example 1.1. Consider the quiver

4
γ

��=
==

==
==

=

Q : 1
α // 2

β

@@�������� δ // 3
ǫ // 5

and consider the path c = δ−1βγ in Q. Then,

Lc =
1

x2x2
3x4

([
1, 1

] [ x5 0
0 x4

] [
x3 1
0 x2

] [
1 0
0 x1

]

[
x4 0
1 x2

] [
1 0
0 1

] [
x3 0
1 x4

] [
x5 0
0 x2

] [
1
1

])

=
x1x

3
2x

2
4 + 2x1x

2
2x4x5 + x1x2x3x4x5 + x2

3x4x
2
5 + x1x2x

2
5 + x1x3x

2
5

x2x2
3x4

1.4. A formula for string modules.

Definition 1.2. Let B be a finite dimensional k-algebra with bound quiver (Q, I)
and let M be a string B-module with corresponding string s(M). We set

LM = Ls(M) ∈ L (xQ).

If Q is a quiver, a subquiver R of Q is a quiver R such that R0 ⊂ Q0 and such
that for any i, j ∈ R0, the set of arrows from i to j in R1 is a subset of the set of
arrows from i to j in Q1. If R is a subquiver of Q, we naturally identify L (xR)
with a subring of L (xQ).

A subquiver R of Q is called a full subquiver if for all i, j ∈ R0 the set of arrows
from i to j in R1 equals the set of arrows from i to j in Q1. If B is a finite
dimensional k-algebra with bound quiver (Q, I) and M is a B-module, the support
of M is the full subquiver supp(M) of Q consisting of the points i ∈ Q0 such that

M(i) 6= 0. The closure of the support of M is the full subquiver supp(M) of Q
formed by the points i ∈ Q0 which are in the support of M or such that there
exists an arrow α such that s(α) ∈ supp(M)0 and t(α) = i or t(α) ∈ supp(M)0 and
s(α) = i.

With these identifications, if B is a finite dimensional k-algebra and M is a string
B-module, then

LM ∈ L (xsupp(M)).

2. Realisable quadruples

In the previous section we associated to any string module M over a finite di-
mensional algebra B a certain Laurent polynomial LM . In this section we provide
a context in which the algebra B arises in connection with some cluster algebras so
that we can compare the Laurent polynomials LM with cluster variables or, more
generally, with cluster characters. The context in which we work is the context of
triangulated 2-Calabi-Yau realisations introduced in [32].

2.1. Definitions. An ice quiver is a pair (Q, F ) such that Q is a finite connected
quiver without loops and 2-cycles and F is a (possibly empty) subset of points of
Q0, called frozen points, such that there are no arrows between points in F . The
unfrozen part of (Q, F ) is the full subquiver of Q obtained by deleting the points
in F .
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For any quiver Q, we denote by B(Q) = (bij) ∈ MQ0(Z) the skew-symmetric
matrix defined for any i, j ∈ Q0 by

bij = |Q1(i, j)| − |Q1(j, i)|,

that is, bij equals the difference between the number of arrows from i to j in Q1

and the number of arrows from j to i in Q1.
If (Q, F ) is an ice quiver with unfrozen part Q, then we can fix an ordering of

the points in Q0 such that

B(Q) =

[
B(Q) −Ct

C 0F×F

]

where C is a matrix in MF×Q0(Z).
For any ice quiver (Q, F ) with unfrozen part Q, we denote by A (Q, F ) the

cluster algebra of geometric type with initial seed (B̃(Q),x,y) where

B̃(Q) =

[
B(Q)
C

]
,

x = (xi, i ∈ Q0) and y = (xi, i ∈ F ) (see [30]).
A k-linear category C is called Hom-finite if HomC (M,N) is a finite dimensional

k-vector space for any two objects M,N in C . A k-linear triangulated category C
with suspension functor [1] is called 2-Calabi-Yau if the square [2] of the suspension
functor is a Serre functor in C . This implies that there is a bifunctorial isomorphism

HomC (X,Y ) ≃ DHomC (Y,X [2])

where D = Homk(−,k) is the standard duality.
For any objects M,N in C , we denote by Ext1C (M,N) the space HomC (M,N [1]).

An object M in the category C is called rigid if Ext1C (M,M) = 0. An object T in
C is called a tilting object in C if it is maximal and rigid, that is, if for any object
X in C , the equality Ext1C (T,X) = 0 is equivalent to the fact that X belongs to
the additive subcategory addT of C . It is known that the combinatorics of cluster
algebras are closely related to the combinatorics of tilting objects in triangulated
2-Calabi-Yau categories [9].

Definition 2.1. A realisable quadruple is a quadruple (Q, F,C , T ) such that :

a) (Q, F ) is an ice quiver ;
b) C is a Hom-finite triangulated 2-Calabi-Yau category whose tilting objects form

a cluster structure in the sense of [9] ;
c) T is a tilting object in C ;
d) the ordinary quiver of BT = EndC (T ) is Q.

Following Reiten [54], every algebra of the form EndC (T ) as above is called a
2-Calabi-Yau tilted algebra. In order to simplify terminology, a category C as above
is simply called a triangulated 2-Calabi-Yau category.

Definition 2.2. Given a realisable quadruple (Q, F,C , T ), a BT -module M is
called :

a) unfrozen if M(i) 6= 0 implies i 6∈ F ;
b) unfrozen indecomposable if it is unfrozen and indecomposable as a BT -module ;
c) unfrozen sincere if M(i) 6= 0 if and only if i 6∈ F .



FRIEZES, STRINGS AND CLUSTER VARIABLES 7

2.2. Examples. The notion of realisable quadruple covers a lot of situations in the
context of cluster algebras. We now list some examples of such situations.

Example 2.3. Let Q be an acyclic quiver and let Db(mod-kQ) be the bounded
derived category of mod-kQ. It is a triangulated category with suspension functor
[1] and Auslander-Reiten translation τ . The functor τ−1[1] is an auto-equivalence
of Db(mod-kQ) and the orbit category C = Db(mod-kQ)/τ−1[1] of this functor is
called the cluster category of Q. This category was first defined in [11] (see also [16]
for an alternative description in Dynkin type A). It is canonically equipped with a
structure of triangulated 2-Calabi-Yau category [36, 11]. For any tilting object T
in C , an algebra of the form EndC (T ) is called a cluster-tilted algebra, as defined
in [12] (see also [16] for Dynkin type A). Thus, if QT is the ordinary quiver of the
cluster-tilted algebra EndC (T ), the quadruple (QT , ∅,C , T ) is realisable and every
BT -module is unfrozen.

Example 2.4. Let (Q,W ) be a Jacobi-finite quiver with potential, that is, a quiver
with potential in the sense of [23] such that the Jacobian algebra J(Q,W ) is fi-
nite dimensional. Let C(Q,W ) be the generalised cluster category constructed by
Amiot [1, §3] as follows. Let Λ(Q,W ) be the Ginzburg differential graded algebra
associated to the quiver with potential (Q,W ) (see [35] for more details) and let
D(mod-Λ(Q,W )) be its derived category. Consider the thick subcategory perΛ(Q,W )

of D(mod-Λ(Q,W )) generated by Λ(Q,W ) and let Db(mod-Λ(Q,W )) be the full sub-
category of D(mod-Λ(Q,W )) consisting of the differential graded modules whose
total homology is finite dimensional. Then the generalised cluster category C(Q,W )

is the quotient of triangulated categories perΛ(Q,W )/D
b(mod-Λ(Q,W )). It is a tri-

angulated 2-Calabi-Yau category and there exists a tilting object T in C(Q,W ) such
that (Q, ∅,C(Q,W ), T ) is a realisable quadruple [1, Theorem 3.6].

This example is of particular interest for the study of cluster algebras arising
from surfaces in the sense of [28] (see also Section 6.2 for more details). Indeed,
Labardini associated a Jacobi-finite quiver with potential (Q,W ) to any marked
surface (S,M) with non-empty boundary [41]. Thus, the generalised cluster cate-
gory C(Q,W ) provides a categorification for the cluster algebra A (S,M) associated
to the surface. Moreover, if the surface is unpunctured, that is, if there are no
marked points in the interior of the surface, it is known that the Jacobian algebra
J(Q,W ) is a string algebra (it is in fact a gentle algebra, see [2]). The J(Q,W )-
modules without self-extension are thus string modules and it follows from [32] that
the cluster variables in A (S,M) can be studied via cluster characters associated to
string J(Q,W )-modules (see Section 3 for details).

Example 2.5. Let A be a finite dimensional k-algebra of global dimension 2 and

let Q̃ be the ordinary quiver of the relation extension of A, that is, the trivial
extension of A by the A-bimodule Ext2A(DA,A) (see for instance [3]). Then Amiot
also associated to A a generalised cluster category CA and proved that there exists a

tilting object T in CA such that (Q̃, ∅,CA, T ) is a realisable quadruple [1, Theorem
4.10].

Example 2.6. We now give a fundamental example with a non-empty set of frozen
points. For any quiver Q, we denote by (Qpp, Q′

0) its principal extension. It is
defined as follows. We fix a copy Q′

0 = {i′ | i ∈ Q0} of Q0 and we set Qpp
0 = Q0⊔Q′

0.
The arrows in Qpp

1 between two points in Q0 are the same as in Q and for any i ∈ Q0
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we add an extra arrow i′−→ i in Qpp
1 . Thus, the matrix of Qpp is given by

B(Qpp) =

[
B(Q) −IQ′

0

IQ′
0

0

]

where IQ′
0

denotes the identity matrix in MQ′
0
(Z).

Now, if Q is the ordinary quiver of a cluster-tilted algebra BT , it is known
that there exists a 2-Calabi-Yau category C pp, endowed with a tilting object T pp,
obtained via a process of principal gluing, such that (Qpp, Q′

0,C
pp, T pp) is a realis-

able quadruple for which every BT -module can naturally be viewed as an unfrozen
module (see [32, §6.3] or Corollary 2.12).

2.3. Blown-up ice quivers and their realisations. In the proof of the main
theorem of this article, we are interested in a particular family of ice quivers, called
blown-up. We now give some details concerning these quivers.

Definition 2.7. We say that an ice quiver (Q, F ) is blown-up if |Q1(i,−) ∪
Q1(−, i)| ≤ 1 for every point i ∈ F , that is, if there exists at most one arrow
starting or ending at any frozen point.

Example 2.8. a) Any ice quiver with an empty set of frozen points is blown-up.
b) If Q is any quiver, then its principal extension (Qpp, Q′

0) defined in Example 2.6
is blown-up.

Remark 2.9. Any blown-up ice quiver (Q, F ) whose unfrozen part is acyclic can
be embedded in a realisable quadruple (Q, F,C , T ). Indeed, since (Q, F ) is blown-
up with an acyclic unfrozen part, Q is also acyclic. Let thus C be the cluster
category of the quiver Q. Then the path algebra kQ is identified with a tilting
object in C and the corresponding cluster-tilted algebra is isomorphic to kQ so
that its ordinary quiver is Q. Thus (Q, F,C ,kQ) is a realisable quadruple.

We can construct a wide class of examples of realisable quadruples with the
following proposition, due to Amiot :

Proposition 2.10 ([1]). If C1 and C2 are two generalised cluster categories associ-
ated with Jacobi-finite quivers with potentials (Q1,W1) and (Q2,W2), then for any
matrix C with non-negative integer entries, there exists a Jacobi-finite quiver with
potential (Q′,W ′) whose generalised cluster category C(Q′,W ′) has a tilting object
T ′ such that the matrix associated to the ordinary quiver of the 2-Calabi-Yau tilted
algebra EndC(Q′,W ′)

(T ′) is

B′ =

[
B(Q1) −Ct

C B(Q2)

]
.

Corollary 2.11. Let (Q, F ) be a blown-up ice quiver with unfrozen part Q. Assume
that there exists a potential W on Q such that the Jacobian algebra J(Q,W ) is finite
dimensional. Then there exists a triangulated 2-Calabi-Yau category C and a tilting
object T in C such that (Q, F,C , T ) is a realisable quadruple.

Proof. We set C (0) the generalised cluster category associated to the quiver with
potential (Q,W ). According to Example 2.4, there exists a tilting object T (0) in C
such that the quadruple (Q, ∅,C (0), T (0)) is realisable.

In order to simplify notations, we write F = {1, . . . ,m}. For any i ∈ F , we
denote by CAi

a copy of the cluster category of type A1, which is a particular
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case of generalised cluster category in the sense of Amiot. We now construct, by
induction on i ∈ {1, . . . ,m}, a category C (i) with a tilting object T (i) such that the
ordinary quiver of the 2-Calabi-Yau tilted algebra EndC (i)(T (i)) is the full subquiver
(Q, F ) formed by points in Q and frozen points in {1, . . . , i}.

Since (Q, F ) is blown-up, for every i ∈ {1, . . . ,m}, there exists a unique arrow
αi ∈ Q1(i,−) ⊔ Q1(−, i). If αi ∈ Q1(i,−), we construct the category C (i) gluing
C (i−1) and CAi

as provided by Proposition 2.10 with C1 = C (i−1) and C2 = CAi

and we denote by T (i) the canonical tilting object in this gluing. If αi ∈ Q(−, i),
we construct a gluing C (i) of CAi

and C (i−1) as provided by Proposition 2.10 with
C1 = CAi

and C2 = C (i−1) and we denote by T (i) the canonical tilting object in

this gluing. We finally set C̃ = C (m) and T̃ = T (m). �

Corollary 2.12. Let (Q, F ) be a blown-up ice quiver whose unfrozen part is the
ordinary quiver of a cluster-tilted algebra. Then (Q, F ) can be embedded in a real-
isable quadruple (Q, F,C , T ).

Proof. It is proved in [37] and [10] that any cluster-tilted algebra is the Jacobian
algebra of a Jacobi-finite quiver with potential. The result thus follows from Corol-
lary 2.11. �

3. Cluster characters with coefficients

In this section, we collect some background concerning Fu-Keller’s cluster char-
acters [32]. These characters allow to give an explicit realisation of the elements in
a cluster algebra in terms of the geometry and the homology underlying a 2-Calabi-
Yau category.

We fix a triangulated 2-Calabi-Yau category C with suspension functor [1] and
we fix a tilting object T in C .

We let Q be the ordinary quiver of the 2-Calabi-Yau tilted algebra BT =
EndC (T ). Indecomposable direct summands of T label the points in Q0. Let
F be a set of frozen points in Q0. We set TF =

⊕
i∈F Ti. Consider the full subcat-

egory U of C formed by the objects X such that HomC (TF , X) = 0. Let (addT [1])
be the ideal consisting of those morphisms factoring through objects of addT [1].

Theorem 3.1 ([12, 38]). The functor HomC (T,−) induces an equivalence

HomC (T,−) : C /(addT [1])
∼
−→ mod-BT .

The equivalence HomC (T,−) induces an equivalence between U /(addT [1]) and
the subcategory of mod-BT consisting of BT -modules supported on the unfrozen
part of (Q, F ), which is denoted by Q. Slightly abusing notations, an object M
in U /(addT [1]) is identified with its image HomC (T,M) in mod-BT . Conversely,
any BT -module supported on Q is viewed as an object in U /(addT [1]).

For any i ∈ Q0, we denote by Si the simple BT -module corresponding to the
point i. We denote by 〈−,−〉 the truncated Euler form on mod-BT defined by

〈M,N〉 = dimHomBT
(M,N)− dimExt1BT

(M,N)

for any BT -modules M and N . We denote by 〈−,−〉a the anti-symmetrised Euler
form on mod-BT defined by

〈M,N〉a = 〈M,N〉 − 〈N,M〉

for any BT -modules M and N .
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Lemma 3.2 ([48]). For any i ∈ Q0, the form M 7→ 〈Si,M〉 on mod-BT only
depends on the class [M ] of M in the Grothendieck group K0(mod-BT ) of mod-BT .

For any BT -module M and any e ∈ K0(mod-BT ), we let Gre(M) denote the
set of submodules N of M whose class [N ] in K0(mod-BT ) equals e. This set
is called the Grassmannian of submodules of M of dimension e. It is a projective
variety and we denote by χ(Gre(M)) its Euler-Poincaré characteristic (with respect
to the singular cohomology if k is the field of complex numbers, and to the étale
cohomology with compact support if k is arbitrary).

Definition 3.3 ([48]). The cluster character associated to (C , T ) is the unique
map

XT
? : Ob(C )−→L (xQ)

such that

a) XTi[1] = xi for any i ∈ Q0 ;
b) If M is indecomposable and not isomorphic to any Ti[1],

XT
M =

∑

e∈NQ0

χ(Gre(HomC (T,M)))
∏

i∈Q0

x
〈Si,e〉a−〈Si,HomC (T,M)〉
i ;

c) For any two objects M,N in C ,

XT
M⊕N = XT

MXT
N .

We recall that an indecomposable object X in C is called reachable from T if it
is a direct summand of a tilting object which can be obtained from T by a finite
number of mutations, see [9]. In particular, any reachable object is rigid.

Theorem 3.4 ([32]). The map XT
? induces a surjection from the set of indecom-

posable objects in C which are reachable from T to the set of cluster variables in
the cluster algebra A (Q, F ).

Note that identifying C /(addT [1]) with mod-BT using the functor HomC (T,−),
we associate to any indecomposable BT -module M the cluster character of an in-
decomposable lifting M of M in C /(addT [1]). Thus, we set

XT
M = XT

M
=
∑

e∈NQ0

χ(Gre(M))
∏

i∈Q0

x
〈Si,e〉a−〈Si,M〉
i

and this way, we may view XT
? as a map on the set of objects in mod-BT .

In general, it is complicated to compute explicitly the cluster character associated
to a BT -module M . If the module M is a string module, Cerulli and Poettering
provided methods for computing χ(Gre(M)) [19, 51] but the exponents in the
cluster character formula still remain to be computed. In the present article, we
prove that the formula M 7→ LM defined in Section 1 completely solves this question
for string BT -modules.

4. A formula for Dynkin type A with coefficients

We now start the proof of our main result, which will be stated in Theorem
5.11. This section is devoted to the first step of the proof in which we establish
the theorem for specific modules in the particular case of blown-up quivers with
unfrozen part of Dynkin type A. The result we prove in this section is the following :
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Theorem 4.1. Let (Q, F ) be a blown-up ice quiver with unfrozen part Q of Dynkin
type A and let (Q, F,C , T ) be a realisable quadruple. Let BT = EndC (T ). Then
for any indecomposable BT -module M , the following hold :

a) If M is unfrozen, then it is a string module ;
b) If M is a submodule of the unique unfrozen sincere module, then the correspond-

ing cluster character is given by

XT
M = LM .

Every BT -module M supported on Q has the structure of a module over the
path algebra H = kQ of the quiver Q. Since Q is of Dynkin type A every such
module M is a string module if it is indecomposable. This proves the first point of
the theorem.

To prove the second point, we need to collect the necessary background concern-
ing the matrix product formula from [5], which we do in Section 4.1. Section 4.2
is devoted to the proof when (Q, F ) is the principal extension of a Dynkin quiver
of type A. In Section 4.3, we use Fomin-Zelevinsky separation formula in order to
deduce the general case.

4.1. Background on the matrix product formula. Let Q be a Dynkin quiver
of type An with n ≥ 1. Attach to each vertex i of Q0 a cluster variable xi.
Because Q is of Dynkin type An, it is well-known that the corresponding coefficient-

free cluster algebra A (Q, ∅) is generated by n(n+1)
2 + n cluster variables. If CQ

denotes the cluster category of Q, the set of indecomposable objects in CQ can
be identified with the disjoint union of the set of indecomposable kQ-modules and
{Pi[1] | i ∈ Q0} where Pi denotes the indecomposable kQ-module associated to the
point i ∈ Q0. Identifying the path algebra kQ with a tilting object in CQ, the
quadruple (Q, ∅,CQ,kQ) is realisable and the associated cluster character M 7→

XM = XkQ
M induces a bijection from the set of indecomposable objects in CQ to

the set of cluster variables in A (Q, ∅). Moreover, this bijection sends each object
of the form Pi[1] onto xi, and each object of the form M in mod-kQ onto the
unique cluster variable having, in its reduced form, xdimM as denominator, where
dimM = (dimkM(i)) ∈ NQ0 [17]. Under this identification, one can position the
cluster variables of A (Q, ∅) into a grid underlying the Auslander-Reiten quiver
of CQ. This positioning of variables on the grid corresponds to the frieze on the
repetition quiver ZQop associated to the opposite quiver of Q, as constructed in [5].
We illustrate this on an example.

Let Q be a Dynkin quiver of type An, say

1
α // 2

β // 3 4
γoo δ // 5 6

ǫoo 7
ζoo 8

ηoo θ // 9
ι // 10 11.

κoo

(here n = 11). The corresponding grid, in which we illustrated the cluster variables
associated to the indecomposable projective kQ-module Pi, and those associated
to the indecomposable injective kQ-module Ii, is as follows (the variable XM(u,v)
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will be explained thereafter).

x10 x11

x9 XP10 XP11

x5 x6 x7 x8 XP9 ∗
. . .

x3 x4 XP5 XP6 XP7 XP8 ∗
. . .

x2 XP3 XP4 XM(u,v)
∗

. . .

x1 XP2 ∗
. . .

XP1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ XI3 XI2 XI1

. . . ∗ XI5 XI4 x3 x2 x1

. . . ∗ XI6 x5 x4

. . . ∗ XI7 x6

. . . XI10 XI9 XI8 x7

XI11 x10 x9 x8

x11

In [5, §8.2], the authors defined, for each cell (u, v) in the grid, a Laurent poly-
nomial tQop(u, v), whose definition depends on the region of the grid in which the
cell is located.

For the purpose of our paper, it suffices to consider only the north-west compo-
nent of the grid together with its south-east asterisks frontier. It is important to
observe that in mod-kQ, this part of the grid contains exactly all the indecompos-
able submodules of the unique indecomposable sincere kQ-module, which is exactly
positioned at the intersection of the vertical and the horizontal lines of asterisks
(see for instance [34]). This observation will be crucial in Lemma 4.2 below and in
Section 5.

We give more details on this region. For any cell (u, v) located in the north-
west component of the grid (and not on its south-east asterisks frontier), its hor-
izontal and vertical projections onto the initial variables xi determine a word
xi0xi1 . . . xin+1 . Following [5], for each j = 1, 2, . . . , n− 1, let

M(xij , xij+1 ) =





[
xij 1
0 xij+1

]
if xij is to the left of xij+1 ,

[
xij+1 0
1 xij

]
if xij is below xij+1 .

Then

tQop(u, v) =
1

xi1 · · ·xin

[1, xi0 ]




n−1∏

j=1

M(xij , xij+1 )



[

1
xin+1

]
.

To determine the corresponding indecomposable kQ-module M(u,v) for which
tQop(u, v) = XM(u,v), the horizontal and vertical projections onto the cluster vari-
ables XPi

gives the word XPi1
XPi2

. . .XPin
, meaning that M(u,v) is the string

module corresponding to the unique string from the vertex i1 to the vertex in in
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Q. In our example, the cell (u, v) gives rise to the word x2x3 . . . x7, leading to

tQop(u, v) =
1

x3x4x5x6
[1, x2]

[
x3 1
0 x4

] [
x5 0
1 x4

] [
x5 1
0 x6

] [
1
x7

]

and M(u,v) corresponds to the string module whose corresponding string is γ−1δǫ−1

in Q.
Now, a close inspection of the formulae (in the coefficient-free situation) gives

tQop(u, v) = LM(u,v)
whenever (u, v) lies in the north-west region.

As mentioned above, we also need to consider the south-east asterisks frontier
of the north-west region. Observe that on this frontier, LM(u,v)

is defined, while

tQop(u, v) is not. To fix this, one can augment Qop with two new sinks, labeled 0

and n+ 1, in order to obtain a Dynkin quiver Qop of type An+2 in such a way the
cells that were on the asterisks frontier now lie in the north-west region in the grid
corresponding to Qop; thus tQop(u, v) can be defined. In our example, it suffices to

let Qop be given by

0 1oo 2
αoo 3

βoo γ // 4 5
δoo ǫ // 6

ζ // 7
η // 8 9

θoo 10
ιoo κ // 11 // 12.

It is then easily checked that LM(u,v)
= tQop(u, v)| x0=1

xn+1=1
, that is, LM(u,v)

is obtained

from tQop(u, v) by specialising the initial cluster variables x0 and xn+1 to 1. Observe
that this relation also holds true for any cell located in the north-west region. So,
in general, one can write

LM(u,v)
= tQop(u, v)| x0=1

xn+1=1

whenever (u, v) lies in the north-west region or on its asterisks south-east frontier.
In the situation where we deal with arbitrary coefficients, let (Q, F ) be an ice

quiver with unfrozen part Q of Dynkin type A. Then, generalising the coefficient-
free situation, we let

tQop(u, v) = LM(u,v)
.

For each i ∈ Q0, let

yi =
∏

α∈Q1(F,i)

xs(α) and zi =
∏

α∈Q1(i,F )

xt(α).

and for any d = (di)i∈Q0 ∈ NQ0 , we set yd =
∏

i∈Q0
ydi

i and zd =
∏

i∈Q0
zdi

i .
Then, a tedious and combinatorial adaptation of Lemmata 5, 6 and Theorem 4

in [5], in which one needs to embed Qop in Qop as above, allows us to obtain the
following recurrence relations, whose verification is left to the reader.

Lemma 4.2. a) For any i ∈ Q0, we have

(4.2) xiLPi
− yi


 ∏

α∈Q1(i,−)

LPt(α)




 ∏

α∈Q1(−,i)

xs(α)


 = zdimPi .

b) For any non-projective indecomposable submodule M of the unique indecompos-
able unfrozen sincere kQ-module, we have

(4.3) LτMLM − LE = ydim τMzdimM

where E is the middle term of the almost split exact sequence 0−→ τM
i
−→ E

p
−→

M−→ 0 in mod-kQ.
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4.2. Proof of Theorem 4.1 - first step : Principal coefficients. We start
with two lemmata concerning cluster characters associated to principal extensions
of acyclic quivers. These are analogues to [15, Lemma 3.9 and Proposition 3.10]
(see also [27, Lemma 2.2]).

Let Q be an acyclic quiver and let H = kQ be the path algebra of Q. It is a
hereditary algebra and K0(mod-H) is naturally identified with NQ0 . If (Q, F ) is the
principal extension (Qpp, Q′

0) of Q defined in Example 2.6, we denote by Xpp
? the

corresponding cluster character and by Lpp the matrix formula of equation (1.1).
For every i′ ∈ Q′

0, we set yi = xi′ . It is known that

Xpp
M =

∑

e∈NQ0

χ(Gre(M))
∏

i∈Q0

x
−〈e,[Si]〉−〈[Si],[M ]−e〉
i ymi−ei

i

where the Euler forms and the Grassmannian are considered in mod-H and where
[M ] = (mi)i∈Q0 (see for instance [27, Remark 2.4]).

Lemma 4.3. Let Q be an acyclic quiver. Then for any i ∈ Q0, we have

(4.4) xiX
pp
Pi

− yi


 ∏

α∈Q1(i,−)

Xpp
Pt(α)




 ∏

α∈Q1(−,i)

xs(α)


 = 1.

where Pj is the indecomposable projective kQ-module associated to the vertex j ∈
Q0.

Proof. The proof is a straightforward adaptation of the proof of [15, Lemma 3.9],
we give it for completeness. We recall that for any i ∈ Q0, we have

RadPi =
⊕

α∈Q1(i,−)

Pt(α) and thus Xpp
RadPi

=
∏

α∈Q1(i,−)

Xpp
Pt(α)

.

We also recall that Pi/RadPi ≃ Si and that a submodule M of Pi either equals Pi

or is a submodule of RadPi. We set dimPi = m = (mj)j∈Q0 and let δ be such
that δij = 1 if i = j and δij = 0 otherwise. Thus

Xpp
RadPi

=
∑

e

χ(Gre(RadPi))
∏

l∈Q0

x
−〈e,[Sl]〉−〈[Sl],m−[Si]−e〉
l yml−δil−el

l

=
∑

e

χ(Gre(RadPi))
∏

l∈Q0

(
x
−〈e,[Sl]〉−〈[Sl],m−e〉
l yml−el

l

)
x
〈[Sl],[Si]〉
l y−δil

l

= y−1
i


 ∏

α∈Q1(−,i)

x−1
s(α)


xi

∑

e

χ(Gre(RadPi))
∏

l∈Q0

x
−〈e,[Sl]〉−〈[Sl],m−e〉
l yml−el

l

but

Xpp
Pi

= x−1
i +

∑

e

χ(Gre(RadPi))
∏

l∈Q0

x
−〈e,[Sl]〉−〈[Sl],m−e〉
l yml−el

l .

Thus,

xiX
pp
Pi

= yi


 ∏

α∈Q1(−,i)

xs(α)


Xpp

RadPi
+ 1

from which we deduce (4.4). �
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Lemma 4.4. Let Q be an acyclic quiver. Then for any non-projective kQ-module
M , we have

(4.5) Xpp
τMXpp

M −Xpp
E = ydim τM

where E is the central term of the almost split exact sequence 0−→ τM
i
−→ E

p
−→

M−→ 0.

Proof. This result is an analogue of [15, Proposition 3.10]. We sketch the proof for
the convenience of the reader.

We write N = τM , dimN = n = (nl)l∈Q0 and dimM = m = (ml)l∈Q0 . It
follows from the definition of the character that we have

Xpp
N Xpp

M = Xpp
N⊕M =

∑

e∈NQ0

χ(Gre(N ⊕M))
∏

l∈Q0

x
−〈e,[Sl]〉−〈[Sl],n+m−e〉
l yml+nl−el.

l

but there is a surjective map with affine fibres

Gre(N ⊕M)−→
⊔

f+g=e

Grf (N)×Grg(M)

so that χ(Gre(N ⊕M)) =
∑

f+g=e χ(Grf (N))χ(Grg(M)) and thus

Xpp
N⊕M =

∑

f ,g

χ(Grf (N))χ(Grg(M))
∏

l∈Q0

x
−〈f+g,[Sl]〉−〈[Sl],n+m−f−g〉
l yml+nl−fl−gl.

l

Now, it follows from [15, Lemma 3.11] that every fibre of the map

ζ :





Gre(N ⊕M) −→
⊔

f+g=e

Grf (N)×Grg(M)

U 7→ (i−1(U), p(U))

is an affine space except over the point (0,M) where it is empty. It thus follows
that

Xpp
N⊕M = Xpp

E +
∏

l∈Q0

ynl

l

which establishes (4.5). �

We now prove the second point of Theorem 4.1 for principal coefficients :

Proposition 4.5. Let Q be a Dynkin quiver of type A. Then for any indecompos-
able submodule M of the unique unfrozen sincere kQ-module, we have

Xpp
M = Lpp

M .

Proof. The proof directly follows from Lemmata 4.2, 4.3 and 4.4, keeping in mind
that for principal coefficients we have zi = 1 for each i in Lemma 4.2. �

4.3. Proof of Theorem 4.1 - second step. We now finish the proof of Theorem
4.1. For this, the strategy is to apply Fomin-Zelevinsky separation formula to the
equality established in Proposition 4.5. We let (Q, F ) be a blown-up ice quiver with
unfrozen part Q of Dynkin type A and we fix a realisable quadruple (Q, F,C , T )
and an unfrozen indecomposable BT -module M which has a natural structure of
H-module where H is the path algebra of Q. We denote by (Qpp, Q′

0) the principal
extension of Q. Every H-module can naturally be viewed as a BT -module or as a
kQpp-module. According to Proposition 4.5, we know that Lpp

M = Xpp
M . We now

want to prove that LM = XT
M where L? denotes the matrix formula associated to

(Q, F ) in equation (1.1).



16 IBRAHIM ASSEM, GRÉGOIRE DUPONT, RALF SCHIFFLER AND DAVID SMITH

In order to simplify the notations, we identify Q0 with {1, . . . , n} and for every
i ∈ Q0, we denote i′ by n+ i. Let P be the tropical semifield generated by the xi,
with i ∈ F , and endowed with the auxiliary addition

∏

i

xai

i ⊕
∏

i

xbi
i =

∏

i

x
min{ai,bi}
i .

For any i ∈ Q0, we set

wi =


 ∏

α∈Q1(F,i)

xs(α)




 ∏

α∈Q1(i,F )

x−1
t(α)


 .

With the notations of Section 4.1, we can thus write wi = yiz
−1
i . Following [29], for

every subtraction-free rational expression f in the variables x1, . . . , x2n, we define
the separation of f as

σ(f) =
f(x1, . . . , xn, w1, . . . , wn)

f |P(1, . . . , 1, w1, . . . , wn)

where the f |P means that we have replaced the ordinary addition in F (xF ) by the
auxiliary addition ⊕ of the semifield P. This can be done since f is subtraction-free.

Now, we note that, for every H-module, Lpp
M is a subtraction-free rational ex-

pression by definition. Also, for every indecomposable H-module M , Xpp
M is a

cluster variable so that it is defined with a finite number of mutations, which are
all subtraction-free. Thus, Xpp

M is also a subtraction-free rational expression (see
[30, §3]) and we can apply σ to both Xpp

M and Lpp
M . Since Lpp

M = Xpp
M by Proposition

4.5, we have σ(Lpp
M ) = σ(Xpp

M ). Thus, we only need to prove that σ(Xpp
M ) = XT

M

and σ(Lpp
M ) = LM .

The equality σ(Xpp
M ) = XT

M follows directly from [30, Theorem 3.7] since Xpp
?

and XT
? induce bijections from the set of indecomposable H-modules to the set of

cluster variables in the cluster algebras A (Qpp, Q′
0) and A (Q, F ) respectively and

these bijections respect denominator vectors.
The equality σ(Lpp

M ) = LM is obtained from the following observation. We write
c = s(M). For each j ∈ F , xj appears in exactly one wi, since there is exactly
one i ∈ Q0 which is adjacent to j in Q. On the other hand, in the product of
matrices Lpp

M , xn+i appears in at most one matrix, namely in the matrix V pp
c (i)

(where V pp
c (i) denotes the matrices arising in the matrix product Lpp

c ). Thus, using
the definition of the addition in P and the fact that Lpp

M (1, . . . , 1, xn+1, . . . , x2n) has
constant term 1, it follows that

Lpp
M |P(1, . . . , 1, w1, . . . , wn) =

n∏

i=1

∏

α∈Q
pp
1 (i,F )

x−1
t(α).

Now, since

 ∏

α∈Q1(i,F )

xt(α)


 (V pp

c (i)(x1, . . . , xn, w1, . . . , wn)) = Vc(i),

we get σ(Lpp
M ) = LM . This ends the proof of Theorem 4.1. �
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5. The general case

We now deduce the main theorem from Theorem 4.1. For this, we use some
“blow-up” techniques which are described in Section 5.1. These techniques introduce
some “error” in the computation of the characters but this can be controlled with
a normalising factor that we introduce in Section 5.2. The main result (Theorem
5.11) is stated in Section 5.4.

5.1. Blowing up quivers along string modules. In this section, we fix a quiver
Q, we denote by M a string representation of Q and we write c = s(M). If c is of
positive length n ≥ 1, we write c = c1 · · · cn.

The blow-up Q̃M of Q along M is the quiver constructed as follows. Let
{v1, . . . , vn+1} be a set. For any i ∈ {1, . . . , n}, we set βi from vi to vi+1 which is

an arrow (or a formal inverse of an arrow, respectively) in (Q̃M )1 if ci is an arrow
(or a formal inverse of an arrow, respectively) in Q1. For any i ∈ {1, . . . , n} and
for any arrow α ∈ Q1 such that α 6= c±1

i , c±1
i−1, if s(α) = t(ci) (or t(α) = s(ci),

respectively), we create a new point, denoted by t(α)α;i (or s(α)α;i, respectively)
and an arrow αvi : vi−→ t(α)α;i (or αvi : s(α)

α;i−→ vi, respectively).

Example 5.1. Consider the quiver

Q : 1
α // 2

γ
//

ǫ //
3

δ // 4

and let M be the string representation corresponding to the walk c = ǫ−1γ, that is

M : 0 // k
0k⊕1k

//
1k⊕0k//

k2 // 0.

Then, the quiver Q̃M is

Q̃M 2γ;1
γv1 // v1

δv1

��

v2
β1oo β2 // v3

δv3

��

2ǫ;3.
ǫv3oo

4δ;1 1α;2

αv1

OO

4δ;3

We recall the following definition from [51] :

Definition 5.2. Let Q and S be two quivers. A winding of quivers Φ : Q−→S is
a pair Φ = (Φ0,Φ1) where Φ0 : Q0−→S0 and Φ1 : Q1−→S1 are such that :

a) Φ is a morphism of quivers, that is s ◦ Φ1 = Φ0 ◦ s and t ◦ Φ1 = Φ0 ◦ t ;
b) If α, α′ ∈ Q1 with α 6= α′ and s(α) = s(α′), then Φ1(α) 6= Φ1(α

′) ;
c) If α, α′ ∈ Q1 with α 6= α′ and t(α) = t(α′), then Φ1(α) 6= Φ1(α

′) ;

With the above notations, the maps

Φ0 :





vi 7→ t(ci−1) for any i ∈ {1, . . . , n+ 1}

vα;i 7→ v for any v ∈ supp(M) and any α, i

and

Φ1 :

{
βi 7→ ci for any i ∈ {1, . . . , n}

αvi 7→ α for any arrow of the form αvi

induce a winding of quivers Φ : Q̃M−→ supp(M).
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Let Φ∗ be the map from the set of objects in rep(Q̃M ) to the set of objects in

rep(supp(M)) which associates to a representation Ṽ of Q̃M the representation V
given by

V (i) =
⊕

j∈Φ−1
0 (i)

Ṽ (j) and V (α) =
⊕

β∈Φ−1
1 (α)

Ṽ (β)

for any i ∈ (supp(M))0 and any α ∈ (supp(M))1. At the level of dimension vectors,

Φ∗ induces a natural map φ : N(Q̃M )0−→N(supp(M))0 .

We define a representation M̃ of Q̃M by setting for any point v ∈ (Q̃M )0

M̃(v) =

{
k if v = vi for some i ∈ {0, . . . , n} ,
0 otherwise

and for any arrow α ∈ (Q̃M )1

M̃(α) =

{
1k if α = β±1

i for some i ∈ {1, . . . , n} ,
0 otherwise.

Lemma 5.3. Let B be a finite dimensional k-algebra. Then for any string B-

module M , we have Φ∗(M̃) ≃ M .

Proof. This follows from the construction. �

Definition 5.4. If B is a finite dimensional k-algebra with bound quiver (Q, I) and

M is a B-module, the border ∂M of M is the set of points in the closure supp(M)
of the support of M in Q and which do not lie in the support supp(M) of M .

Thus, with the above notations, the border ∂M̃ consists of all the points in

(Q̃M )0 which do not lie in the support of M̃ .

Lemma 5.5. Let B be a finite dimensional k-algebra. Then for any string B-

module M , the pair (Q̃M , ∂M̃) is a blown-up ice quiver whose unfrozen part is

of Dynkin type A. Moreover, the representation M̃ is a sincere unfrozen string

representation of Q̃M .

Proof. The first assertion follows from the construction of Q̃M and M̃ . For the

second assertion, we observe that M̃ is supported on the unfrozen part of Q̃M which
is of Dynkin type A. It is unfrozen sincere and indecomposable by construction so
that it is a string representation. �

Example 5.6. Let B be the path algebra of the quiver Q considered in Example
5.1 and let M be the string module considered in that same example. Then, the

representation M̃ of the quiver Q̃M is

M̃ : 0 // k

��

k
1koo 1k // k

��

0oo

0 0

OO

0

so that (Q̃M , ∂M̃) is indeed a blown-up ice quiver with unfrozen part of Dynkin
type A3.



FRIEZES, STRINGS AND CLUSTER VARIABLES 19

5.2. Normalisation. In this section M denotes a string module over a finite di-
mensional algebra B with bound quiver (Q, I).

Definition 5.7. The normalising vector of M is nM = (ni)i∈supp(M)0
∈ Nsupp(M)0

given by

ni = 〈Si,M〉 −
∑

j∈Φ−1
0 (i)

〈
Sj , M̃

〉

for any i ∈ supp(M)0 where the first Euler form is considered in mod-B and the

second Euler form is considered in mod-kQ̃M .
The normalising factor of M is

xnM =
∏

i∈supp(M)0

xni

i .

This normalisation is actually easy to compute in several usual situations as it
is explained in Section 7.

Example 5.8. Consider the finite dimensional algebra B whose ordinary quiver is

3
γ

����
��

��
��

Q : 1 α
// 2

β

^^========

and whose relations are given by the vanishing of all paths of length two, that is
αβ = βγ = γα = 0. It is a cluster-tilted algebra of type A3. Consider the projective
module M associated to the point 1. It is a string B-module with string α. The

associated blown-up quiver Q̃M is 3γ;1−→ v1−→ v2−→ 3β;2 and the representation

M̃ is 0−→k
1k−→ k−→ 0. Then, one has 〈S1,M〉 =

〈
Sv1 , M̃

〉
= 1, 〈S2,M〉 =

〈
Sv2 , M̃

〉
= 1 and 〈S3,M〉 = 0 whereas

〈
S3β;2 , M̃

〉
+
〈
S3γ;1 , M̃

〉
= 0 − 1 = −1.

Thus, the normalisation is nM = (0, 0, 1).

5.3. Blow-ups and cluster characters. We keep the notations of Section 5.1.
As usual, we naturally identify L (x

supp(M)
) to a subring of L (xQ). We consider

the following surjective morphism of Z-algebras :

π : L (x
Q̃M

)−→L (xsupp(M))

defined by

π(xvi) = xt(ci−1)

for any 1 ≤ i ≤ n+ 1 and

π(xvα;i) = xv

for any v ∈ supp(M) and any α, i.
We now observe that for any unfrozen string module M with respect to a real-

isable quadruple (Q, F,C , T ), the Laurent polynomial XT
M is in the image of the

function π.

Lemma 5.9. Let (Q, F,C , T ) be a realisable quadruple and let M be an unfrozen
string module. Then

XT
M ∈ L (xsupp(M)).
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Proof. We recall that unfrozen BT -modules are identified via HomC (T,−) with the
objects M in U /(addT [1]). We have

XT
M =

∑

e∈NQ0

χ(Gre(M))
∏

i∈Q0

x
〈Si,e〉a−〈Si,M〉
i .

Any dimension vector e such that Gre(M) 6= ∅ is supported on supp(M). Thus, if

i ∈ Q0 is not in supp(M), then 〈Si, e〉a = 0 and 〈Si,M〉 = 0. In particular,

XT
M =

∑

e∈NQ0

χ(Gre(M))
∏

i∈supp(M)

x
〈Si,e〉a−〈Si,M〉
i ∈ L (xsupp(M)).

�

Let C̃ be the cluster category of the quiver Q̃M and let T̃ = kQ̃M be the path

algebra of Q̃M , which is identified with a tilting object in C̃ . We denote by X̃? the
corresponding cluster character with values in L (x

Q̃M
).

Proposition 5.10. Let (Q, F,C , T ) be a realisable quadruple and let M be an
unfrozen string module. Then,

π(X̃
M̃
) = xnMXT

M .

Proof. We have

XT
M =

∑

e∈NQ0

χ(Gre(M))
∏

i∈Q0

x
〈Si,e〉a−〈Si,M〉
i

=
∑

e∈Nsupp(M)0

χ(Gre(M))
∏

i∈(supp(M))0

x
〈Si,e〉a−〈Si,M〉
i

Now, for any e ∈ Nsupp(M)0 , since Φ is a winding of quiver and Φ∗(M̃) = M , it
follows from [51, Corollary 3.1] that

χ(Gre(M)) =
∑

f∈φ−1(e)

χ(Grf (M̃)).

Fix e ∈ Nsupp(M)0 , we now prove that for any i ∈ supp(M), we have

(5.6) x
〈Si,e〉a
i = π


 ∏

j∈Φ−1
0 (i)

x
〈Sj ,f〉a
j


 .

where the Euler form in the left-hand side is taken in mod-kQ̃M and Euler forms
in the right-hand side are taken in mod-B.

First note that

π


 ∏

j∈Φ−1
0 (i)

x
〈Sj ,f〉a
j


 = x

∑
j∈Φ

−1
0

(i)
〈Sj ,f〉a

i

so that it is enough to prove that

〈Si, e〉a =
∑

j∈Φ−1
0 (i)

〈Sj , f〉a .
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For any module U and any integer n ≥ 1, we denote by nU the direct sum
of n copies of U . Now, since 〈Si,−〉a is well-defined on the Grothendieck group
K0(mod-BT ) (Lemma 3.2), we have

〈Si, e〉a =
∑

k∈supp(M)0

〈Si, ekSk〉a

=
∑

k∈supp(M)0

〈
Si,


 ∑

l∈Φ−1
0 (k)

fl


Sk

〉

a

=
∑

k∈supp(M)0


 ∑

l∈Φ−1
0 (k)

fl


 〈Si, Sk〉a

and ∑

j∈Φ−1
0 (i)

〈Sj , f〉a =
∑

k∈supp(M)0

∑

l∈Φ−1
0 (k)

∑

j∈Φ−1
0 (i)

fl 〈Sj , Sl〉a

=
∑

k∈supp(M)0

∑

l∈Φ−1
0 (k)

fl


 ∑

j∈Φ−1
0 (i)

〈Sj , Sl〉a


 .

But for any k ∈ supp(M)0 and any l ∈ Φ−1
0 (k), we have

∑

j∈Φ−1
0 (i)

〈Sj , Sl〉a = 〈Si, Sk〉a

which proves (5.6).
Now,

X̃
M̃

=
∑

f∈N(Q̃M )0

χ(Grf (M̃))
∏

i∈(Q̃M )0

x
〈Si,f〉a−〈Si,M̃〉
i

so that,

π(X̃
M̃
) =

∑

e∈Nsupp(M)0

∑

f∈φ−1(e)

χ(Grf (M̃))
∏

i∈supp(M)0

π


 ∏

j∈Φ−1
0 (i)

x
〈Sj ,f〉a−〈Sj ,M̃〉
j




=
∑

e∈Nsupp(M)0


 ∑

f∈φ−1(e)

χ(Grf (M̃))


 ∏

i∈supp(M)0

x
〈Si,e〉a
i π


 ∏

j∈Φ−1
0 (i)

x
−〈Sj ,M̃〉
j




=
∑

e∈Nsupp(M)0

χ(Gre(M))
∏

i∈supp(M)0

x
〈Si,e〉a−

∑
j∈Φ

−1
0 (i)

〈Sj ,M̃〉
i

= xnMXT
M .

This finishes the proof. �

5.4. The main theorem. We can now prove the main theorem of the article :

Theorem 5.11. Let (Q, F,C , T ) be a realisable quadruple and let M be an unfrozen
string module with respect to this quadruple. Then

XT
M =

1

xnM
LM .
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Proof. We first notice that with the above notations, it follows directly from the
definitions that

π(L̃
M̃
) = LM .

Thus,

XT
M =

1

xnM
π(X̃

M̃
) =

1

xnM
π(L̃

M̃
) =

1

xnM
LM

where the first equality follows from Proposition 5.10, the second equality from
Theorem 4.1 and Lemma 5.5 and the third from the above observation. �

6. Applications

In this section, we give several applications of Theorem 5.11.

6.1. Computing cluster variables. We now prove that the formula M 7→ LM

given in equation (1.1) allows to compute the cluster variables in several situations.

Corollary 6.1. Let (Q, F ) be an ice quiver. Assume that there exists a realis-
able quadruple (Q, F,C , T ) such that every rigid object in C is reachable from T .
Then for any unfrozen EndC (T )-module M which is rigid and indecomposable, the
Laurent polynomial 1

xnM
LM is a cluster variable in A (Q, F ).

Proof. We identify M with an indecomposable lifting in C for the functor
HomC (T,−), which is also rigid in C by [58, 33]. It follows from Theorem 3.4
that the map M 7→ XT

M induces a surjection from the set of reachable rigid ob-
jects in to the set of cluster variables in A (Q, F ). It is also rigid in C , hence, by
hypothsesis, it is reachable and thus XT

M is a cluster variable in A (Q, F ). �

Corollary 6.2. Let BT be a cluster-tilted algebra, then for any rigid string BT -
module M , the Laurent polynomial 1

xnM
LM is a cluster variable in the coefficient-

free cluster algebra associated to the ordinary quiver of BT .

Proof. Let C be a cluster category, T be a tilting object in C and QT be the
ordinary quiver of BT . Then the quadruple (QT , ∅,C , T ) is realisable (see Example
2.3). Moreover, it follows from [11] that every indecomposable rigid object in C is
reachable from T . The result thus follows from Corollary 6.1. �

Corollary 6.3. Let BT be a cluster-tilted algebra of Dynkin type A or affine type

Ã. Then, the map

M 7→
1

xnM
LM

induces a bijection from the set of indecomposable rigid BT -modules to the set of
cluster variables in the coefficient-free cluster algebra associated to the ordinary
quiver of BT which do not belong to the initial cluster.

Proof. Cluster-tilted algebras of Dynkin type A or affine type Ã are string algebras
[2]. Thus, each indecomposable rigid BT -module is a string module. Now if C is a
cluster category and T is a tilting object in C such that BT = EndC (T ), it follows
in particular from Theorem 5.11 that for every indecomposable rigid BT -module
M , we have XT

M = 1
xnM

LM . But then it follows from [48] that M 7→ 1
xnM

LM is
a bijection from the set of indecomposable rigid BT -modules to the set of cluster
variables in the coefficient-free cluster algebra A (QT , ∅) which do not belong to the
initial cluster xQT

where QT denotes the ordinary quiver of BT . �



FRIEZES, STRINGS AND CLUSTER VARIABLES 23

6.2. Positivity in cluster algebras. We now prove positivity results in cluster
algebras using formula (1.1). We first recall the basic notions concerning positivity
in cluster algebras.

If P is an abelian group, we denote by ZP its group ring. Let n ≥ 1 be an integer
and x = (x1, . . . , xn) be a set indeterminates. We denote by Z≥0P[x

±1] the semiring
of subtraction-free Laurent polynomials in the variables in x with coefficients in ZP,
that is, the set of elements of the form

f(x1, . . . , xn)

xd1
1 · · ·xdn

n

where f is a polynomial in n variables whose coefficients are non-negative linear
combinations of elements of P and d1, . . . , dn ∈ Z. In particular, in the case when
P = {1}, the notation Z≥0[x

±1] denotes the semiring of polynomials in variables
x1, . . . , xn with non-negative coefficients.

If Q is a quiver without loops and 2-cycles, if P is any semifield and if y is
a Q0-tuple of elements of P, it follows from the Laurent phenomenon that every
cluster variable in the cluster algebra A (Q,xQ,y) is an element of ZP[c±1] when
expressed in any cluster c of A (Q,xQ,y) [29]. Fomin and Zelevinsky positivity
conjecture, stated in [29], asserts that every cluster variable is actually an element
of Z≥0P[c

±1]. This conjecture was proved for rank two cluster algebras [57, 45, 24],
cluster algebras arising from surfaces with or without punctures [56, 55, 46], cluster
algebras with bipartite seeds [47] and weaker versions were proved for acyclic cluster
algebras [5, 53, 47].

Corollary 6.4. Let (Q, F,C , T ) be a realisable quadruple and let M be an unfrozen
string module with respect to this quadruple. Then

XT
M ∈ Z≥0[xsupp(M)

±1].

Proof. The set Z≥0[xsupp(M)] is a semiring for the usual sum and product. Thus,

the set M2(Z≥0[xsupp(M)]) is also a semiring for the usual sum and product of

matrices. It follows that LM ∈ Z≥0[xsupp(M)
±1] and by Theorem 5.11, XT

M = LM .

This proves the corollary. �

This corollary was also obtained by Cerulli and Poettering [51, 19].

Corollary 6.5. Let BT be a cluster-tilted algebra, then XT
M ∈ Z≥0[xsupp(M)

±1] for

any string BT -module M . �

We now provide a new proof of Fomin and Zelevinsky positivity conjecture for
cluster algebras arising from unpunctured surfaces. We first set some notations.
If (S,M) is a bordered marked surface, Fomin, Shapiro and Thurston associated
to any triangulation Γ of (S,M) a quiver QΓ [28]. For any semifield P and any
(QΓ)0-tuple y of elements of P, we denote by A (QΓ,xQΓ ,y) the cluster algebra
with initial seed (QΓ,xQΓ ,y) (see [30]). Such a cluster algebra does not depend on
the choice of the triangulation Γ of (S,M), up to an isomorphism of ZP-algebras
[28]. It is called the cluster algebra arising from the surface (S,M) and is denoted
by A (S,M).

For this class of cluster algebras, Fomin and Zelevinsky positivity conjecture
amounts to saying that any cluster variable z in A (S,M) belongs to Z≥0P[x

±1
QΓ

]

for any choice of triangulation Γ [29, §3]. We now provide a new independent
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representation-theoretical proof of the positivity conjecture for cluster algebras aris-
ing from unpunctured surfaces.

Corollary 6.6. Let (S,M) be an unpunctured surface. Then the positivity conjec-
ture holds for A (S,M) equipped with an arbitrary choice of coefficients.

Proof. Using Fomin-Zelevinsky separation formula [30, Theorem 3.7], it is enough
to prove the result for principal coefficients. Let Γ be any triangulation of (S,M)
and let (QΓ,WΓ) be the quiver with potential associated to this triangulation as in
[2] (see also [41]). Let JΓ = J(QΓ,WΓ) be the corresponding Jacobian algebra which
is finite dimensional [2]. It follows from Corollary 2.11 that the principal extension
(Qpp

Γ , (QΓ)
′
0) can be embedded in a realisable quadruple (Qpp

Γ , (QΓ)
′
0,C , T ). Now,

let z be a cluster variable in A (S,M), it follows from Theorem 3.4 that either z
belongs to the initial cluster xQΓ or z = XT

M for some indecomposable rigid JΓ-
module M . Since the algebra JΓ is a string algebra, any indecomposable rigid
JΓ-module is a string module. Thus, if we set yi = xi′ for any i ∈ (QT )0, it follows
from Corollary 6.4 that

z = XT
M ∈ Z≥0[xsupp(M)

±1] ⊂ Z≥0[y
±1][x±1

QΓ
] = Z≥0P[x

±1
QΓ

].

�

Remark 6.7. This was already proved in [56] without coefficients and in [55] with
arbitrary coefficients.

6.3. SL(2,Z) and complete Grassmannians of submodules.

Definition 6.8. Given a finite dimensional k-algebra B and a finitely generated
B-module M , the complete Grassmannian of submodules of M is the set

Gr(M) =
⊔

e∈K0(mod-B)

Gre(M).

Since M is finite dimensional, all but finitely many Gre(M) are empty so that
Gr(M) is a finite disjoint union of projective varieties. It is thus endowed with a
structure of projective variety and we can consider its Euler-Poincaré characteristic
χ(Gr(M)) =

∑
e χ(Gre(M)) ∈ Z.

For modules over hereditary algebras, these numbers can be computed with
friezes, as shown in [4, §4]. Here we prove that, for string modules over 2-Calabi-
Yau tilted algebras, these numbers can be computed with products of matrices in
SL(2,Z).

If Q is any quiver, for any β ∈ Q1, we define two matrices in SL(2,Z) :

a(β) =

[
1 0
1 1

]
and a(β−1) =

[
1 1
0 1

]

and for any walk c = c1 · · · cn in Q, we set

lc =
[
1, 1

]
(

n∏

i=1

a(ci)

)[
1
1

]
∈ N.

Finally, if c is a walk of length 0, we set lc = 2.

Proposition 6.9. For any string module M over a 2-Calabi-Yau tilted algebra, we
have

χ(Gr(M)) = ls(M).
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Proof. Let B be a 2-Calabi-Yau tilted algebra and let M be a string B-module. By
definition, there exists a realisable quadruple (Q, ∅,C , T ) such that B = EndC (T ).
According to Theorem 5.11, we have

XT
M =

1

xnM

Q

LM .

Consider the surjective morphism of Z-algebras.

p :

{
L (xQ) −→ Z

xi 7→ 1 for any i ∈ Q0.

Then it follows from the definition of the cluster character that p(XT
M ) = χ(Gr(M)).

We now prove that p(LM ) = ls(M). If the string s(M) of M is of length zero, M
is simple and thus

χ(Gr(M)) = χ(Gr[0](M)) + χ(Gr[M ](M)) = 1 + 1 = 2 = ls(M).

Otherwise, we write s(M) = c1 · · · cn with n ≥ 1. Then, for any i ∈ {1, . . . , n}, we
have p(A(ci)) = a(ci) and p(Vc(s(ci))) = p(Vc(t(ci))) is the identity matrix. Since
p is a ring homomorphism, it induces a ring homomorphism at the level of matrices
and thus p(LM ) = p(Lc) = lc. Since p( 1

x
nM
Q

) = 1, it follows that

χ(Gr(M)) = p(XT
M ) = p(LM ) = ls(M)

and the proposition is proved. �

Example 6.10. Let (S,M) be an unpunctured surface. Let Γ be a triangulation of
(S,M), let (QΓ,WΓ) be the quiver with potential associated to this triangulation
and let JΓ = J(QΓ,WΓ) be the corresponding Jacobian algebra. Then for any
string module M over JΓ, we have χ(Gr(M)) = ls(M).

Remark 6.11. If a marked surface (S,M) has punctures, Labardini also associated
a quiver with potential (QΓ,WΓ) to any triangulation Γ of (S,M) [41]. Nevertheless,
it may be that the Jacobian algebra J(QΓ,WΓ) is infinite dimensional, in which case
Theorem 5.11 may not be used any longer. It was nevertheless observed by Lasnier
that, in the case of the one-punctured torus (where the Jacobian algebra JΓ is
infinite dimensional), Euler-Poincaré characteristics of complete Grassmannians of
submodules of string JΓ-modules may still be computed with a formula similar
to M 7→ ls(M) [42]. It would thus be interesting to also investigate the case of
infinite dimensional Jacobian algebras using for instance the methods provided by
Plamondon [50].

7. More about the normalisation

We now describe some situations in which the normalisation can be omitted or
computed combinatorially.

7.1. The hereditary case. We first observe that the normalisation can be omitted
in several cases.

Lemma 7.1. Let (Q, F,C , T ) be a realisable quadruple and let M be an unfrozen
string module. If the full subcategory of mod-BT formed by modules which are

supported on supp(M) is hereditary, then nM = 0.
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Proof. Let i ∈ supp(M)0, since M and Si are supported on supp(M), the Euler

form 〈Si,M〉 only depends on the dimension vectors. But since Q̃M is acyclic,∑
j∈Φ−1

0 (i)

〈
Sj , M̃

〉
also only depends on the dimension vectors, it thus follows that

〈Si,M〉 =
∑

j∈Φ−1
0 (i)

〈
Sj , M̃

〉
and thus nM = 0. �

Corollary 7.2. Let (Q, F,C , T ) be a realisable quadruple such that BT is heredi-
tary. Then nM = 0 for every unfrozen string module M . �

7.2. The maximal factor method for modules over cluster-tilted algebras.

For any walk c in a locally finite quiver Q we set

Nc =
[
1, 1

]
(

n∏

i=0

A(ci)Xc(t(ci))

)[
1
1

]
∈ L (xQ)

so that (1.1) becomes

Lc =
1∏n

i=0 xt(ci)

Nc.

Let ηc ∈ NQ0 be such that
Nc = x

ηc

Q Pc(xQ)

with Pc(xQ) not divisible by any xi with i ∈ Q0.
Let C be a cluster category, T = T1 ⊕ · · · ⊕ Tn be a tilting object in C , then

BT = EndC (T ) is a cluster-tilted algebra and we denote by Q its ordinary quiver.
Then (Q, ∅,C , T ) is a realisable quadruple and every BT -module is unfrozen.

We now prove that for such modules, we can compute the normalisation combi-
natorially :

Proposition 7.3. Consider the above notations and assume moreover that
EndC (Ti) ≃ k for any i ∈ {1, . . . , n}. Then for every rigid string BT -module
M we have nM = ηs(M).

Proof. For any Laurent polynomial L(x1, . . . , xn) ∈ Z[x±1
1 , . . . , x±1

n ], we denote by
δ(L) ∈ Zn its denominator vector, that is, the unique vector (d1, . . . , dn) such that

L(x1, . . . , xn) = f(x1, . . . , xn)/
∏n

i=1 x
di

i where f(x1, . . . , xn) is a polynomial not
divisible by any xi.

Since EndC (Ti) ≃ k for any i ∈ {1, . . . , n}, it follows from [13] (see also [25])
that for any indecomposable rigid BT -module

δ(XT
M ) = (dimHomC (Ti,M))1≤i≤n

where M is an indecomposable rigid object in C such that HomC (T,M) = M .
Since HomC (T,−) induces an equivalence of categories C /(addT [1]) ≃ mod-BT ,

it follows that
δ(XT

M ) = (dimHomBT
(Pi,M))1≤i≤n

where Pi is the indecomposable projective BT -module at the point i. For any
i ∈ {1, . . . , n}, the dimension of HomBT

(Pi,M) is the multiplicity of the simple BT -
module Si as a composition factor of M . If M is a string module, this multiplicity is
also equal to the number of occurrences of i along the string s(M). Thus, if s(M) =
c1 · · · cn, the denominator of XT

M in its irreducible form is equal to
∏n

i=0 xt(ci).
On the other hand the denominator of LM (in its irreducible form) is

x−ηs(M)
∏n

i=0 xt(ci). Now it follows from Theorem 5.11 that XT
M = 1

xnM
LM and

thus the denominators coincide, that is to say nM = ηs(M). �
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8. Examples

8.1. A first example in type A2. We start with a very simple and detailed
example which is nevertheless instructive in order to understand the behaviour of
the normalisation.

We consider the frozen quiver (Q, F ) where

3
γ

����
��

��
�

Q : 1 α
// 2

β

^^>>>>>>>>

and F = {3}.
The corresponding cluster algebra is of geometric type with initial seed (x,y, B)

where x = (x1, x2), y = (x3) and

B =




0 1
−1 0
1 −1




Its unfrozen part Q is of Dynkin type A2. Note that Q is the ordinary quiver
of a cluster-tilted algebra of type A3 whose relations are αβ = βγ = γα = 0. Thus
(Q, F ) can be embedded in a realisable quadruple (Q, F,C , T ) where C is a cluster
category of type A3. There are three indecomposable modules supported on Q
which are the simple S1, the simple S2 and the projective kQ-module P1 and all
these modules are string modules.

Since (Q, F ) is not blown-up (there are two arrows entering or leaving the frozen
point 3), we cannot simply apply Theorem 4.1. So we apply Theorem 5.11, which
means that we need to consider normalising vectors.

The string of S1 is e1 and thus, applying formula (1.1) to S1, we get LS1 = x2+x3

x1
.

The quiver Q̃S1 is 3γ;1−→ v1−→ 2α;1 and thus it is easily computed that nS1 = 0
so that XS1 = LS1 which is indeed the cluster variable in A (Q, F ) corresponding
to the simple module S1. We similarly prove that XS2 = LS2 = x1+x3

x2
.

The case of P1 is slightly more instructive. We apply the matrix formula and we

get LP1 = x3(x1+x2+x3)
x1x2

. We can now use Proposition 7.3 in order to conclude that
the normalising factor is x3 but we do the computation in order to see the blow-up

technique working. The quiver supp(P1) is Q itself. Its blow-up along P1 is thus

Q̃P1 : 3γ;1−→ v1−→ v2−→ 3β;2 and M̃ is the representation P̃1 : 0−→k
1k−→ k−→ 0.

We compute that

L̃
P̃1

=
xv1x3γ;1 + xv2x3β;2 + x3γ;1x3β;2

xv1xv2

so that the morphism π sending xv1 to x1, xv2 to x2 and x3γ;1 , x3β;2 to x3 satisfies

π(L̃
M̃
) = LM . And computing directly, or applying Theorem 4.1, we get X̃

M̃
=

L̃
P̃1

.

The normalisation of M is nM = (0, 0, 1) (see Example 5.8) so that we get XP1 =
1
x3
LP1 = x1+x2+x3

x1x2
which is indeed the cluster variable in A (Q, F ) corresponding

to this module.

8.2. Regular cluster variables in type Ã. Let Q be a euclidean quiver of type

Ã equipped with an acyclic orientation. In [5, Theorem 4], the authors provided a
combinatorial formula for expressing all but finitely many cluster variables in the
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coefficient-free cluster algebra associated to Q. The cluster variables they computed
correspond in fact to the cluster characters associated to indecomposable postpro-
jective kQop-modules. Dualising their methods, it is possible to compute the cluster
characters associated to indecomposable preinjective kQop-modules. Their meth-
ods do not allow to compute the remaining cluster variables, namely those which
correspond to regular rigid kQop-modules. We now use Theorem 4.1 to complete
the formula and compute cluster variables associated to regular modules.

It is known that the Auslander-Reiten quiver of mod-kQop contains at most
two exceptional tubes (that is, tubes of rank ≥ 2) and all the rigid indecomposable
regular modules belong to these tubes. Every indecomposable regular module (rigid
or not) in such a tube is a string module and its string may be completely described.
For simplicity, we only compute the cluster variables associated to quasi-simple
regular modules in such tubes, this can easily be extended to any module in one
of the exceptional tubes. It is well-known (see for instance [4, §5.2]) that any such
module is of the form

· · · 0 k
0oo 1k // k

1k // · · ·
1k // k

1k // k 0 · · ·
0oo

so that, if we depict locally the quiver Qop by

· · · 0 1oo α1 // 2
α2 // · · ·

αn−2 // n− 1
αn−1 // n n+ 1 · · · ,oo

the string is c = α1 · · ·αn−1 and we compute

Lc =
1

∏n+1
i=1 xi

[
1, 1

] [ x0 0
0 1

]



n−1∏

i=1

xi+1 0

n−1∑

j=1

∏n
i=1 xi

xjxj+1

n−1∏

i=1

xi




[
1 0
0 xn+1

] [
1
1

]
.

Now, if M(c) denotes the quasi-simple regular module associated to the string c,
then it follows from Lemma 7.1 that Lc is the cluster character corresponding to
the module M(c) and thus, is a cluster variable in the cluster algebra A (Q, ∅).

8.3. An example for the n-Kronecker quiver with principal coefficients.

Let n ≥ 2 and let Kpp
n be the quiver

1′

��

2′

��
Kpp

n : 1
n // 2

where 1
n
−→ 2 means that there are n arrows from 1 to 2. We set F = {1′, 2′} so that

Kpp
n is the principal extension of the n-Kronecker quiver Kn. We fix two arrows

among the n arrows going from 1 to 2 which we denote by α and β.
For any p ≥ 1, we define a string representationMp of Kn by setting Mp(1) = kp,

Mp(2) = kp+1, Mp(α) = 1kp ⊕ 0 and Mp(β) = 0 ⊕ 1kp and we view Mp as a
representation of Kpp

n which is supported on the unfrozen part Kn. For any p ≥ 1,
the string s(Mp) is (α−1β)p so that it has length 2p.

We write y1 = x1′ and y2 = x2′ . Then, a direct computation shows that

(8.7) LMp =
1

xp
1x

p+1
2

[
1, 1

] [ 1 0
0 y2x

n−1
1

] [
y1 + xn

2 y1y2x
n−1
1

y1x1 y1y2x
n
1

]p [
1
x1

]
.
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Applying Corollary 2.11, we see that there exists a realisable quadruple
(Kpp

n , (Kn)
′
0,C , T ). Since Kpp

n is acyclic, it follows from [39] that BT is hereditary
and thus, Lemma 7.1 implies that the normalisation vanishes. Thus, XT

Mp = LMp

is given by the formula (8.7) for every p ≥ 1.

8.4. Cyclic cluster-tilted algebras of Dynkin type D. Let B be the quotient
of the path algebra of the quiver

Q : 1 // 2 // 3 // · · · // nww

by the ideal generated by all paths of length n − 1. Here we suppose that n ≥ 3.
B is a cluster-tilted algebra of type Dn if n ≥ 4 and a cluster-tilted algebra of type

A3 if n = 3. Let M be the indecomposable module given by the Loewy series

2
3
...
m

,

where 2 ≤ m ≤ n.

Proposition 8.1. Let Q denote the above quiver and let (Q, F,C , T ) be a realisable
quadruple with unfrozen part Q. For any i ∈ Q0, let, as in Section 4.1,

yi =
∏

α∈Q1(F,i)

xs(α) and zi =
∏

α∈Q1(i,F )

xt(α).

Let M be as above. Then

(8.8) LM =
m∑

ℓ=1

x1x2 · · ·xm+1

xℓxℓ+1

(
ℓ∏

i=2

yi

)(
m∏

i=ℓ+1

zi

)
1∏m

j=2 xj

if m < n; and if n = m then LM is given by (8.8) divided by x1.

Proof. We proceed by induction on m. If m = 2, then M is simple and LM is given
by the exchange relation

(8.9) LM = (x1y2 + x3z2)
1

x2

On the other hand, (8.8) gives
(
x1x2x3

x1x2
z2 +

x1x2x3

x2x3
y2

)
1

x2
,

which is equal to the right-hand side of equation (8.9).
Suppose now that m > 2. Let NM be the numerator of the Laurent polynomial

LM . Our formula gives NM as the product of 2m− 1 matrices :

(8.10)
[
1 x1

] [ z2 0
0 y2

]
· · ·

[
xm 0
1 xm−1

] [
zm 0
0 ym

] [
xm+1

1

]
.

The product of the last three matrices in (8.10) is equal to
[

xmxm+1zm
xm+1zm + xm−1ym

]
=

[
xm

1

]
xm+1zm +

[
0
1

]
xm−1ym.

Let us denote the product of the first 2m− 4 matrices by
[
a b

]
, so

NM =
[
a b

] ([ xm

1

]
xm+1zm +

[
0
1

]
xm−1ym

)
.
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Now let M ′ be the indecomposable module given by the Loewy series

2
3
...

m− 1

.

Then, our formula gives NM ′ as a product of 2m− 3 matrices, and the first 2m− 4
matrices are just the same as the first 2m− 4 matrices in (8.10), and therefore

NM ′ =
[
a b

] [ xm

1

]
.

Thus

NM = NM ′ xm+1zm +
[
a b

] [ 0
1

]
xm−1ym,

which, by induction, is equal to

m−1∑

ℓ=1

x1x2 · · ·xm

xℓxℓ+1

(
ℓ∏

i=2

yi

)(
m−1∏

i=ℓ+1

zi

)
xm+1zm +

x1x2 · · ·xm

xm−1xm

(
m−1∏

i=2

yi

)
xm−1ym,

which in turn is equal to

m−1∑

ℓ=1

x1x2 · · ·xm+1

xℓxℓ+1

(
ℓ∏

i=2

yi

)(
m∏

i=ℓ+1

zi

)
+

x1x2 · · ·xm+1

xmxm+1

(
m∏

i=2

yi

)
,

and this shows the formula (8.8). The statement for m = n follows from the
normalising factor. �
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