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Abstract

A configuration p in r-dimensional Euclidean space is a finite collection of
points (p1, . . . , pn) that affinely span R

r. A bar framework, denoted by G(p), in
R

r is a simple graph G on n vertices together with a configuration p in R
r. A

given bar framework G(p) is said to be universally rigid if there does not exist
another configuration q in any Euclidean space, not obtained from p by a rigid
motion, such that ||qi − qj || = ||pi − pj || for each edge (i, j) of G.

It is known [2, 6] that if configuration p is generic and bar framework G(p)
in R

r admits a positive semidefinite stress matrix S of rank ( n− r − 1), then
G(p) is universally rigid. Connelly asked [8] whether the same result holds true
if the genericity assumption of p is replaced by the weaker assumption of general
position. We answer this question in the affirmative in this paper.

∗E-mail: alfakih@uwindsor.ca
†Research supported by the Natural Sciences and Engineering Research Council of Canada.
‡E-mail:yinyu-ye@stanford.edu
§Research supported in part by NSF Grant GOALI 0800151 and DOE Grant de-sc0002009.

1

http://arxiv.org/abs/1009.3318v1
http://arxiv.org/abs/de-sc/0002009


1 Introduction

A configuration p in r-dimensional Euclidean space is a finite collection of points
(p1, . . . , pn) in R

r that affinely span R
r. A bar framework (or framework for short)

in R
r, denoted by G(p), is a configuration p in R

r together with a simple graph G

on the vertices 1, 2, . . . , n. For a simple graph G, we denote its node set by V (G)
and its edge set by E(G). To avoid trivialities, we assume throughout this paper
that graph G is connected and not complete.

Framework G(q) in R
r is said to be congruent to framework G(p) in R

r if config-
uration q is obtained from configuration p by a rigid motion. That is, if ||qi − qj||=
||pi − pj|| for all i, j = 1, . . . , n, where ||.|| denotes the Euclidean norm. We say that
framework G(q) in R

s is equivalent to framework G(p) in R
r if ||qi − qj||= ||pi − pj||

for all (i, j) ∈ E(G). Furthermore, we say that framework G(q) in R
r is affinely-

equivalent to framework G(p) in R
r if G(q) is equivalent to G(p) and configuration

q is obtained from configuration p by an affine motion; i.e., qi = Api + b, for all
i = 1, . . . , n, for some r × r matrix A and an r-vector b.

A framework G(p) in R
r is said to be universally rigid if there does exist a

framework G(q) in any Euclidean space that is equivalent, but not congruent, to
G(p). The notion of a stress matrix S of a framework G(p) plays a key role in the
problem of universal rigidity of G(p).

1.1 Stress Matrices and Universal Rigidity

Let G(p) be a framework on n vertices in R
r. An equilibrium stress of G(p) is a real

valued function ω on E(G) such that

∑

j:(i,j)∈E(G)

ωij(p
i − pj) = 0 for all i = 1, . . . , n. (1)

Let ω be an equilibrium stress of G(p). Then the n × n symmetric matrix
S = (sij) where

sij =















−ωij if (i, j) ∈ E(G),
0 if i 6= j and (i, j) 6∈ E(G),

∑

k:(i,k)∈E(G)

ωik if i = j,
(2)

is called the stress matrix associated with ω, or a stress matrix of G(p). The following
result provides a sufficient condition for the universal rigidity of a given framework.

Theorem 1.1 (Connelly [5, 6], Alfakih [1]) Let G(p) be a bar framework in R
r,

for some r ≤ n− 2. If the following two conditions hold:
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1. There exists a positive semidefinite stress matrix S of G(p) of rank (n−r−1).

2. There does not exist a bar framework G(q) in R
r that is affinely-equivalent,

but not congruent, to G(p).

Then G(p) is universally rigid.

Note that (n − r − 1) is the maximum possible value for the rank of the stress
matrix S. In connection with Theorem 1.1, we mention the following result obtained
in So and Ye [11] and Biswas et al. [4]: Given a framework G(p) in R

r, if there does
not exist a framework G(q) in R

s ( s 6= r) that is equivalent to G(p), then G(p)
is universally rigid. Moreover, if G(p) contains a clique of r + 1 points in general
position, then the existence of a rank-(n− r− 1) positive semidefinite stress matrix
implies that framework G(p) is universally rigid, regardless whether the other non-
clique points are in general position or not.

Condition 2 of Theorem 1.1 is satisfied if configuration p is assumed to be generic
(see Lemma 2.2 below). A configuration p (or a framework G(p)) is said to be generic
if all the coordinates of p1, . . . , pn are algebraically independent over the integers.
That is, if there does not exist a non-zero polynomial f with integer coefficients such
that f(p1, . . . , pn) = 0. Thus

Theorem 1.2 (Connelly [6], Alfakih [2]) Let G(p) be a generic bar framework
on n nodes in R

r, for some r ≤ n − 2. If there exists a positive semidefinite stress
matrix S of G(p) of rank (n− r − 1). Then G(p) is universally rigid.

The converse of Theorem 1.2 is also true.

Theorem 1.3 (Gortler and Thurston [10]) Let G(p) be a generic bar frame-
work on n nodes in R

r, for some r ≤ n− 2. If G(p) is universally rigid, then there
exists a positive semidefinite stress matrix S of G(p) of rank (n− r − 1).

Connelly [8] asked whether a result similar to Theorem 1.2 holds if the genericity
assumption of G(p) is replaced by the weaker assumption of general position. A
configuration p (or a framework G(p)) in R

r is said to be in general position if no
subset of the points p1, . . . , pn of cardinality r+1 is affinely dependent. For example,
a set of points in the plane are in general position if no 3 of them lie on a straight
line.

In this paper we answer Connelly’s question in the affirmative. Thus the following
theorem is the main result of this paper.

Theorem 1.4 Let G(p) be a bar framework on n nodes in general position in R
r,

for some r ≤ n− 2. If there exists a positive semidefinite stress matrix S of G(p) of
rank (n− r − 1). Then G(p) is universally rigid.
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The proof of Theorem 1.4 will be given in Section 3. This paper and [3] are first
steps toward the study of universal rigidity under the general position assumption.
In [3], it was shown that the framework G(p) on n nodes in general position in R

r

for some r ≤ n−2, where G is the (r+1)-lateration graph, admits a rank (n−r−1)
positive semi-definite stress matrix.

2 Preliminaries

To develop the ingredients needed for the proof of our main result, we review the
necessary background on affine motions, stress matrices, and Gale matrices.

An affine motion in R
r is a map f : Rr → R

r of the form

f(pi) = Api + b,

for all pi in R
r, where A is an r × r matrix and b is an r-vector. A rigid motion is

an affine motion where matrix A is orthogonal.
Vectors v1, . . . , vm in R

r are said to lie on a quadratic at infinity if there exists a
non-zero symmetric r × r matrix Φ such that

(vi)TΦvi = 0, for all i = 1, . . . ,m. (3)

Lemma 2.1 (Connelly [7]) Let G(p) be a bar framework on n vertices in R
r. Then

the following two conditions are equivalent:

1. There exists a framework G(q) in R
r that is equivalent, but not congruent, to

G(p) such that qi = Api + b for all i = 1, . . . , n,

2. The vectors pi − pj for all (i, j) ∈ E(G) lie on a quadratic at infinity.

Lemma 2.2 (Connelly [7]) Let G(p) be a generic bar framework on n vertices in
R
r. Assume that each node of G has degree at least r. Then the vectors pi − pj for

all (i, j) ∈ E(G) do not lie on a quadratic at infinity.

Therefore, under the genericity assumption, Condition 2 in Lemma 2.1 does not
hold. Consequently, Theorem 1.2 follows as a simple corollary of Theorem 1.1.

Note that Condition 2 in Lemma 2.1 is expressed in terms of the edges of G. An
equivalent condition in terms of the missing edges of G can also be obtained using
Gale matrices. This equivalent condition turns out to be crucial for our proof of
Theorem 1.4.

To this end, let G(p) be a framework on n vertices in R
r. Then the following

(r + 1)× n matrix

A :=

[

p1 p2 . . . pn

1 1 . . . 1

]

(4)
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has full row rank since p1, . . . , pn affinely span R
r. Note that r ≤ n− 1. Let

r̄ = the dimension of the null space of A; i.e., r̄ = n− 1− r. (5)

Definition 2.1 Suppose that the null space of A is nontrivial, i.e., r̄ ≥ 1. Any n× r̄

matrix Z whose columns form a basis of the null space of A is called a Gale matrix
of configuration p. Furthermore, the ith row of Z, considered as a vector in R

r̄, is
called a Gale transform of pi [9].

Let S be a stress matrix of G(p) then it follows from (2) and (4) that

AS = 0. (6)

Thus
S = ZΨZT , (7)

for some r̄ × r̄ symmetric matrix Ψ, where Z is a Gale matrix of p. It immediately
follows from (7) that rank S = rank Ψ. Thus, S attains its maximum rank of
r̄ = (n− 1− r) if and only if Ψ is nonsingular, i.e., rank Ψ = r̄.

Let e denote the vector of all 1’s in R
n, and let V be an n× (n− 1) matrix that

satisfies:
V T e = 0, V TV = In−1, (8)

where In−1 is the identity matrix of order (n−1). Further, let Eij , i 6= j, denote the
n×n symmetric matrix with 1 in the (i, j)th and (j, i)th entries and zeros elsewhere,
and let E(y) =

∑

(i,j)6∈E(G) yijE
ij where yij = yji. In other words, the (k, l) entry of

matrix E(y) is given by

E(y)kl =







0 if (k, l) ∈ E(G),
0 if k = l,

ykl if k 6= l and (k, l) 6∈ E(G).
(9)

Then we have the following result.

Lemma 2.3 (Alfakih [2]) Let G(p) be a bar framework on n vertices in R
r and let

Z be any Gale matrix of p. Then the following two conditions are equivalent:

1. The vectors pi − pj for all (i, j) ∈ E(G) lie on a quadratic at infinity.

2. There exists a non-zero y = (yij) ∈ R
m̄ such that:

V TE(y)Z = 0, (10)

where m̄ is the number of missing edges of G, V is defined in (8), and E(y) is
defined in (9). 0 here is the zero matrix of dimension (n− 1)× r̄.

Condition 2 of Lemma 2.3 can be easily understood if a projected Gram matrix
approach is used for the universal rigidity of bar frameworks (see [2] for details).
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3 Proof of Theorem 1.4

The main idea of the proof is to show that Condition 2 of Lemma 2.3 does not hold
under the general position assumption, and under the assumption that G(p) admits
a positive semidefinite stress matrix of rank (n− r−1). The choice of the particular
Gale matrix to be used in equation (10) is critical in this regard. We begin with a
few necessary lemmas.

Lemma 3.1 Let G(p) be a framework on n nodes in general position in R
r and

let Z be any Gale matrix of configuration p. Then any r̄ × r̄ submatrix of Z is
nonsingular.

Proof. For a proof see e.g., [1].
2

Let N̄(i) denote the set of nodes of graph G that are non-adjacent to node i;
i.e.,

N̄(i) = {j ∈ V (G) : j 6= i and (i, j) 6∈ E(G)}, (11)

Lemma 3.2 Let G(p) be a framework on n nodes in general position in R
r. Assume

that G(p) has a stress matrix S of rank (n− 1− r). Then there exists a Gale matrix
Ẑ of G(p) such that ẑij = 0 for all j = 1, . . . , r̄ and i ∈ N̄(j + r + 1).

Proof. Let G(p) be in general position in R
r and assume that it has a stress

matrix S of rank r̄ = (n−1−r). Let Z be any Gale matrix of G(p), then S = ZΨZT

for some non-singular symmetric r̄ × r̄ matrix Ψ. Let us write Z as:

Z =

[

Z1

Z2

]

, (12)

where Z2 is r̄ × r̄. By Lemma 3.1, Z2 is non-singular. Now let

Ẑ = (ẑij) = ZΨZ2
T . (13)

Then Ẑ is a Gale matrix of G(p). This simply follows from the fact that the matrix
obtained by multiplying any Gale matrix of G(p) from the right by a non-singular
r̄ × r̄ matrix, is also a Gale matrix of G(p). Furthermore,

S = ZΨZT = ZΨ [ZT
1 ZT

2 ] = [ZΨZT
1 Ẑ].

In other words, Ẑ consists of the last r̄ columns of S. Thus ẑij = si,j+r+1. By the
definition of S we have si,j+r+1 = 0 for all i 6= j + r + 1 and (i, j + r + 1) 6∈ E(G).
Therefore, ẑij = 0 for all j = 1, . . . , r̄ and i ∈ N̄(j + r + 1).

2
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Lemma 3.3 Let the Gale matrix in (10) be Ẑ as defined in (13). Then the system
of equations (10) is equivalent to the system of equations

E(y)Ẑ = 0. (14)

0 here is the zero matrix of dimension n× r̄.

Proof. System of equations (10) is equivalent to the following system of
equations in the unknowns, yij (i 6= j and (i, j) 6∈ E(G)) and ξ ∈ R

r̄:

E(y)Ẑ = e ξT , (15)

Now for j = 1, . . . , r̄, we have that the (j + r+1, j)th entry of E(y)Ẑ is equal to ξj.
But using (9) and Lemma 3.2 we have

(E(y)Ẑ)j+r+1,j =

n
∑

i=1

E(y)j+r+1,i ẑij =
∑

i:i∈N̄(j+r+1)

yj+r+1,i ẑij = 0.

Thus, ξ = 0 and the result follows.
2

Now we are ready to prove our main theorem.
Proof of Theorem 1.4

Let G(p) be a framework on n nodes in general position in R
r. Assume that G(p)

has a positive semidefinite stress matrix S of rank r̄ = n−1−r. Then deg(i) ≥ r+1
for all i ∈ V (G), i.e., every node of G is adjacent to at least r+1 nodes (for a proof
see [1, Theorem 3.2]). Thus

|N̄ (i)| ≤ n− r − 2 = r̄ − 1. (16)

Furthermore, it follows from Lemmas 3.2, 3.3 and 2.3 that the vectors pi − pj

for all (i, j) ∈ E(G) lie on a quadratic at infinity if and only if system of equations
(14) has a non-zero solution y. But (14) can be written as

∑

j:∈N̄(i)

yij ẑ
j = 0, for i = 1, . . . , n,

where (ẑi)T is the ith row of Ẑ. Now it follows from (16) that yij = 0 for all
(i, j) 6∈ E(G) since by Lemma 3.1 any subset of {ẑ1, . . . , ẑn} of cardinality ≤ r̄ − 1
is linearly independent.

Thus system (14) does not have a nonzero solution y. Hence the vectors pi − pj,
for all (i, j) ∈ E(G), do not lie on a quadratic at infinity. Therefore, by Lemma
2.1, there does not exist a framework G(q) in R

r that is affinely-equivalent, but not
congruent, to G(p). Thus by Theorem 1.1, G(p) is universally rigid.

2
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