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Concerning the existence of Einstein and Ricci soliton metrics on

solvable Lie groups

M.Jablonski

Abstract

In this work we investigate solvable and nilpotent Lie groups with special metrics. The metrics of
interest are left-invariant Einstein and algebraic Ricci soliton metrics. Our main result shows that the
existence of a such a metric is intrinsic to the underlying Lie algebra. More precisely, we show how one
may determine the existence of such a metric by analyzing algebraic properties of the Lie algebra in
question and infinitesimal deformations of any initial metric.

Our second main result concerns the isometry groups of such distinguished metrics. Among the
completely solvable unimodular Lie groups (this includes nilpotent groups), if the Lie group admits such
a metric, we show that the isometry group of this special metric is maximal among all isometry groups
of left-invariant metrics. We finish with a similar result for locally left-invariant metrics on compact
nilmanifolds.

1 Introduction

Our primary interest in this work is (left-invariant) Einstein metrics on non-compact Lie groups. All known
examples of such metrics occur on solvable Lie groups. In fact, all known examples of non-compact homo-
geneous Einstein metrics are isometric to solvable Lie groups with left-invariant metrics; this is the content
of the well-known Alekseevskii conjecture which has been verified in dimensions 4 and 5 [Jen69, Nik05]. We
restrict ourselves to this class of Lie groups and ask when such a group admits an Einstein metric.

The answer in the compact setting is well-known. If a compact group G admits an Einstein metric, then
either

(i) G is a torus (zero scalar curvature) or
(ii) G is a compact semi-simple Lie group (positive scalar curvature).

The first case of Ricci flat follows from a general result of Alekseevskii-Kimelfeld where it is shown that any
homogeneous Ricci flat space is actually flat [AK75]. For the positive scalar curvature case, such metrics
are characterized as critical points of the total scalar curvature functional [Jen71]. On compact semi-simple
groups, Einstein metrics are not unique and most groups admit at least 2 such metrics (this is in sharp
contrast to the solvable setting, where Einstein metrics are unique up to isometry and scaling).

We observe that the existence of an Einstein metric on a compact Lie group is completely determined
by the underlying Lie algebra. The flat case corresponds to abelian Lie algebras. The positive case is
characterized as follows. Let g denote the Lie algebra of G, then G is compact semi-simple if and only if the
Killing form B(X,Y ) = tr(ad X ◦ ad Y ), with X,Y ∈ g, is negative definite.

Our work is motivated by, and seeks to answer, the following questions.

Question 1.1. Given a solvable Lie group, how can one determine if it admits an Einstein or solsoliton
metric?

Question 1.2. If a solvable Lie group is known to admit an Einstein or solsoliton metric, how does one
find it?
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As the curvature tensors of left-invariant metrics are left-invariant, the above questions reduce to studying
inner products on a given Lie algebra. More precisely, consider a solvable Lie algebra g with corresponding
Lie group G. Let 〈·, ·〉 be an inner product on g with corresponding left-invariant metric on G. The Ricci
curvature of (G, 〈·, ·〉) is completely determined by its values on g (by left-invariance) and is given by the
formula

ric(X,X) = −
1

2

∑

i

|[X,Xi]|
2 −

1

2

∑

i

〈[X, [X,Xi]], Xi〉+
1

4

∑

i,j

〈[Xi, Xj ], X〉2 − 〈[Z,X ], X〉

where {Xi} is an orthonormal basis of g and Z ∈ g is the unique vector satisfying 〈Z,X〉 = tr(ad X). Observe
that the Ricci curvature is completely determined by the Lie bracket and inner product on g. Denoting the
(1, 1)-Ricci tensor by Ric, Question 1.1 may be rephrased as follows.

Question. When does there exist an inner product 〈·, ·〉 on g, such that

Ric = cId+D (1.1)

for some c ∈ R and some D ∈ Der(g)?

Here Der(g) denotes the algebra of derivations of g. Terminology: when D = 0, the metric is called an
Einstein metric; when D 6= 0, the metric is called a solsoliton. Solsolitons are algebraic examples of Ricci
solitons, see Section 2.

Our main result shows that a definite answer to Question 1.1 can be obtained by analyzing only local
data: algebraic information about the underlying Lie algebra and infinitesimal deformations of any metric;
see Section 10 for complete details and the procedure referenced by the following theorem.

Theorem 10.1. Let G be a solvable Lie group with Lie algebra g. The existence of a left-invariant Einstein
metric on G can be determined by analyzing the following: 1) adjoint action of g on itself, 2) the commutator
subalgebra n = [g, g], and 3) infinitesimal deformations of any initial metric on n.

Remark. The existence of an Einstein metric on a solvable Lie group is now a local question. Similarly,
one can formulate the question of existence of a solsoliton in terms of local data.

In general, the existence of an Einstein or Ricci soliton metric is not a local question. It might appear
at first glance that the existence of left-invariant Einstein metrics on Lie groups is a local question since the
verification of Equation 1.1 uses only the inner product and Lie bracket on g. However, asking if a Lie group

admits such a metric amounts to asking if there exists a zero of the function ||Ricg −
sc(g)
n
Id||2 on the open

set of inner products. It is not clear if this is a local question for non-solvable Lie groups; e.g., there does
not exist a solution when the Lie algebra is sl2R.

In the setting of compact homogeneous spaces G/H , the Einstein question has received a great deal of
attention and there are some partial results on the existence of such metrics. For example, if G is a compact
semi-simple group and H is a maximal connected subgroup of G, then G/H admits a G-invariant Einstein
metric [WZ86]. However, there exist many examples of homogeneous spaces G/H which don’t admit G-
invariant Einstein metrics. Presently, there are not any general, local conditions that guarantee/exclude the
existence of such metrics on compact homogeneous spaces; see [BWZ04] for the current state of research.

Our work builds on the strong structural results of Heber [Heb98] and Lauret [Lau07]. These works take
the first step in reducing the problem on the solvable group to a smaller solvable group, a one dimensional
extension of a nilpotent group. This smaller solvable Lie group admits an Einstein metric if and only if
its nilradical admits a so-called nilsoliton metric and the underlying Lie algebra is the extension of the
nilradical by a so-called pre-Einstein derivation. Reducing the problem to analyzing the nilradical is an
algebra problem.

To study the nilradical we build on the work of Nikolayevsky [Nik08a]. Using a combination of measuring
algebraic information and infinitesimal deformations of metrics on the nilradical, we translate the Einstein
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problem into a local problem. (While we could skip this analysis on the nilradical and couple our techniques
directly with the work of Heber [Heb98, Section 6], we present our results in the given framework as these
methods extend directly to solsoliton and nilsoliton metrics. See Section 9 for more details.)

Our second main result is an algebraic decomposition theorem for solvable groups admitting Einstein
metrics. If one were to classify the solvable groups admitting Einstein or solsoliton metrics, one would want
to construct such groups from basic building blocks. The question of existence of an Einstein or solsoliton
metric can be reduced to the case that the underlying Lie algebra is indecomposable.

Theorem 4.8 Let G be a solvable Lie group whose Lie algebra g = g1+ g2 is a direct sum of ideals. Then G
admits a non-flat solsoliton, resp. flat, metric if and only if both G1 and G2 admit non-flat solsoliton, resp.
flat, metrics.

Corollary 4.9 Let G be a solvable Lie group whose Lie algebra g = g1 + g2 is a direct sum of ideals. Then
G admits an Einstein metric if and only if both G1 and G2 admit Einstein metrics of the same sign.

Remark. A similar decomposition result has appeared for nilsolitons and nilpotent Lie groups, see [Nik08a]
and [Jab08a]. To our knowledge, the above algebraic decomposition theorem is the first of its kind for
homogeneous Einstein spaces. It would be interesting to know if there is a similar theorem in the compact
setting; there are some partial results of Böhm in this direction [Böh04, Theorem B].

In addition to providing a local formulation of the existence of such a metric on a solvable Lie group, we
demonstrate how to recover such metrics by following two natural curves of metrics (see Proposition 5.4).
Using these curves, we demonstrate that solsolitons (when they exist) are the most symmetric metric on
completely solvable unimodular Lie groups (this class includes nilpotent Lie groups).

Theorem 5.8 Let S be a completely solvable unimodular Lie group that admits a solsoliton metric. Let
g be any left-invariant metric. Then there exists a left-invariant soliton metric g′ such that Isom(S, g) ⊂
Isom(S, g′), as groups.

This result is extended to compact nilmanifolds with local nilsoliton metrics in Theorem 6.3.

Table of Contents. Section 2 reviews information on Lie groups with left-invariant metrics. Section 3
discusses the space of Lie brackets, moment maps, and distinguished orbits. Section 4 compares the existence
of solsoliton metrics and distinguished orbits. Section 5 studies the bracket flow with applications to finding
solsoliton metrics and comparisons of isometry groups. Section 6 states results on compact nilmanifolds.
Section 7 discusses the stratification of the space of Lie brackets. Section 8 covers pre-Einstein derivations
and the previous work of Nikolayevsky. Sections 9 and 10 show the existence of nilsoliton and Einstein
metrics are intrinsic to the underlying Lie algebra, respectively.

2 Riemannian Lie groups

A Lie group G is called a Riemannian Lie group if it is endowed with a left-invariant metric. The following
question motivates much of our work.

Question 2.1. Among left-invariant metrics on a given Lie group, is there a canonical or preferred choice
of metric?

Special metrics are often characterized as those having good curvature properties or as solutions to
some extremal problem. For example, we are interested in metrics satisfying one or several of the following
conditions
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1. Nice curvature properties or curvature tensor
2. Critical points of a Riemannian functional on the set of metrics
3. More generally, fixed points of a dynamical system
4. Large group of isometries

Classically, spaces with constant sectional and Ricci curvature have been investigated as preferred metrics
on a manifold; the later are known as Einstein metrics. We are interested in left-invariant Einstein metrics
when they exist; however, many of our Lie groups are not able to admit left-invariant Einstein metrics. For
example, any non-abelian nilpotent Lie group cannot admit an Einstein metric [Jen69, Mil76] and many
solvable Lie groups do not admit Einstein metrics (cf. Theorem 5.11).

Given that many of our Lie groups will not be able to admit an Einstein metric, we explore alternate
metrics in search of one which is ‘distinguished’ or preferred in some way. One natural generalization of the
Einstein metric is the so-called Ricci soliton metric. A metric g is called a Ricci soliton if there exists a
complete vector field X ∈ X(G) and constant c ∈ R such that

ricg = cg + LXg

where LX is the Lie derivative generated by X . These metrics arise as special solutions to the Ricci flow
which are of the form g(t) = c(t)ϕ∗(t)g where c(t) is a real-valued function and ϕ(t) is the 1-parameter group
of diffeomorphisms that generates X ∈ X(G). Hence, Ricci solitons can be viewed as generalized fixed points
of the Ricci flow on the space of metrics modulo diffeomorphisms; see [CK04] for an introduction to Ricci
flow and Ricci solitons.

On a Riemannian Lie group G there is a very natural kind of Ricci soliton, which we call an algebraic
Ricci soliton, or algebraic soliton for short. A left-invariant metric g is called an algebraic soliton if the Ricci
tensor (evaluated at the identity e ∈ G) is of the form

Ric = cId+D

for some D ∈ Der(g). In the above equation, we have written the Ricci (1, 1)-tensor Ric instead of the (2, 0)-
tensor ric as in the definition of Ricci soliton above; this is done for ease of presentation. The derivation
D generates the 1-parameter family of automorphisms ϕ(t) = exp(tD) which is the corresponding family of
diffeomorphisms from the definition of Ricci soliton.

Remark. 1) By left-invariance of the metric on G, it suffices to only prescribed the value of Ric at e ∈ G.
2) Presently, the only known examples of Ricci solitons on Riemannian Lie groups are algebraic solitons and
these are only known to exist on solvable Lie groups.

When G is a nilpotent group, such a metric is often called a nilsoliton in the literature and if G is solvable,
such a metric has been called a solsoliton.

Nilpotent Lie groups

As nilpotent Lie groups cannot admit Einstein metrics, we will search for left-invariant Ricci soliton metrics
on such spaces. These metrics satisfy several of the criteria listed above for being a preferred metric. Before
stating the next theorem, we need some notation. Given a nilpotent Lie group G, denote by MG the set of
left G-invariant metrics on G (i.e. inner products on g). Recall that Rich is left G-invariant for h ∈ MG.

Theorem 2.2. [Lau01a, Jab10]

i. (Algebro-analytic characterization)
Every left-invariant Ricci soliton on a nilpotent Lie group G is an algebraic soliton, that is,

Ric = cId+D

for some D ∈ Der(g).

4



ii. (Variational characterization)
A metric g ∈ MG is a nilsoliton if and only if g is a critical point of the functional

F (h) =
tr Ric2h
sc(h)2

on MG, where sc(h) denotes the (constant) scalar curvature of (G, h). (This functional makes sense
as a real-valued function by left-invariance of Ric.)

iii. (Uniqueness)
If a nilsoliton exists on G, then it is unique (up to isometry) after prescribing the scalar curvature.

Remark 2.3. The above results are primarily due to Lauret [Lau01a]. Part ii. was originally proven where
the functional considered was on the space of Lie brackets, this result has been extended to the setting of
left-invariant Riemannian metrics in [Jab10] where new convergence results are also obtained.

There is a small gap in the original proof of Part i. above. In that work, it is shown that if the metric is
a soliton, then there exists a derivation D ∈ Der(g) such that Ric = cId + 1

2 (D +Dt). The gap is fixable
by showing that there exists such D satisfying Dt ∈ Der(g); this will appear in a future work of that author
[Lau].

Observe that g ∈ MG is a nilsoliton if and only if g is a critical point of the functional

F (h) = tr Ric2h

along the set {h ∈ MG | sc(h) = sc(g)}. A similar functional can be studied on compact nilmanifolds, see
Section 6.

In the sequel, we will see that nilsolitons have maximal isometry groups among all left-invariant metrics.
More precisely we have the following result, see Corollary 5.9.

Corollary Let G be a nilpotent Lie group which admits a nilsoliton metric. Let g ∈ MG be any left-invariant
metric on G. Then there exists a nilsoliton g′ ∈ MG on G such that Isom(g) ⊂ Isom(g′).

Remark 2.4. In this way, we see that nilsolitons are the most symmetric left-invariant metric on a nilpotent
Lie group. However, there are other non-soliton metrics which can have the same isometry group. It
would be interesting to know which other geometric properties these highly symmetric nilmanifolds share with
nilsolitons.

The property of being an Einstein nilradical is intrinsic to the underlying Lie algebra. Moreover, one can
verify this via an algorithm, see Theorem 9.1 and Section 9.

Theorem Let N be a nilpotent Lie group with Lie algebra n. The existence of a nilsoliton metric on
a nilpotent Lie group N can be determined by analyzing the derivation algebra Der(n) and infinitesimal
deformations of any initial metric on n.

Solvable Lie groups

The analysis of Riemannian solvable Lie groups splits into two distinct sets: unimodular and non-unimodular
groups. A Lie group G is called unimodular if |det(Ad(g))| = 1 for all g ∈ G. Notice, in particular, that
tr ad(X) = 0 for X ∈ g when G is unimodular. If G is not unimodular it is called non-unimodular.

Within both these classes of solvable Lie groups, we are interested in those which are completely solvable.
A solvable group G is called completely solvable if ad(X) : g → g has only real eigenvalues, for all X ∈ g.
Observe that nilpotent Lie groups are unimodular completely solvable, with eigenvalues all zero.

As (non-abelian) solvable Lie groups are non-compact, any left-invariant Einstein metric on such a group
must have scalar curvature less than or equal to zero by Bonnet-Myers theorem. We recall the following
result (cf. [DM82, AK75]).
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Theorem 2.5 (Alekseevskii-Kimel’fel’d, Dotti). Let G be a solvable Lie group with left-invariant Einstein
metric.

1. The scalar curvature is negative if and only if G is non-unimodular, and
2. The scalar curvature is zero if and only if G is unimodular.

In the case of Ricci flat, the metric is actually flat (i.e., constant zero sectional curvature).

In [AK75] it is actually shown that any homogeneous Ricci flat space must be flat. Lie groups with flat
left-invariant metrics are necessarily unimodular solvable and have been classified [Mil76].

Theorem 2.6 (Milnor). A Riemannian Lie group G is flat if and only if its Lie algebra g (with inner
product) splits as an orthogonal direct sum g = a⊕ n where n is an abelian ideal (the nilradical) and a is an
abelian Lie algebra such that ad X is skew-symmetric for X ∈ a. Such G is necessarily solvable.

Given the simple algebraic structure of these solvable Lie groups, one may classify the solvable Lie groups
admitting flat metrics. These are the groups whose Lie algebras are constructed as follows (cf. Theorem
5.11 where the negative Einstein case is considered).

Proposition 2.7. Let n be an abelian Lie algebra and a ⊂ Der(n) an abelian, reductive subalgebra of
derivations, all of whose elements have purely imaginary eigenvalues. If G is a (solvable) Lie group whose
Lie algebra is the semi-direct product a ⊕ n, then G admits a flat metric. Conversely, every such solvable
group arises this way.

Proof. Picking a basis of n, we may identify it with R
n. Via this identification, the abelian, reductive algebra

a ⊂ gl(n,R).
It is well-known that there exists an inner product on Rn such that a is stable under the transpose

operation, see [Mos55]. As the eigenvalues of every element in a are purely imaginary, we see that a consists
of skew-symmetric derivations. Now Milnor’s theorem above applies.

As the unimodular solvable Lie groups admitting Einstein metrics are understood, our attention is dedi-
cated to analyzing the non-unimodular solvable groups admitting Einstein metrics and both kinds of solvable
groups which admit solsoliton metrics. As in the case of nilpotent Lie groups, solsolitons (including Einstein
metrics) have several rigid properties. The following results may be found in [Lau10].

Theorem 2.8 (Lauret). Let (G, g) be a solvable Riemannian Lie group with metric Lie algebra (g, g). Let
n be the nilradical of g (with induced metric) and a = n⊥, so that g = a⊕ n.

i. (Structural results and the standard property)
The Riemannian Lie group G is a solsoliton (i.e. Ric = cId+D) if and only if
a) (n, g) (with the induced metric) is a nilsoliton
b) a = n⊥ is abelian
c) (ad A)t ∈ Der(g) (or equivalently, [ad A, (ad A)t] = 0) for all A ∈ a.
d) g(A,A) = −1

c
tr S(ad A)2 for all A ∈ a, where S(ad A) = 1

2 (ad A+ (ad A)t)

ii. (Solsolitons are not shrinkers)
The constant c satisfying Ric = cId+D satisfies c ≤ 0. Moreover, if c = 0 then D = 0 and the metric
is flat (cf. Theorem 2.6). This says solsolitons are either so-called steady or expanding Ricci solitons
(as opposed to shrinking solitons).

iii. (Uniqueness)
If a solvable Lie group admits a solsoliton, then it is unique (up to isometry) after prescribing the scalar
curvature.

Observe that Part i.d) implies that the eigenvalues of ad A are not all purely imaginary, for any A ∈ a.
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Remark 2.9. 1) There does exist a variational characterization for Einstein solvmanifolds with codimen-
sion 1 nilradical which realizes these spaces as critical points of a ‘modified scalar curvature function’ (see
[Lau01b]). 2) As in the case of flat Einstein metrics, we have a characterization of solvable Lie groups which
admit Einstein and solsoliton metrics, see Theorem 5.11 and Corollary 5.12.

Let G be a solvable unimodular Lie group. If G admits a non-trivial solsoliton, it cannot admit a (flat)
Einstein metric, and conversely, if G admits a (flat) Einstein metric, it cannot admit a non-trivial solsoliton.
In this way, solsolitons are a preferred metric on unimodular solvable groups that cannot admit (flat) Einstein
metrics. This preference is defended by the following, see Theorem 5.8.

Theorem. Let G be unimodular completely solvable Lie group which admits a solsoliton metric. Given any
left-invariant metric g, there exists a solsoliton metric g′ such that Isom(g) ⊂ Isom(g′).

Remark 2.10. Presently, we do not have such a theorem when the group is not completely solvable or for
nonunimodular solvable Lie groups. Our techniques do allow one to embed a large portion of the isometry
group of any metric into the Einstein or solsoliton metric, however they do not allow one to embed the entire
isometry group. This question will be addressed in future work.

Isometry groups

The group of isometries of a Riemannian solvable Lie group is particularly simple when the group in question
is a completely solvable unimodular group. The following is Theorem 4.3 of [GW88].

Theorem 2.11 (Gordon-Wilson). Let G be a completely solvable unimodular Lie group with left-invariant
metric g. The full isometry group is a semi-direct product

Isom(G, g) = K ⋉G

where K ⊂ Aut(G) is the isotropy subgroup of Isom(G, g) preserving the identity e ∈ G. Under the natural
identification Aut(G) ≃ Aut(g) we have K ≃ Aut(g)∩O(g), where O(g) is the orthogonal group of the inner
product g on g.

Observe that this theorem covers the case of any Riemannian nilpotent Lie group.

Definition 2.12. Let (G, g) be a Riemannian Lie group. The group G⋊ (Isom(g) ∩Aut(G)) is a subgroup
of isometries which we call the algebraic isometry group.

The above theorem says that the algebraic isometry group of a completely unimodular solvable group is
the whole isometry group. For non-unimodular solvable groups, it is well-known that the full isometry group
is significantly larger than its algebraic isometry group [GW88].

3 The Variety of Lie Brackets

A Lie group G with a left-invariant metric 〈 , 〉 gives rise to a metric Lie algebra {g, 〈 , 〉}, where g is the Lie
algebra of G and the inner product on g is the restriction of the left-invariant metric to TeG ≃ g. Conversely,
a metric Lie algebra gives a left-invariant metric on any Lie group with said Lie algebra. We are primarily
interested in simply-connected Lie groups.

We say that two metric Lie algebras {g1, 〈 , 〉1} and {g2, 〈 , 〉2} are isomorphic if there exists a Lie
algebra isomorphism φ : g1 → g2 such that 〈 , 〉1 = φ∗〈 , 〉2. Such an isomorphism lifts to give an isometry
between the simply-connected Riemannian Lie groups {G1, 〈 , 〉} → {G2, 〈 , 〉}. In general, most isometries
do not arise this way, however, for nilpotent and some solvable groups, this is how all isometries arise (see
Theorem 2.11).

To obtain good information on Riemannian Lie groups, we study metric Lie algebras by considering a
metric Lie algebra as a collection of three objects: a vector space Rn, a Lie bracket [·, ·] and an inner product
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〈·, ·〉. We use what is becoming a standard technique and convert our questions into a frame work that can
exploit deep theorems from Geometric Invariant Theory: Instead of fixing a Lie algebra and varying an inner
product on it, we choose to fix an inner product and vary the underlying Lie algebra structure (within the
same isomorphism class).

For g ∈ GL(n,R), we may consider a different (and isomorphic) Lie bracket g∗[·, ·] = g[g−1·, g−1·] and
the inner product g∗〈·, ·〉 = 〈g−1·, g−1·〉. The following are isomorphic metric Lie algebras

{Rn, g∗[·, ·], 〈·, ·〉} ≃ {Rn, [·, ·], (g−1)∗〈·, ·〉}

via the isomorphism g−1 : Rn → Rn.
We now fix an inner product (the usual one) on Rn and study the collection g∗[·, ·], g ∈ GL(n,R). It is

helpful to study not just this collection of isomorphic Lie algebras on Rn, but instead to study all Lie algebra
structures on Rn. Consider the vector space V = ∧2(Rn)∗ ⊗Rn, the space of anti-symmetric, bilinear maps
from Rn × Rn → Rn. This vector space is endowed with a natural GL(n,R) action:

(g∗[·, ·])(v, w) = g[g−1v, g−1w]

for g ∈ GL(n,R), v, w ∈ Rn. Via differentiation, we also have an action of gl(n,R) on V . Given X ∈ gl(n,R)
and v, w ∈ Rn, we have (X · [·, ·])(v, w) = X [v, w]− [Xv,w]− [v,Xw].

The points of V can be thought of as anti-symmetric algebra structures on Rn, and two algebra structures
are isomorphic if and only if they lie in the same GL(n,R)-orbit. Any Lie bracket [·, ·] on Rn can be realized
as a point in V and the subset

V = {µ ∈ V | µ satisfies the Jacobi identity }

is a variety in V whose points are the Lie brackets on Rn. Additionally, we will restrict our attention to
some interesting subsets of V : let N denote the Lie brackets which are nilpotent, S denote the Lie brackets
which are solvable, and CS denote the Lie brackets which are completely solvable (cf. Section 2). We have
the following containments

N ⊂ CS ⊂ S

These subsets are all closed in V . We will often abuse language and refer to µ ∈ V as a Lie algebra, when
we really mean the pair {Rn, µ}.

Given a Lie bracket µ ∈ V , we will denote by sµ the metric Lie algebra {Rn, [·, ·], 〈·, ·〉}; the corresponding
simply connected Lie group with left-invariant metric will be denoted by Sµ.

Remark 3.1. For k ∈ O(n,R), the groups Sµ and Sk·µ are isometric. However, in general, one often has
Sµ and Sλ which are isometric but λ 6∈ O(n,R) · µ.

As it will be of interest later, we point out that the stabilizers of the actions of GLnR and glnR have
relevant meaning: (GLnR)µ = Aut(µ) and (glnR)µ = Der(µ).

The moment map and geometry of orbits

The geometry of GL(n,R)-orbits in V is intimately connected to algebraic properties of the Lie group Sµ

associated to µ and geometric structures that the group can admit. For example, consider the induced action
of SL(n,R) on V . For µ ∈ V , SL(n,R) · µ is closed in V if and only if µ is a semi-simple Lie algebra, see
[Lau03].

When µ is nilpotent, it is known that so-called distinguished orbits (which are generalizations of closed
orbits, see Definition 3.2) correspond precisely to nilpotent Lie groups which admit left-invariant Ricci soliton
metrics, see Theorem 3.3. In the sequel, we show that distinguished orbits also play an role in the study of
solvable Lie groups and solsolitons.
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Before defining distinguished orbits, we must define the moment map of a representation of a reductive
group. The moment map defined here works for non-compact groups and is a natural extension of the usual
one defined for compact groups, cf. [EJ09].

The group GL(n,R) is endowed with the Cartan involution θ(g) = (gt)−1, where ∗t denotes the transpose
operation. By differentiating, we have an involution on gl(n,R) as well, which we denote by the same symbol:
θ(X) = −Xt.

These involutions gives rise to so-called Cartan decompositions

GL(n,R) = KP gl(n,R) = k⊕ p

where K = O(n) = {g ∈ GL(n,R) | θ(g) = g}, P = {g ∈ GL(n,R) | θ(g) = g−1}, k = LieK = so(n) =
{X ∈ gl(n,R) | θ(X) = X}, and p = symm(n) = {X ∈ gl(n,R) | θ(X) = −X}. Here symm(n) denotes the
symmetric n× n matrices. Additionally, P = exp(p), where exp is the Lie group exponential.

Let G be a real algebraic reductive subgroup of GL(n,R) which is θ-stable. For such groups, we obtain
a Cartan decomposition G = KGPG where KG = K ∩G = Gθ = {g ∈ G | θ(g) = g} is a maximal compact
subgroup of G and PG = P ∩G = {g ∈ G | θ(g) = g−1}. Similarly, the Lie algebra g = Lie G has a Cartan
decomposition g = kG ⊕ pG. Often we will drop the subscript G when the group is understood.

The (usual) inner product on Rn extends of an O(n)-invariant inner product 〈 , 〉 on the vector space
V = ∧2(Rn)∗ ⊗ Rn as follows

〈λ, µ〉 =
∑

i<j

〈λ(ei, ej), µ(ei, ej)〉 =
∑

i<j

〈λ(ei, ej), ek〉〈µ(ei, ej), ek〉

where {ei} denotes the standard orthonormal basis of Rn. If we denote by π the representations of GL(n,R)
and gl(n,R) on V , then it is immediate to see that π(gt) = π(g)t and π(Xt) = π(X)t, for g ∈ GL(n,R) and
X ∈ gl(n,R), where the right-hand side represents the metric adjoint with respect to the inner product 〈 , 〉
on V .

On glnR, we consider the standard inner product

〈α, β〉 = tr αβt =
∑

〈αei, βei〉

where t denotes transpose, tr is the trace, and {ei} is the standard orthonormal basis of Rn. This inner
product is Ad(K)-invariant and ad(αt) = (ad(α))t for α ∈ glnR. Observe that this inner product restricts
to any θ-stable subalgebra g.

Given the above choices of a Cartan involution on g, and inner products on g and V , we may define the
moment map mG : V \{0} → p for the action of G on V . This function is defined implicitly by

〈mG(v), α〉 =
1

||v||2
〈π(α)v, v〉, ∀ α ∈ p, v ∈ V

Observe that mG is fixed under rescaling in V and is K-equivariant; that is, for c ∈ R, m(cv) = m(v) and
for k ∈ KG, mG(k · v) = Ad(k)mG(v). When the group G is understood, we will simply write m = mG.

Using the inner product on g, we consider the norm squared of the moment map

F (v) = ||m||2 : V \{0} → R

Notice that this function is invariant under rescaling in V and so it may be viewed as a function on spheres in
V or on projective space PV . The critical points of this function have been extensively studied so as to develop
a good understanding of the so-called ‘nullcone’ of complex representations, see [Kir84, NM84, Mar01].
Moment maps have also been used to study general representations of non-compact real reductive groups to
study the geometry of orbits, see e.g. [RS90, EJ09, Jab08b].

Definition 3.2. An orbit G · v ⊂ V is called distinguished if it contains a critical point of the function
F = ||m||2.
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Observe that v ∈ V is a critical point of F if and only if π(m(v))(v) = rv for some r ∈ R. It is a fact
that any closed orbit is distinguished with critical value 0 and so these orbits are a natural generalization of
closed orbits, see [Jab08b]. The following theorem motivates a deeper study of ||m||2 on N ⊂ V .

Theorem 3.3 (Lauret). Let Nµ denote the simply connected nilpotent Lie group with left-invariant metric
whose Lie algebra nµ (with inner product) corresponds to the point µ ∈ N . Then Nµ is a nilsoliton if and
only if µ is a critical point of F (v) = ||m||2(v). Equivalently, Nµ is an Einstein nilradical if and only if the
orbit GLnR · µ is distinguished.

In this way, we convert our questions of left-invariant metrics on Lie groups into questions about the
geometry of orbits in the space V . By analyzing the geometry of orbits, we obtain our algorithm that
determines when a given nilpotent Lie group is an Einstein nilradical, see Section 9.

The above theorem can be found in [Lau08]. The last equivalence is not stated using the label of
distinguished orbit but is stated using the idea. In Section 10 of [Lau08] there are several open questions of
interest which are presented. We state Question # 5 from this list.

Question 3.4. Consider the function F : V → R defined by F (v) = ||m(v)||2 where m is the moment map,
as above. Define µt to be the integral curve of −grad F starting at µ0 on the sphere of radius 2. Is µ∞ (the
limit point along the integral curve) contained in the orbit GLnR · µ0 if Nµ0

is an Einstein nilradical?

In Theorem 4.2 we obtain an affirmative answer to this question. This result first appeared more gen-
erally in [Jab08b], where this was shown to be true for distinguished orbits in any real reductive algebraic
representation.

Remark 3.5. Geometrically, the moment map can be understood as follows. When µ is a nilpotent Lie
algebra, m(µ) = 4Ric(Nµ). Moregenerally, if µ is any Lie algebra with corresponding Lie group Sµ, then
m(µ) = 4R where R is the tensor appearing in the formula

Ric = R −
1

2
B − S(ad H)

here Ric is the Ricci tensor of Sµ, B is the Killing form of the Lie algebra µ and S(ad H) = 1
2 (ad H+ad Ht),

where ad H is a mean curvature vector. See [Bes08, Corollary 7.38] and [Lau10, Section 4] for more details.

4 Soliton metrics and distinguished orbits

Soliton metrics on nilpotent Lie groups

In the above section, we stated the relationship between nilsoliton metrics and critical points of the function
F = ||m||2: they are precisely the same thing, see Theorem 3.3. As such, we are motivated to study the
negative gradient flow of F .

Definition 4.1 (The bracket flow). Let µt ⊂ V denote the negative gradient flow of F starting at µ0 ∈ V .

In Proposition 5.2, it will be seen that the limit of this flow is unique. We denote this limit point by µ∞.

Theorem 4.2. Let Nµ0
be an Einstein nilradical. Let µ∞ denote the limit point of the negative gradient

flow of the function F starting at µ0. Then µ∞ is contained in the orbit GLnR · µ0; i.e. Nµ0
and Nµ∞

are
isomorphic Lie groups.

A more general result of this type is true for distinguished orbits and is useful for studying the geometry
of solvable Lie groups, see Section 5. In the setting of nilpotent Lie algebras, the proof can be shortened
dramatically by employing the stratification results of Lauret (see Theorem 7.1). In addition, we obtain
some new and interesting geometric results on isometry and automorphism groups of nilpotent Lie groups
using the techniques from this proof, see Corollary 5.9 and Proposition 7.6.
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The above relationship between Einstein nilradicals and distinguished orbits has been studied extensively
in the literature, see e.g. [Lau01a, Wil03, Pay10, LW07, Ebe08, Jab08b, Nik08a, Nik08b, Nik08c, Nik08d,
Wil10, Jab09]. Motivated by this, we explore the relationship between distinguished orbits and soliton
metrics on solvable groups.

Definition 4.3. A Riemannian Lie group Sµ is said to have a distinguished metric if µ is a critical point
of F = ||m||2 for the action of GL(n,R) on V (defined above).

For a geometric interpretation of the moment map, see Remark 3.5.

Einstein and soliton metrics on solvable Lie groups

Proposition 4.4. If Sµ is a solvable group admitting an Einstein or solsoliton metric, then GL(n,R) · µ is
a distinguished orbit.

Proof. To prove this, one consults the work [Lau03] where complex Lie algebras are studied. All the results of
that paper remain true for real Lie algebras with the Hermitian transpose replaced with the usual transpose.
For a detailed proof of this fact, see [Jab08b]. We warn the reader that the moment map defined there is a
multiple of the moment map defined here. If n denotes the moment map from [Lau03] and m denotes the
moment map used in this work, then n = 2m. Our choice of moment mapm is consistent with [Lau08, Lau10]

Case 1: Sµ admits a flat metric. If µ corresponds to the flat metric, then µ is also a critical point of
F = ||m||2, see [Lau03, Theorem 4.7].

Case 2: Sµ admits a non-flat solsoliton. We only prove this in the case that the nilradical of sµ is
non-abelian. The abelian case is similar and we leave it to the diligent reader.

The proof of this case is just a careful comparison of [Lau10, Theorem 4.8] with [Lau03, Theorem 4.7].
The soliton metric and the distinguished metric differ only in their values on a × a, where a = n⊥. If the
nilradical (which is a nilsoliton in either case) satisfies Ricn = cId + D, for some D ∈ Der(n), and has
sc = −1/4, then the solsoliton metric on a is

〈A,A〉 =
−1

c
tr S(ad A)2

where S(ad A) is the symmetric part of ad A, while the distinguished metric on a is

〈〈A,A〉〉 =
1

2
·
−1

c
tr( ad A (ad A)t)

In [Lau03], a is viewed as a subset of Der(n) with A ≃ ad A.

Remark 4.5. Observe that when Sµ is completely solvable, a stronger statement is true. In this case,

〈〈 , 〉〉 =
1

2
〈 , 〉 on a× a

and the algebraic isometry groups (cf. Definition 2.12) are equal: Aut(µ) ∩O(〈〈 , 〉〉) = Aut(µ) ∩O(〈 , 〉).

Theorem 4.6. Let Sµ be a completely solvable group. Then Sµ admits a solsoliton if and only if GL(n,R) ·µ
is a distinguished orbit. Moreover, there is a curve of metrics between the distinguished metric and the
solsoliton metric which preserves their algebraic isometry groups.

In particular, when Sµ is unimodular, we see that these two Riemannian Lie groups have the same
isometry groups.

The claims in the first paragraph follow from the above observations. The last claim will be proved in
Theorem 5.8.
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Remark 4.7. There are solvable groups which admit a distinguished metric, but cannot admit a solsoliton.
For example, if n is a non-abelian Einstein nilradical and a ⊂ Der(n) is an abelian subalgebra of skew-
symmetric endomorphisms, then Sµ with sµ = a⋉n cannot admit a solsoliton but does admit a distinguished
metric. See Theorem 5.11 and [Lau03, Theorem 4.7].

The following has been shown for nilpotent groups in [Nik08a] and [Jab08a], but has not appeared in the
literature for solvable groups in general. The corollary which follows is of particular interest and it would be
interesting to know if there is an analogous statement for compact homogeneous spaces admitting Einstein
metrics.

Theorem 4.8. Let Sµ be a solvable Lie group whose Lie algebra sµ = sµ1
+ sµ2

is a direct sum of ideals.
Then Sµ admits a non-flat solsoliton, resp. flat, metric if and only if both Sµ1

and Sµ2
admit non-flat

solsoliton, resp. flat, metrics.

Corollary 4.9. Let Sµ be a solvable Lie group whose Lie algebra sµ = sµ1
+ sµ2

is a direct sum of ideals.
Then Sµ admits an Einstein metric if and only if both Sµ1

and Sµ2
admit Einstein metrics of the same sign.

Proof of theorem. We prove the case that the solsoliton is not flat. The flat case is similar and we leave it
to the reader.

One direction is trivial. Recall, a non-flat solsoliton with Ric = cId+D satisfies c < 0 by Theorem 2.8. If
Sµi

admit solsolitons satisfying Ricµi
= ciId+Di, then one just needs to rescale so that c1 = c2. Endow sµ

with the product metric, i.e. the sµi
are orthogonal and the restriction to sµi

is the aforementioned metric.
Then sµ, with µ = µ1 + µ2, is a solsoliton satisfying Ricµ = Ricµ1

⊕Ricµ2
= c1Id+ (D1 ⊕D2).

We now show the converse. Recall that Sµ admitting a solsoliton implies the orbitGLnR·µ is distinguished
by Proposition 4.4. However, this implies the orbits GLni

R · µi ⊂ ∧2(Rni) ⊗ Rni are distinguished, where
ni = dim sµi

. (This has been proven in [Jab08a, Theorem 4.5] for nilpotent groups. However, the proof
there only uses the fact that the orbits are distinguished and works in this setting with no modifications.)

Assume now that µi are the distinguished points and write sµi
= ai ⊕ ni where ni is the nilradical and

ai is a reductive subalgebra (cf. [Lau03, Theorem 4.7]). As sµi
are distinguished, the nilradicals ni admit

nilsolitons by [Lau03, Theorem 4.7].
Write sµ = sµ1

+ sµ2
= (a1 + a2) + (n1 + n2). As sµ is solvable, we see that the reductive subalgebra

a = a1 + a2 is abelian and hence each ai is abelian. Furthermore, for any A ∈ a, we see that ad A : n → n

has no purely imaginary eigenvalues by the observations in the proof of Proposition 4.4. Thus, the solvable
groups Sµi

admit solsoliton metrics by either the observations in the proof of Proposition 4.4 or Theorem
5.11.

Remark. We point out for the concerned reader that the proof of Theorem 5.11 does not depend on the
previous theorem.

Proof of corollary. The proof of the corollary follows immediately from the proof of the theorem and the
fact that isomorphic distinguished points must be isometric. More precisely, isomorphic distinguished points
lie in the same O(n)-orbit, see Theorem 5.3.

5 The bracket flow

In this section we analyze the negative gradient flow of F = ||m||2 as the critical points of this function have
geometric significance, see Theorems 3.3 and 4.6.

Let G be an θ-stable subgroup of GL(n,R), i.e. G is stable under the transpose operation. Let KG

denote the set of fixed points of θ(g) = (gt)−1 (cf. Section 3). Denote the moment map of this group action
by mG and consider the function F = ||mG||2 with critical set CG. Denote the negative gradient flow of F
by ϕt; in the notation of Definition 4.1 ϕt(µ0) = µt. In the following way we consider limits of this flow.
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Definition 5.1. The ω-limit set of ϕt(p) ⊆ V is the set {q ∈ V | ϕtn(p) → q for some sequence tn →
∞ in R}. We denote this set by ω(p).

Proposition 5.2. [Sja98] The omega limit set ω(p) is a single point.

The uniqueness of limits is a strong result and is due to the fact that F = ||m||2 is real analytic, K-
invariant, and that CG ∩ {sphere of radius ||p||} ∩ G · p ⊂ K · p (see theorem below). As the limit is
well-defined, we will denote it by ω(p) = ϕ∞(p). We point out that many of the following results can be
proven without knowing that there is a unique point in the limit set.

Theorem 5.3. [Jab08a] Consider p ∈ CG. Then

i. F (p) is a minimum of F restricted to G · p,

ii. CG ∩ {sphere of radius ||p||} ∩G · p ⊂ K · p, and

iii. ω(G · p) ⊂ KG · p, i.e. ϕ∞(gp) ∈ KG · p for all g ∈ G.

The first two statements originally appeared in [KN78] for complex representations and in [Mar01] for
real representations. In this way, we see that orbits containing critical points of F = ||mG||2 are stable in
the sense that the critical set is a global attractor of the negative gradient flow along the entire orbit.

In the setting of GLnR acting on V = ∧2(Rn)∗ ⊗ Rn, if µ ∈ V is the Lie bracket of a solvable Lie group
admitting a solsoliton, then the orbit GLnR · µ contains a critical point of the function F = ||m||2 (see
Proposition 4.4). We use this below to recover Einstein and solsoliton metrics.

Finding Einstein Metrics

Using the above observations, we now have a procedure for recovering an Einstein, or solsoliton, metric on
a solvable Lie group when it exists.

Proposition 5.4. Let G be a solvable Lie group which admits a non-flat Einstein or solsoliton metric. The
solsoliton metric may be obtained by following two consecutive curves of metrics.

Let 〈·, ·〉0 be any initial metric. The first curve 〈·, ·〉t, t ∈ [0, 1], goes from the initial metric to a so-called
‘distinguished metric’ via a negative gradient flow. The second curve 〈·, ·〉t, t ∈ [1, 2], joins the distinguished
metric to the solsoliton metric by simply modifying the metric on the orthogonal complement a of the nilradical
n.

Remark. A similar result holds for solvable Lie groups admitting flat metrics. Here one just uses the first
curve described above, cf. Proposition 4.4.

Proof. We realize this theorem by evolving the bracket instead of the metric. Identify the metric Lie algebra
{g, 〈 · 〉} with sµ for some µ ∈ V . The first curve comes from flowing µ along the negative gradient flow
of F = ||m||2. This converges within the isomorphism class GLnR · µ as the orbit is distinguished (see
Proposition 4.4). This limit is a distinguished point.

The second curve is realized by changing the metric on a× a as in the proof of Proposition 4.4:

(

−1

c

)[

2− t

2
tr ad A ◦ ad At + (t− 1) tr S(ad A)2

]

for t ∈ [1, 2].

Remark 5.5. In the event that the solsoliton is a flat Einstein metric, the second curve simply rescales the
initial metric, however, when the solsoliton is not a flat Einstein metric, then the second curve consists of
genuinely distinct metrics (i.e., non-homothetic metrics).
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Solitons and isometry groups

The following is an immediate consequence of Theorem 5.3.

Corollary 5.6. Consider G a real algebraic reductive θ-stable subgroup of GL(n,R) acting on V . Let G · p
be a distinguished orbit and ϕ∞(p) as above. Then Kp ⊂ Kϕ∞(p), where K = Gθ and Kq is the stabilizer
subgroup at q.

Proof. This follows from the K-equivariance of mG and the uniqueness of integral curves of the negative
gradient flow of ||mG||2. In fact, one has Kp ⊂ Kϕt(p) and the result follows by taking the limit.

Theorem 5.7. [Jab09] Consider a θ-stable subgroup G of GL(n,R) acting on V (as in Section 3). Suppose
H is a θ-stable group of automorphisms of µ ∈ V . Consider the centralizer of H in G

ZG(H) = {g ∈ G | gh = hg for all h ∈ H, g ∈ G}

Then ZG(H) is reductive, θ-stable and G ·µ is a distinguished orbit if and only if ZG(H) ·µ is a distinguished
orbit. Moreover, along the orbit ZG(H) · µ, mG = mZG(H).

Remark. In the above, there is no ambiguity as to the meaning of distinguished since mG = mZG(H) along
the subset ZG(H) · µ.

The group H being a group of automorphisms means precisely that H is a subgroup of the stabilizer of
GL(n,R) at µ, and H being θ-stable automatically makes H reductive.

This theorem has been used to construct continuous families of Einstein nilradicals and non-Einstein
nilradicals (cf. [Jab09]). We use this theorem to narrow our search for soliton metrics and to help prove the
following.

Theorem 5.8. Let S be a completely solvable unimodular group admitting a solsoliton metric. Let g be any
left-invariant metric. Then there exists a left-invariant soliton metric g′ such that Isom(S, g) ⊂ Isom(S, g′),
as groups.

Corollary 5.9. Let N be an Einstein nilradical. Let g be any left-invariant metric. Then there exists a
left-invariant soliton metric g′ such that Isom(N, g) ⊂ Isom(N, g′), as groups.

Remark 5.10. In this way, we see that these soliton metrics are the most symmetric (left-invariant) metric
that such nilpotent and solvable groups can admit.

Proof. Recall that a completely solvable unimodular Lie group Sµ admits a solsoliton metric if and only
if GL(n,R) · µ is a distinguished orbit (Theorem 4.6). To show that such metrics have maximal isometry
groups, we use an intermediate metric, a distinguished metric (i.e. critical point of F = ||m||2), in which the
isometry group embeds and then show that this metric has the same isometry group as a particular choice
of soliton metric (cf. Section 4).

Recall that the isometry group of a completely solvable unimodular group is its algebraic isometry group,
i.e. Isom(Sµ) = Sµ ⋊ (Aut(µ) ∩O(〈 , 〉). Given g ∈ GL(n,R), Aut(g∗µ) = gAut(µ)g−1 and the orthogonal
group O( (g−1)∗〈 , 〉) = g−1O(〈 , 〉)g, as (g−1)∗〈·, ·〉 = 〈g·, g·〉.

The following metric Lie algebras are isometric

{Rn, g∗µ, 〈·, ·〉} ≃ {Rn, µ, (g−1)∗〈·, ·〉}

see Section 2, and the corresponding Riemmanian solvable Lie groups are isometric

{Sg∗µ, 〈·, ·〉} ≃ {Sµ, (g
−1)∗〈·, ·〉}

At e ∈ Sµ, the isometry group of {Sµ, (g
−1)∗〈·, ·〉} has isotropy subgroup

Aut(µ) ∩O( (g−1)∗〈 , 〉) = g−1(Aut(g∗µ) ∩O(〈 , 〉) ) g
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Step 1. Let Sµ be a Riemannian solvable group which admits a solsoliton metric. Let H = Aut(µ) ∩
O(〈 , 〉); this subgroup is θ-stable. By Theorem 4.6 the orbit GL(n,R) · µ is distinguished and by Theorem
5.7 the orbit ZG(H) · µ actually contains the limit µ∞ of the negative gradient flow of F = ||m||2. Let
g ∈ Zg(H) be such that g · µ = µ∞.

By Corollary 5.6, we see that

Aut(µ) ∩O(〈 , 〉) = Kµ ⊂ Kg·µ = Aut(g∗µ) ∩O(〈 , 〉)

where K = O(n,R). Using the fact that g ∈ ZG(H), we obtain

Aut(µ) ∩O(〈 , 〉) = g−1( Aut(µ) ∩O(〈 , 〉) ) g ⊂ g−1(Aut(g∗µ) ∩O(〈 , 〉) ) g = Aut(µ) ∩O( (g−1)∗〈 , 〉)

As the underlying Lie group structure of {Sµ, 〈 , 〉} and {Sµ, (g
−1)∗〈 , 〉} is the same, have have

Isom(Sµ, 〈 , 〉) ⊂ Isom(Sµ, (g
−1)∗〈 , 〉)

as Lie groups.
Step 2. So far we have imbedded the isometry group of Sµ into the isometry group of a distinguished

metric Sµ′ (these are isomorphic as Lie groups). Write sµ′ = a ⋉ n. We have already observed that the
metric on sµ′ can be transformed into a solsoliton metric by simply rescaling the metric on a and this does
not change the isometry groups, see Remark 4.5. This completes the proof.

Characterization of solvable algebras admitting Einstein and solsoliton metrics

Theorem 5.11. Let n be an Einstein nilradical and denote the algebra of derivations by Der(n). Let
a ⊂ Der(n) be an abelian reductive subgroup. If no element of a has only purely imaginary eigenvalues, then
s = a⋉ n admits a solsoliton metric. Moreover, every solvable algebra admitting a non-flat solsoliton metric
arises this way.

Corollary 5.12. If in addition to the above hypotheses, a contains some pre-Einstein derivation D, then
s = a⋉ n admits a negative Einstein metric. Moreover, every solvable algebra admitting a negative Einstein
metric arises this way.

The above characterization of solvable Lie groups admitting negative Einstein metrics is essentially a
combination of the above characterization of solsolitons together with Lauret’s structural results, cf. Theorem
2.8. As such, we leave the proof of the corollary to the reader. The definition of pre-Einstein derivation may
be found in Definition 8.1.

Below we will prove that the algebras described above admit solsoliton metrics. The fact that all solsoli-
tons have such a rigid algebraic structure is the work of Lauret, see Theorem 2.8.

Proof of Theorem 5.11. Take a as above and consider it as a subalgebra of gl(nµ). Let A be the connected
subgroup of GL(nµ) with Lie algebra a. Denote by A the Zariski closure of A in GL(nµ) (i.e., the smallest
algebraic group containing A) and its Lie algebra by a. As Aut(nµ) is an algebraic group, A ⊂ Aut(nµ).
Moreover, A is abelian and reductive. The fact that A is abelian follows immediately from being the closure
of an abelian group. To see that this group is reductive, one can ‘diagonalize’ a to see that A is a subgroup
of a torus (abelian, reductive) of GL(nµ) and hence has no non-trivial nilpotent elements.

It is a classical fact that there exists g ∈ GL(n,R) such that gag−1 is θ-stable since A is both algebraic
and reductive, see [Mos55]. Now a0 = gag−1 is a reductive, abelian subalgebra of Der(g∗µ) and

a⋉ nµ ≃ a0 ⋉ ng∗µ

via the isomorphism which is the identity on a and g on nµ. The nilpotent Lie group Ng∗µ is an Einstein
nilradical if and only if Nµ is so, as they are isomorphic.
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We will apply Theorem 5.7 to the subgroup A0 = gAg−1 ⊂ GL(n,R) with Lie algebra a0 = gag−1. This
group is θ-stable as its Lie algebra is so. Let µ0 = g∗µ and consider the limit µ∞ of the flow µt. The
Riemannian nilpotent Lie group Nµ∞

is a nilsoliton and µ∞ = g′∗µ0 for some g′ ∈ ZGL(n,R)(A0). As g′

commutes with a0 we see that the following solvable algebras are isomorphic

a⋉Nµ ≃ a0 ⋉Nµ0
≃ g′a0g

′−1
⋉Ng′∗µ0

= a0 ⋉Ng′∗µ0
= a0 ⋉Nµ∞

but the last metric algebra satisfies all the criteria of Theorem 2.8 to be a solsoliton metric Lie algebra.

Construction of the finer subgroup IG(H) ⊂ ZG(H) ⊂ G

In the above proofs, one can use a smaller subgroup of ZG(H) whose orbit will contain critical points of
F = ||mG||2. This group will be used in Section 9 to construct the algorithm that determines when a
nilpotent Lie group is an Einstein nilradical.

Proposition 5.13. Let H be a θ-stable subgroup of Aut(µ), as in Theorem 5.7. Assume G ∩ Aut(µ) = H,
i.e. the stabilizer at µ of the group G acting on V = ∧2(Rn)∗ ⊗ Rn is H.

There exists a real algebraic reductive subgroup IG(H) of G such that ZG(H) = IG(H)(ZG(H)∩H) where
ZG(H) ∩H is the stabilizer subgroup of ZG(H) at µ and the Lie algebra of IG(H) satisfies

iG(H) = {X ∈ zG(H) | tr(XY ) = 0 for all Y ∈ zG(H) ∩ h}

Moreover, the orbits coincide, i.e. IG(H) · µ = ZG(H) · µ.

Here the Lie algebra zG(H) = zg(h) of ZG(H) is the commutator of h in g. One can see by direct
calculation that iG(H) is a Lie subalgebra. We show that its corresponding Lie subgroup of GL(n,R) is an
algebraic group so that we can exploit the methods of Section 3.

Definition 5.14. An element X ∈ gl(n,R) will be called algebraic if it is tangent to a real algebraic 1-
parameter subgroup of GL(n,R). More generally, a Lie subalgebra will be called algebraic if it is tangent to
an algebraic subgroup of GL(n,R).

An element X ∈ g is called reductive if it is semisimple (over C). We observe that if G ⊂ GL(n,R) is any
real reductive algebraic subgroup, the set of reductive algebraic elements of g is dense. As we are considering
G which are θ-stable, the following bilinear form is an inner product on g

〈X,Y 〉 = tr(XY t)

Given a θ-stable element α ∈ g (i.e. α is symmetric or skew-symmetric), we define the subalgebra

gα ⊖ α = {X ∈ gα | tr(Xαt) = 0}

where gα = {X ∈ g | [X,α] = 0}. Since αt = ±α, it follows that gα ⊖ α is θ-stable and an ideal of gα.

Lemma 5.15. The subalgebra gα ⊖ α is an algebraic Lie subalgebra.

From this lemma, the proposition above quickly follows. To see this, observe that zg(h) ∩ h is θ-stable
and decompose zg(h) ∩ h = (z ∩ h)k ⊕ (z ∩ h)p into its Cartan decomposition. All the elements contained in
(z ∩ h)k and (z ∩ h)p are algebraic reductive elements. Now apply the above lemma to all these algebraic
reductive elements and use the fact that the intersection of algebraic groups is algebraic.

Proof of lemma. The cases of α symmetric and skew-symmetric must be handled separately.

Case: α symmetric. Every such α is conjugate via O(n,R) to a diagonal matrix. As the above inner
product is Ad O(n,R) invariant and the conjugate of an algebraic group is algebraic, we may reduce to the
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case that α is diagonal. Also, we may reduce to the case G = GL(n,R) as the intersection of algebraic
groups is algebraic.

Further more, we may assume (via conjugation by O(n,R)) that the eigenvalues are weakly increasing:
α = diag{a1, . . . , a1, . . . , ak, . . . , ak}. The eigenvalues ai are rational as α is algebraic. Now the subalgebra
gα consists of block diagonal matrices gl(n1,R) × · · · × gl(nk,R). This is clearly an algebraic Lie algebra
whose Lie group Gα consists of the block matrices which are invertible.

The condition X ∈ gα is now ΣaiXi = 0 where X = blockdiag{X1, . . . , Xk}. Write g ∈ Gα as a block
diagonal matrix g = blockdiag{g1, . . . , gk}. Then the algebraic group with Lie algebra gα ⊖ α is

{g ∈ Gα | Π det(gi)
qai = 1}

where q is the common integer such that qai ∈ Z for all i = 1, . . . , k.

Case: α skew-symmetric. To prove the result in this case, we reduce to the above case and use complex
algebraic groups. We will construct a complex algebraic group whose intersection with GL(n,R) is the
desired Lie group. This Lie group will be algebraic as it is the intersection of algebraic groups. We refer the
reader to [Whi57] for an introduction to the relationship between real and complex varieties.

Observe that the above work for α symmetric could have been carried out over C. Consider gCα = {X ∈
gl(n,C) | [X,α] = 0}. Observe that iα has real eigenvalues (which may be assumed to be rational as above)
and that gCα = gCiα and gCα ⊖ α = gCiα ⊖ iα. By conjugating with U(n) ⊂ GL(n,C), we may assume iα is
diagonal. Following the above work, but with complex groups instead of real, we have a complex algebraic
group over gCα ⊖ α = gCiα ⊖ iα. Moreover, this group intersected with GL(n,R) is a real Lie group with the
desired Lie algebra. Counting dimensions, we see that the real points of this complex algebraic group are
Zariksi dense and hence this Lie group is real algebraic.

6 Compact nilmanifolds

In this section we apply the above results to compact quotients of nilpotent Lie groups that admit soliton
metrics.

Definition 6.1. Let (M, g) = (Γ\N, g) be a compact nilmanifold where Γ ⊂ N ⊂ Isom(N, g), g is a left-
invariant metric, and the metric on M is the induced metric coming from N . The metric g on Γ\N is called
a local nilsoliton if (N, g) is a nilsoliton.

As in the case of Ricci solitons on nilpotent Lie groups, local nilsolitons may be characterized as critical
points of a functional restricted to the set of locally N -invariant metrics. In fact, these metrics are minima

of the function F (g) =
∫
M

tr Ric2g dV olg∫
M

sc2(g) dV olg
, restricted to the set of locally N -invariant metrics, see [Jab10] for

this point and more analysis on this functional.

Remark 6.2. While nilsolitons are unique on a simply connected nilpotent Lie group (up to rescaling and
isometry), this does not remain true for local nilsolitons on compact quotients.

On compact nilmanifolds, local nilsoliton metrics are the most symmetric among all locally-left-invariant
metrics (cf. Corollary 5.9).

Theorem 6.3. Consider M = Γ\N endowed with a locally left-invariant metric g where N admits a nil-
soliton. Then there exists a local soliton g′ on M such that Isom(M, g) ⊂ Isom(M, g′).

Proof. The proof reduces to the corresponding statement on simply-connected covers: Corollary 5.9.
Let φ ∈ Isom(M, g) and consider the Riemannian quotient π : N → Γ\N . The map φ lifts to a

diffeomorphism φ : N → N such that π ◦ φ = φ ◦ π. As (Γ\N, g) and (N, g) are locally isometric via π and
φ is an isometry, we have φ ∈ Isom(N, g). Conversely, every isometry of M arises from φ ∈ Isom(N, g)
satisfying the condition

φ(Γn) = Γφ(n) for all n ∈ N (6.1)
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Observe that this condition is independent of any metric data.
By Corollary 5.9, there exists a nilsoliton g′ on N such that φ is an isometry of (N, g′) and this choice

of g′ holds for all φ. As the above relation (6.1) still holds, the diffeomorphism φ : M → M is an isometry
relative to g′.

Theorem 6.4. The existence of a local soliton depends only on the fundamental group.

Proof. This is a consequence of the classical fact that the fundamental group Γ completely determines the
nilpotent group N . More precisely, let Γ1,Γ2 be the fundamental groups of compact nilmanifolds Γ1\N1 and
Γ2\N2. If φ : Γ1 → Γ2 is an isomorphism of abstract groups, there exists an isomorphism Φ : N1 → N2 of
Lie groups such that φ = Φ|Γ1

, see [Rag72, Theorem 2.11 and Corollary 2].
The claim now follows from the algorithm of Section 9 which shows that the existence of nilsolitons on

Ni is a property of the underlying Lie algebra.

Remark. The above theorems on compact nilmanifolds hold for infranilmanifolds as every infranilmanifold
is finitely covered by a compact nilmanifold.

7 Stratifying the space V

To refine our analysis of the Riemannian Lie groups Sµ, and the function F = ||m||2, we stratify the space
V . Using this stratification, we obtain a decomposition of the automorphism group Aut(µ) which aids in
the construction of algorithms to determine the existence of soliton metrics, see Lemma 7.7.

Denote the critical set of F = ||m||2 by C.

Theorem 7.1 ([Lau07, LW07]). There exists a finite subset B ⊂ g, and for each β ∈ B a GLnR-invariant
smooth submanifold Sβ ⊂ V (a stratum), such that

V \{0} =
⊔

β∈B

Sβ

This stratification satisfies Sβ − Sβ =
⊔

||β′||>||β|| Sβ′ . Additionally, C =
⊔

β∈B Cβ where Cβ ⊂ Sβ are the

critical points with critical value Mβ = ||β||2.
For µ ∈ Sβ, following conditions are satisfied:

i. 〈[β,D], D〉 ≥ 0 for all D ∈ Der(µ) with equality if and only if [β,D] = 0.

ii. β + ||β||2I is positive definite for all β ∈ B such that Sβ ∩ N 6= ∅.

iii. ||β||2 ≤ ||m(µ)||2 with equality if and only if m(µ) is conjugate to β under O(n).

iv. tr βD = 0 for all D ∈ Der(µ).

v. 〈π(β + ||β||2I)µ, µ〉 ≥ 0 with equality if and only if β + ||β||2I ∈ Der(µ).

Remark. The finite subset B ⊂ g consists of diagonal elements, with positive entries on the diagonal which
are (weakly) increasing.

We will not reconstruct this stratification and direct the interested reader to those works above. Instead,
we describe the necessary properties below that suit our needs. This stratification is the real analog of
well-known stratifications in Geometric Invariant Theory over algebraically closed fields. For representations
of complex reductive groups, such stratifications coincide with a Morse theoretic stratification coming from
F = ||m||2. This result remains true in the setting of real representations and is an immediately consequence
of Theorem 7.4.
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Given α ∈ diag ⊂ gl(n,R), the diagonal matrices, we define the following groups

Gα = {g ∈ GL(n,R) | gαg−1 = α}

Uα = {g ∈ GL(n,R) | exp(tα) g exp(−tα) → e as t → −∞}

Pα = GαUα

Pα is the parabolic associated to α with unipotent radical Uα and reductive complement Gα. As α
t = α, Gα

is θ-stable and has a Cartan decomposition Gα = Kαexp(pα) (cf. definition of Cartan involution in Section
3). When α ∈ B, the eigenvales of α are weakly increasing and the group Gα consists of block diagonal
matrices (which commute with α) while Uα is the group of lower triangular elements beneath the blocks of
Gα.

Define the subgroup Hα as the group with Lie algebra hα = {X ∈ gα | tr(Xα) = 0}; this is actually an
algebraic group. In the following proposition, we maintain the notation from [Lau07].

Definition 7.2. A point v ∈ V is called Hα-stable if 0 6∈ Hα · v.

Proposition 7.3 (Lauret). Given β ∈ B, there exist subsets Zβ and Yβ with the following properties:

i. Yβ is Pβ-invariant, Y
ss
β = Yβ ∩ Sβ consists of Hβ-semi-stable points and Sβ = O(n)Y ss

β

ii. For y ∈ Yβ, {g ∈ GL(n,R) | g · y ∈ Yβ} = Pβ

iii. Zβ = {v ∈ Yβ | π(β)v = ||β||2v}, Zβ is Gβ-invariant, Sβ ∩ Zβ = Zss
β (the Hβ-semi-stable points of

Zβ) and Sβ = GL(n,R)Zss
β = O(n)PβZ

ss
β

iv. The Hβ orbits intersecting Zβ ∩ Cβ are all closed.

Remark. Part ii above does not appear in [Lau07]. However, one can show this immediately just as in the
complex case (cf. Lemma 13.4 of [Kir84]).

The following theorem and its proof have appeared in a more general form in [HSS08]. In our setting, a
short proof is readily obtained, and so we include one for completeness.

Theorem 7.4 (Heinzner-Schwarz-Stötzel). Consider µ ∈ Sβ. There exists a unique GL(n,R)-orbit in

GL(n,R) · µ ∩ Sβ intersecting Cβ. The closed orbits in Sβ are precisely those intersecting Cβ.

Proof. Take µ ∈ Sβ . As Sβ = O(n)Y ss
β , we may assume µ ∈ Yβ and thus GL(n,R) · µ = O(n)Pβµ. Since

O(n) is compact, we see that GL(n,R) · µ = O(n)Pβ · µ.
Consider any point y ∈ Yβ and the curve exp(tβ) · y with limit y−∞ as t→ −∞ (this limit exists by the

definition of Yβ). Observe that exp(tβ)(Pβ ·y) → Gβ ·y−∞ as t→ −∞. To see this, write g ∈ Pβ as g = g1g2
with g1 ∈ Gβ and g2 ∈ Uβ, then exp(tβ) · gy = g1 exp(tβ)g2exp(−tβ) exp(tβ) · y → g1 e y−∞.

Now take y ∈ GL(n,R) · µ ∩ Cβ. By the above theorem, there exists k ∈ O(n) such that k · y ∈ Zβ. So

we may assume k = e and y ∈ GL(n,R) · µ ∩ Cβ ∩ Zβ. This point is fixed by exp(tβ) and we see that

Gβ · y ⊂ Gβ · µ−∞

by applying exp(tβ) and letting t→ −∞.
As y and µ−∞ are both eigenvectors for β, we see that under the map V → PV , v 7→ [v], Hβ · [y] ⊂

Hβ [µ−∞]. Now, as Hβ · y is closed, the uniqueness result follows from [RS90].

The above theorem answers Question 3.4.

Corollary 7.5. Let Nµ0
be an Einstein nilradical. Let µ∞ denote the limit point of the negative gradient

flow of the function F = ||m||2 starting at µ0. Then µ∞ is contained in the orbit GLnR · µ0; that is, Nµ0

and Nµ∞
are isomorphic Lie groups.

Proof. This follows immediately from the fact that the limit µ∞ ∈ Sβ∩GL(n,R) · µ0 and the orbit GL(n,R)·
µ0 is closed in Sβ .
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Automorphisms of Einstein Nilradicals

Given that nilsolitons are precisely the critical points of F = ||m||2 (Theorem 3.3) we have the following
decomposition of Aut(µ). The following decomposition holds more generally with µ being the critical point
of ||m||2 and Aut(µ) being replaced by the stabilizer subgroup of an action. In particular, there is a similar
decomposition of the automorphism group of a solvable Lie group admitting a solsoliton.

Proposition 7.6. Let µ ∈ N be a soliton in the stratum Sβ. Let Gβ be the centralizer of β in GLnR and
Uβ = {g ∈ GLnR | exp(tβ)gexp(−tβ) → e as t→ −∞}. Then the automorphism group of Nµ decomposes
as

Aut(µ) = GβUβ = Kβexp(pβ)Uβ

where Gβ = Gβ ∩ Aut, Kβ = O(n) ∩Gβ ∩ Aut, exp(pβ) = exp(symm(n)) ∩Gβ ∩ Aut, Uβ = Uβ ∩ Aut.

Proof. This result follows quickly from Proposition 7.3. Let µ ∈ Sβ be the nilsoliton of interest, where Sβ is
the stratum defined above. By considering O(n) translates of µ, we may assume that µ ∈ Zβ .

Let g ∈ Aut(µ). Since g · µ = µ ∈ Zβ ⊂ Yβ , g ∈ Pβ by Part ii. of Proposition 7.3, and we may write
g = g1g2 where g1 ∈ Gβ and g2 ∈ Uβ. Observe that exp(tβ) g exp(−tβ) also stabilizes µ and letting t→ −∞
we see that g2 ∈ Aut(µ) and hence g1 ∈ Aut(µ). This shows Aut(µ) = GβUβ.

Given g ∈ Gβ , write g = k exp(X) where k ∈ Kβ and X ∈ pβ; this is possible as Gβ is stable under
the transpose. Observe, ||m(µ)|| = ||m(g · µ)|| = ||m(exp(X) · µ)|| and by [NM84, Lemma 7.2] we see that
exp(X) · µ = µ. Thus exp(X), k ∈ Aut(µ) and the theorem is proved.

There is an analogous decomposition of Der(µ) as above. The following is presented for later use.

Lemma 7.7. Take a nilsoliton Nµ with Einstein derivation β and derivation algebra Der(µ) = kβ⊕pβ⊕uβ.
Every element of the form

β +X, with X ∈ uβ

is semi-simple (i.e. diagonalizable).

Sketch of proof. The proof of this fact is analogous to showing that any upper triangular matrix with non-
zero distinct entries on the diagonal can be diagonalized. One carries out similar computations in this case
(as the entries of β are all positive and uβ has an appropriate block structure) to show that β +X can be
conjugated to β via Uβ.

8 Pre-Einstein derivations

Let nµ be an Einstein nilradical with Ricci tensor Ricµ = cId +D, for some c ∈ R and D ∈ Der(µ). This
derivation is semisimple with real, positive eigenvalues and satisfies the condition

tr(Dψ) = −c tr ψ

for any ψ ∈ Der(µ). The derivation D satisfying Ric = cId + D is called an Einstein derivation as its
existence is necessary for solvable extensions of nµ to admit an Einstein metric. As such, we make the
following definition.

Definition 8.1. A derivation φ of a Lie algebra sµ is called pre-Einstein, if it is semisimple, with all
eigenvalues real, and

tr(φψ) = tr ψ , for any ψ ∈ Der(µ) (8.1)

The so-called Einstein derivation D gives the pre-Einstein derivation φ = D
−c

, and viceversa. Remarkably,
determining the pre-Einstein derivation almost completely determines when a nilpotent Lie algebra admits
a nilsoliton metric. This derivation first appeared in [Nik08a].

Theorem 8.2. [Nik08a]
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i. (a) Any Lie algebra sµ admits a pre-Einstein derivation φµ.
(b) The derivation φµ is determined uniquely up to automorphism of sµ.
(c) All the eigenvalues of φµ are rational numbers.

ii. Let nµ be a nilpotent Lie algebra, with φ a pre-Einstein derivation. If nµ is an Einstein nilradical, then
its Einstein derivation is positively proportional to φ.

Remark. Part ii. above is particularly useful as it can be difficult to determine, a priori, which stratum
µ belongs to (cf. Section 7). Moreover, we will see that determining the pre-Einstein derivation reduces to
solving a system of linear equations (the condition of semi-simplicity can be discarded, cf. Proposition 8.4).

Let nµ be a nilpotent Lie algebra with a choice of pre-Einstein derivation φµ. Associated to φµ we have
the following subalgebra

gµ = z(φµ) ∩ ker(T ) ⊂ sl(n,R)

where z(φµ) is the centralizer of φµ and T (A) = tr(Aφµ). Let Gφµ
⊂ SL(n,R) be the Lie group with algebra

gφµ
, this is an algebraic group.

Theorem 8.3. [Nik08a] For a nilpotent Lie algebra nµ with a pre-Einstein derivation φ, the following
conditions are equivalent:

i. nµ is an Einstein nilradical

ii. the orbit Gφ · µ ⊂ V is closed

In this way, we see that the property of a nilpotent Lie group being an Einstein nilradical is intrinsic to
its Lie algebra. We will build on this result to obtain an algorithm which determines the condition of being
an Einstein nilradical using only local data, see Section 9. To simplify our work, we present the following
reduction.

Proposition 8.4. If nµ is an Einstein nilradical, then any solution to Equation (8.1) will automatically be
a pre-Einstein derivation, i.e. it is automatically semi-simple with real, positive eigenvalues.

Remark 8.5. In this way, we see that if a solution to Equation (8.1) is not semi-simple, then the nilpotent
group in question is not an Einstein nilradical.

Proof. The proof amounts to analyzing Nikolayevki’s proofs and combining those details with Lemma 7.7.
For the sake of completeness, we present Nikolayevski’s proof of existence and uniqueness (up to conjugation
in Aut) of the pre-Einstein derivation.

First we find one pre-Einstein derivation. Let sµ be a Lie algebra and denote by Der(µ) its algebra of
derivations; this is an algebraic Lie algebra (meaning it is the Lie algebra of an algebraic group). Consider
a Levi decomposition Der(µ) = s⊕ t⊕ n where t⊕ n is the radical of Der(µ), s is semisimple, and n is the
set of nilpotent elements (the nilradical) of t⊕ n, t is a torus (abelian subalgebra with semisimple elements),
and [t, s] = 0.

Recall, for ψ ∈ gl(n,R) a semisimple endomorphism, there exist semisimple endomorphisms ψR and ψiR

(the real and imaginary parts) which have real, resp. purely imaginary, eigenvalues such that ψ = ψR + ψiR

and all three endomorphisms commute. Moreover, the subspaces tc = {ψiR | ψ ∈ t} and ts = {ψR | φ ∈ t}
are the compact and the fully R-reducible tori (the elements of ts are simultaneously diagonalizable) with
ts ⊕ tc = t.

We will find a pre-Einstein derivation contained in ts. Consider the quadratic form b on Der(µ) defined
by b(ψ1, ψ2) = tr(ψ1ψ2). It is a general fact that n is in the kernel of this quadratic form, hence

b(t, ψ) = 0 = tr(ψ)

for any ψ ∈ n. Using the ad-invariance of b (that is, b(ψ1, [ψ2, ψ3]) = b([ψ3, ψ1], ψ2)) and that s = [s, s] is
semisimple, we see that

b(t, ψ) = 0 = tr(ψ)
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for any ψ ∈ s. Thus it suffices to solve Equation (8.1) with φ, ψ ∈ t. Additionally, observe that

b(ts, ψ) = 0 = tr(ψ)

for any ψ ∈ tc. Lastly, as the quadratic form b restricted to ts is positive definite, the existence (and
uniqueness in t) follows.

To obtain the uniqueness of the pre-Einstein derivation up to conjugation in Aut, Nikolayevski exploits
a theorem of Mostow [Mos56, Theorem 4.1] which says that all fully reducible subalgebras of Der(µ) are
conjugate via an inner automorphism of Der(µ). Lastly, as the center of a reducible algebra is uniquely
defined, we have the desired result.

Now we analyze this proof to study all solutions to Equation (8.1). Let A ∈ s ⊕ t be a solution to
tr(Aψ) = 0 for all ψ ∈ Der(µ). We will show that A = 0. To see this, first assume that our Lie algebra
nµ is endowed with an inner product so that s ⊕ t is stable under the transpose operation. This is always
possible; when nµ is an Einstein nilradical such a metric is explicitly given in Proposition 7.6. Using this
inner product, ψ = At ∈ Der(µ) and 0 = tr(Aψ) = tr(AAt) implies A = 0.

Let φ ∈ t be a pre-Einstein derivation of nµ, the above work shows that any solution to Equation (8.1)
is of the form φ +X where X ∈ n (the nilpotent part of the radical of Der(µ)). And applying Lemma 7.7
we are finished.

9 Algorithm to determine Einstein nilradical

In this section, we demonstrate how the existence of a nilsoliton on a nilpotent Lie group can be read off
from local data. More precisely, let N be a nilpotent Lie group of interest with Lie algebra n. To determine
if N admits a nilsoliton, one only needs to analyze Der(n) and certain infinitesimal deformations of any
initial left-invariant metric on N .

Theorem 9.1. The existence of a nilsoliton metric on a nilpotent Lie group N is intrinsic to the underlying
Lie algebra n. More precisely, one can determine the existence of such a metric by analyzing the derivation
algebra Der(n) and infinitesimal deformations of any initial metric on n.

Remark 9.2. The existence of a nilsoliton being intrinsic to the Lie algebra was first shown by Nikolayevsky
[Nik08a]. Here it was shown that the existence of such a metric is equivalent to an orbit of a particular
reductive group being closed in the space of Lie brackets (see Theorem 8.3). However, it was not shown that
this could be determined by measuring local data.

Before Nikolayevsky’s result, it was shown by Lauret [Lau01a] that the existence of such a metric is
equivalent to the full GLnR-orbit in the space of Lie brackets being so-called distinguished . However, it was
not known before the present work that this condition may be determined locally.

Algorithm to determine if N is an Einstein nilradical

Step 1: Find a solution φ to
tr(φψ) = tr(ψ) for all ψ ∈ Der(n)

If the solution is φ is not semisimple (i.e. diagonalizable) with (positive) real eigenvalues then stop, n is
not an Einstein nilradical.

If φ is semisimple with (positive) real eigenvalues, then continue; this is a pre-Einstein derivation of n (cf.
Definition 8.1 and Proposition 8.4). (Remark: positivity of the eigenvalues will be automatic if the following
steps are valid.)

Step 2: Consider the subalgebra hµ := gφ ∩ Der(n). These are the derivations which are traceless and
commute with φ, see paragraph following Theorem 8.2.

If hµ is not reductive, then stop, n is not an Einstein nilradical.
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If hµ is reductive then continue.

To determine if this algebra is reductive: 1) compute its radical, then 2) compute the set of nilpotent
elements of this radical. The algebra is reductive if and only if the set of such nilpotent elements (in the
radical) is trivial.

Step 3: Consider the subalgebra igφ
(hµ) = {X ∈ zgφ

(hµ) | tr(XY ) = 0 for all Y ∈ zgφ
(hµ) ∩ hµ} (cf.

Proposition 5.13), where za(b) denotes the centralizer of b in a. Let D denote the matrices of glnR which are

diagonalizable over R; i.e., D =
⋃

g∈GLnR

gtg−1, where t = diagonal matrices of glnR.

Let n = nµ corresponding to some point µ ∈ V = ∧2(Rn)∗ ⊗ Rn (see Section 3). For X ∈ ig(hµ) ∩ D,
write µ =

∑

aiµi, where µi is an eigen basis for X , i.e., X · µ =
∑

λiaiµi.
If there is some X ∈ igφ

(hµ) ∩ D such that λi ≥ 0 whenever ai 6= 0, then n is not an Einstein nilradical.
If for every X above there exists i with λi < 0 and ai 6= 0, then n is an Einstein nilradical.

Remark 9.3. In Step 3,
1) The identification of n with µ ∈ V is made by picking a basis of the vector space. This is tantamount

to prescribing n with an orthonormal basis, and hence, endowing N with a choice of left-invariant metric.
2) The X · µ, with X ∈ glnR, precisely represent infinitesimal deformations of the above choice of left-

invariant metric.
3) The algebra hµ is reductive (once getting to Step 3). If the inner product from nµ makes hµ stable

under the metric adjoint (and there will always be such a µ with this property), then Step 3 may be replaced
by the following.

Step 3’: Assuming hµ is stable under the adjoint relative to the inner product on nµ, we may reduce the
collection of X considered in Step 3 to those X ∈ igφ

(hµ) ∩ p, where p = {Y ∈ hµ |Y t = Y }.

Remark 9.4. The verification of Steps 1 and 2 above can done by a computer. It is not immediately clear
to the author if Step 3 can be adapted to be implemented by a computer.

Proof of the algorithm above

Step 1: This is the content of Proposition 8.4.

Step 2: To prove this portion of the algorithm, we will go ahead and identify n with nµ, for some µ ∈ V .
The algebra h = gφ ∩ Der(n) is precisely the stabilizer subalgebra of gφ at µ. As we have fixed a basis of
our Lie algebra, we may view h ⊂ gl(n,R).

In Theorem 8.3, it was shown that nµ is an Einstein nilradical if and only if Gφ · µ is closed, where Gφ

is the (alegbraic) Lie group with Lie algebra gφ. It is well-known that an orbit being closed implies the
stabilizer subgroup is reductive, see [RS90]. Lastly, the stabilizer subgroup is reductive if and only if its Lie
algebra h is reductive.

Step 3: As h and φ are reductive, there exists g ∈ GL(n,R) such that ghg−1 and gφg−1 are simultaneously
θ-stable, i.e. closed under the transpose operation, see [Mos55]. Observe that

gDer(µ)g−1 = Der(g · µ),
gφg−1 is a pre-Einstein derivation of g · µ,
ggφg−1 = ggφg

−1,
hg·µ = ghµg

−1,
zg

gφg−1
(hg·µ) = gzgφ

(hµ)g
−1, and

ig
gφg−1

(hg·µ) = gigφ
(hµ)g

−1
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Moreover, Ggφg−1 · (g · µ) = gGφg
−1gµ = g(Gφ · µ) is closed if and only if Gφ · µ is closed. As such, we may

reduce to the case that hµ and φ are θ-stable.
Since φ is θ-stable, we immediately have that gφ is θ-stable. Similarly, zgφ

(hµ) is θ-stable. Now igφ
(hµ)

is precisely the Lie algebra of the algebraic reductive group IGφ
(Hµ) from Proposition 5.13, where Hµ is the

Lie group with Lie algebra hµ.
By Theorem 5.7, Gφ · µ is closed if and only if ZGφ

(Hµ) is closed. And since IGφ
(Hµ) · µ = ZGφ

(Hµ) · µ,
we see that nµ is an Einstein nilradical if and only if IGφ

(Hµ) ·µ is closed, see Proposition 5.13 and Theorem
8.3.

Observe that the stabilizer subalgebra of igφ
(hµ) at µ is trivial since it is contained in the stabilizer of gφ

at µ (which equals hµ) and igφ
(hµ) is orthogonal to hµ under the inner product 〈A,B〉 = tr(ABt). Hence,

the stabilizer of IGφ
(Hµ) is finite (as it is discrete and algebraic).

As the stabilizer of IGφ
(Hµ) at µ is finite, we may apply the ‘Hilbert-Mumford criterion’ to determine

when IGφ
(Hµ) · µ is closed. This criterion was adapted to the real setting in [Bir71] which states (in our

setting)

IGφ
(Hµ) · µ is closed if and only if

⋃

t∈R

exp(tX) · µ is closed for all X ∈ D ∩ igφ
(hµ)

Roughly speaking, this criterion says that closedness of an orbit is equivalent to closedness of the orbits of
all algebraic reductive 1-parameter subgroups.

To finish, we write exp(tX) · µ = expt(tX)
∑

aiµi =
∑

etλiaiµi where µi is the eigenvector of X above.
This set is not closed if and only if for all i such that ai 6= 0, either all λi ≥ 0 or λi ≤ 0. Observe that
replacing X with −X changes the sign of the eigenvalues above and this step is proven.

Step 3’: Reducing the Hilber-Mumford criterion to this smaller set of symmetric elements of hµ is the
content of [RS90].

10 Algorithm to determine if a solvable Lie group admits a left-

invariant Einstein metric

In this section, we show that the existence of an Einstein metric on a solvable Lie group can be determined
by purely local data, as in the case of nilsolitons and nilpotent Lie groups. A similar algorithm can be
written to test for the existence of solsoliton metrics.

Theorem 10.1. Let S be a solvable Lie group with Lie algebra s. The existence of a left-invariant Einstein
metric on S can be determined by analyzing the following: 1) adjoint action of s on itself, 2) the commutator
subalgebra n = [s, s], and 3) infinitesimal deformations of any initial metric on n.

Flat Einstein metrics

Here we prove Theorem 10.1 in the case that scalar curvature is zero (such a Lie algebra is necessarily uni-
modular). This amounts to showing that the solvable Lie algebra in question has the rigid algebraic structure
described by Milnor, see Proposition 2.7. Note, this case does not require any infinitesimal deformations of
metrics on n.

Consider the adjoint action ad s ⊂ Der(s) on s. Compute the nilradical n of s, i.e., the set of nilpotent
elements. Compute a Levi decomposition ad s = T+N, and let t ⊂ s be such that ad t = T and dim t = dimT.

Lemma 10.2. If s admits a flat metric, then t is an abelian subalgebra, ad T has only purely imaginary
eigenvalues for T ∈ t, and dim t+ dim n = dim s.

Proving this lemma proves the theorem as verifying the conditions on t in the lemma amount to simply
analyzing the adjoint representation of s, and any algebra of this type admits a flat metric by Proposition
2.7.
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Proof of lemma. Assume s admits a flat Einstein metric. Decompose s = a+ n where n is the nilradical and
a is an abelian subalgebra such that ad A has only purely imaginary eigenvalues for A ∈ a, cf. Proposition
2.7.

Observe that ad s = ad a + ad n is a Levi-decomposition of ad s. Thus ad a and T = ad t are equal
up to conjugation by Aut(s) as they are both maximal reductive subalgebras of ad s (conjugacy of such
subalgebras is the main result of [Mos56]). As the relevant properties of a do not change after applying an
automorphism, we may assume ad a = ad t. Now, the elements of t differ from the elements of a by only
elements of the center. Hence t has precisely the same properties of a and the lemma is proven.

Negative Einstein metrics

Here we prove Theorem 10.1 in the case that scalar curvature is negative (such a Lie algebra is necessarily
non-unimodular). Let S be the solvable group in question with Lie algebra s. Denote by n the commutator
subalgebra [s, s] of s. (Note: when s admits an Einstein metric, this will be the full nilradical.)

Step 1:

If n is not an Einstein nilradical, then stop, S cannot admit a negative Einstein metric.
If n is an Einstein nilradical, then continue.

This step can be determined using the algorithm of Section 9.

Step 2: Find a solution φ to
tr(φψ) = tr(ψ) for all ψ ∈ Der(n)

within the set ad s = {ad X | X ∈ s} ⊂ Der(n).

If there is no non-trivial solution in this subset, or the solution is not semisimple with (positive)
real eigenvalues, then stop; S cannot admit a negative Einstein metric.
If there is a non-trivial solution φ = ad Xφ, and this solution is semisimple with (positive) real
eigenvalues, then continue. Fix this choice of Xφ.

This step can be verified using a computer for a given solvable Lie algebra of interest. As before, positivity
of the eigenvalues will follow if the remaining steps are valid.

Step 3: Compute zs(Xφ) = {Y ∈ s | [Y,Xφ] = 0}

If zs(Xφ) is not abelian or dim zs(Xφ) + dim n < dim s, then stop, S does not admit a negative
Einstein metric.
If zs(Xφ) is abelian, and dim zs(Xφ) + dim n = dim s, then continue.

Recall, zs(Xφ) is automatically reductive as Xφ is reductive, and zs(Xφ) being reductive abelian implies that
no element is nilpotent. This step may be verified using a computer.

Step 4:

If some element of zs(Xφ) has only purely imaginary eigenvalues, then stop; S does not admit a
negative Einstein metric.
If no element of zs(Xφ) has only purely imaginary eigenvalues, then S admits a negative Einstein
metric.

Proof of the algorithm above.

Step 1: This fact is well-known, see [Lau07].

Step 2: This is the content of a theorem of Nikolayevsky, see Theorem 8.2, and [Lau10, Proposition 4.3].

Step 3: This follows immediately from [Lau10, Theorem 4.8].

Step 4: This is the content of Theorem 5.11.
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A Appendix: Closed orbits for general representations.

The above work concerning the geometry of orbits holds in the more general framework of representations
of reductive groups. We state this result and provide only a sketch of the proof, as the proof is similar to
the above case. We do not know of this statement appearing in the literature before.

Closed Orbits

Theorem A.1. Let G be a real reductive algebraic group acting linearly and rationally on a vector space
V . Determining whether an orbit G · v is closed in V can be determined using only data from the induced
representation of the Lie algebra g at the point v ∈ V .

In the following, we will only consider G which is semi-simple and use the Killing form B which is Ad(G)-
invariant and symmetric. More generally, for a reductive group, one could use any bilinear form B : g×g → g

which is Ad(G)-invariant, symmetric, and has the property that {X ∈ g | [X,α] = 0 and B(X,α) = 0}
is the Lie algebra of an algebraic group for any α ∈ g which is tangent to a reductive, algebraic 1-parameter
subgroup. The Killing form satisfies this condition.

Sketch of proof. We follow the same argument as in Section 9.

The first requirement is that h = gv be reductive. Let zg(h) = {X ∈ g | [X, h] = 0} denote the centralizer
of h in g. As before, consider

ig(h) = {X ∈ zg(h) | B(X,Y ) = 0 for all Y ∈ zg(h) ∩ h}

These subalgebras are the Lie algebras of algebraic groups ZG(H) and IG(H), respectively, where H = Gv.
The orbit G · v is closed if and only if ZG(H) · v = IG(H) · v is closed. As IG(H) has finite stabilizer and we
may apply the Hilbert-Mumford criterion.

Let D denote the matrices of glnR which are diagonalizable over R; i.e., D =
⋃

g∈GLnR

gtg−1, where t =

diagonal matrices of glnR. Given X ∈ ig(h) ∩ D, write v =
∑

aivi where {vi} is an eigenvector basis of V
with X · vi = λivi. The Hilbert-Mumford criterion states: IG(H) · v is not closed if and only if there exists
X ∈ ig(h) satisfying λi ≥ 0 for all i such that ai 6= 0.

In this way, we see that determining the closedness of G · v reduces to analyzing the stabilizer subalgebra
gv and the representation of g at v.
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reductive groups, Compos. Math. 144 (2008), no. 1, 163–185. MR MR2388560 (2009a:32030)

[Jab08a] Michael Jablonski, Detecting orbits along subvarieties via the moment map, arXiv:0810.5697 [math.DG] –
to appear in Münster Journal of Math (2008).

[Jab08b] , Distinguished orbits of reductive groups, arXiv:0806.3721v1 [math.DG] (2008).

[Jab09] , Moduli of Einstein and non-Einstein nilradicals, arXiv:0902.1698 [math.DG] (2009).

[Jab10] , A natural Riemannian function on nilpotent lie groups, in progress (2010).

[Jen69] Gary R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geometry 3 (1969), 309–
349. MR MR0261487 (41 #6100)

[Jen71] Gary Jensen, The scalar curvature of left-invariant riemannian metrics, Indiana Univ. Math. J. 20 (1971),
1125–1144.

[Kir84] Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes
31, Princeton University Press, Princeton, New Jersey, 1984.

[KN78] G. Kempf and L. Ness, The length of vectors in representation spaces, Springer Lecture Notes 732 (Copen-
hagen), Algebraic Geometry, Proceedings, 1978, pp. 233–244.

[Lau] Jorge Lauret, Personal communication.

[Lau01a] , Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001), no. 4, 715–733. MR MR1825405
(2002k:53083)

[Lau01b] , Standard Einstein solvmanifolds as critical points, Q. J. Math. 52 (2001), no. 4, 463–470. MR
MR1874492 (2002j:53048)

[Lau03] , On the moment map for the variety of Lie algebras, J. Funct. Anal. 202 (2003), no. 2, 392–423.

[Lau07] , Einstein solvmanifolds are standard, arXiv:math.DG/0703472 – to appear in Ann. of Math. (2007).

[Lau08] , Einstein solvmanifolds and nilsolitons, arxiv:math.DG/0806.0035 (2008).

[Lau10] , Ricci soliton solvmanifolds, arXiv:math.DG/1002.0384 – to appear in Crelle’s Journal (2010).

[LW07] Jorge Lauret and Cynthia Will, Einstein solvmanifolds: Existence and non-existence questions,
arXiv:math/0602502v3 [math.DG] (2007).

[Mar01] Alina Marian, On the real moment map, Math. Res. Lett. 8 (2001), no. 5-6, 779–788. MR MR1879820
(2003a:53123)

[Mil76] John Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3,
293–329. MR MR0425012 (54 #12970)

[Mos55] G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44–55. MR MR0069830 (16,1088a)

[Mos56] , Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200–221. MR MR0092928
(19,1181f)

[Nik05] Yu. G. Nikonorov, Noncompact homogeneous Einstein 5-manifolds, Geom. Dedicata 113 (2005), 107–143.
MR MR2171301 (2006h:53037)

[Nik08a] Y. Nikolayevsky, Einstein solvmanifolds and the pre-Einstein derivation, (arXiv:0802.2137) to appear in
Trans. Amer. Math. Soc. (2008).

[Nik08b] , Einstein solvmanifolds attached to two-step nilradicals, arXiv:0805.0646v1 [math.DG] (2008).

27

http://arxiv.org/abs/0810.5697
http://arxiv.org/abs/0806.3721
http://arxiv.org/abs/0902.1698
http://arxiv.org/abs/math/0703472
http://arxiv.org/abs/math/0602502
http://arxiv.org/abs/0802.2137
http://arxiv.org/abs/0805.0646


[Nik08c] Yuri Nikolayevsky, Einstein solvmanifolds with a simple Einstein derivation, Geom. Dedicata 135 (2008),
87–102. MR MR2413331 (2009f:53064)

[Nik08d] , Einstein solvmanifolds with free nilradical, Ann. Global Anal. Geom. 33 (2008), no. 1, 71–87. MR
MR2369187 (2008m:53120)

[NM84] Linda Ness and David Mumford, A stratification of the null cone via the moment map, American Journal
of Mathematics 106 (1984), no. 6, 1281–1329.

[Pay10] Tracy L. Payne, The existence of soliton metrics for nilpotent Lie groups, Geom. Dedicata 145 (2010),
71–88. MR MR2600946

[Rag72] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 68. MR MR0507234 (58 #22394a)

[RS90] R.W. Richardson and P.J. Slodowy, Minimum vectors for real reductive algebraic groups, J. London Math.
Soc. 42 (1990), 409–429.

[Sja98] Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), no. 1,
46–91. MR MR1645052 (2000a:53148)

[Whi57] Hassler Whitney, Elementary structure of real algebraic varieties, The Annals of Mathematics 66 (1957),
no. 3, 545–556, 2nd Ser.

[Wil03] C.E. Will, Rank-one einstein solvmanifolds of dimension 7, Diff. Geom. Appl. 19 (2003), 307–318.

[Wil10] Cynthia Will, A curve of nilpotent Lie algebras which are not Einstein nilradicals, Monatsh. Math. 159
(2010), no. 4, 425–437. MR MR2600907

[WZ86] McKenzie Y. Wang and Wolfgang Ziller, Existence and nonexistence of homogeneous Einstein metrics,
Invent. Math. 84 (1986), no. 1, 177–194. MR 830044 (87e:53081)

28


	1 Introduction
	2 Riemannian Lie groups
	3 The Variety of Lie Brackets
	4 Soliton metrics and distinguished orbits
	5 The bracket flow
	6 Compact nilmanifolds
	7 Stratifying the space V
	8 Pre-Einstein derivations
	9 Algorithm to determine Einstein nilradical
	10 Algorithm to determine if a solvable Lie group admits a left-invariant Einstein metric
	A Appendix: Closed orbits for general representations.

