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Transmission Strategies in Multiple Access Fading

Channels with Statistical QoS Constraints

Deli Qiao, Mustafa Cenk Gursoy, and Senem Velipasalar

Abstract

Effective capacity, which provides the maximum constant arrival rate that a given service process can support

while satisfying statistical delay constraints, is analyzed in a multiuser scenario. In particular, the effective capacity

region of fading multiple access channels (MAC) in the presence of quality of service (QoS) constraints is studied.

Perfect channel side information (CSI) is assumed to be available at both the transmitters and the receiver. It is initially

assumed the transmitters send the information at a fixed power level and hence do not employ power control policies.

Under this assumption, the performance achieved by superposition coding with successive decoding techniques is

investigated. It is shown that varying the decoding order with respect to the channel states can significantly increase

the achievable throughput region. In the two-user case, theoptimal decoding strategy is determined for the scenario in

which the users have the same QoS constraints. The performance of orthogonal transmission strategies is also analyzed.

It is shown that for certain QoS constraints, time-divisionmultiple-access (TDMA) can achieve better performance

than superposition coding if fixed successive decoding order is used at the receiver side.

In the subsequent analysis, power control policies are incorporated into the transmission strategies. The optimal

power allocation policies for any fixed decoding order over all channel states are identified. For a given variable

decoding order strategy, the conditions that the optimal power control policies must satisfy are determined, and an

algorithm that can be used to compute these optimal policiesis provided.

I. INTRODUCTION

In wireless networks, the design and analysis of efficient transmissions strategies have been of significant

interest for many years. In particular, fading multiple access channels (MAC) have been extensively studied
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from an information-theoretic point of view [1]-[8]. For instance, Tse and Hanly [4] have characterized the

capacity region of and determined the optimal resource allocation policies for multiple access fading channels.

They have shown that the boundary surface points are in general achieved by superposition coding and

successive decoding techniques, and obtaining each boundary point can be associated with an optimization

problem in which a weighted sum rate is maximized. Vishawanath et al. [7] derived the explicit optimal

power and rate allocation schemes (similar towaterfilling) by considering that the users are successively

decoded in the same order for all channel states. For the convex capacity region, the unique decoding

order was shown to be the reverse order of the priority weight. While superposition coding and successive

decoding strategies provide superior performance, time-division multiple access (TDMA) may in certain

cases be preferred due to its simplicity. Note that the performance of TDMA approaches that of the optimal

strategy as the signal-to-noise ratio (SNR) vanishes but, as shown by Caireet al. in [8], TDMA is strictly

suboptimal when SNR is low but nonzero.

While establishing the fundamental performance limits, the above-mentioned studies have not explicitly

taken into account buffer constraints and random arrivals.In [9] and [10], Yeh and Cohen considered

multiaccess fading channels with random packet arrivals tobuffered transmitters, and characterized rate and

power allocation strategies that maximize the stable throughput of the system. In [11], the same authors

investigated rate allocation policies that minimize the average packet delay in multiaccess fading channels

again under the assumption of randomly arriving packets.

In this paper, we also investigate the performance under buffer constraints but provide a perspective

different from those of previous studies. In particular, weconsider statistical quality of service (QoS)

constraints in the form of limitations on the buffer violation probabilities, and study the achievable rate

region under such constraints in multiaccess fading channels. Note that in certain delay sensitive applications,

such as interactive or streaming video, constraints on delay bound violation probability may be required

rather than limitations on the average delay. For this analysis, we employ the concept of effective capacity

[12], which can be seen as the maximum constant arrival rate that a given time-varying service process can

support while satisfying statistical QoS guarantees. Effective capacity formulation uses the large deviations

theory and incorporates the statistical QoS constraints bycapturing the rate of decay of the buffer occupancy
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probability for large queue lengths. The analysis and application of effective capacity in various settings has

attracted much interest recently (see e.g., [13]–[16] and references therein). In [16], Liuet al. considered a

two-user cooperative multiple access fading channel and analyzed the rate region achieved with frequency-

division multiplexing when the users are operating under QoS constraints in the form of limitations on

buffer overflow probabilities. In this study, cooperation among the users is shown to significantly improve

the achievable rate region if the quality of the wireless link between the users is better than those of

the links between the users and the destination. We note thatsince the transmitters are assumed to not

know the channel conditions, power and rate adaptation policies are not studied in [16]. Additionally, since

orthogonal transmission schemes are considered, superposition coding and successive decoding strategies

are not addressed in detail.

Our contributions and major findings in this paper can be summarized as follows. We consider the scenario

in which both the transmitters and the receiver have perfectchannel side information (CSI). First, assuming

that no power control is employed in the transmission, we characterize the rate regions for both superposition

transmission strategies and TDMA. Unlike the results obtained in [1] and [7], varying the decoding order

with respect to the channel states is shown to significantly increase the achievable rate region (i.e.,throughput

region) under QoS constraints. Also, it is demonstrated that time sharing strategies among the vertex of the

rate regions can no longer achieve the boundary surface of the throughput region. Additionally, we show

that if we take the sum-rate throughput, or the sum effectivecapacity, as the performance metric, TDMA

can in certain cases even achieve better performance than superposition coding when fixed decoding order is

employed at the receiver. Next, we incorporate power control policies into the model. For this case, we first

obtain closed-form expressions for the optimal power control policies under the assumption that the decoding

order is fixed at the receiver side. When the decoding order isvariable, we identify which conditions the

optimal power control policies should satisfy. We also describe an algorithm to determine such policies.

The remainder of the paper is organized as follows. Section II describes the system model. In Section III,

effective capacity as a measure of the performance under statistical QoS constraints is briefly discussed, and

the throughput regionunder QoS constraints is defined. In Section IV, under the assumption of no power

control, we analyze the throughput region for both fixed and variable decoding order strategies. Section V
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Fig. 1. The system model.

describes the optimal power control policies. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND MAC CAPACITY REGION

As shown in Figure 1, we consider an uplink scenario whereM users with individual power and buffer

constraints (i.e., QoS constraints) communicate with a single receiver. It is assumed that the transmitters

generate data sequences which are divided into frames of durationT . These data frames are initially stored

in the buffers before they are transmitted over the wirelesschannel. The discrete-time signal at the receiver

in the ith symbol duration is given by

Y [i] =

M
∑

j=1

hj[i]Xj [i] + n[i], i = 1, 2, . . . (1)

whereM is the number of users,Xj [i] andhj [i] denote the complex-valued channel input and the fading

coefficient of thejth user, respectively. We assume that{hj[i]}’s are jointly stationary and ergodic discrete-

time processes, and we denote the magnitude-square of the fading coefficients byzj [i] = |hj[i]|
2. Above,n[i]

is a zero-mean, circularly symmetric, complex Gaussian random variable with varianceE{|n[i]|2} = N0.

The additive Gaussian noise samples{n[i]} are assumed to form an independent and identically distributed

(i.i.d.) sequence. Finally,Y [i] denotes the received signal.

The channel input of userj is subject to an average energy constraintE{|xj [i]|
2} ≤ P̄j/B for all j, where
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B is the bandwidth available in the system. This formulation indicates that userj is subject to an average

power constraint ofP̄j . With these definitions, the average transmitted signal to noise ratio of userj is

SNRj =
P̄j

N0B
. Now, if we denotePj[i] as the instantaneous transmit power in theith frame, the instantaneous

transmitted SNR level becomesµj[i] =
Pj [i]

N0B
. Then, the average power constraint is equivalent to the average

SNR constraintE{µj [i]} ≤ SNRj for userj.

A. Fixed Power and Variable Rate

First, we consider the case in which the transmitters operate at fixed power and hence do not employ any

power adaptation policies. The capacity region of this channel is given by [1], [4]:

RMAC =

{

(Ravg,1, . . . , Ravg,M) : Ravg(S) ≤ BEz

{

log2

(

1 +
∑

j∈S

SNRjzj

)}

, ∀S ⊂ {1, . . . ,M}

}

(2)

whereSNRj = P̄j/(N0B) denotes the average transmitted signal-to-noise ratio of userj, z = (z1, · · · , zM) is

a random vector comprised of the magnitude-squares of the channel coefficients. As well-known, there are

M ! vertices of the polyhedron defined in (2). The vertexRavg,π =
(

Ravg,π(1), · · · , Ravg,π(M)

)

corresponds to

a permutationπ, or the successive decoding order at the receiver, i.e., users are decoded in the order given

by π(1), · · · , π(M). This vertex is specified by the average rates

Ravg,π(k) = BEz

{

log2

(

1 +
SNRπ(k)zπ(k)

1 +
∑M

i=k+1 SNRπ(i)zπ(i)

)}

bits/s, k = 1, · · · ,M. (3)

With this characterization, we see that for the given decoding orderπ, the maximum instantaneous service

rate for userπ(k) is

Rπ(k) = B log2

(

1 +
SNRπ(k)zπ(k)

1 +
∑M

i=k+1 SNRπ(i)zπ(i)

)

bits/s k = 1, · · · ,M. (4)

Finally, we note that time sharing among theseM ! permutations of decoding orders yields any point

on the boundary surface ofRMAC [18]. As also discussed in [7], it can be easily verified that varying the

decoding order according to the channel states does not provide any improvement on the capacity region.
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B. Variable Power and Variable Rate

Now, we suppose that dynamic power and rate allocation is performed according to time-variations in

the channels. For a given set of power allocation policiesU = {µ1, · · · , µM}, whereµj ≥ 0 is the power

control policy of thejth user, the achievable rate region is described by [4]

R(U) =

{

Ravg : Ravg(S) ≤ Ez

{

B log2

(

1 +
∑

j∈S

µj(z)zj

)}

, ∀S ⊂ {1, · · · ,M}

}

. (5)

For a given decoding order at the receiver, the individual average and instantaneous rates of the users can

be obtained similar to (3) and (4), respectively, withSNR replaced byµ. The capacity region is given by

RMAC =
⋃

U∈F

R(U) (6)

whereF is the set of all feasible power control policies that satisfy the average power constraint

F ≡ {U : Ez {µj(z)} ≤ SNRj , µj ≥ 0, ∀j} (7)

whereSNRj = P̄j/(N0B) denotes the average transmitted signal-to-noise ratio of user j.

C. TDMA

For simplicity, we assume that the time division strategy isfixed prior to transmission. Letδj denote the

fraction of time allocated to userj. Note that we have
∑M

j=1 δj = 1. In each frame, each user occupies

the entire bandwidth to transmit the signal in the corresponding fraction of time. Then, the instantaneous

service rate for userj is given by

Rj(SNRj) = B log2

(

1 +
SNRj

δj
zj

)

bits/s. (8)
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III. PRELIMINARIES

A. Effective Capacity

In [12], Wu and Negi defined the effective capacity as the maximum constant arrival rate1 that a given

service process can support in order to guarantee a statistical QoS requirement specified by the QoS exponent

θ. If we defineQ as the stationary queue length, thenθ is the decay rate of the tail distribution of the queue

lengthQ:

lim
q→∞

logP (Q ≥ q)

q
= −θ. (9)

Therefore, for largeqmax, we have the following approximation for the buffer violation probability:P (Q ≥

qmax) ≈ e−θqmax. Hence, while largerθ corresponds to more strict QoS constraints, smallerθ implies looser

QoS guarantees. Similarly, ifD denotes the steady-state delay experienced in the buffer, then P (D ≥

dmax) ≈ e−θξdmax for large dmax, whereξ is determined by the arrival and service processes [14]. Since

the average arrival rate is equal to the average departure rate when the queue is in steady-state, effective

capacity can also be seen as the maximum throughput in the presence of such constraints.

The effective capacity is given by

C(θ) = − lim
t→∞

1

θt
loge E{e

−θS[t]} bits/s, (10)

where the expectation is with respect toS[t] =
∑t

i=1 s[i], which is the time-accumulated service process.

{s[i], i = 1, 2, . . .} denote the discrete-time stationary and ergodic stochastic service process.

In this paper, in order to simplify the analysis while considering general fading distributions, we assume

that the fading coefficients stay constant over the frame duration T and vary independently for each frame

and each user. In this scenario,s[i] = TR[i], whereR[i] is the instantaneous service rate in theith frame

duration[iT ; (i+ 1)T ). Then, (10) can be written as

C(θ) = −
1

θT
loge Ez{e

−θTR[i]} bits/s, (11)

1For time-varying arrival rates, effective capacity specifies the effective bandwidth of the arrival process that can besupported by the channel.
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whereR[i] is in general a function of the fading statez. (11) is obtained using the fact that instantaneous

rates{R[i]} vary independently from one frame to another . It is interesting to note that asθ → 0 and hence

QoS constraints relax, effective capacity approaches the ergodic rate, i.e.,C(θ) → Ez{R[i]}.

Throughout the rest of the paper, we use the effective capacity normalized by bandwidthB, which is

denoted by

C(θ) =
C(θ)

B
bits/s/Hz. (12)

B. Throughput Region

Suppose thatΘ = (θ1, · · · , θM) is a vector composed of the QoS constraints ofM users. LetC(Θ) =

(C1(θ1), · · · ,CM(θM)) denote the vector of the normalized effective capacities. We first have the following

characterization.

Definition 1: The effective throughput regionis described as

CMAC(Θ, SNR) =
⋃

R

s.t.E{R}∈RMAC

{

C(Θ) ≥ 0 : Cj(θj) ≤ −
1

θjTB
loge Ez

{

e−θTRj
}

}

(13)

whereR = {R1, R2, · · · , RM} represents the vector composed of the instantaneous transmission (or equiv-

alently service) rates ofM users. Note that the union is over the distributions of the vector R such that the

expected valueE{R} lies in the MAC capacity region.

Remark 1:The throughput regiongiven in Definition 1 represents the set of all vectors of constant arrival

ratesC(θ) that can be supported in the fading multiple access channel in the presence QoS constraints

specified byΘ = (θ1, · · · , θM). Since reliable communications is considered, the arrivalrates are supported

by instantaneous service rates whose expected values are inthe MAC capacity region. For instance, in the

absence of power control, the maximum instantaneous service rates for a given decoding order are given by

(4).

Using the convexity of the MAC capacity regionRMAC , we obtain the following preliminary result on

the effective throughput region defined in (13).

Theorem 1:The throughput regionCMAC(Θ, SNR) is convex.
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Proof: Let the vectorsC(Θ) andC′(Θ) belong toCMAC(Θ, SNR). Then, there exist some rate vectorsR and

R
′ for C(Θ) and C

′(Θ), respectively, such thatE{R} andE{R′} are in the MAC capacity region. By a

time sharing strategy, for anyα ∈ (0, 1), we know from the convexity of the MAC capacity region that

E{αR+ (1− α)R′} ∈ RMAC . Now, we can write

αC(Θ) + (1− α)C′(Θ)

≤ −
1

ΘTB
loge

(

E
{

e−ΘTR
})α

(

E

{

e−ΘTR
′

})1−α

(14)

= −
1

ΘTB
loge

(

E

{

(

e−ΘTαR
)

1
α

})α
(

E

{

(

e−ΘT (1−α)R′

)
1

1−α

})1−α

(15)

≤ −
1

ΘTB
loge E

{

e−ΘT (αR+(1−α)R′)
}

. (16)

Above, in (14) through (16), all operations, including the logarithm and exponential functions and ex-

pectations, are component-wise operations. For instance,the expression in (14) denotes a vector whose

components are

{

1
θjTB

loge
(

E
{

e−θjTRj
})α

(

E

{

e−θTR′

j

})1−α
}M

j=1

. Similarly, the inequalities in (14) and

(16) are component-wise inequalities. The inequality in (14) follows from the definition in (13). Moreover,

(16) follows from Hölder’s inequality and leads to the conclusion thatαC + (1 − α)C′ still lies in the

throughput region, proving the convexity result. �

We are interested in the boundary of the regionCMAC(Θ, SNR). Now thatCMAC(Θ, SNR) is convex, we can

characterize the boundary surface by considering the following optimization problem [4]:

maxλ · C(Θ) subject to:C(Θ) ∈ CMAC(Θ, SNR). (17)

for all priority vectorsλ = (λ1, · · · , λM) in R
M
+ with

∑M
j=1 λj = 1.

IV. TRANSMISSIONS WITHOUTPOWER CONTROL

In this section, we assume that the signals are transmitted at a constant power level in each frame and

hence power adaptation with respect to the fading states is not performed. Under this assumption, we initially

consider the scenario in which the receiver decodes the users in a fixed order. Subsequently, we analyze the

case of variable decoding order.
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A. Fixed Decoding Order

We first assume that the receiver decodes the users in a fixed order in each frame. Hence, the decoding

order does not change with respect to the realizations of thefading coefficients. If a single decoding order is

used in the frame, it is obvious that only the vertices of the boundary region can be achieved. We consider

a slightly more general case in which time sharing techniqueis employed in each frame among different

decoding orders. Note that the time sharing strategy is alsoindependent of the channel states and hence is

fixed in different blocks. We denote the fraction of time allocated to decoding orderπm asτm. Naturally, the

fractions of time satisfyτm ≥ 0 and
∑M !

m=1 τm = 1. Varying the values ofτm enables us to characterize the

throughput region. Under these assumptions, the effectivecapacity for each user on the boundary surface is

Cj(θj) = −
1

θjTB
loge Ez

{

e
−θjT

∑M!
m=1 τmR

π
−1
m (j)

}

(18)

whereRπ−1
m (j) represents the maximal instantaneous service rate of userj at a given decoding orderπm,

which is given by

Rπ−1
m (j) = B log2

(

1 +
SNRjzj

1 +
∑

π−1
m (i)>π−1

m (j) SNRizi

)

(19)

whereπ−1
m is the inverse trace function ofπm.

Remark 2:Note thatRπ−1
m (j) is the maximum instantaneous service rate achieved with superposition

coding and a particular decoding order. Hence, the corresponding effective capacities characterize the

throughput achieved with this strategy in the presence of QoS constraints.

Remark 3:Throughout the rest of the paper, we generally specify the effective capacity values on

the boundary surface for simplicity and brevity. Effectivecapacity regions can immediately be specified

using these boundary points. For instance, the effective capacity (or equivalently throughput) region for

superposition coding and fixed decoding order is

⋃

{τm}

{

C(Θ) ≥ 0 : Cj(θj) ≤ −
1

θjTB
loge Ez

{

e
−θjT

∑M!
m=1 τmR

π
−1
m (j)

}

}

(20)

where the union is over different time allocation strategies.
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Next, for comparison, we consider the TDMA case in which we also have similar time allocation strategies

but only one user transmits in its specific fraction of time. We first have the following definition.

Definition 2: The throughput regionfor TDMA can be seen as the achievable vectors of arrival rates with

each component bounded by the effective capacity obtained when the instantaneous service rate is given by

(8). More specifically, the maximum effective capacity for user j is

C
TD
j (θj) = −

1

θjTB
loge E

{

e
−δjθjTB log2

(

1+
SNRj

δj
zj

)
}

(21)

whereδj is the fraction of time allocated to userj, and0 ≤ δj ≤ 1.

An immediate result can be obtained as follows:

Theorem 2:The throughput regionfor TDMA is convex.

Proof: Note that the points on the boundary surface is given in (21).Consider the functionf(δ) =

−δθTB log2
(

1 + SNR
δ
z
)

. It can be easily verified thatf(δ) is a convex function inδ. Then,ef(δ) is a log-

convex function. Since weighted non-negative sum preserves the log-convexity [19, Section 3.5], we know

thatEz{e
f(δ)} is log-convex. Then− 1

θTB
loge E{e

−δθTB log2

(

1+SNR
δ

z
)

} is a concave function inδ. Hence, we

immediately see that thethroughput regionfor TDMA is convex. �

The optimal time allocation policy that maximizes the weighted sum can be obtained through the opti-

mization problem

max
{δj}

M
∑

j=1

−
λj

θjTB
loge E

{

e
−δjθjTB log2

(

1+
SNRj

δj
zj

)
}

, s.t.
M
∑

j=1

δj = 1, δj ≥ 0. (22)

The objective function in the above problem is concave, and we can use the Lagrangian maximization

approach. Taking the derivative of the Lagrangian functionwith respect toδj, we obtain the following

optimality condition for each user:

∂J

∂δj
= λj

E

{

e
−δjθjTB log2

(

1+
SNRj

δj
zj

)
(

log2(1 +
SNRj

δj
zj)−

SNRj
δj

zj

1+
SNRj

δj
zj

log2 e

)}

E

{

e
−δjθjTB log2

(

1+
SNRj

δj
zj

)
} − κ = 0 (23)
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whereκ is the Lagrange multiplier whose value is chosen to satisfy the constraint
∑M

j=1 δj = 1. If the optimal

value ofδj turns out to be negative, then the optimal value ofδj should be 0. Whenλ1 = λ2 = · · · = λM ,

the obtained values of{δj} are the ones that achieve the maximal sum-rate throughput, i.e., the sum of

the effective capacities of the users. Although obtaining closed-form solutions is unlikely, the maximization

problem in (22) can be easily solved numerically using convex optimization tools. Numerical results are

provided in Section IV-C.

B. Variable Decoding Order

We now study the case in which the receiver varies the decoding order with respect to the fading states

z = (z1, . . . , zM). More specifically, we assume that the vector spaceR
M
+ of the possible values forz is

partitioned intoM ! disjoint regions{Zm}
M !
m=1 with respect to decoding orders{πm}

M !
m=1. Hence, each region

corresponds to a unique decoding order. For instance, whenz ∈ Z1, the receiver decodes the information

in the orderπ1. Now, for a given partition{Zm}
M !
m=1, the maximum effective capacity that can be achieved

by the jth user is

Cj(θj) = −
1

θjTB
loge Ez

{

e−θjTRj
}

(24)

= −
1

θjTB
loge

(

M !
∑

m=1

∫

z∈Zm

e
−θjTR

π
−1
m (j)pz(z)dz

)

for j = 1, 2, . . . ,M (25)

wherepz is the distribution function ofz andRπ−1
m (j) is given in (19). Akin to the optimization in (17), the

optimal partition{Zm}
M !
m=1 that maximizes the weighted sum of the effective capacitiescan be identified by

solving the following optimization problem:

max
{Zm}

λ · C(Θ) = max
{Zm}

M
∑

j=1

λjCj(θj) (26)

= max
{Zm}

M
∑

j=1

−
λj

θjTB
loge

(

M !
∑

m=1

∫

z∈Zm

e
−θjTR

π
−1
m (j)pz(z)dz

)

. (27)

Note that the optimal partition depends on the weight vectorλ = (λ1, . . . , λM). By solving a sequence

of optimization problems for different values ofλ, we can trace the boundary of the effective throughput
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region.

Considering the expression for effective capacity and the optimization problem in (27), we note that finding

closed-form analytical expressions for the optimal partitions of the channel state space seems intractable for

a general scenario. With this in mind, we consider a simplified case in which all users have the same QoS

constraint described byθ. This case arises, for instance, if users do not have priorities over others in terms

of buffer limitations or delay constraints.

1) Two-user MAC:First, we consider the two-user MAC case and suppose that thetwo users have the

same QoS exponentθ. Similar to the discussion in [17], finding an optimal decoding order function can be

reduced to finding a functionz2 = g(z1) in the state space such that users are decoded in the order (1,2) if

z2 < g(z1) and users are decoded in the order (2,1) ifz2 > g(z1). Hence, the functiong partitions the space

of the possible values ofz = (z1, z2). With this, the optimization problem in (26) becomes

max
g

λ1C1(θ, g(z1)) + (1− λ1)C2(θ, g(z1)) (28)

whereC1(θ, g(z1)) andC2(θ, g(z1)) are expressed as

C1(θ, g(z1)) = −
1

θTB
loge

(

∫ ∞

0

∫ ∞

g(z1)

e−θTB log2(1+SNR1z1)pz(z1, z2)dz2dz1

+

∫ ∞

0

∫ g(z1)

0

e
−θTB log2

(

1+
SNR1z1

1+SNR2z2

)

pz(z1, z2)dz2dz1

)

(29)

C2(θ, g(z1)) = −
1

θTB
loge

(

∫ ∞

0

∫ g(z1)

0

e−θTB log2(1+SNR2z2)pz(z1, z2)dz2dz1

+

∫ ∞

0

∫ ∞

g(z1)

e
−θTB log2

(

1+
SNR2z2

1+SNR1z1

)

pz(z1, z2)dz2dz1

)

. (30)

Note that the maximization in (28) is over the choice of the function g(z1). Implicitly, g(z1) should always

be larger than zero as implicitly implied in (29) and (30). Incases in which this condition is not satisfied,

we need to find a functionz1 = f(z2) instead, as will be specified below.

Theorem 3:The optimal decoding order as a function of the fading statez = (z1, z2) for a specific

13



common QoS constraintθ in the two-user case is characterized by the following functions:

g(z1) =
(1 + SNR1z1)K

1
β − 1

SNR2
, if K ∈ [1,∞) and (31)

f(z2) =
(1 + SNR2z2)K

− 1
β − 1

SNR1
, if K ∈ [0, 1) (32)

whereβ = θTB
loge 2

andK ∈ [0,∞) is a constant that depends on the weightλ1 in (28) and the values of the

double integrals in (29) and (30). Note that the function used to partition the state space is eitherg or f

depending on the value ofK.

Proof: Suppose that the optimal decoding order is specified by the function z2 = g(z1). We define

J (ĝ(z1)) = λ1C1(θ, ĝ(z1)) + (1− λ1)C2(θ, ĝ(z1)) (33)

whereĝ(z1) = g(z1)+sη(z1). g(z1) is the optimal function,s is any constant, andη(z1) represents arbitrary

perturbation. A necessary condition that needs to be satisfied is [20]

d

ds
(J (ĝ(z1)))

∣

∣

∣

∣

s=0

= 0. (34)

We define the following:

φ1 =

∫ ∞

0

∫ ∞

g(z1)

e−θTB log2(1+SNR1z1)pz(z1, z2)dz2dz1 +

∫ ∞

0

∫ g(z1)

0

e
−θTB log2

(

1+
SNR1z1

1+SNR2z2

)

pz(z1, z2)dz2dz1

(35)

φ2 =

∫ ∞

0

∫ g(z1)

0

e−θTB log2(1+SNR2z2)pz(z1, z2)dz2dz1 +

∫ ∞

0

∫ ∞

g(z1)

e
−θTB log2

(

1+
SNR2z2

1+SNR1z1

)

pz(z1, z2)dz2dz1

(36)

14



By noting thatdĝ(z1)
ds

= η(z1), and from (34)–(36), we can derive

∫ ∞

0

(

−
λ1

θTBφ1

(

(

1 +
SNR1z1

1 + SNR2g(z1)

)−β

− (1 + SNR1z1)
−β

)

−
1− λ1

θTBφ2

(

(1 + SNR2g(z1))
−β −

(

1 +
SNR2g(z1)

1 + SNR1z1

)−β
))

· pz(z1, g(z1))η(z1)dz1 = 0 (37)

Since the above equation holds for anyη(z1), it follows that

−
λ1

θTBφ1

(

(

1 +
SNR1z1

1 + SNR2g(z1)

)−β

− (1 + SNR1z1)
−β

)

−
1− λ1

θTBφ2

(

(1 + SNR2g(z1))
−β −

(

1 +
SNR2g(z1)

1 + SNR1z1

)−β
)

= 0 (38)

which after rearranging and definingK as follows yields

(

1 + SNR1z1
1+SNR2g(z1)

)−β

− (1 + SNR1z1)
−β

(

1 + SNR2g(z1)
1+SNR1z1

)−β

− (1 + SNR2g(z1))
−β

=
(1− λ1)φ1

λ1φ2
= K. (39)

Obviously,K ≥ 0. Notice that after a simple computation, (39) becomes

(

1 + SNR1z1
1 + SNR2g(z1)

)−β

= K (40)

which leads to (31) after rearranging. Note here that ifK < 1, g(z1) < 0 for z1 < K
−

1
β −1

SNR1
. Then, the

expressions in (29) and (30) are not well-defined. In this case, we denote the optimal function asz1 = f(z2)

instead. Following a similar approach as shown in (29) through (40) yields (32). �

Remark 4:Above, we have assumed that the users are decoded in the order(1, 2) when z2 < g(z1) (or

z1 > f(z2) if K < 1) and decoded in the order(2, 1) when z2 > g(z1) (or z1 < f(z2) if K < 1). It is

interesting note that if we switch the decoding orders in theregions (i.e., if users are decoded in the order

(1, 2) when z2 > g(z1)), exactly the same partition functions as in (31) and (32) are obtained due to the

symmetric nature of the problem. Hence, the structure of theoptimal functions that partition the space of
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channel states(z1, z2) into two non-overlapping regions do not depend on which decoding order is used in

which region.

Remark 5:Although the partition does not depend on the choice of the decoding orders in different

regions, the performance definitely does. Our numerical computations show that the order selected originally

at the beginning of our discussion (i.e., using the decodingorder (1,2) whenz2 < g(z1) or z1 > f(z2))

provides a larger throughput region than otherwise. This observation leads to an interesting conclusion. Note

that partition functionsg(z1) in (31) andf(z2) in (32) are linear functions ofz1 andz2, respectively. When

K ≥ 1 and

z2 < g(z1) =
(1 + SNR1z1)K

1
β − 1

SNR2
, (41)

user 1 is decoded first and user 2 is decoded last. Hence, for instance, whenz1 is much larger thanz2 and

user 1 is enjoying much better channel conditions, user 1 is decoded first in the presence of interference

caused by user 2’s received signal. User 2, who has less favorable conditions, is decoded subsequently

without experiencing any interference. Note that such an operation is the opposite of an opportunistic

behavior and leads to a more fair treatment of users. This is rather insightful since the users are assumed to

operate under similar QoS limitations (i.e., they have the same QoS exponentθ). Note that if the decoding

orders are switched, users having favorable channel conditions will be decoded last and hence experience

no interference. In such a case, there is a bias towards userswith better channel conditions, which leads to

inefficient performance when both users operate under similar buffer constraints.

Our observations above have led us to propose the following suboptimal decoding order strategy for a

scenario with more than 2 users.

2) Suboptimal Decoding Order:In this section, we consider an arbitrary number of users. When all users

have the same QoS constraint specified byθ, we propose a suboptimal decoding order given by

λπ(1)

zπ(1)
≤

λπ(2)

zπ(2)
· · · ≤

λπ(M)

zπ(M)

, (42)
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due to the observation that the user with the largest weightλ should be decoded last, and the fact that

the higher the value ofz, the less power is needed to achieve a specific effective capacity. Considering

a two-user example, we, with this choice of the decoding order, can express the points on the boundary

surface as

C1(θ) = −
1

θTB
loge

(

∫ ∞

0

∫ ∞

λ2z1
λ1

e−θTB log2(1+SNR1z1)pz(z1, z2)dz2dz1

+

∫ ∞

0

∫

λ2z1
λ1

0

e
−θTB log2

(

1+
SNR1z1

1+SNR2z2

)

pz(z1, z2)dz2dz1

)

(43)

C2(θ) = −
1

θTB
loge

(

∫ ∞

0

∫

λ2z1
λ1

0

e−θTB log2(1+SNR2z2)pz(z1, z2)dz2dz1

+

∫ ∞

0

∫ ∞

λ2z1
λ1

e
−θTB log2

(

1+
SNR2z2

1+SNR1z1

)

pz(z1, z2)dz2dz1

)

. (44)

C. Numerical Results

We have performed numerical analysis for independent Rayleigh fading channels withE{z} = 1. In Fig.

2, the throughput region of a two-user MAC is plotted for superposition strategies with different decoding

ordering methods at the receiver, and also for TDMA. In the figure, the solid and dotted curves provide the

throughput regions achieved by employing optimal and suboptimal variable decoding orders, respectively,

at the receiver. Note that in the optimal strategy describedby the results of Theorem 3, the receiver chooses

the decoding order according to the channel states such thatthe weighted sum of effective capacities, i.e.,

summation oflog-moment generating functions, is maximized. We see that thesuboptimal strategy described

in Section IV-B.2 can achieve almost the same rate region as the optimal strategy, indicating the efficiency of

this approach. In the same figure, dot-dashed curve providesthe throughput region achieved by employing a

fixed decoding order for all channel states. Here, we observethat the strategy of using a fixed decoding order

at the receiver is strictly suboptimal even when the users are operating under similar buffer constraints, and

varying the decoding order with the respect to the channel gains can significantly increase the achievable

region. Finally, the throughput region of TDMA is given by the dashed curve. We immediately note that
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Fig. 2. The throughput region of two-user MAC case.SNR1 = SNR2 = 0 dB. θ1 = θ2 = 0.01. The solid, dotted, dot-dashed, and dashed lines
represent the regions achieved with optimal variable decoding order, suboptimal variable decoding order, fixed decoding with time sharing, and
the TDMA respectively.

TDMA can achieve some points outside of the throughput region attained with fixed decoding order at the

receiver side. These numerical results show that markedly different strategies may need to be employed

when systems are operating under buffer constraints. In theabsence of such constraints, the performance

is captured by the ergodic capacity region which cannot be improved by varying the decoding order with

respect to the channel states [7]. Hence, using a fixed decoding order at the receiver is an optimal strategy

when there are no QoS constraints. Moreover, TDMA is always suboptimal with respect to the superposition

schemes regardless of the decoding-order strategy [8].

In Fig. 3, sum-rate throughput, i.e. the sum of the effectivecapacities, is plotted as a function of the

QoS exponentθ. Here, we note that asθ increases, the curves of different strategies converge. Inparticular,

TDMA performance approaches that of the superposition coding with variable decoding. Hence, orthogonal

transmission strategies start being efficient in terms of attaining the sum rate under stringent buffer constraints.

Note that the sum-rate throughput generally decreases withincreasingθ, and we conclude from the figure that

this diminished throughput can be captured by having each user concentrate its power in a certain fraction
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Fig. 3. The sum-rate throughput as a function ofθ. SNR1 = 10 dB; SNR2 = 0 dB.

of time in the TDMA scheme. We also see that for approximatelyθ > 0.006, TDMA starts outperforming

superposition transmission when a fixed decoding order is employed at the receiver. Such an observation is

also noted in the discussion of Fig. 2. In contrast, we observe that asθ approaches 0 and hence the QoS

constraints relax, TDMA is the strategy with the worst performance. Note that when the performance metric

is the ergodic capacity and hence no queueing constraints are considered, this suboptimality of TDMA with

respect to superposition strategies is well-known (see e.g., [8]).

We are also interested in the values of parameterK that appear in the functions in Theorem 3 . In Fig. 4,

we plotK as a function ofλ1

λ2
= λ1

1−λ1
. It is interesting to note thatlogeK seems to be linear with respect

to loge

(

λ1

1−λ1

)

.

V. TRANSMISSIONS WITHPOWER CONTROL

In this section, we analyze the case in which the transmitteremploys power control policies in the

transmission. Similarly as before, we initially investigate the scenario in which the decoding order is fixed

for all channel states. Subsequently, we study variable decoding order schemes. Note that varying the
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Fig. 4. K vs. λ1

λ2

. SNR1 = 10dB. SNR2 = 0 dB. θ1 = θ2 = 0.01.

decoding order with respect to the channel states, according to the analysis in Section IV, has the potential

to significantly affect the achievable rates.

A. Power Control Policy for Fixed Decoding Order in All Channel States

Here, we characterize the optimal power allocation policies when the decoding order is fixed for all

channel states. Due to the convexity ofCMAC , there exist Lagrange multipliersκ = (κ1, . . . , κM) ∈ R
M
+ such

thatC∗(Θ) on the boundary surface can be obtained by solving the optimization problem

max
µ

λ · C(Θ)− κ · E{µ} (45)

whereµ = (µ1, . . . , µM) represents the collection of the power control policies of all users,λ = (λ1, . . . , λM)

is the weight vector, andC(Θ) = (C1(θ1), . . . ,CM(θM )) is the vector of maximum effective capacities of

the users for given decoding order and power allocation policies. Note thatµj =
Pj

N0B
(defined in Section II

as the instantaneous transmitted SNR level) describes the power control policy of thejth user . For a given
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permutationπ and set of power allocationsµ, Cj(θj) is given by

Cj(θj) = −
1

θjTB
loge E

{

e
−θjTB log2

(

1+
µjzj

1+
∑

π−1(i)>π−1(j)
µizi

)}

. (46)

Now, the optimization problem (45) can rewritten as

max
µ

M
∑

j=1

−λj

1

θjTB
loge E

{

e
−θjTB log2

(

1+
µjzj

1+
∑

π−1(i)>π−1(j)
µizi

)}

−

M
∑

j=1

κjE{µj}. (47)

The following result identifies the optimal power adaptation policies that solve the above optimization

problem.

Theorem 4:Assume that the receiver, for all channel states, decodes the users in a fixed order specified

by the permutationπ. Then, the optimal power allocation allocation policies that solve the optimization

problem in (47) are given by

µj =

(

(

1 +
∑

π−1(i)>π−1(j) µizi

)

βj
βj+1

α
1

βj+1

j z

βj
βj+1

j

−
1 +

∑

π−1(i)>π−1(j) µizi

zj

)+

for j = 1, 2, . . . ,M (48)

whereβj =
θjTB

loge 2
is the normalized QoS exponent,(x)+ = max{x, 0}, and(α1, · · · , αM) are constants that

are introduced to satisfy the average power constraints.

Proof: Note that with a fixed decoding order, the userπ(M) sees no interference from the other users, and

hence the derivative of (47) with respect toµπ(M) will only be related to the effective capacity formulation

of userπ(M). Therefore, we can solve an equivalent problem by maximizing Cπ(M) instead. After we derive

µπ(M), the derivative of (47) with respect toµπ(M−1) will only be related to the effective capacity formulation

of userπ(M − 1). By repeated application of this procedure, for givenλ, (47) can be further decomposed

into the followingM sequential optimization problems

max
µj

−λj

1

θjTB
loge E

{

e
−θjTB log2

(

1+
µjzj

1+
∑

π−1(i)>π−1(j)
µizi

)}

− κjE{µj} j ∈ {1, · · · ,M} (49)
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in the inverse order ofπ. Similarly as in [13], due to the monotonicity of the logarithm, solving the above

M optimizations is the same as solving

min
µj

E

{

e
−θjTB log2

(

1+
µjzj

1+
∑

π−1(i)>π−1(j)
µizi

)}

+ κjE{µj} j ∈ {1, · · · ,M}. (50)

Differentiating the above Lagrangian with respect toµj and setting the derivative to zero yield the intended

result in (48). �

Remark 6:Exploiting the result in (48), we can find that instead of adapting the power according to only

its channel state as in [13] where a single-user scenario is studied, the user adapts the power with respect

to its channel state normalized by the observed interference and the noise.

Remark 7:To give an explicit idea of the power control policy, we consider a two-user example in which

the decoding order is(2, 1). For this case, we can easily find that

µ1 =















1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1

z1 > α1,

0 otherwise

, (51)

and

µ2 =



































1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2

z1 ≤ α1 andz2 > α2,

(

z1
α1

)

β2
(β1+1)(β2+1)

α

1
β2+1
2 z

β2
β2+1
2

−

(

z1
α1

) 1
β1+1

z2
z1 > α1 and z2

α2
>
(

z1
α1

)
1

β1+1

0 otherwise

, (52)

whereα1 andα2 are chosen to satisfy the average power constraints of the two users.

B. Power Control Policy for Variable Decoding Order

In this section, we study the optimal power allocation policy when the receiver varies the decoding order

with respect to the channel fading states. We mainly concentrate on the two-user scenario. The key idea

we introduce here is to consider the power allocation policyof each userj for each regionZm (in which

decoding is performed according to permutationπm) while requiring the average power constraint to be
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satisfied by the joint power over all regions{Zm}.

For the two-user case, due to the convexity of the throughputregion, there exist Lagrange multipliers

κ = (κ1, κ2) ∈ R
2
+ such thatC∗(Θ) on the boundary surface can be obtained by solving the optimization

problem

max
µ

λ1C1(µ,Z) + λ2C2(µ,Z)− κ1E{µ1} − κ2E{µ2} (53)

where µ = (µ1, µ2) are the power control policies,(λ1, λ2) are the weights in the weighted sum, and

Z = (Z1,Z2) denotes a particular partition of the space of the positive values ofz = (z1, z2)
2. Hence,

power control policies that solve (53) are the optimal ones for a given partition. In the following, since we

assumeZ is given, the notationCj(µ,Z) is replaced byCj(µ) for brevity.

Recalling the discussion in Section IV-B, we can express theeffective capacities of the two users as in

(29) and (30) by only replacingSNRj with µj(z) in these expressions. The Lagrangian (which is the objective

function in (53)) can now be expressed as

J = −
λ1

β1 loge 2
loge

(

∫

z∈Z1

(

1 +
µ1z1

1 + µ2z2

)−β1

pz(z1, z2)dz1dz2 +

∫

z∈Z2

(1 + µ1z1)
−β1 pz(z1, z2)dz1dz2

)

−
λ2

β2 loge 2
loge

(

∫

z∈Z2

(

1 +
µ2z2

1 + µ1z1

)−β2

pz(z1, z2)dz1dz2 +

∫

z∈Z1

(1 + µ2z2)
−β2 pz(z1, z2)dz1dz2

)

− κ1(Ez∈Z1{µ1}+ Ez∈Z2{µ1})− κ2(Ez∈Z1{µ2}+ Ez∈Z2{µ2}). (54)

Above, the expressions in regionsZ1 andZ2 are written separately due to the reason that possibly different

power allocation strategies are employed in different regions. We define

φ1 =

∫

z∈Z1

(

1 +
µ1z1

1 + µ2z2

)−β1

pz(z1, z2)dz1dz2 +

∫

z∈Z2

(1 + µ1z1)
−β1 pz(z1, z2)dz1dz2, (55)

2Similarly as discussed in Section IV-B, different decodingorders are employed inZ1 andZ2.
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and

φ2 =

∫

z∈Z2

(

1 +
µ2z2

1 + µ1z1

)−β2

pz(z1, z2)dz1dz2 +

∫

z∈Z1

(1 + µ2z2)
−β2 pz(z1, z2)dz1dz2. (56)

Note that the values of these functions are obtained for given power control policiesµ = (µ1, µ2) and given

partitionZ = (Z1,Z2).

Now, we consider the power control policy of each user in eachdecoding order regionZi, i = 1, 2. By

differentiating the Lagrangian, we can find the following optimality conditions:

1)
λ1

φ1 loge 2
(1 + µ1z1)

−β1−1z1 −
λ2

φ2 loge 2

(

1 +
µ2z2

1 + µ1z1

)−β2−1
µ2z2z1

(1 + µ1z1)2
− κ1 = 0 ∀z ∈ Z1 (57)

2)
λ2

φ2 loge 2

(

1 +
µ2z2

1 + µ1z1

)−β2−1
z2

1 + µ1z1
− κ2 = 0 ∀z ∈ Z1 (58)

3)
λ1

φ1 loge 2

(

1 +
µ1z1

1 + µ2z2

)−β1−1
z1

1 + µ2z2
− κ1 = 0 ∀z ∈ Z2 (59)

4) −
λ1

φ1 loge 2

(

1 +
µ1z1

1 + µ2z2

)−β1−1
µ1z1z2

(1 + µ2z2)2
+

λ2

φ2 loge 2
(1 + µ2z2)

−β2−1z2 − κ2 = 0 ∀z ∈ Z2 (60)

where (57) and (58) are obtained by differentiating the Lagrangian with respect toµ1 andµ2, respectively,

overz ∈ Z1. Similarly, (59) and (60) are obtained by differentiating with respect toµ1 andµ2, respectively,

over z ∈ Z2. Due to the convexity, wheneverµi, i = 1, 2 is negative valued, we setµi = 0, i = 1, 2.

Although obtaining closed form expressions from the optimality conditions seems to be unlikely, we can

gather several insights on the power control policies by analyzing the equations (57)–(60).

Let us first defineα1 =
κ1φ1 loge 2

λ1
, α2 =

κ2φ2 loge 2
λ2

, α12 =
κ2φ1 loge 2

λ1
, andα21 =

κ1φ2 loge 2
λ2

, whereκ1, κ2 are

the Lagrange multipliers whose values are chosen to satisfythe average power constraint (7) with equality,

and φ1 and φ2 are defined in (55) and (56). Now, consider (57) and (58). The channel state lies inZ1.

Through a simple computation using (58), we can derive

µ2 =
(1 + µ1z1)

β2
β2+1

α
1

β2+1

2 z
β2

β2+1

2

−
1 + µ1z1

z2
(61)
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which tells us thatµ2 = 0 if

z2
1 + µ1z1

< α2. (62)

If µ2 = 0, we have from (57) that

λ1

φ1 loge 2
(1 + µ1z1)

−β1−1z1 − κ1 = 0 (63)

which gives us that

µ1 =
1

α
1

β1+1

1 z
β1

β1+1

1

−
1

z1
(64)

which implies thatµ1 = 0 if

z1 < α1. (65)

Now, if we substitute (61) into (57), we obtain the followingadditional condition for havingµ1 = 0: the

equation

z1
α1

(1 + µ1z1)
−(β1+1) −

z1α2

z2α12

(

(

z2
α2(1 + µ1z1)

)
1

β2+1

− 1

)

− 1 = 0 (66)

has a solution that returns a negative or zero value forµ1. The above discussion enables us to characterize

the regions in which one user transmits while the other one issilent. We also have a closed-form formula

in (64) for the optimal power adaptation policy when only oneuser transmits. Indeed, this is the optimal

power control policy derived in [13] for a single-user system. When both users transmit, the power control

policies (µ1, µ2) are given directly by the non-negative solution of (57) and (58).

Note that the conditions and characterizations provided in(61)–(66) pertain to the case in which the

channel state is in regionZ1. Following a similar analysis of (59) and (60), we can obtainsimilar results

for the cases in which the channel state is inZ2.

For a given partition{Z1,Z2}, the optimal power control policy can be determined numerically using the

optimality conditions in (57) – (60). Additionally, the equations and inequalities in (61) through (66) can be

used to guide the numerical algorithms as they specify underwhich conditions at most one user transmits,
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and provide the optimal power control policy in such cases. However, there is one difficulty. (61) – (66)

depend onα1, α2, α12, andα21 which in turn depend onφ1, φ2, κ1, andκ2 which are in general functions of

the power control policies. In such a situation, the following iterative procedure can be employed in search

of the solution . We can first choose certain values forφ1, φ2, κ1, andκ2, and then determine the optimal

power allocation policies for these selected values. Subsequently, we can check whether the obtained policy

satisfies the average power constraint with equality. This enables us to determine if the selectedκ1 andκ2

values are accurate. We can also computeφ1 andφ2 using the obtained policy and see if they agree with

the initial values ofφ1 andφ2. If there is no sufficient match or if the power constraint is not satisfied with

equality, then we update the values ofφ1, φ2, κ1, andκ2, and reiterate the search of the optimal policy.

With this insight, we propose the following algorithm that can be used to determine the optimal power

allocated to each channel state:
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POWER CONTROL ALGORITHM

1 Givenλ1, λ2, the partitionZ, initialize φ1, φ2;

2 Initialize κ1 andκ2;

3 Determineα1 =
κ1φ1 loge 2

λ1
, α2 =

κ2φ2 loge 2
λ2

,α12 =
κ2φ1 loge 2

λ1
, α21 =

κ1φ2 loge 2
λ2

;

4 if z ∈ Z1

5 then if z2 > α2

6 then µ2 =
1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2

;

7 if z1
α1

(1 + µ1z1)
−(β1+1) − z1α2

z2α21

(

(

z2
α2(1+µ1z1)

)
1

β2+1
− 1

)

− 1 = 0 returns nonpositiveµ1

8 then µ1 = 0;

9 else if z2
α2

<
(

z1
α1

)
1

β1+1

10 then µ2 = 0, µ1 =

[

1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1

]+

;

11 else Computeµ1, µ2 from (57) and (58);

12 else µ2 = 0, µ1 =

[

1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1

]+

;

13 if z ∈ Z2

14 then if z1 > α1

15 then µ1 =
1

α

1
β1+1
1 z

β1
β1+1
1

− 1
z1

;

16 if z2
α2

(1 + µ2z2)
−(β2+1) − z2α1

z1α21

(

(

z1
α1(1+µ2z2)

)
1

β1+1
− 1

)

− 1 = 0 returns nonpositiveµ2

17 then µ2 = 0;

18 else if z1
α1

<
(

z2
α2

)
1

β2+1

19 then µ1 = 0, µ2 =

[

1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2

]+

;

20 else Computeµ1, µ2 from (59) and (60);

21 else µ1 = 0, µ2 =

[

1

α

1
β2+1
2 z

β2
β2+1
2

− 1
z2

]+

;

22 Check if the obtained power control policiesµ1 andµ2 satisfy the power constraint with equality;

23 if not satisfied with equality

24 then update the values ofκ1 andκ2 and return to Step 3;

25 else move to Step 26;

26 Evaluateφ1 andφ2 with the obtained power control policies;

27 Check if the new values ofφ1 andφ2 agree (up to a certain margin) with those used in Step 3;

28 if do not agree

29 then update the values ofφ1 andφ2 and return to Step 2;

30 else declare the obtained power allocation policiesµ1 andµ2 as the optimal ones.
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Note that we above have not specified how the values ofκ1, κ2, φ1, andφ2 are updated for each iteration

in order to keep the algorithm generic. In our numerical computations, we have updatedκ1 andκ2 using the

bisection search algorithm. The values ofφ1 andφ2 are updated in Step 29 of the algorithm by assigning

them the values evaluated in Step 26. Hence, the most recent values are carried over to the new iteration.

In Fig. 5, we plot the optimal power allocation policiesµ1 andµ2 as functions of channel fading states

z1 and z2. We assume thatθ1 = θ2 = 0.01, SNR1 = SNR2 = 0 dB, andλ1 = λ2 = 0.5. We consider the

partition specified by the suboptimal decoding order given in (42). Hence, since we haveλ1 = λ2 = 0.5,

decoding orders (1,2) and (2,1) are used whenz2 < z1 andz2 > z1, respectively. Under these assumptions,

we computed the optimal values asκ∗
1 = 0.0470, κ∗

2 = 0.0462, φ∗
1 = 0.5550, andφ∗

2 = 0.5538. In the figure,

we observe that each user, not surprisingly, allocates mostof its power to the regions in which it is decoded

last and hence does not experience interference. However, due to the introduction of QoS constraints, we also

note that each user also allocates certain power to the casesin which it is decoded first. This is performed

in order to continue transmission and avoid buffer overflows.

So far, we have assumed that the partitionZ is given. The optimal partitionZ that maximizes the weighted

sum-rate can be derived through the following optimizationsimilarly as in [21]:

C
∗ = sup

Z
λ1C1(µ,Z) + λ2C2(µ,Z) (67)

whereC∗ is the optimal weighted sum value for given pair of(λ1, λ2), andµ = (µ1, µ2) are the optimal

power control policies for givenZ.

VI. CONCLUSION

In this paper, we have studied the achievable throughput regions in multiple access fading channels

when users operate under QoS constraints. We have assumed that both the transmitters and the receiver

have perfect CSI. We have employed the effective capacity asa measure of the throughput under buffer

constraints. We have defined the effective capacity region and shown its convexity. We have considered

different transmission and reception scenarios e.g, superposition coding, different strategies for the decoding

order, and TDMA. Under the assumption that no power control is employed by the transmitters, we have
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Fig. 5. The optimal power control policiesµ1 andµ1 of users 1 and 2, respectively, as a function of(z1, z2). λ1 = 0.5, λ2 = 0.5.
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analyzed the performances of fixed and variable decoding order strategies. We have characterized the

throughput region and determined the points on its boundaryfor fixed decoding order. For the case of

two users with the same QoS constraints, we have derived the optimal strategy for varying the decoding

order. Varying the decoding order is shown to significantly increase the achievable rate region. We have

also proposed a simpler suboptimal decoding rule which can almost perfectly match the optimal throughput

region. We have also studied the performance of orthogonal transmission strategies by considering TDMA. In

the numerical results, we have demonstrated that TDMA can perform better than superposition coding with

fixed decoding order for certain QoS constraints. More specifically, we have noted that TDMA can support

arrival rate pairs that are strictly outside the region achieved when fixed decoding order is employed at the

receiver. We have also observed that the performance of TDMAapproaches that of the optimal strategy of

superposition coding with variable decoding order asθ increases (i.e., as the QoS constraints become more

stringent). In the second part of the paper, we have incorporated power adaptation strategies into the model.

For a given fixed decoding order at the receiver, we have identified the optimal power control policies.

For cases in which a variable decoding order strategy is adopted by the transmitter, we have obtained the

conditions that the optimal strategies should satisfy and described an algorithm to achieve these optimal

schemes.
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