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Transmission Strategies in Multiple Access Fading

Channels with Statistical QoS Constraints
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Abstract

Effective capacity, which provides the maximum constamivar rate that a given service process can support
while satisfying statistical delay constraints, is anatyZn a multiuser scenario. In particular, the effectiveawdty
region of fading multiple access channels (MAC) in the pneseof quality of service (QoS) constraints is studied.
Perfect channel side information (CSI) is assumed to bdadlaiat both the transmitters and the receiver. It is iljtia
assumed the transmitters send the information at a fixed lewel and hence do not employ power control policies.
Under this assumption, the performance achieved by supiigro coding with successive decoding techniques is
investigated. It is shown that varying the decoding ordehwéspect to the channel states can significantly increase
the achievable throughput region. In the two-user casegpiienal decoding strategy is determined for the scenario in
which the users have the same QoS constraints. The perfoenasiorthogonal transmission strategies is also analyzed.
It is shown that for certain QoS constraints, time-divisionltiple-access (TDMA) can achieve better performance
than superposition coding if fixed successive decodingraslased at the receiver side.

In the subsequent analysis, power control policies arerpurated into the transmission strategies. The optimal
power allocation policies for any fixed decoding order ovirchannel states are identified. For a given variable
decoding order strategy, the conditions that the optimalgsocontrol policies must satisfy are determined, and an

algorithm that can be used to compute these optimal polisigsovided.

. INTRODUCTION

In wireless networks, the design and analysis of efficiearidmissions strategies have been of significant

interest for many years. In particular, fading multiple @&= channels (MAC) have been extensively studied
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from an information-theoretic point of view [1]-[8]. Forstance, Tse and Hanly [4] have characterized the
capacity region of and determined the optimal resourceaition policies for multiple access fading channels.
They have shown that the boundary surface points are in geaehieved by superposition coding and
successive decoding techniques, and obtaining each bgupdimt can be associated with an optimization
problem in which a weighted sum rate is maximized. Vishawama al. [7] derived the explicit optimal
power and rate allocation schemes (similamtaterfilling) by considering that the users are successively
decoded in the same order for all channel states. For theegocapacity region, the unique decoding
order was shown to be the reverse order of the priority weigtitile superposition coding and successive
decoding strategies provide superior performance, tivisidn multiple access (TDMA) may in certain
cases be preferred due to its simplicity. Note that the perdoce of TDMA approaches that of the optimal
strategy as the signal-to-noise ratio (SNR) vanishes Bushawn by Caireet al. in [8], TDMA is strictly
suboptimal when SNR is low but nonzero.

While establishing the fundamental performance limitg #bove-mentioned studies have not explicitly
taken into account buffer constraints and random arrivas[9] and [10], Yeh and Cohen considered
multiaccess fading channels with random packet arrivalsutéered transmitters, and characterized rate and
power allocation strategies that maximize the stable gjnput of the system. In [11], the same authors
investigated rate allocation policies that minimize therage packet delay in multiaccess fading channels
again under the assumption of randomly arriving packets.

In this paper, we also investigate the performance undeetbgbnstraints but provide a perspective
different from those of previous studies. In particular, w@nsider statistical quality of service (QoS)
constraints in the form of limitations on the buffer viotati probabilities, and study the achievable rate
region under such constraints in multiaccess fading cHanNete that in certain delay sensitive applications,
such as interactive or streaming video, constraints onydetaind violation probability may be required
rather than limitations on the average delay. For this amslyve employ the concept of effective capacity
[12], which can be seen as the maximum constant arrival hatieat given time-varying service process can
support while satisfying statistical QoS guarantees.dfffe capacity formulation uses the large deviations

theory and incorporates the statistical QoS constraintsalpyuring the rate of decay of the buffer occupancy
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probability for large queue lengths. The analysis and appbn of effective capacity in various settings has
attracted much interest recently (see e.g., [13]-[16] &fefrences therein). In [16], Liat al. considered a
two-user cooperative multiple access fading channel aatyzed the rate region achieved with frequency-
division multiplexing when the users are operating undeSQ@onstraints in the form of limitations on
buffer overflow probabilities. In this study, cooperatiom@ng the users is shown to significantly improve
the achievable rate region if the quality of the wirelesk Ilmetween the users is better than those of
the links between the users and the destination. We notesthe¢ the transmitters are assumed to not
know the channel conditions, power and rate adaptatiortipsliare not studied in [16]. Additionally, since
orthogonal transmission schemes are considered, sujtéposoding and successive decoding strategies
are not addressed in detail.

Our contributions and major findings in this paper can be sarired as follows. We consider the scenario
in which both the transmitters and the receiver have pedieahnel side information (CSI). First, assuming
that no power control is employed in the transmission, weatttarize the rate regions for both superposition
transmission strategies and TDMA. Unlike the results aigdiin [1] and [7], varying the decoding order
with respect to the channel states is shown to significandgeiase the achievable rate region (tloughput
region) under QoS constraints. Also, it is demonstrated that tihegisg strategies among the vertex of the
rate regions can no longer achieve the boundary surfaceeofhtioughput region. Additionally, we show
that if we take the sum-rate throughput, or the sum effeateygacity, as the performance metric, TDMA
can in certain cases even achieve better performance tpanpgsition coding when fixed decoding order is
employed at the receiver. Next, we incorporate power copwbcies into the model. For this case, we first
obtain closed-form expressions for the optimal power admtolicies under the assumption that the decoding
order is fixed at the receiver side. When the decoding ordeaiigble, we identify which conditions the
optimal power control policies should satisfy. We also diégcan algorithm to determine such policies.

The remainder of the paper is organized as follows. Sectidedcribes the system model. In Section llI,
effective capacity as a measure of the performance undistital QoS constraints is briefly discussed, and
the throughput regionunder QoS constraints is defined. In Section IV, under themagion of no power

control, we analyze the throughput region for both fixed aadable decoding order strategies. Section V
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Fig. 1. The system model.

describes the optimal power control policies. Finally, tiecVI concludes the paper.

[I. SYSTEM MODEL AND MAC CAPACITY REGION

As shown in Figurd]l, we consider an uplink scenario whireisers with individual power and buffer
constraints (i.e., QoS constraints) communicate with glsimeceiver. It is assumed that the transmitters
generate data sequences which are divided into frames afiolfl’. These data frames are initially stored
in the buffers before they are transmitted over the wiretdssnel. The discrete-time signal at the receiver
in the i symbol duration is given by

Vi) = hili) Xl +nli), i=1,2,... (1)

j=1

where M is the number of usersy;[:] and h;[:] denote the complex-valued channel input and the fading
coefficient of thejth user, respectively. We assume that[:]}’s are jointly stationary and ergodic discrete-
time processes, and we denote the magnitude-square ofding feoefficients by:;[i] = |k;[i]|*. Above,n]i]
is a zero-mean, circularly symmetric, complex Gaussiamlaam variable with varianc&{|n[i]|’} = No.
The additive Gaussian noise samp{esi]} are assumed to form an independent and identically disé&ibu
(i.i.d.) sequence. Finallyy'[:] denotes the received signal.

The channel input of useris subject to an average energy constréifitz;[i]|*} < P;/B for all j, where



B is the bandwidth available in the system. This formulatiodi¢ates that usef is subject to an average

power constraint of?;. With these definitions, the average transmitted signaldisenratio of user; is

SNR; = N]Z’ . Now, if we denoteP;[i] as the instantaneous transmit power in itheframe, the instantaneous

transmitted SNR level becomes|i| = %. Then, the average power constraint is equivalent to theagee

SNR constraint{;[:]} < snr; for userj.

A. Fixed Power and Variable Rate

First, we consider the case in which the transmitters opextaifixed power and hence do not employ any

power adaptation policies. The capacity region of this dehis given by [1], [4]:

RMAC = { (R(wg,lu . -yRavg,J\/[> : R(wg(S) S BEZ {10g2 (1 + ZSNRij) } ,VS C {1, cey M}} (2)

JES
wheresnr; = P;/(N,B) denotes the average transmitted signal-to-noise ratis@fjuz = (21, - , zx/) iS
a random vector comprised of the magnitude-squares of theneh coefficients. As well-known, there are
M vertices of the polyhedron defined [d (2). The verkex,, . = (R,ww(l), e ,Ravg,ﬂ(M)) corresponds to
a permutationr, or the successive decoding order at the receiver, i.ets @se decoded in the order given

by =(1),---,m(M). This vertex is specified by the average rates

S - .
Ruvgn() = BE, { logy [ 1+ ) P lt) bits/s k=1,---, M. 3)
1+ Ez’:k—i—l SNRr(7) 27 (4)

With this characterization, we see that for the given dewpdirdersr, the maximum instantaneous service

rate for userr(k) is

SNRr (k) Zrr (k)

M
+ D izt 1 SNRr(i) Zn(i)

Ry = Blog, (1 + ) bits/s k=1,---, M. (4)

Finally, we note that time sharing among the®€ permutations of decoding orders yields any point
on the boundary surface ®yac [18]. As also discussed in [7], it can be easily verified thatying the

decoding order according to the channel states does noideravny improvement on the capacity region.



B. Variable Power and Variable Rate

Now, we suppose that dynamic power and rate allocation iBpeed according to time-variations in
the channels. For a given set of power allocation poli¢ies {1, -, un}, Wherep; > 0 is the power
control policy of thejth user, the achievable rate region is described by [4]

RU) = {Ravg :Ruy(S) < E, {Blog2 <1 + Zuj(z)zj) } , VS AL, ,M}}. 5)
jeS
For a given decoding order at the receiver, the individuarage and instantaneous rates of the users can
be obtained similar td13) andl(4), respectively, witir replaced byu. The capacity region is given by
Rwac = | RW) (6)
uerF

where F is the set of all feasible power control policies that sgtibfe average power constraint
F={U:E,;{p;(z)} < snrj,p; >0, Vi) (7

wheresnr; = P;/(NyB) denotes the average transmitted signal-to-noise raticef ju

C. TDMA

For simplicity, we assume that the time division strategfixed prior to transmission. LeY; denote the
fraction of time allocated to usei. Note that we hav@j‘il d; = 1. In each frame, each user occupies
the entire bandwidth to transmit the signal in the corregipan fraction of time. Then, the instantaneous
service rate for usey is given by

R;(sNRrj) = Blog, (1 + %zj) bits/s (8)

J



[Il. PRELIMINARIES
A. Effective Capacity

In [12], Wu and Negi defined the effective capacity as the maxn constant arrival raHethat a given
service process can support in order to guarantee a statiQS requirement specified by the QoS exponent
0. If we define( as the stationary queue length, theis the decay rate of the tail distribution of the queue

length Q:
. log P(Q > q)
hm e —

q—o0 q

— 4. ©)

Therefore, for largey,..., we have the following approximation for the buffer viotati probability: P(Q) >
Imax) ~ e~ %m=x_Hence, while largef corresponds to more strict QoS constraints, sméallienplies looser
QoS guarantees. Similarly, iD denotes the steady-state delay experienced in the buffen #(D >
dmax) ~ e~ %dmax for large dy.c, Where¢ is determined by the arrival and service processes [14keSin
the average arrival rate is equal to the average departteemaen the queue is in steady-state, effective
capacity can also be seen as the maximum throughput in tisenme of such constraints.

The effective capacity is given by

1

C(0) = = Jim o log, E{e~%1}  bits/s (10)

where the expectation is with respect$&] = >!_, s[i], which is the time-accumulated service process.

{s[i],i =1,2,...} denote the discrete-time stationary and ergodic stoehastiice process.

In this paper, in order to simplify the analysis while corsidg general fading distributions, we assume
that the fading coefficients stay constant over the framatour7 and vary independently for each frame
and each user. In this scenaridi] = T'R[i], where R]i] is the instantaneous service rate in itfe frame
duration[iT’; (i + 1)T"). Then, [ID) can be written as

Cc() = —% log, E,{e ?TEI}  bits/s (11)

IFor time-varying arrival rates, effective capacity spesifihe effective bandwidth of the arrival process that casupgorted by the channel.



where R[i] is in general a function of the fading state (I1) is obtained using the fact that instantaneous
rates{ R[:]} vary independently from one frame to another . It is inténgsto note that a8 — 0 and hence
QoS constraints relax, effective capacity approaches ipede rate, i.e.('(0) — E,{ R[i]}.

Throughout the rest of the paper, we use the effective cgpaormalized by bandwidtiB, which is

denoted by
C(9) = @ bits/s/Hz (12)
B. Throughput Region
Suppose tha® = (0y,--- ,0,,) is a vector composed of the QoS constraints\dfusers. LetC(©) =
(Cy(61),---,Cun(0r)) denote the vector of the normalized effective capacities.fvgt have the following

characterization.

Definition 1: The effective throughput regiois described as

Cwac (O, sNR) = U C(©) >20:C;(0;) < _9,]173 log, I, {e_eTRj}} (13)
J

s.t. E{R%ERMAC
whereR = { Ry, Ry, - -+ , Ry} represents the vector composed of the instantaneous fissiem(or equiv-
alently service) rates af/ users. Note that the union is over the distributions of thetoreR. such that the
expected valu&{R} lies in the MAC capacity region.

Remark 1: Thethroughput regiorgiven in Definition[] represents the set of all vectors of tamsarrival
ratesC(f) that can be supported in the fading multiple access chamnéhe presence QoS constraints
specified by® = (64, -+ ,0)). Since reliable communications is considered, the arrafEs are supported
by instantaneous service rates whose expected values #re MAC capacity region. For instance, in the
absence of power control, the maximum instantaneous serates for a given decoding order are given by
@.

Using the convexity of the MAC capacity regidRuac, we obtain the following preliminary result on
the effective throughput region defined [n(13).

Theorem 1:The throughput regiorCuac (O, sNr) is convex.



Proof: Let the vectorsC(©) and C'(©) belong toCuac(©, sNR). Then, there exist some rate vect@®sand
R’ for C(©) and C'(©), respectively, such thd{R} and E{R'} are in the MAC capacity region. By a
time sharing strategy, for any € (0,1), we know from the convexity of the MAC capacity region that

E{aR + (1 — a)R’} € Ruac. Now, we can write

aC(O) + (1 — a)C'(©)

< - @; — log, (E {¢™*™"})° (E {e-@TR’}> e (14)
_ @;B tog, (E{ (e 0m)*})" (E { (eoramem) e }) - (15)
< — g log B {7 ORHOmRY L (16)

Above, in [13) through[{16), all operations, including thagdrithm and exponential functions and ex-
pectations, are component-wise operations. For instaheegxpression in[{14) denotes a vector whose
components ar{ﬁloge (E {e=0TRs})” (E{e—eTR;})l_a}M . Similarly, the inequalities in[{14) and
({@8) are component-wise inequalities. The inequality_#f) (fblljoT/\lls from the definition in[(1I3). Moreover,
(@I8) follows from Holder's inequality and leads to the clusion thataC + (1 — a)C’ still lies in the
throughput region proving the convexity result. U

We are interested in the boundary of the regifac (©, ssr). Now thatCyac (O, snr) is convex, we can

characterize the boundary surface by considering thewallp optimization problem [4]:
max A - C(©) subject t0:C(O) € Cyac (O, sNR). (17)
for all priority vectorsA = (A1, - -+, Ay) in RY with Zj‘il A= 1

IV. TRANSMISSIONS WITHOUTPOWER CONTROL

In this section, we assume that the signals are transmittedcanstant power level in each frame and
hence power adaptation with respect to the fading statest igarformed. Under this assumption, we initially
consider the scenario in which the receiver decodes the user fixed order. Subsequently, we analyze the

case of variable decoding order.



A. Fixed Decoding Order

We first assume that the receiver decodes the users in a figed ior each frame. Hence, the decoding
order does not change with respect to the realizations ditiag coefficients. If a single decoding order is
used in the frame, it is obvious that only the vertices of tbarfwary region can be achieved. We consider
a slightly more general case in which time sharing techniguemployed in each frame among different
decoding orders. Note that the time sharing strategy is ialdependent of the channel states and hence is
fixed in different blocks. We denote the fraction of time alited to decoding order,, asr,,. Naturally, the
fractions of time satisfyr,, > 0 andz . Tm = 1. Varying the values of;,, enables us to characterize the

throughput region. Under these assumptions, the effectipacity for each user on the boundary surface is

1 - TmR__
C(6)) = — s log, By {2 it } (18)
J

where R, -1 (; represents the maximal instantaneous service rate of juaem@ given decoding order,,,

which is given by

SNRjZJ
1, = Bl 1
Re) 082 ( L4370 iamt(s) SNRZZZ> (19)

wherer ! is the inverse trace function of,,.

Remark 2:Note thatRw;Ll(j) is the maximum instantaneous service rate achieved witlerpopition
coding and a particular decoding order. Hence, the correipg effective capacities characterize the
throughput achieved with this strategy in the presence @& Qanstraints.

Remark 3: Throughout the rest of the paper, we generally specify thHectfe capacity values on
the boundary surface for simplicity and brevity. Effectivapacity regions can immediately be specified
using these boundary points. For instance, the effectipaaity (or equivalently throughput) region for

superposition coding and fixed decoding order is

1 —0, TS0 TR _ -1
> . ) ) < _ m= 1 (5)
{l |}{C(@) >0:C(0) <~ los. E, {c }} (20)

where the union is over different time allocation strategie
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Next, for comparison, we consider the TDMA case in which ve®dlave similar time allocation strategies
but only one user transmits in its specific fraction of timee Wst have the following definition.

Definition 2: Thethroughput regiorfor TDMA can be seen as the achievable vectors of arrivakradéh
each component bounded by the effective capacity obtairmesh\the instantaneous service rate is given by

@). More specifically, the maximum effective capacity faeu; is

SNR;
1 —8;6,TBlog, 1+ =2 z;

TD 33 TR
Cj (ej) = ——GJTB lOgeE {6 < ° >} (21)

whered; is the fraction of time allocated to usgy and0 < ¢; < 1.

An immediate result can be obtained as follows:

Theorem 2:The throughput regiorfor TDMA is convex.

Proof: Note that the points on the boundary surface is given[id (Zbnsider the functionf(d) =
—30T Blog, (1 + 2B2). It can be easily verified thaf(d) is a convex function irs. Then,e/® is alog-
convex function. Since weighted non-negative sum presetive log-convexity [19, Section 3.5], we know

SNR
that E. {¢/®)} is log-convex. Then 1 log, E{e 2772 (1+55%)

} is a concave function ia. Hence, we
immediately see that thiaroughput regionfor TDMA is convex. O
The optimal time allocation policy that maximizes the weeghsum can be obtained through the opti-
mization problem
M

maxZ— A log, E e_éjejTBlogz(H%Zj) St ig. —1.5.>0. (22)
w) < 0TB TR =

The objective function in the above problem is concave, amedcan use the Lagrangian maximization
approach. Taking the derivative of the Lagrangian functrdth respect tod;, we obtain the following

optimality condition for each user:

NR;

SNR, SNR,
—6,;6;TBlo I+ ——12z; ) ——212;
Ele g2( M ) log, (1 + S’;R” 2) — gJNR_ log, e
oJ \ J — 2

1+

— )\ J —k=0 (23)

. J SNR;
85] B {6—5j9jTB log, <1+ 7 J zj> }

11



wherek is the Lagrange multiplier whose value is chosen to sathfﬁ;,c’onstraingj.vi1 9; = 1. If the optimal
value of §; turns out to be negative, then the optimal value)pShould be 0. When\; = X\, = --- = Ay,
the obtained values ofd,} are the ones that achieve the maximal sum-rate throughput,the sum of
the effective capacities of the users. Although obtainitoged-form solutions is unlikely, the maximization
problem in [ZR) can be easily solved numerically using canwptimization tools. Numerical results are

provided in Sectiof IV-C.

B. Variable Decoding Order

We now study the case in which the receiver varies the degoalider with respect to the fading states
z = (z1,...,2u). More specifically, we assume that the vector sp2i¢é of the possible values faz is
partitioned intoM! disjoint regions{ Z,,}M* | with respect to decoding ordefs,, }" ,. Hence, each region
corresponds to a uniqgue decoding order. For instance, wherZ,, the receiver decodes the information
in the orderr;. Now, for a given partition{ Z,,,}}/. |, the maximum effective capacity that can be achieved

by the jth user is

Ci(0;) = — eTB log, E, {e %"} (24)
1 M!
= log, / e M p,(2)dz | for j=1,2,.... M (25)
s (S o

wherep, is the distribution function of and R -1 |s given in [I19). Akin to the optimization i .(17), the
optimal partition{ Z,,}M! | that maximizes the weighted sum of the effective capacttzsbe identified by

solving the following optimization problem:

M
max A - C(O) = max A C;(0; 26
(Zm} (©) (20} i) (26)
1 B, (z)dz |. 27
{Zm}z 75 (Z/Z pa(2) ) (27)
Note that the optimal partition depends on the weight veator (\;,..., Ay ). By solving a sequence

of optimization problems for different values af we can trace the boundary of the effective throughput
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region.

Considering the expression for effective capacity and fiterozation problem in[(27), we note that finding
closed-form analytical expressions for the optimal parti of the channel state space seems intractable for
a general scenario. With this in mind, we consider a simpliiase in which all users have the same QoS
constraint described b§. This case arises, for instance, if users do not have pésriiver others in terms
of buffer limitations or delay constraints.

1) Two-user MAC:First, we consider the two-user MAC case and suppose thatmbheaisers have the
same QoS exponefit Similar to the discussion in [17], finding an optimal decaglorder function can be
reduced to finding a functiom, = g(z1) in the state space such that users are decoded in the or@pif(1,

2o < ¢g(z1) and users are decoded in the order (2,L),if> g(z1). Hence, the functiog partitions the space

of the possible values of = (z1, z3). With this, the optimization problem ifi_.(R6) becomes
max MCi(0,9(21)) + (1 = A1)Ca(0, 9(21)) (28)
whereC, (0, g(z1)) andCy(0, g(z,)) are expressed as
1 (o] o
— 1 —0T Blogy(1+SNR; 1)
Ci(0,9(21)) 0TB 08, (/o /9(21)6 Pa(21, 22)dz2d 2y

oo rg(z1) SNR, =
+ / / e—@TBlng (1"" 1+§N1R2122>pz(zl7 ZQ)dZQle) (29)
0 0

1 oo rg(z1) B
Cao(0,9(21)) = “9Th log, (/ / e 0TBlo8(ITSNR2) ), (21 29)dzod 2y
0 0
e SNR, =
+ / / e 0T B I 2o (1"" 1+SNRlil>pz(zly Zz)dZQdeL) X (30)
0 g(z1)

Note that the maximization i (28) is over the choice of thection g(z;). Implicitly, g(z;) should always
be larger than zero as implicitly implied if{29) arid](30).dases in which this condition is not satisfied,
we need to find a function; = f(z,) instead, as will be specified below.

Theorem 3:The optimal decoding order as a function of the fading state (z,z,) for a specific

13



common QoS constrairdt in the two-user case is characterized by the following fiomst

g(z1) = (Lt swez) K7 =1 4y o [1,00) and (31)
SNRy
flog) = LESMRRIE T =L gy (32)
SNRy
where = f)g—% and K € [0, 00) is a constant that depends on the weightin (Z8) and the values of the

double integrals in[{29) and(B0). Note that the functiondute partition the state space is eithgor f
depending on the value df.

Proof: Suppose that the optimal decoding order is specified by thetifin z, = ¢g(z1). We define

J(9(21)) = MCi(0,9(21)) + (1 — A1) Ca(8, §(21)) (33)

whereg(z1) = g(z1) +sn(z1). g(21) is the optimal functions is any constant, angl(z,) represents arbitrary

perturbation. A necessary condition that needs to be satisdi[20]

d

— (7 (9(=1)))

- ~ 0. (34)

s=0

We define the following:

0o oo oo rg(x1) _6TBlog (1+ SNR; 24 )
¢1 _ / / e_gTBIOg2(1+SNR121)pZ(Zl,Zg)ngle _|_/ / e 2 T+SNR; 25 pz(zl,ZQ)dZQdZ1
0 Jg(a1) 0 J0

(35)

oo rg(z1) co poo o SNR, 25
by = / / (~OTBI0ga(14SNRoz2) ) (oY g ) +/ / o7 Blog; (HHSNRlZl)pZ(zl, 2)dzad
0 0 0 g(z1)

(36)

14



By noting that% = 1(z), and from [34)4(36), we can derive

% A\ SNRy 21 7 -8
/o ( - 0T B, ((1 - 1+ SNR29(21)> N <1 - SNRIZI) )
11—\ 8 sNRyg(21) )
e ((1 owmg(a)) 7 - (14 ) ) )

*Pa(z1, 9(21))n(21)dz1 = 0 (37)

Since the above equation holds for am, ), it follows that

A SNR; 21 7 -8
0TBo, ((1 Ty sw@g(zl)) (o)

1-— )\1 -8 SNRgg(Zl) A
— 1 — 14+ —= = 38
0T Booy << T srg(a1)) < i 1 4 sNR 2 0 (38)
which after rearranging and defininfg as follows yields
(1 + o SNRy >_B — (14 snriz)”
14+SNRxg(21) NRi 21 o (1 — )\1)¢1 _ K (39)
2\ 7P 5 A o
(14 22a0) " (14 swmg() " N

Obviously, K > 0. Notice that after a simple computatiof,39) becomes

< ]_‘|‘SNR121 )_6:[( (40)
1 + sNRyg(21)

which leads to[(31) after rearranging. Note here thakif< 1, g(z;) < 0 for z; < %. Then, the

expressions in(29) an@{30) are not well-defined. In thig cag& denote the optimal function as= f(z,)

instead. Following a similar approach as shown[1d (29) thho(#0) yields [(3R). O
Remark 4: Above, we have assumed that the users are decoded in the(drdemhen z, < g(z;) (or

z1 > f(z) if K < 1) and decoded in the ordéR, 1) whenz, > g(z1) (or 23 < f(z) if K < 1). Itis

interesting note that if we switch the decoding orders inrdggons (i.e., if users are decoded in the order

(1,2) when z; > ¢(z1)), exactly the same partition functions as [nl(31) and (32) @btained due to the

symmetric nature of the problem. Hence, the structure ofogbténal functions that partition the space of
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channel stateéz, z3) into two non-overlapping regions do not depend on which demporder is used in
which region.

Remark 5: Although the partition does not depend on the choice of theodieg orders in different
regions, the performance definitely does. Our numericalprgations show that the order selected originally
at the beginning of our discussion (i.e., using the decodirder (1,2) whernz, < g(z1) or z; > f(22))
provides a larger throughput region than otherwise. Thgeolkation leads to an interesting conclusion. Note
that partition functiong(z;) in (31) andf(z2) in (32) are linear functions of; and z,, respectively. When

K >1and

1+ sNr 2 K5 —1
s < glar) = EEEAEE L (a1)

user 1 is decoded first and user 2 is decoded last. Hence,dtanice, when; is much larger than, and
user 1 is enjoying much better channel conditions, user let®ded first in the presence of interference
caused by user 2's received signal. User 2, who has lessataleoconditions, is decoded subsequently
without experiencing any interference. Note that such aeratpn is the opposite of an opportunistic
behavior and leads to a more fair treatment of users. Thigther insightful since the users are assumed to
operate under similar QoS limitations (i.e., they have thime QoS exponemt). Note that if the decoding
orders are switched, users having favorable channel condiwill be decoded last and hence experience
no interference. In such a case, there is a bias towards w#érbetter channel conditions, which leads to
inefficient performance when both users operate under airhilffer constraints.

Our observations above have led us to propose the followuhg®imal decoding order strategy for a
scenario with more than 2 users.

2) Suboptimal Decoding Ordeln this section, we consider an arbitrary number of userseMéll users

have the same QoS constraint specifieddpywe propose a suboptimal decoding order given by

< 2a@ ¢ DnlD) (42)




due to the observation that the user with the largest welgkhould be decoded last, and the fact that
the higher the value of, the less power is needed to achieve a specific effectivecitgp&onsidering
a two-user example, we, with this choice of the decoding mrcen express the points on the boundary

surface as

1 o o0
Ci(0) =— log, (/ /Am e~ 0TBlogy(14SNRiz1)y, (01 20)dz0d 2y
0 =

0T B

A2

s

A2z
1 o b
CQ(Q) = — log, </0 /O ! e—eTB10g2(1+sr\|R222)pZ(Z17 22)d22d21

- SNR, =
1 e_GTB10g2(1+1+SN1R21Z2>pz(21,ZQ)dZQle) (43)

01TB

o Sy _ SNR, 29
_'_/ /A e 9TB10g2 (1"" 1+SNRlzl)pZ<Zla ZQ)dZQle) . (44)
0 §f1

C. Numerical Results

We have performed numerical analysis for independent Reylading channels witfit{z} = 1. In Fig.
[, the throughput region of a two-user MAC is plotted for sppsition strategies with different decoding
ordering methods at the receiver, and also for TDMA. In tharkg the solid and dotted curves provide the
throughput regions achieved by employing optimal and stibngb variable decoding orders, respectively,
at the receiver. Note that in the optimal strategy descrliethe results of Theorefd 3, the receiver chooses
the decoding order according to the channel states suclihibateighted sum of effective capacities, i.e.,
summation oflog-moment generating functions, is maximized. We see thasubeptimal strategy described
in SectiolIV-B.2 can achieve almost the same rate regiohasptimal strategy, indicating the efficiency of
this approach. In the same figure, dot-dashed curve proteethroughput region achieved by employing a
fixed decoding order for all channel states. Here, we obdbatehe strategy of using a fixed decoding order
at the receiver is strictly suboptimal even when the usexperating under similar buffer constraints, and
varying the decoding order with the respect to the channlsgean significantly increase the achievable

region. Finally, the throughput region of TDMA is given byetldashed curve. We immediately note that
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Fig. 2. The throughput region of two-user MAC caSélR; = SNR, = 0 dB. #; = 6> = 0.01. The solid, dotted, dot-dashed, and dashed lines
represent the regions achieved with optimal variable degodrder, suboptimal variable decoding order, fixed demgdvith time sharing, and
the TDMA respectively.

TDMA can achieve some points outside of the throughput regitbained with fixed decoding order at the
receiver side. These numerical results show that markeiffigreht strategies may need to be employed
when systems are operating under buffer constraints. Iralisence of such constraints, the performance
is captured by the ergodic capacity region which cannot harored by varying the decoding order with
respect to the channel states [7]. Hence, using a fixed degadder at the receiver is an optimal strategy
when there are no QoS constraints. Moreover, TDMA is alwaymptimal with respect to the superposition
schemes regardless of the decoding-order strategy [8].

In Fig. 3, sum-rate throughput, i.e. the sum of the effecti@pacities, is plotted as a function of the
QoS exponent. Here, we note that asincreases, the curves of different strategies convergpatticular,
TDMA performance approaches that of the superpositionngpdiith variable decoding. Hence, orthogonal
transmission strategies start being efficient in termstafrahg the sum rate under stringent buffer constraints.
Note that the sum-rate throughput generally decreasesndtbasing/, and we conclude from the figure that

this diminished throughput can be captured by having eaeh eencentrate its power in a certain fraction
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Fig. 3. The sum-rate throughput as a functiordoENR; = 10 dB; SNR; = 0 dB.

of time in the TDMA scheme. We also see that for approximately 0.006, TDMA starts outperforming
superposition transmission when a fixed decoding order [g@rad at the receiver. Such an observation is
also noted in the discussion of Flg. 2. In contrast, we oleséinat ast approaches 0 and hence the QoS
constraints relax, TDMA is the strategy with the worst parfance. Note that when the performance metric
is the ergodic capacity and hence no queueing constraiatsaasidered, this suboptimality of TDMA with
respect to superposition strategies is well-known (seg BJ.

We are also interested in the values of paramétehat appear in the functions in Theor&€in 3 . In Fig. 4,

we plot K as a function ofi—; — AL |t is interesting to note thdbg, K seems to be linear with respect

T—X
to log, (1:\1)\1>

V. TRANSMISSIONS WITHPOWER CONTROL

In this section, we analyze the case in which the transmétaploys power control policies in the
transmission. Similarly as before, we initially investigdhe scenario in which the decoding order is fixed

for all channel states. Subsequently, we study variabledieg order schemes. Note that varying the
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Fig. 4. K vs. §—;. SNR; = 10dB. SNR; = 0 dB. §; = 6, = 0.01.

decoding order with respect to the channel states, acaptdithe analysis in Sectidn1V, has the potential

to significantly affect the achievable rates.

A. Power Control Policy for Fixed Decoding Order in All ChairStates

Here, we characterize the optimal power allocation pdicihen the decoding order is fixed for all
channel states. Due to the convexitydafac, there exist Lagrange multipliers= (x4, ..., ky) € 9%_1‘{ such
that C*(©) on the boundary surface can be obtained by solving the agdiion problem

max A - C(O) — k- E{u} (45)

I

whereu = (u4, . . ., uar) represents the collection of the power control policiesliaisers,\ = (A1, ..., A\y)

is the weight vector, an@€(©) = (C,(61),...,Cu(fn)) is the vector of maximum effective capacities of

the users for given decoding order and power allocatiorcigsli Note thaj:; = NIZJB (defined in Sectiofdl

as the instantaneous transmitted SNR level) describesatherpcontrol policy of thejth user . For a given
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permutationr and set of power allocations, C;(6;) is given by

—0,TBlog, (1+ R .Z.>
log, E {e or—1@)>n—1() Fi%i ) (46)

G5 = —775
J

Now, the optimization problenf{{(#5) can rewritten as

M 1 —0,TBlog, (1+ i ) M
J 1+ 1/ RN
max ) Ay prplos. Eqe o0 = B ). (47)
j=1 J j=1

The following result identifies the optimal power adaptatipolicies that solve the above optimization
problem.

Theorem 4:Assume that the receiver, for all channel states, decodesidérs in a fixed order specified
by the permutationr. Then, the optimal power allocation allocation policiesttlsolve the optimization

problem in [4Y) are given by

Bj

Bi+1
( (1 + 21 ws() “Z) L L Y g Mi
Hj = -

+
) forj=1,2,.... M (48)

5;
ﬁj1+1 ﬁjil ZJ
i F
where 3; = folgib; is the normalized QoS exponerit;)t = max{z,0}, and(w, - - - , ap) are constants that

are introduced to satisfy the average power constraints.

Proof: Note that with a fixed decoding order, the usén/) sees no interference from the other users, and
hence the derivative o.{#7) with respect g, will only be related to the effective capacity formulation
of usern(M). Therefore, we can solve an equivalent problem by maximigin, instead. After we derive
tx(ar), the derivative of[{4l7) with respect fo.(»,—1) Will only be related to the effective capacity formulation
of userm(M — 1). By repeated application of this procedure, for givendd) can be further decomposed

into the following M sequential optimization problems

HiZ5

1 —0;TBlog, | 1 )
max —\,——— log, E {e gz( +1+Zﬂ—1<i>>ﬂ71um )} _ njE{uj} je{l,--- M} (49)

K J GJTB
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in the inverse order of. Similarly as in [13], due to the monotonicity of the logant, solving the above

M optimizations is the same as solving

Mg

—0,TBlog, | 1 Hi%
minE{eJ g2<+1+2w1<i>>w1<j)“i2i>}+mE{uj} je{l,--, M} (50)

Differentiating the above Lagrangian with respecftoand setting the derivative to zero yield the intended
result in [48). O
Remark 6: Exploiting the result in[{48), we can find that instead of dth@pthe power according to only
its channel state as in [13] where a single-user scenaritutbesl, the user adapts the power with respect
to its channel state normalized by the observed interferemd the noise.
Remark 7:To give an explicit idea of the power control policy, we calesia two-user example in which

the decoding order i§2, 1). For this case, we can easily find that

1

B 1+1 Bﬁiq Z = an
H1 = 31 ! 21 ! ) (51)
0 otherwise
and
(
T 1 By~ % 21 < oy and 29 > Qo
Ba+1 _Bo+1
Ay 22 5
2 1
21\ (B1+D)(B2+1) 21\ B1+1 -
= « « B 1
2 ( 1) - 5 _ ( 1) 21 > o and &2 > (ﬂ) it ) (52)
BoFT it 22 s (e %1
Qo &)
( 0 otherwise

wherea; anda, are chosen to satisfy the average power constraints of theusers.

B. Power Control Policy for Variable Decoding Order

In this section, we study the optimal power allocation pplichen the receiver varies the decoding order
with respect to the channel fading states. We mainly comaenbn the two-user scenario. The key idea
we introduce here is to consider the power allocation patitygach user for each regionz,, (in which

decoding is performed according to permutatign) while requiring the average power constraint to be
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satisfied by the joint power over all regioR<,, }.
For the two-user case, due to the convexity of the througihggion, there exist Lagrange multipliers
k= (K1, k2) € B2 such thatC*(©) on the boundary surface can be obtained by solving the amtion

problem
max A1 Gy (1, Z) + ACapr, Z) — B} — raBEipia} (53)

where i = (1, p2) are the power control policieg);, A,) are the weights in the weighted sum, and
Z = (24, 2,) denotes a particular partition of the space of the positalees ofz = (21, z3) 0. Hence,
power control policies that solv&{53) are the optimal ormsaf given partition. In the following, since we
assumeZ is given, the notatiorC,(x, Z) is replaced byC;(u) for brevity.

Recalling the discussion in Secti@nIV-B, we can expressefifiective capacities of the two users as in
(29) and [(3D) by only replacingnr; with 1;(z) in these expressions. The Lagrangian (which is the obgectiv

function in [83)) can now be expressed as

A1 2 —h1 / L
= — 1 1+ — 2(21, dzd 1 V(21 29)dzd
J 5, log, 2 08, </ZEZ1 ( + 1 +/~L2Z2) Pz(21, 22)dz1dzo + zezg< + p121) "7 oz, 20)dzdzo

Ao e —B2 / L
_ 1 1 o 2 ) dzd 1 2 ; 7 dzd
B2 log, 2 OBe </z622 ( - 1+ 2z Pa(21, 22)dz1dzo + 2621( + poz2)” 7 a2, 22)dz1d 2o

— k1 (Ezezl {:ul} + EZ€Z2 {:ul}) - I{Q(EZEZH {MZ} + EZEZQ {:u2}) (54)

Above, the expressions in regiods and 2, are written separately due to the reason that possiblyrdifte

power allocation strategies are employed in differentalegi We define

!

z _

p1 = / (1 + ] s ) Pa(21, 22)dz1dzy +/ (1+ p120) ™" palz1, 22)dzadza, (55)
z€Z + 222 zEZ,

2Similarly as discussed in Secti@@I¥-B, different decodimglers are employed if; and Zs.
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and

—p2

z _

o = / (1 + #) Pa(21, 22)dz1d 2o +/ (1 + pozo) P2 Pa(21, 20)dz1d2s. (56)
zEZo + :ulzl z€Z

Note that the values of these functions are obtained fomgpaver control policieg = (u1, 112) and given
partition Z = (2, 25).
Now, we consider the power control policy of each user in ed@toding order regioZ;, i = 1,2. By

differentiating the Lagrangian, we can find the followingiopality conditions:

A1 _B— A2 Haz2 Pt HaZ221
1 B1—-1_, _ 14 =7 - = =0 V Z 57
1 10ge2( ) “ ¢z log, 2 < - 1+M121> (1+ p1121)? " 2€ 2 (57)
9y 22 (14 _Ha2 T _a 0 VzeZz (58)
= — Ky = z
¢2 log, 2 T+ prz I+ iz ? !
A1 H1z1 —Ht 21
) —— (1 + ——— _— — =0 VzeZ 59
) ¢ log, 2 ( +1+/1222) L+ p2zo " e 9)
) )\1 1+ H171 —ht H17122 )\2 (1 4 )—62—1 0 v c Z (60)
— 4 z 29 — Ky = z
¢1 log, 2 1+ pozy (14 poz2)*  ¢alog, 2 faz 2 ? 2

where [5F) and[(38) are obtained by differentiating the bagian with respect ta; and u., respectively,
overz € Z;. Similarly, (89) and[{800) are obtained by differentiatinghwespect tq.; and .., respectively,
overz € Z,. Due to the convexity, whenever;,i = 1,2 is negative valued, we set; = 0,7 = 1,2.
Although obtaining closed form expressions from the oplitjaonditions seems to be unlikely, we can
gather several insights on the power control policies bylyaieg the equationd (57)=(50).

Let us first definen; = %11%2, g = %{5&32, Qpy = %ﬂogez, anday, = %{fgez, wherery, k, are
the Lagrange multipliers whose values are chosen to sdtisfyaverage power constraiiit (7) with equality,

and ¢, and ¢, are defined in[[85) and_(56). Now, considErl(57) and (58). Tannel state lies ;.

Through a simple computation usiig158), we can derive

_Ba
(1 -+ M121)62+1 14 H1%1 61
BT ﬁ—21 B 22 ( )
a2l32+ Z2BQ+

M2 =
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which tells us thaf, = 0 if

22
< 62
T+ iz “ (62)
If 1y =0, we have from[(57) that
M ) P — e = 0 (63)
1 log, 2 H121 1 1
which gives us that
1 1
=T (64)
a1[1‘1+12161+1 1
which implies thatu; = 0 if
2 < Of. (65)

Now, if we substitute[{d1) into{%7), we obtain the followimglditional condition for having:,; = 0: the

equation

4 oz (5 Y _
— (1 + 12 — -1 -1=0 66
() o ( Ry (66)

has a solution that returns a negative or zero value:forThe above discussion enables us to characterize
the regions in which one user transmits while the other orglesit. We also have a closed-form formula
in (&4) for the optimal power adaptation policy when only arser transmits. Indeed, this is the optimal
power control policy derived in [13] for a single-user systéNhen both users transmit, the power control
policies (11, pu2) are given directly by the non-negative solution [ofl(57) &B8)(

Note that the conditions and characterizations providedel)—(66) pertain to the case in which the
channel state is in regiog,. Following a similar analysis of ($9) an@{60), we can obtsimilar results
for the cases in which the channel state isZin

For a given partition Z,, Z,}, the optimal power control policy can be determined nunadlsiausing the
optimality conditions in[[57) -{{80). Additionally, the egfions and inequalities il {b1) throudh{66) can be

used to guide the numerical algorithms as they specify undiéch conditions at most one user transmits,
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and provide the optimal power control policy in such casesweler, there is one difficulty[[(61) £66)
depend onv, as, a2, andas; which in turn depend omy, ¢, k1, andk, which are in general functions of
the power control policies. In such a situation, the follogviterative procedure can be employed in search
of the solution . We can first choose certain valuesdgr¢s, 1, andk,, and then determine the optimal
power allocation policies for these selected values. Syes#ly, we can check whether the obtained policy
satisfies the average power constraint with equality. Thabkes us to determine if the selectedand -
values are accurate. We can also compytend ¢, using the obtained policy and see if they agree with
the initial values ofp; and¢,. If there is no sufficient match or if the power constraint & satisfied with
equality, then we update the values@f, ¢, k1, andk,, and reiterate the search of the optimal policy.
With this insight, we propose the following algorithm thatncbe used to determine the optimal power

allocated to each channel state:
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POWER CONTROL ALGORITHM
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11

12

13
14
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16
17
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21

22
23
24
25
26
27
28
29
30

Given \q, \,, the partitionZ, initialize ¢, ¢o;

Initialize x; and ks
Determineq, = "M0L82 g, = mo2lone? o, — madLloge2 o, — K102008. 2,

Al ! - A2 Al ! A2 !
if z S Zl
then if 29 > (N9
then jio = ———— —
a52+1Z52+1
2 2 1
if 2 - 1 z1cx z Ba+1 .
if O1_11 (1 + 'ulzl) ) - 221a221 ((az(l+2,ulzl)> ’ - 1) — 1 =0returns nonpOS|t|V¢L1
then p; =0;
1
dse if 2 < (2)77
a2 (e %1
+
then pp =0, py = %@*1—% ;
a1FT P
else Computey, o from (54) and [5B);
+
ese =0, uy = %@*1—% ;
QP T
if z S ZZ
then if 21 > 0
then uy = ———— —
Br+1 !

B1+1
& 21

z10021 a1 (14+p2z2

_1
if 22 (1 Tt pigzy) "B _ e (( 21 )) o 1) — 1 = 0 returns nonpositive:,
then py = 0;
_1
e if 2 < ()77
aq

042 +
then iy =0, pp = %ﬁ‘z_i] ;
a2 2T
else Computeyu,, 1o from (59) and [GD);
+
1 1 .
Check if the obtained power control policigs and i, satisfy the power constraint with equality;
if not satisfied with equality
then update the values of;, andx, and return to Stefl 3;
else move to Stefi 26;
Evaluatep, and ¢, with the obtained power control policies;
Check if the new values af, and ¢, agree (up to a certain margin) with those used in §iep 3;
if do not agree
then update the values af, and ¢, and return to Stepl 2;
else declare the obtained power allocatio2n7 policigsand y» as the optimal ones.



Note that we above have not specified how the values, of,, ¢;, and ¢, are updated for each iteration
in order to keep the algorithm generic. In our numerical cotapons, we have updated andx, using the
bisection search algorithm. The valuesq¢afand ¢, are updated in Step 29 of the algorithm by assigning
them the values evaluated in Step 26. Hence, the most reakrdsvare carried over to the new iteration.

In Fig.[d, we plot the optimal power allocation policigs and 1.» as functions of channel fading states
z; and z,. We assume thad; = 6, = 0.01, sNr; = sNR, = 0 dB, and\; = )\, = 0.5. We consider the
partition specified by the suboptimal decoding order giverfdi2). Hence, since we havg = \, = 0.5,
decoding orders (1,2) and (2,1) are used wher z; and z, > z;, respectively. Under these assumptions,
we computed the optimal values as= 0.0470, x5 = 0.0462, ¢7 = 0.5550, and¢3 = 0.5538. In the figure,
we observe that each user, not surprisingly, allocates ofatt power to the regions in which it is decoded
last and hence does not experience interference. Howawetpdhe introduction of QoS constraints, we also
note that each user also allocates certain power to the casdsich it is decoded first. This is performed
in order to continue transmission and avoid buffer overflows

So far, we have assumed that the partitibis given. The optimal partitio® that maximizes the weighted

sum-rate can be derived through the following optimizasomilarly as in [21]:
Cr = sup MGCi(p, Z) 4+ ACao(p, 2) (67)

where C* is the optimal weighted sum value for given pair (0f;, A2), and i = (i1, pu2) are the optimal

power control policies for giverf.

VI. CONCLUSION

In this paper, we have studied the achievable throughpubmegin multiple access fading channels
when users operate under QoS constraints. We have assuatedoth the transmitters and the receiver
have perfect CSI. We have employed the effective capacitg aswasure of the throughput under buffer
constraints. We have defined the effective capacity regimh shown its convexity. We have considered
different transmission and reception scenarios e.g, pogéion coding, different strategies for the decoding

order, and TDMA. Under the assumption that no power cons@mployed by the transmitters, we have
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Fig. 5. The optimal power control policigs; and i1 of users 1 and 2, respectively, as a function(of, z2). A1 = 0.5, A2 = 0.5.
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analyzed the performances of fixed and variable decodingrosttategies. We have characterized the
throughput region and determined the points on its bound@aryixed decoding order. For the case of
two users with the same QoS constraints, we have derived gtmal strategy for varying the decoding
order. Varying the decoding order is shown to significantigrease the achievable rate region. We have
also proposed a simpler suboptimal decoding rule which taost perfectly match the optimal throughput
region. We have also studied the performance of orthogoaasinission strategies by considering TDMA. In
the numerical results, we have demonstrated that TDMA cafonme better than superposition coding with
fixed decoding order for certain QoS constraints. More dpatly, we have noted that TDMA can support
arrival rate pairs that are strictly outside the region eebd when fixed decoding order is employed at the
receiver. We have also observed that the performance of TRgIFroaches that of the optimal strategy of
superposition coding with variable decoding ordeWancreases (i.e., as the QoS constraints become more
stringent). In the second part of the paper, we have incatpdrpower adaptation strategies into the model.
For a given fixed decoding order at the receiver, we have iiftehtthe optimal power control policies.
For cases in which a variable decoding order strategy istaddpy the transmitter, we have obtained the
conditions that the optimal strategies should satisfy aesicdbed an algorithm to achieve these optimal

schemes.
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