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Multiscale Modelling and Inverse Problems

J. Nolen, G.A. Pavliotis and A.M. Stuart

Abstract The need to blend observational data and mathematical models arises in
many applications and leads naturally to inverse problems.Parameters appearing in
the model, such as constitutive tensors, initial conditions, boundary conditions, and
forcing can be estimated on the basis of observed data. The resulting inverse prob-
lems are often ill-posed and some form of regularization is required. These notes dis-
cuss parameter estimation in situations where the unknown parameters vary across
multiple scales. We illustrate the main ideas using a simplemodel for groundwater
flow.

We will highlight various approaches to regularization forinverse problems, in-
cluding Tikhonov and Bayesian methods. We illustrate threeideas that arise when
considering inverse problems in the multiscale context. The first idea is that the
choice of space or set in which to seek the solution to the inverse problem is inti-
mately related to whether a homogenized or full multiscale solution is required. This
is a choice of regularization. The second idea is that, if a homogenized solution to
the inverse problem is what is desired, then this can be recovered from carefully de-
signed observations of the full multiscale system. The third idea is that the theory of
homogenization can be used to improve the estimation of homogenized coefficients
from multiscale data.
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1 Introduction

The objective of this overview is to demonstrate the important role of multiscale
modelling in the solution of inverse problems for differential equations. The main
inverse problem we discuss is that of determining unknown parameters by match-
ing observed data to a differential equation model involving those parameters. The
unknown parameters may be functions, in general, and they may have variation
over multiple (length) scales. This multiscale structure makes the forward problem
more challenging: numerically computing the solution to the differential equation
requires very high resolution. The multiscale structure also complicates the inverse
problem. Should we try to fit the data with a high-dimensionalparameter, or should
we seek a low-dimensional “homogenized” approximation of the parameter? If a
low-dimensional parameter model is used, how should we account for the mismatch
between the true parameters and the low-dimensional representation? After obtain-
ing a solution to the inverse problem, one typically wants tomake further predictions
using whatever parameter is fit to the observed data, so it is important to consider
whether a low-dimensional representation of the unknown parameter is sufficient to
make additional predictions.

Throughout these notes the unknown parameters will be denoted byu∈ X; typi-
cally u is a function assumed to lie in a Banach spaceX. We usey∈Y to denote the
data (for simplicity we often takeY =R

N) andz to denote the predicted quantity, as-
sumed to be an element of a Banach spaceZ or, in some cases, aZ−valued random
variable. The mapG : X →R

N denotes the forward mapping from the unknown pa-
rameter to the data, andF : X → Z (or F : X×Ω → Z in the random case) denotes
the forward mapping from the parameter to the prediction. Wesometimes refer to
G as theobservation operatorandF as theprediction operator. BothG andF are
typically derived from a common solution operatorG : X → P mappingu ∈ X to
the solutionG(u) ∈ P of a partial differential equation (PDE), whereP is a Banach
space. For exampleG may be derived by composingG with N linear functionals.

The ideal inverse problem is to determineu ∈ X from knowledge ofy ∈ R
N

where it is assumed thaty = G (u). In practice, however, the datay is generated
from outside this clean mathematical model, so it is naturalto think of the datay as
being given by

y= G (u)+ ξ (1)

for someξ ∈ R
N quantifying model error1 and observational noise. The value ofξ

is not known, but it is common in applications to assume that some of its statistical
properties are known and these can then be built into the methods used to estimate
u. Once the functionu is determined by solving this inverse problem, it can be used
to make a predictionz= F (u).

We illustrate three ideas that arise when attempting to solve the inverse problem
defined by (1) in the multiscale context:

1 Model error can be incorporated within the set of unknown parametersu and estimated using
data; however this idea is not pursued here.
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• (a) The choice of the space or set in which to seek the solutionto the inverse prob-
lem is intimately related to whether a low-dimensional “homogenized” solution
or a high-dimensional “multiscale” solution is required for predictive capability.
This is a choice of regularization.

• (b) If a homogenized solution to the inverse problem is desired, then this can be
recovered from carefully designed observations of the fullmultiscale system.

• (c) The theory of homogenization can be used to improve the estimation of ho-
mogenized parameters from observations of multiscale data.

In Section 2 we consider in detail a worked example which exemplifies the use
of multiscale methods to approximate the forward problemsG andF for data and
predictions; this example will be used to illustrate many ofthe general ideas devel-
oped in these notes, and the three ideas (a)–(c) in particular. Section 3 is devoted to a
brief overview of regularization techniques for inverse problems, and to discussion
of the idea (a). Section 4 is devoted to the idea (b). We study the problem of estimat-
ing a single scalar parameter in a homogenized model of groundwater flow, given
data which is generated by a full multiscale model. This may be seen as a surrogate
for understanding the use of real-world data (which is typically multiscale in char-
acter) to estimate parameters in simpler homogenized models. Section 5 is devoted
to the idea (c). We study the use of ideas from multiscale methodology to enhance
parameter estimation techniques for homogenized models. The viewpoint taken is
that the statistics of the errorξ appearing in (1) can be understood using the theory
of homogenization for random media; when these statisticalproperties depend on
the unknown parameteru the noiseξ is no longer additive and its dependence onu
plays an important role in the parameter estimation process.

1.1 Notation

The following notation will be used throughout. We use| · | to denote the Euclidean
norm onRm (for possibly different choices ofm). We letSd (resp.Sd,+) denote the
set of symmetric (resp. positive-definite) second order tensors onRd. If Γ ∈Sd,+, we
define the weighted norm| · |Γ = |Γ − 1

2 · | onRm. Throughout the notes,X is a Banach
space, containing the functions that we wish to estimate, and E a Banach space
compactly embedded intoX. When studying the inverse problem from a Bayesian
perspective we will use Gaussian priors onX, defined via a covariance operatorC

on a Hilbert spaceH ⊇ X, with norm‖ · ‖H . In this situationE will be the Hilbert

space with norm‖C− 1
2 · ‖H.
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1.2 Running Example

We consider a model for groundwater flow in a medium with permeability tensork,
pressurep and Darcy velocityv (or the volume flux of water per unit area) related
to the pressure via the Darcy law:

v=− k
µ
(∇p−ρgêz) (2)

whereµ is the fluid viscosity,ρ is the fluid density,g is the acceleration due to
gravity andêz is the unit vector in thez-direction. We choose units in whichµ = 1.
We also assume that we have a constant density fluid and redefine the pressure by
addingρgz (z is the vertical direction) to write (2) in the formv = −k∇p. Assum-
ing that the Darcy velocity is divergence-free, except at certain known source/sink
locations, we obtain the following elliptic equation for the pressure:

∇ ·v= f , x∈ D,

p= 0, x∈ ∂D,

v=−k∇p

(3)

whereD ⊂ R
d is an open and bounded set with regular boundary, andf is assumed

to be known. The permeability tensor fieldk, however, is assumed to be unknown
and must be determined from data. In order to make the elliptic PDE (3) for the
pressurep well-posed, we assume that the permeability tensork(x) is an element of
Sd,+ and so we write it as the (tensor) exponential:k(x) = exp

(

u(x)
)

, u∈ Sd. It is
natural to viewu as an element ofX := L∞(D;Sd) and to consider weak solutions of
(3) with f ∈ H−1(D). Then we have a unique solutionp∈ H1

0(D) satisfying

‖∇p‖L2 ≤ c1exp(‖u‖X)‖ f‖H−1, (4)

for somec1 > 0 depending only ond andD, and‖u‖X being the essential supremum
of the spectral radius of the matrixu(x), asx varies overD:

‖u‖X = ess-sup
x∈D






max
ξ∈Rd

|ξ |=1

|u(x)ξ |






.

Thus we may defineG : X → H1
0(D) by G(u) = p. Now consider a set of real-

valued continuous linear functionalsℓ j : H1(D) → R and defineG : X → R
N by

G (u) j = ℓ j(G(u)). The inverse problem is to determineu∈ X from y∈ R
N where

it is assumed thaty is given by (1). Using (4) one may show thatG : X → H1
0(D)

(resp.G : X → R
N) is Lipschitz. Indeed ifpi denotes the solution to (3) with log

permeabilityui then, we have

‖∇p1−∇p2‖L2 ≤ (c1)
2‖u1−u2‖X exp

(

2(‖u1‖X + ‖u2‖X)
)

‖ f‖H−1. (5)
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Study of the transport of contaminants in groundwater flow isa natural example
of a useful prediction that can be made once the inverse problem is solved. To model
this scenario we consider a particlex(t) ∈ R

d which is advected by the the ground-
water velocity fieldv/φ , whereφ is the porosity of the rock andv is the Darcy ve-
locity field from (3), and subject to diffusion with coefficient 2η . Assuming that the
contaminant is initially atxinit we obtain the stochastic differential equation (SDE):

dx=
v(x)

φ
dt+

√

2η dW, x(0) = xinit , (6)

whereW(t) is a standard Brownian motion onRd. If we are interested in predicting
the location of the contaminant at timeT then our prediction will be the function
Fη given byFη (u) = x(T). Here for each fixedη ∈ [0,∞) the functionFη maps
X into the family ofRd−valued random variables.

2 The Forward Problem: Multiscale Properties

Some inverse problems arising in applications have the property that the forward
modelG mapping the unknown to the data will produce similar output on both
highly oscillatory functionsu and on appropriately chosen smoothly varying func-
tions u. Furthermore, for some choices of prediction functionF the predictions
themselves will also be close for both highly oscillatory functionsu and on appro-
priately chosen smoothly varying functionsu. These properties can be seen from an
application of multiscale analysis, and we illustrate themby considering the prob-
lem introduced in Section 1.2. There are many texts on the theory of multiscale
analysis. For example, the basic homogenization theorems discussed here are devel-
oped in [6]. A recent overview of the subject, with many otherreferences and using
the same notational conventions that we adopt here, is [24].

We consider a multiscale version of the running example fromSection 1.2 where
the permeability tensor isk= Kε(x) = K(x,x/ε) whereK : D×T

d → Sd,+ is peri-
odic in the second argument,ε > 0 a small parameter. For now we have assumed
periodic dependence on the fast scale inKε ; however we will generalize this to
random dependence in later developments.

With this permeability we obtain the family of problems

∇ ·vε = f , x∈ D, (7a)

pε = 0, x∈ ∂D, (7b)

vε = −Kε ∇pε . (7c)

If we setη = εη0, then the transport of contaminants is given by the SDE

dxε =
vε(xε)

φ
dt+

√

2η0ε dW, xε (0) = xinit . (8)
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Standard techniques from the theory of homogenization for elliptic PDEs can be
used to show that forε small,

pε(x)≈ pε
a(x) := p0(x)+ ε p1(x,

x
ε
) (9)

wherep0 andp1 are defined as follows. First we define the effective (homogenized)
permeability tensorK0 via solution of thecell problemfor χ(x,y):

−∇y ·
(

∇yχKT)= ∇y ·KT , y∈ T
d. (10)

Then

K0(x) =
∫

Td
Q(x,y)dy, (11)

Q(x,y) = K(x,y)+K(x,y)∇yχ(x,y)T . (12)

In this sense we observe that the effective diffusivityK0(x) is the average ofQ(x,y)
over the fast scaley. This is not equal to the average ofK(x,y) over y, except in
trivial cases. We denote byu0 the logarithm ofK0 so thatK0 = exp(u0).

The functionp0 solves the (ε independent) elliptic PDE

∇ ·v0 = f , x∈ D, (13a)

p0 = g, x∈ ∂D, (13b)

v0 = −K0∇p0. (13c)

and the correctorp1 is given by

p1(x,y) = χ(x,y) ·∇p0(x). (14)

Note that (10) may be written as

−∇y ·
(

QT)= 0, y∈ T
d. (15)

This shows thatQ, which is averaged to give the effective permeability tensor, is
divergence-free with respect to the fast variabley.

It is possible to prove that, in the limit asε → 0, solutions to (7) converge to solu-
tions to (13), the convergence being strong inL2(D) and weak inH1(D) [10, 1, 24].
However if we want to prove strong convergence inH1 then we need to include
information about the corrector termp1. The following theorem and corollary sum-
marize these ideas. For proofs see [1], or the discussion in the texts [10, 24].

Theorem 1. Let pε and p0 be the solutions of(7) and(13). Assume that f∈C∞(D)
and that K(x,y) ∈C∞(D;C∞

per(T
d)). Then

lim
ε→0

‖pε − pε
a‖H1 = 0. (16)
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Corollary 1. Under the same conditions as in Theorem 1 we have

‖pε − p0‖L2 → 0 and ‖∇pε −
(

I + χy(·, ·/ε)T)∇p0‖L2 → 0

asε → 0.

In fact it is frequently the case that the convergence in Theorem 1 may be ob-
tained in a stronger topology. Reflecting this we make the following assumption.

Assumption 2 The function pε converges to p0 in L∞(D) and its gradient converges
to the gradient of p0+ ε p1 in L∞(D) so that

lim
ε→0

‖pε − pε
a‖W1,∞ = 0.

In Appendix 5.3 we prove this assumption for the one dimensional version of (7).
The proof in the multidimensional case will be presented elsewhere [22]. The proof
of this assumption in the multidimensional case is based on the estimates proved
in [2] (in particular, Lemma 16), see also [15, Lemma 2.1].

With these limiting properties of the elliptic problem (7) at hand it is natural to
ask what is the limiting behaviour ofxε governed by (8). To answer this question
we define

dx0

dt
=

v0(x0)

φ
, x0(0) = xinit . (17)

Notice that this ordinary differential equation (ODE) has vector fieldv0 which is
defined entirely through knowledge of the homogenized permeability K0: onceK0

is known, the elliptic PDE (13) can be solved forp0 and thenv0 is recovered from
(13c). If we can show that solutions of (8) and (17) are close then this will establish
that the prediction of particle transport in the model (7), (8) can be made accurately
by use of only homogenized information about the permeability.

In proving such a result there are a number of technical issues which arise caused
by the presence of the boundaryD of the domain in which the PDE (7) is posed. In
particular solutions of (8) may leaveD requiring a definition of the velocity field
outsideD. These issues disappear if we consider the case whereD is itself a box
of lengthL and is equipped with periodic boundary conditions instead of Dirichlet
conditions: we may then extend all fields to the whole ofR

d by periodicity. In this
case, the homogenization theory for (7) with (7b) replaced by periodic boundary
conditions is identical to that given above, except that (13b) is also replaced by
periodic boundary conditions. We writeD = (LT)d and adopt this periodic setting
for the next theorem, which is proved in Appendix 5.3:

Theorem 3. Let xε (t) and x0(t) be the solutions to equations(8) and (17), with
velocity fields extended from D= (LT)d to R

d by periodicity, and assume that As-
sumption 2 holds. Assume also that f∈C∞(D) and that K(x,y) ∈C∞(D;C∞

per(T
d)).

Then
lim
ε→0

E sup
0≤t≤T

‖xε(t)− x0(t)‖= 0.
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In summary, this example exhibits the property that, if the length scaleε is small,
the data generated fromKε andK0 may appear very similar due to homogenization
effects. Therefore, when trying to infer parameters from data, it is difficult to distin-
guish betweenKε andK0 without some form of regularization or prior assumptions
about the form of the parameter. On the other hand, Theorem 3 shows that knowing
only K0 is sufficient to make accurate predictions of the trajectories of (8).

3 Regularization of Inverse Problems

In this section we describe various approaches to regularizing inverse problems,
motivating them by reference to the multiscale example in the previous section. The
approach to regularizing which is described in Section 3.2 is developed in detail in
[5]. The Tikhonov regularization approach from Section 3.3is developed in detail in
[16, 17]. Both of these regularization approaches are specific examples of the gen-
eral set-up often called PDE constrained optimization, which we discuss in Section
3.4; this subject is overviewed in [18]. An overview of the Bayesian approach to
inverse problems, a subject that we outline in Section 3.5, is given in [26] and [17].

3.1 Set-Up

Our objective here is to determineu, giveny, whereu andy are related by (1). We
assume that, whilst the actual value ofξ is not available, it is reasonable to view it
as a single draw from a statistical distribution whose properties are known to us. To
be concrete we assume thatξ is drawn from a mean zero Gaussian random variable
with covarianceΓ : we write this asξ ∼ N(0,Γ ). We make the following continuity
assumption concerning the observation operatorG . Note that this (local) Lipschitz
condition also implies an (exponential in‖u‖X) bound on|G (u)|.

Assumption 4 There are constants c1,c2 > 0 such that, for ui ∈ X with ‖ui‖X <
r, i = 1,2,

|G (u1)−G (u2)| ≤ c1exp(c2r)‖u1−u2‖X.

In general the inverse problems such as that given by (1) withξ = 0 are hard
to solve: they may have no solutions, multiple solutions andsolutions may exhibit
sensitive dependence on initial data. For this reason it is natural to seek a least
squares approach to finding functionsu which best explain the data. In view of the
assumed structure onξ a natural least squares functional is

Φ(u) =
1
2
|y−G (u)|2Γ . (18)
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The weighting byΓ in the Euclidean norm induces a normalization on the model-
data mismatch. This normalization is given by the assumed standard deviations of
the noise in a coordinate system defined by the eigenbasis forΓ .

Example 1.Consider the running example of Section 1.2. Equation (5) shows that
Assumption 4 holds in this case, noting thatG (u) j = ℓ j(p) for some linear func-
tional ℓ j onH1(D), with the choiceX = L∞(D;Sd), providedf ∈ H−1. We use this
example to illustrate why inverse problems are, in general,hard.

Assume that the linear functionalsℓ j satisfy the property thatℓ j(pε − p0) → 0
asε → 0. This occurs if they are linear functionals onL2(D), by Theorem 1 or if
Assumption 2 holds, if they are linear functionals onC(D). Writing this in terms
of G we have|G (uε)−G (u0)| → 0 asε → 0. (Note that this occurs even though
uε andu0 are not themselves close.) Hence there is an uncountable family of func-
tions (indexed by allε sufficiently small) which all return approximately the same
value ofΦ(uε) and thus simply minimizingΦ may be very difficult. Furthermore,
there may be minimizing sequences which do not converge. Forexample fix a par-
ticular realization of the data given byy= G (u0) whereu0 is the homogenized log
permeability. ThenΦ(uε )≥ 0 for all ε > 0 andΦ(uε)→ 0 asε → 0, since

|Φ(uε )|= 1
2
|y−G (uε)|2Γ =

1
2
|G (u0)−G (uε)|2Γ (19)

On the other hand,uε does not converge inX asε → 0.
⊓⊔

In order to overcome the difficulties demonstrated in this example regularization
is needed. In the remaining sections we discuss various regularizations, in general,
illustrating ideas by returning to the running example.

3.2 Regularization by Minimization Over a Convex, Compact Set

Recall thatE is a Banach space compactly embedded intoX. Let Ead = {u ∈ E :
‖u‖E ≤ α}. ThenEad is a closed convex and bounded set inE and, as such, any
sequence inEad must contain a weakly convergent subsequence with limit inEad

(see, for example, Theorem 1.17 in [18]). Now consider the minimization problem

Φ = inf
u∈Ead

Φ(u). (20)

Theorem 5. Any minimizing sequence{un}n∈Z+ for (20)contains a weakly conver-
gent subsequence in E with limitu∈ Ead which attains the infimum:Φ(u) = Φ .

Proof. This is a classical theorem from the field of optimization; see [18] for details
and context. Since{un} is contained inEad we deduce the existence of a subse-
quence (which for convenience we relabel as{un}) with weak limit u∈ Ead. Thus
un ⇀ u in E. Hence, by compactness,un → u in X. By Assumption 4 we deduce that
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Φ : E →R is weakly continuous. By definition, for anyδ > 0 there existsN= N(δ )
such that

Φ ≤ Φ(un)≤ Φ + δ , ∀n≥ N.

By weak continuity ofΦ : E →R we deduce that

Φ ≤ Φ(u)≤ Φ + δ .

The result follows sinceδ is arbitrary. ⊓⊔

Example 2.Consider the running example of Section 1.2. LetA denote a fixed sym-
metric positive-definite tensorA so that log(A) is defined. We define the subspace
of tensor valued functions of the formu′ = uI + log(A), for some constantu ∈ R

noting that then exp(u′) = exp(u)A. By Lipschitz continuity ofG in u′ ∈ X we de-
duce (abusing notation) Lipschitz continuity ofG viewed as a function ofu∈R. We
define

Ead= {u∈R : |u| ≤ α}. (21)

We may take the norm‖ · ‖E = |u|. Thus the problem (20) attains its infimum for
someu ∈ Ead. The regularization of seeking to minimizeΦ overEad corresponds
to looking for solution over a one-parameter set of tensor fields, in which the free
parameter is bounded byα. Note that such a solution set automatically rules out the
oscillating minimizing sequences which were exhibited in Example 1. ⊓⊔

3.3 Tikhonov Regularization

Instead of regularizing by seeking to minimizeΦ over a bounded and convex subset
of a compact setE in X, we may instead adopt the Tikhonov approach to regular-
ization. We consider the minimization problem

I = inf
u∈E

I(u), (22)

where

I(u) =
λ
2
‖u‖2

E +Φ(u). (23)

Theorem 6. Any minimizing sequence{un}n∈Z+ for (22)contains a weakly conver-
gent subsequence in E with limitu which attains the infimum: I(u) = I .

Proof. This is a classical theorem from the calculus of variations;see [12] for details
and context. Since{un} is a minimizing sequence andΦ ≥ 0, we deduce that for
anyδ > 0 there existsN = N(δ ) such that

λ
2
‖un‖2

E ≤ Ī + δ , ∀n≥ N.
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From this it follows that{un}n∈Z+ is bounded inE and hence contains a weak
limit u, along a subsequence which, for convenience, we relabel as{un}. The weak
continuity ofΦ : E → R, together with weak lower semicontinuity of the function
‖ · ‖2

E →R implies the weak lower semicontinuity ofI : E → R. Hence

I(u)≤ lim inf
n→∞

I(un)≤ I .

SinceI(u)≥ I , the result follows. ⊓⊔

Example 3.Consider the running example of Section 1.2. LetE = Hs(D;Sd) and
note thatE is compact inX = L∞(D;Sd) for s> d/2. Thus the problem (22) attains
its infimum for someu ∈ E. As with the example from the previous section the
regularization rules out highly oscillating minimizing sequences such as those seen
in Example 1. The choice of the parameterλ will effect how much oscillation is
allowed in any minimizing sequence.⊓⊔

3.4 PDE Constrained Optimization

The regularizations imposed in the two previous subsections involed the imposition
of constraints on the inputu to a PDE model and the resulting minimizations were
expressed in terms ofu alone. For at least two reasons it is sometimes of interest
to formulate the minimization problem simultaneously overthe input variableu, to-
gether with the solution of the PDEp= G(u) ∈ P: firstly computational algorithms
which work to find(p,u) in P×X can be more effective than working entirely in
terms ofu∈X; and secondly regularization constraints may be imposed onthe vari-
ablep as well as onu. If J : P×X → R then this leads to constrained minimization
problems of the form

min
(p,u)∈P×X

J(p,u) : p= G(u), c(p,u) ∈ K (24)

whereK denotes the constraints imposed on both the inputu and on the outputp
from the PDE model. Typically the observation operatorG : X →R

N is found from
G and then the information inΦ can be built into the definition ofJ.

Example 4.Consider the running example from Section 1.2 and assume that the
observational noiseξ ∼ N(0,γ2I). Define

J(p,u) =
1

2γ2

N

∑
j=1

|y− ℓ j(p)|2+
λ1

2
‖u‖2

Hs +
λ2

2
‖p‖2

P

for somes> d/2. Choosingλ1 = λ andλ2 = 0, together withc(p,u) = (p,u) and
K = P× X we obtain from (24) the minimization from Example 3 in the case
Γ = γ2I . Choosingλ1 = λ2 = 0, c(p,u) = (p,u) andK = P×Ead from Example
2 we recover that example. Choosingλ2 6= 0 and/or choosing the constraint setK



12 J. Nolen, G.A. Pavliotis and A.M. Stuart

to impose constraints onp leads to minimization in which the outputp of the PDE
model is constrained as well as the inputu that we are trying to estimate.⊓⊔

3.5 Bayesian Regularization

The preceding regularization approaches have a nice mathematical structure and
form a natural approach to the inverse problem when a unique solution is to be
expected. But in many cases it may be interesting or important to find a large class of
solutions, and to give relative weights to their importance. This allows, in particular,
for predictions which quantify uncertainty. The Bayesian approach to regularization
does this by adopting a probabilistic framework in which thesolution to the inverse
problem is a probability measure onX, rather than a single element ofX.

We think of(u, y) ∈ X×R
N as a random variable. Our goal is to find the distri-

bution ofu giveny, often denoted byu|y. We define the joint distribution of(u, y) as
follows. We assume thatu andξ appearing in (1) are indepenent mean zero Gaus-
sian random variables, supported onX andRN respectively, with covariance opera-
tor 1

λ C and covariance matrixΓ respectively. By equation (1), the distribution ofy
givenu, denotedy|u, is GaussianN(G (u),Γ ). The measureµ0=N(0, 1

λ C ) is known
as theprior measure. It is most natural to define the measureµ0 on a Hilbert space
H ⊇ X. Under suitable conditions onC , we haveµ0(X) = 1. This means that under
the measureµ0, u∈ X almost surely so thatG (u) is well-defined, almost surely. If
µ0(X) = 1, it follows that the Hilbert spaceE with norm ‖ · ‖E = ‖C−1/2 · ‖H is
compactly embedded intoX. The spaceE is known as the Cameron-Martin space.
In the infinite dimensional setting, functions drawn fromµ0 are almost surely not in
the Cameron-Martin space. See [9, 20] for detailed discussion of Gaussian measures
on infinite dimensional spaces.

When solving the inverse problem, the aim is to find the posterior measure
µy(du) = P(du|y), and to obtain information about likely candidate solutionsto
the inverse problem from it. Informal application of Bayes’theorem gives

P(u|y) ∝ P(y|u)µ0(u). (25)

The probability density function forP(y|u) is, using the property of Gaussians, pro-
portional to

exp
(

−1
2
|y−G (u)|2Γ

)

= exp
(

−Φ(u)
)

.

The infinite dimensional analogue of this result is to show that µy is absolutely
continuous with respect toµ0 with Radon-Nikodym derivative relating posterior to
prior as follows:

dµy

dµ0
(u) =

1
Z

exp
(

−Φ(u)
)

. (26)

HereΦ(u) is given by (18) andZ =
∫

X exp
(

−Φ(u)
)

µ0(du). The meaning of the
formula (26) is that expectations under the posterior measure µy can be rewritten
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as weighted expectations with respect to the prior: for a function F on X we may
write

∫

X
F (u)µy(du) =

∫

X

1
Z

exp
(

−Φ(u)
)

F (u)µ0(du).

Theorem 7. ([11]) Assume thatµ0(X) = 1. Thenµy is absolutely continuous with
respect toµ0 with Radon-Nikodym derivative given by(26). Furthermore the mea-
sureµy is locally Lipschitz in the data y with respect to the Hellinger metric: there
is a constant C=C(r), such that, for all y, y′ with max

{

|y|, |y′|
}

≤ r,

dHELL(µy,µy′)≤C|y− y′|. (27)

If µ , ν are probability measures that are absolutely continuous with respect to
the probability measureρ , then the Hellinger metric is defined as

dHELL(µ ,ν)2 =
1
2

∫

(
√

dµ(u)
dρ

−
√

dν(u)
dρ

)2

ρ(du).

For any function ofu which is square integrable with respect to bothµ andν it may
be shown that the difference in expectations of that function, underµ and underν,
is bounded above by the Hellinger distance. In particular, this theorem shows that
the posterior mean and covariance operators correspondingto data setsy andy′ are
O(|y− y′|) apart.

The choice of priorµ0, relates directly to the regularization of the inverse prob-
lem. To see this we note that since the operatorC is necessarily positive and self-
adjoint we may write down the complete orthonormal system

1
λ

C φm = σ2
mφm, m∈ Z

+, lim
m→∞

σm = 0. (28)

Thenu∼ µ0 can be written via the Karhunen-Loève expansion as

u(x) = ∑
m∈Z+

σmηmφm(x) (29)

where theηm form an i.i.d. sequence of unit Gaussian random variables. We may
regularize the inverse problem by modifying the decay rate of σm. For example,
choosingσm = 0 for m /∈ M , whereM ⊂ Z

+ has finite cardinality restricts the
solution of the inverse problem to a finite dimensional set, and is hence a regulariza-
tion. More generally, the rate of decay of theσm (which are necessarily summable as
C is trace class) will effect the almost sure regularity properties of functions drawn
from µ0 and, by absolute continuity ofµy with respect toµ0, of functions drawn
from µy.

In the case thatX is a subset ofH = L2(D) with D ⊂ R
d, the operatorC may be

identified with an integral operator:

1
λ
(C φ)(x1) =

∫

D
c(x1,x2)φ(x2)dx2
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for some kernelc(x1,x2). The regularity ofc(x1,x2) determines the decay rate of
σm [19]. If C = (−∆)α then the corresponding measureµ0 has the property that
samples are almost surely in the Sobolev spaceHs and in the Hölder spaceCs for
all s< α − d

2 (see [13] for more details). In particular, ifα > d/2, thenµ(X) = 1
whenX = L∞(D).

Priors which charge functions with a multiscale character can be built in this
Gaussian context. One natural way to do this is to chooseM as above so that it
contains two distinct sets of functions varying on length scales ofO(1) andO(ε)
respectively. A second natural way is to choose a covariancefunctionc= cε which
has two scales.

The formula (26) shows quite clearly how regularization works in the Bayesian
context: the main contribution to the expectation will comefrom places whereΦ
is close to its minimum value and whereµ0 is concentrated; thus minimizingΦ is
important, but this minimization is regularized through the properties of the measure
µ0. We now develop this intuitive concept further by linking the Bayesian approach
to Tikhonov regularization and the functionalI given by (23).

Givenz∈ E andδ ≪ 1 define the small ball probability

Jδ (z) = P
µy(‖u− z‖X < δ

)

.

Note that this ball is inX but centred at a pointz∈ E, with E (the Cameron-Martin
space) compact inX. It is natural to ask whereJδ (z) is maximized as a function
of z and placingz in E allows us to answer this question. Furthermore we then
see a connection between the Bayesian approach and the Tikhonov approach to
regularization. The next theorem shows that small balls centred at minimizers of
(23) will have maximal relative probability under the Bayesian posterior measure,
in the small ball limitδ → 0.

Theorem 8. ([14]) Assume thatµ0(X) = 1. Then

lim
δ→0

Jδ (z1)

Jδ (z2)
= exp

(

I(z2)− I(z1)
)

.

In the Bayesian context the solution of the Tikhonov regularized problem is
known as the Maximum A Posteriori estimator (MAP estimator)[7, 17].

4 Large Data Limits

In the previous section we showed how regularization plays asignificant role in
the solution of inverse problems. Choosing the correct regularization is part of the
overall modelling scenario in which the inverse problem is embedded, as we demon-
strated in the running example of Section 1.2. In some situations it may be suitable
to look for the solution of the inverse problem over a small finite set of parameters,
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whilst in others it may be desirable to look over a larger, even infinite dimensional
set, in which oscillations are captured.

This section is devoted entirely to inverse problems where asingle scalar parame-
ter is sought and we study whether or not this parameter is correctly identified when
a large amount of noisy data is available. The development istied specifically to the
running example, namely the PDE (3). For a fixed permeabilitycoefficient generat-
ing the data, Fitzpatrick has also studied the consistency and asymptotic normality
of maximum likelihood estimates in the large data limit [17]. Related work on pa-
rameter estimation in the context stochastic differentialequations (SDEs) may be
found in [25, 23].

4.1 The Statistical Model

We consider the problem of estimating a single scalar parameteru∈R in the elliptic
PDE

∇ ·v= f , x∈ D,

p= 0, x∈ ∂D,

v=−exp(u)A∇p

(30)

whereD ⊂ R
d is bounded and open, andf ∈ H−1 as well as the constant sym-

metric matrixA are assumed to be known. We letG : R → H1
0(D) be defined by

G(u) = p. Then using the same linear functionals as in the running example from
Section 1.2 we may construct the observation operatorG : R → R

N defined by
G (u) j = ℓ j(G(u)). Our aim is to solve the inverse problem of determiningu given
y satisfying (1). For simplicity we assume thatξ ∼ N(0,γ2I) which implies that
the observational noise on each linear functional is i.i.d.N(0,γ2). Sinceu is finite
dimensional we will simply minimizeΦ given by (18): no further regularization is
needed becauseu is already finite dimensional.

Notice that the solutionp of (30) is linear in exp(−u) and that we may write
G(u) = exp(−u)p⋆ wherep⋆ solves

∇ ·v= f , x∈ D,

p⋆ = 0, x∈ ∂D.

v=−A∇p⋆
(31)

Note thatG (u) j = exp(−u)ℓ j(p⋆) so that the least squares functional (18) has
the form

Φ(u) =
1

2γ2

N

∑
j=1

|y j −G j(u)|2 =
1

2γ2

N

∑
j=1

|y j −exp(−u)ℓ j(p
⋆)|2.

It is straightforward to see thatΦ has a unique minimizeru satisfying
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exp(−u) =
∑N

j=1y jℓ j(p⋆)

∑N
j=1ℓ j(p⋆)2

. (32)

It is now natural to ask whether, for largeN, the estimateu is close to the desired
value of the parameter. We study two situations: the first where the data is generated
by the model which is used to fit the data; and the second where the data is generated
by a multiscale model whose homogenized limit gives the model which is used to
fit the data.

4.2 Data From the Homogenized Model

We definep0 = exp(−u0)p⋆ so thatp0 solves (30) withu= u0.

Assumption 9 We assume that the data y is generated from noisy observations gen-
erated by the statistical model:

y j = ℓ j(p0)+ ξ j

where{ξ j} form an i.i.d. sequence of random variables distributed as N(0,γ2).

Theorem 10. Let Assumptions 9 hold and assume thatlim infN→∞
1
N ∑N

j=1ℓ j(p⋆)2 ≥
L > 0 as N→ ∞. Thenξ -almost surely

lim
N→∞

|exp(−u)−exp(−u0)|= 0.

Proof. Substituting the assumed expression for the data from Assumption 9 into the
formula (32) gives

exp(−u) = exp(−u0)+ I1

where

I1 =
1
N ∑N

j=1ξ jℓ j(p⋆)
1
N ∑N

j=1ℓ j(p⋆)2
.

Therefore,

E[I2
1] =

γ2

∑N
j=1ℓ j(p∗)2

≤ 2γ2

NL
(33)

for N sufficiently large. SinceI1 is Gaussian we deduce thatEI2p
1 = O(N−p) as

N → ∞. Application of the Borel-Cantelli lemma shows thatI1 converges almost
surely to zero asN → ∞. ⊓⊔

This shows that, in the large data limit, random observational error may be av-
eraged out and the true value of the parameter recovered, in the idealized scenario
where the data is taken from the statistical model used to identify the parameter. The
condition thatL > 0 prevents additional observation noise from overwhelmingthe
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information obtained from additional measurements asN→∞. It is a simple explicit
example of what is known asposterior consistency[8] in the theory of statistics.

4.3 Data From the Multiscale Model

In practice, of course, real data does not come from the statistical model used to
estimate parameters. In order to probe the effect that this can have on posterior con-
sistency we study the situation where the data is taken from amultiscale model
whose homogenized limit falls within the class used in the statistical model to esti-
mate parameters. Again we definep0 = exp(−u0)p⋆ and we now definepε to solve
(7) with Kε chosen so that the homogenized coefficient associated with this family
is K0 = exp(u0)A.

Assumption 11 We assume that the data y is generated from noisy observations of
a multiscale model:

y j = ℓ j(p
ε)+ ξ j

with pε as above and the{ξ j} an i.i.d. sequence of random variables distributed as
N(0,γ2).

Theorem 12. Let Assumptions 11 hold and assume that that the linear functionals
ℓ j are chosen so that

lim
ε→0

limsup
N→∞

1
N

N

∑
j=1

|ℓ j(p
ε − p0)|2 = 0 (34)

andlim infN→∞
1
N ∑N

j=1ℓ j(p⋆)2 ≥ L > 0 as N→ ∞. Thenξ− almost surely

lim
ε→0

lim
N→∞

|exp(−u)−exp(−u0)|= 0.

Proof. Notice that the solution of the homogenized equation isp0 = exp(−u0)p⋆.
We write

y j = ℓ j(p0)+ ℓ j(p
ε − p0)+ ξ j

= exp(−u0)ℓ j(p
⋆)+ ℓ j(p

ε − p0)+ ξ j .

Substituting this into the formula (32) gives

exp(−u) = exp(−u0)+ I1+ I ε
2

whereI1 is as defined in the proof of Theorem 10 and is independent ofε, and

I ε
2 =

∑N
j=1ℓ j(pε − p0)ℓ j(p⋆)

∑N
j=1ℓ j(p⋆)2

.
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The Cauchy-Schwarz inequality gives

|I ε
2 | ≤

(

∑N
j=1 |ℓ j(pε − p0)|2

)1/2

(

∑N
j=1ℓ j(p⋆)2

)1/2
≤
( 2

NL

N

∑
j=1

|ℓ j(p
ε − p0)|2

)1/2

for N sufficiently large. As in the proof of Theorem 10 we have,ξ -almost surely,

lim
N→0

|exp(−u)−exp(−u0)− I ε
2|= 0.

From this and (34) the desired result now follows.⊓⊔

The assumption (34) encodes the idea that, for smallε, the linear functionals
used in the observation process return nearby values when applied to the solution
pε of the multiscale model or to the solutionp0 of the homogenized equation. In
particular, Corollary 1 implies that if{ℓ j(p)}∞

j=1 is a family of bounded linear func-

tionals onL2(D), uniformly bounded inj, then (34) will hold. On the other hand,
we may choose linear functionals that are bounded as functionals onH1(D) yet un-
bounded onL2(D). In this case Theorem 1 shows that (34) may not hold and the
correct homogenized coefficient may not be recovered, even in the large data limit.
An analogous phenomenon occurs in inference for SDEs where if the observations
of a multiscale diffusion are too frequent (relative to the fast scale) then the correct
homogenized coefficients are not recovered [25, 23].

5 Exploiting Multiscale Properties Within Inverse Estimation

In this section we describe how ideas from homogenization theory can be used to
improve the estimation of parameters in homogenized models. We consider a regime
where the unknown parameter has small-scale fluctuations that may be character-
ized as random. In this case, if we attempt to recover the homogenized parameter
the errorξ appearing in (1) is affected by the model mismatch. This is because
the simplified, low-dimensional parameter used to fit the data is different from the
true unknown coefficient. So, even when there is no observational noise, the error
ξ has a statistical structure. Nevertheless, homogenization theory predicts that this
discrepancy betweenG(u) andy associated with model mismatch will have a uni-
versal statistical structure which can be exploited in the inverse problem, as we now
describe.

The specific ideas described here were developed by Nolen andPapanicolaou in
[21] for one dimensional elliptic problems, including the groundwater flow prob-
lem that we study here. Bal and Ren [4] have employed similar ideas in the study
of Sturm-Liouville problems with unknown potential. We begin by describing in
Section 5.1 the homogenization and fluctuation theory for the case that the (scalar)
permeabilityk(x) is random. Then, in Section 5.2 we show how these ideas can be
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used to develop an improved estimator for the homogenized permeability coeffi-
cient. We conclude with numerical results in Section 5.3.

5.1 The Model

In this section we will present the approach of [21] in the simplest possible setting.
We consider the two-point boundary value problem

− d
dx

(

exp(u(x))
dp
dx

)

= f (x), x∈ [−1,1], (35a)

p(−1) = p(1) = 0. (35b)

This is, of course, (3) in the one-dimensional settingd = 1.
It is assumed that the coefficientk(x) = exp(u(x)) is a single realization of a

stationary, ergodic and mixing random fieldk(x,ω). Furthermore it is assumed that
k−1 can be decomposed into a slowly varying non-random component, together with
a random, rapidly oscillating component:

1
k(x,ω)

=
1

k0(x)
+σ µ

( x
ε
,ω
)

, (36)

whereµ(x,ω) is a stationary, mean zero random field with covariance

R(x) = E(µ(x+ y)µ(y)).

We assume thatR(0)= 1 and
∫

R
R(x)dx= 1. Thus,σ2 andε are the (given) variance

and correlation length of the fluctuations. We are interested in the case whereε ≪ 1
so that the random fluctuations are rapid.

The solutionp = pε(x,ω) of (35) depends onε > 0 and on the realization of
k(x,ω). However, in the limit asε → 0, pε coverges top0(x) which is the solution
of the homogenized Dirichlet problem

− d
dx

(

k0(x)
d
dx

p0

)

= f (x), x∈ [−1,1], (37a)

p0(−1) = p0(1) = 0. (37b)

Observe that the homogenized coefficient is the harmonic mean of k: k0(x) =
E[k−1]−1. Moreover, in the limit asε → 0, the solutionpε has Gaussian fluctua-
tions about its asymptotic limit [3]. Specifically, one can prove that

pε(x,ω)− p0(x)

ε1/2
→ σ

∫

D
Q(x,y;k0)v0(y;k0)dWy(ω) (38)
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in distribution asε → 0, whereWy(ω) is a Brownian random field, which is a Gaus-
sian process. Herev0(x;k0) = k0(x)p0(x), and the kernelQ(x,y;k0) is then related
to the Green’s function for the one dimensional system:

(

px

vx

)

−
(

0 1/k0(x)
0 0

)(

p
v

)

=

(

g1

g2

)

.

If the 2× 2 Green’s matrix for this system isG(x,y;k0) : D×D → R
2 ⊗R

2, then
Q(x,y;k0) = G1,1(x,y;k0). The important point here is that the integral

I(x,ω) = σ
∫

D
Q(x,y;k0)v0(y;k0)dWy(ω)

which appears on the right side of (38) is a centered Gaussianrandom variable with
covariance

E[I(x)I(z)] = σ2
∫

D
Q(x,y;k0)v0(y;k0)

2Q(y,z;k0)dy.

This covariance depends onk0. The asymptotic theory given by the limit theorem
(38) gives us a good approximation of the statistics ofpε(x,ω) even when there is no
observation noise, and shows that the fluctuations depend onk0. In this simple case
presented here,Q can be computed explicitly. In other cases, it can be computed
numerically; see [21] for more details.

5.2 Enhanced Estimation

We now show how this asymptotic theory can be used to enhance estimation of
the homogenized parameterk0(x). The inverse problem is to identify the parameter
k0(x) in the model

− d
dx

(

k0(x)
d
dx

p0

)

= f (x), x∈ [−1,1], (39a)

p0(−1) = p0(1) = 0. (39b)

We take the viewpoint that the data actually come from observations ofpε(x,ω),
which is the solution of the multiscale model (35) withk(x,ω) given by (36), so
there is a discrepancy between the model used to fit the data and the true model
which generates the data. Now the outstanding modelling issue is the choice of
statistical model for the errorξ in (1).

Suppose we make noisy observations ofpε(x j) at points{x j}N
j=1 distributed

throughout the domain. Then the measurements are

y j = pε(x j ,ω)+ ξ j , j = 1, . . . ,N
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whereξ j ∼ N(0,γ2) are mutually independent, representing observation noise. The
limit (38) we have just described tells us that forε small, these measurements are
approximated well by

y j ≈ p0(x j)+ ξ ′
j ,

where{ξ ′
j}N

j=1 are Gaussian random variables with mean zero and covariance

Cj ,ℓ(k0,ε) = E[ξ ′
jξ ′

ℓ] = γ2δ j ,ℓ+ εσ2
∫

D
Q(x j ,y;k0)v0(y;k0)

2Q(xℓ,z;k0)dy (40)

Therefore, we model the observations as

y j ≈ G (k0)+ ξ ′
j , j = 1, . . . ,N

whereG (k0) = p0(x j ;k0) with p0 being the solution of(39). The modified statistical
errorξ ′ has two components. The first termγ2δ j ,ℓ is due to observation error. The
second term comes from the asymptotic theory and is associated with the random
microstructure in the true parameterk(x,ω). Of course, ifε is very small, relative
to γ2, then the observation noise dominates (40). In this case, the observations ofpε
may be very close to observations of the homogenized solution p0, and we might
simply assume thatξ ′ ∼ N(0,γ2I), ignoring the error associated with the model
mismatch. On the other hand, ifγ2 is small relative toε then the statistical error
ξ ′ is dominated by the model mismatch. In this case, homogenization theory gives
us an asymptotic approximation of the true covariance structure of ξ ′, which is
quite different fromN(0,γ2I). See [21] for a discussion of some properties of the
covariance matrixC(k0,ε).

Using the covariance (40), we make the approximation

P(y|k0)≈
1

√

2π |C(k0;ε)|
exp
(

−1
2

(

y−G (k0)
)T

C(k0;ε)−1(y−G (k0)
)

)

,

where| · | denotes the determinant. The parameterk0(x) is a function, in general,
and we may place a Gaussian priorµ0 on u0(x) = logk0(x). Application of Bayes’
theorem (25) (withk0 replacingu) gives that

P(k0|y) ∝
1

√

2π |C(k0;ε)|
exp
(

−1
2

(

y−G (k0)
)T

C(k0;ε)−1(y−G (k0)
)

)

µ0(logk0)

where the constant of proportionality is independent ofk0. The maximum a poste-
riori estimator (MAP) is then found as the functionk0(x) which maximizesP(k0|y)
which is the same as minimizingI(k0) =− ln

(

P(k0|y)
)

. The key contribution of ho-
mogenization theory is to correctly identify the noise structure which has covariance
C(k0;ε) depending onk0(x), the parameter to be estimated.
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5.3 Numerical Results

In this section we demonstrate the results of a numerical computation that show
some advantage to using the homogenization theory as we havejust described.
Given noisy observations ofpε(x j ) we may compute the MAP estimatork̂1 using
(41) with covarianceC(k0;ε) given by (40):

k̂1 = argmaxk0

1
√

2π |C(k0;ε)|
exp
(

−1
2

(

y−G (k0)
)T

C(k0;ε)−1(y−G (k0)
)

)

µ0(logk0),

(41)
On the other hand, we might ignore the effect of the random microstructure and
simply useC= γ2I , accounting only for observation noise:

k̂2 = argmaxk0

1
√

2π |γ2I |
exp
(

−1
2

γ−2|y−G (k0)|2
)

µ0(logk0). (42)

Both estimateŝk1 andk̂2 are random variables, depending on the random data ob-
served, but we should hope thatk̂1 gives us a better approximation ofk0, since it
makes use of the true covariance (40). Indeed for simple linear statistical models,
it is easy to see that an efficient estimator, which realizes the theoretically optimal
variance given by the Cramér-Rao lower bound, may be obtained by using the true
covariance of the data; however, using the incorrect covariance may lead to an es-
timate with significantly higher variance than the theoretical optimum. See [21] for
more discussion of this point. The present setting is highlynonlinear and the vari-
ance of the estimatesk̂1 andk̂2 cannot be computed explicitly, sinceC(k0,ε) depends
on k0 in a nonlinear way through solution of the PDE. Neverthelessthe numerical
results are consistent with the expectation that approximation of the true covariance
(through homogenization theory) yields a MAP estimator that has smaller variance,
relative to the estimate that makes no use of the homogenization theory (see Figure
3).

In Figure 1 we show one realization of the true coefficientk(x,ω) which was
used to generate the data. The highly-oscillatory graph represents the true coeffi-
cient k(x,ω) with variation on many scales. The slowly-varying harmonicmean
k0(x) also is displayed here as the thick curve; this functionk0 is what we attempt
to estimate. The data was generated as follows. Using one realization of k(x,ω)
and given forcingf , we solve the Dirichlet boundary value problem (35). The ob-
servation data involves point-wise evaluation ofpε(x j) at points{x j}N

j=1 spaced

uniformly across the domain, plus independent observationnoiseN(0,γ2) at each
point of observation. Using this data, we compute estimatesk̂1 andk̂2 by minimizing
(41) and (42), respectively. For the computation shown here, the functionk0(x) is
parameterized by the first three coefficients in a Fourier series expansion. So, com-
puting k̂1 and k̂2 involves an optimization inR3. To evaluateP(k0|y) at each step
in the minimization algorithm, we must solve the forward problem (39) with the
current estimate ofk0, and in the case of̂k1 we must also computeC(k0,ε). See [21]
for more details about this computation.



Multiscale Modelling and Inverse Problems 23

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

x

Fig. 1 The thin erratic curve is one realization of the true coefficient kε (x,ω). The thick curve is
the slowly-varying harmonic meank0(x). This realization was used to generate the data.

Figure 2 compares the estimatek̂1(x) with the true functionk0(x). Since the esti-
matek̂1(x) is a random function, we performed the experiment many times(gener-
ating newk(x,ω) to compute each estimatek̂1) and display the results of 100 exper-
iments. The data for̂k2 is qualitatively similar. Nevertheless, the pointwise variance
Var[k̂1(x)] is smaller thanVar[k̂2(x)], as shown in Figure 3. This is consistent with
the linear estimation theory for which knowledge of the truedata covariance yields
an estimate with optimal variance.

Acknowledgements The authors thank A. Cliffe and Ch. Schwab for helpful discussions con-
cerning the groundwater flow model.

Appendix 1

In this Appendix we prove Theorem 3 which, recall, applies inthe case where (7b)
and (13b) are replaced by periodic conditions onD = (LT)d.
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Fig. 2 The thick curve is the truek0. The dashed series represent 100 independent realizationsof
the estimatêk1.

Theorem 13. Let xε (t) and x0(t) be the solutions to equations(8) and (17), with
velocity fields extended from D= (LT)d to R

d by periodicity, and assume that As-
sumption 2 holds. Assume also that f∈C∞(D) and that K(x,y) ∈C∞(D;C∞

per(T
d)).

Then
lim
ε→0

E sup
0≤t≤T

‖xε(t)− x0(t)‖= 0.

Proof. To simplify the notation we will set the porosity of the rock to be equal to
1, φ = 1. Recall thatvε (x) = Kε(x)∇pε (x). Our first observation is that, forpε

a(x)
given by (9),

Kε(x)∇pε(x) = Kε (x)∇pε
a(x)− δ ε(x) (43)

where
δ ε(x) =−Kε(x)∇

(

pε(x)− pε
a(x)

)

. (44)

From Assumption 2 we deduce that

lim
ε→0

‖δ ε(x)‖L∞ = 0.

From the definition ofpε
a(x) it follows that
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Fig. 3 The upper series (o) is the empirical varianceVar[k̂2(x)]. The lower series (-) isVar[k̂1(x)].
Both quantities were computed using 500 samples.

Kε(x)∇pε
a(x) = Qε (x)∇p0(x)− εδ ε

1 (x)

where
δ ε

1 (x) =−Kε(x)∇xp1(x,x/ε), Qε(x) = Q(x,x/ε). (45)

From the definition ofp1 in (14) we see that

‖δ ε
1 (x)‖L∞ ≤C.

Putting (43) and (45) together we see that

vε(x) =−Qε(x)∇p0(x)+ δ ε(x)+ εδ ε
1 (x)

and we see from (44) and (45) that the perturbations ofvε(x) from Qε(x)∇p0(x)
are small; it is thus natural to expect a limit theorem forxε solving (8) which is
Lagrangian transport in an appropriately averaged versionof Qε (x)∇p0(x). Further-
more, sinceQ(x,y) is divergence free in the fasty coordinate, by (15), it is natural to
expect that the appropriate average is Lebesgue measure. Wenow demonstrate that
this is indeed the case.

From (8) we deduce that
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xε(t) = x(0)+
∫ t

0
(−Qε(x)∇p0(x(s))+ δ ε(x(s))+ εδ ε

1 (x(s))) ds+
√

2η0ε W(t).

(46)
Define nowV(x,y) =−Q(x,y)∇p0(x) and consider the system of SDEs

dx
dt

= (V(x,y)+ δ ε(x)+ εδ ε
1 (x))+

√

2η0ε
dW
dt

, (47a)

dy
dt

=
1
ε
(

V(x,y)+ δ ε(x)
)

+ δ ε
1 (x)+

√

2η0

ε
dW
dt

. (47b)

Sincey = x/ε we see thatx(t), the solution of (47) is equal toxε(t) appearing in
(46).

The process{x(t), y(t)} is Markov with generator

L =
1
ε

(

(

V(x,y)+ δ ε(x)
)

·∇y+η0∆y

)

+
(

(

V(x,y)+ δ ε(x)
)

·∇x+ δ ε
1 (x) ·∇y+η0∇x ·∇y+η0∇y ·∇x

)

+εη0∆x+ εδ ε
1 (x) ·∇x

=:
1
ε
(

L0+ δ ε(x) ·∇y
)

+L1+ εL2.

Consider now the Poisson equation

−L0Φ =V(x,y)− v0(x) (48)

with (see (13)(c))

v0(x) =
∫

Td
V(x,y)dy.

Equation (48) is posed onTd with periodic boundary conditions. Notice thatx enters
merely as a parameter in this equation. The operatorL0 is uniformly elliptic onTd

and the right hand side averages to 0, hence, by Fredholm’s alternative this equation
has a solution which is unique, up to constants. We fix this constant by requiring
that

∫

Td Φ(x,y)dy= 0. We defineΦε (x) := Φ(x,x/ε) and similarly forLiΦε (x).
Applying Itô’s formula toΦ and evaluating aty= x/ε we obtain

dΦε (x) =
1
ε
(L0Φε + δ ε(x) ·∇yΦ (x,x/ε)) dt+L1Φε dt+ εL2Φε dt

+

√

2η0

ε
∇yΦε dW+

√

2η0ε∇xΦε dW

= −1
ε
(V (x,x/ε)− v0(x)+ δ ε(x) ·∇yΦ(x,x/ε)) dt+L1Φε + εL2Φε dt

+

√

2η0

ε
∇yΦε dW+

√

2η0ε∇xΦε dW.

Consequently,
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∫ t

0
V
(

x(s),y(s)
)

ds−
∫ t

0
v0(x(s))ds

=
∫ t

0

(

δ ε (x(s)) ·∇yΦ(x(s),x(s)/ε)+ εL1Φε(x(s))+ ε2
L2Φε (x(s))

)

ds

− ε
(

Φε (xε(t))−Φε(xε (0))
)

+
√

εMε (t),

where

Mε (t) :=
∫ t

0

(

√

2η0∇yΦε + ε
√

2η0∇xΦε
)

dW.

SinceΦ(x,y) is periodic in both coordinates we have that

‖∇yΦ(x,x/ε)‖L∞ ≤C, ‖Φε(x)‖L∞ ≤C, ‖L1Φε‖L∞ ≤C, ‖L1Φε‖L∞ ≤C

and
E‖Mε (t)‖p ≤C, p≥ 1. (49)

We combine the above calculations to obtain

xε (t) = x(0)+
∫ t

0
v0(x

ε (s))ds+Hε(t)+
√

εM̃ε(t),

where

Hε(t) := −ε
(

Φε (xε(t))−Φε(xε(0))
)

+

∫ t

0
(δ ε(xε(s))+ εδ ε

1 (x
ε(s))) ds

+

∫ t

0

(

δ ε (x(s)) ·∇yΦ(x(s),x(s)/ε)+ εL1Φε (x(s))+ ε2
L2Φε (x(s))

)

ds

and
M̃ε (t) = Mε (t)+

√

2η0W(t).

Our estimates imply that

lim
ε→0

E sup
t∈[0,T ]

|Hε(t)|= 0.

Furthermore, estimate (49), together with the Burkhölder-Davis-Gundy inequality
imply that

E sup
t∈[0,T ]

|M̃ε (t)| ≤C.

On the other hand,

x(t) = x(0)+
∫ t

0
v0(x(s))ds.

Setθ (T) := Esupt∈[0,T] |xε(t)− x(t)|. Becausev0 is periodic it is in fact globally
Lipschitz so that we obtain

θ (T)≤C
∫ T

0
θ (t)dt+hε(T),
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where
lim
ε→0

hε(T) = 0.

We use Gronwall’s inequality to deduce

θ (T)≤ hε (1+CTeCT) ,

from which the claim follows. ⊓⊔

Appendix 2

In this appendix we study the homogenization problem (7) in one dimension. In this
case we can calculate the homogenized coefficient explicitly and to prove Assump-
tion 2. More details can be found in [24, Ch. 12].

The Homogenized Equations

We taked = 1 in (7) and setD = [0,L]. Then the Dirichlet problem (7) reduces to a
two–point boundary value problem:

− d
dx

(

exp
(

u
(

x,
x
ε

)) dpε

dx

)

= f forx∈ (0,L), (50a)

pε(0) = pε(L) = 0. (50b)

We assume thatu(x,y) is smooth in both of its arguments and periodic iny with
period 1. Furthermore, we assume that this function is bounded from above and
below. Consequently, there exist constants 0< α ≤ β < ∞ such that

α ≤ exp(u(x,y))≤ β , ∀y∈ [0,1]. (51)

We also assume thatf is smooth.
The cell problem becomes a boundary value problem for an ordinary differen-

tial equation with periodic boundary conditions. Introducing the notationk(x,y) :=
exp(u(x,y)), the cell problem can be written as

− ∂
∂y

(

k(x,y)
∂ χ
∂y

)

=
∂k(x,y)

∂y
, for y ∈ (0,1), (52a)

χ is 1–periodic,
∫ 1

0
χ(x,y)dy= 0. (52b)

Notice that the macrovariablex enters the cell problem (52) as a parameter. Since
d = 1 we only have one effective coefficient which is given by the one dimensional
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version of (11),(12), namely

k0(x) =
∫ 1

0

(

k(x,y)+ k(x,y)
∂ χ
∂y

(x,y)

)

dy

=

〈

k(x,y)

(

1+
∂ χ
∂y

(x,y)

)〉

(53)

where we have introduced the notation〈φ(x,y)〉 :=
∫ 1

0 φ(x,y)dy. The homogenized
equation is then

− d
dx

(

k0(x)
dp0

dx

)

= f , x∈ (0,L), (54a)

p(0) = p(L) = 0. (54b)

Explicit Solution of the Cell Problem

Equation (52a) can be solved exactly. After integrating theequation and applying
the periodic boundary conditions, we obtain

χ(x,y) =−y+ c1

∫ y

0

1
k(x,y)

dy+ c2,

with

c1(x) =
1

∫ 1
0

1
k(x,y) dy

= 〈k(x,y)−1〉−1.

Therefore, from (53) we obtain:

k0(x) = 〈k(x,y)−1〉−1. (55)

The constantc2 is irrelevant. This is the formula which gives the homogenized coef-
ficient in one dimension. It shows clearly that, even in this simple one–dimensional
setting, the homogenized coefficient is not found by simply averaging the unhomog-
enized coefficients over a period of the microstructure. Rather, the homogenized co-
efficient is theharmonic averageof the unhomogenized coefficient. It is quite easy
to show thatk0(x) is bounded from above by the average ofk(x,y). Notice that the
homogenized coefficient can be written in the form

k0(x) = eu0(x), where u0(x) = log
(

〈exp(−u(x,y))〉−1) . (56)
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Error Estimates in W1,∞

The fact that we can obtain an explicit formula for the solution of the boundary
value problem (50) as well as for the solution of the cell problem (52) enables us to
prove Assumption 2.

Proposition 14 Let pε(x) be the solution of the two-point boundary value prob-
lem (50) where the log permeability u(x,y) is smooth in both of its arguments and
satisfies(51). Let k(x,y) = exp(u(x,y)) and define

vε(x) = k
(

x,
x
ε

) dpε

dx
(x)

and

V(x,y) = k(x,y)

(

1+
∂ χ
∂y

(x,y)

)

dp0

dx
(x),

where p0(x) is the solution of the homogenized equation(54). Then

lim
ε→0

‖vε(x)−V(x,x/ε)‖L∞ = 0. (57)

Notice that, by (14), the correctorp1(x,y) = χ(x,y)dp0
dx (x). Hence, using the

bound (51) from below ona, together with the definition (9) ofpε
a, this theorem

delivers the following immediate corollary:

Corollary 2. Under the assumptions of Proposition 14 we have

lim
ε→0

‖pε − pε
a‖W1,∞ = 0.

Proof of Proposition 14.We have that

dχ
dy

(x,y) =−1+
k0(x)
k(x,y)

.

Consequently

V(x,y) = k0(x)
dp0

dx
(x).

Define a functionF by F ′(z) = f (z). We solve the homogenized equation to obtain

k0(x)
dp0

dx
(x) =−F(x)+ c,

with

c=

∫ L
0 k−1

0 (z)F(z)dz
∫ L

0 k−1
0 (z)dz

.

Similarly, from (50) we obtain
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k
(

x,
x
ε

) dpε

dx
=−F(x)+ cε ,

with

cε =

∫ L
0 k−1(z,z/ε)F(z)dz
∫ L

0 k−1(z,z/ε)dz
.

From the above calculations we deduce that

‖vε(x)−V(x,x/ε)‖L∞ = |c− cε |.

It suffices to show that|c− cε |= O(ε). This will follow from the fact that

∫ L

0
k−1(z,z/ε)G(z) =

∫ L

0
k−1

0 (z)G(z)dz+O(ε)

for any smooth functionG, asε → 0. To see this, define integerN andδ ∈ [0,ε)
uniquely by the identity

L = Nε + δ . (58)

Then note that, using the uniform bounds onk(x,y) from below, together with uni-
form (in y) Lipschitz properties ofa(·,y) andG, we have forzn = nε,

∫ L

0
k−1(z,z/ε)G(z)dz=

N−1

∑
n=0

∫ (n+1)ε

nε
k−1(zn,z/ε)G(zn)dz+O(ε)

=
N−1

∑
n=0

∫ (n+1)ε

nε
k−1

0 (zn)G(zn)dz+O(ε)

=
N−1

∑
n=0

∫ (n+1)ε

nε
k−1

0 (z)G(z)dz+O(ε)

=

∫ L

0
k−1

0 (z)G(z)dz+O(ε).

This completes the proof.⊓⊔
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