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Multiscale M odelling and | nver se Problems

J. Nolen, G.A. Pavliotis and A.M. Stuart

Abstract The need to blend observational data and mathematical siadsés in
many applications and leads naturally to inverse probl&asameters appearing in
the model, such as constitutive tensors, initial cond#jdoundary conditions, and
forcing can be estimated on the basis of observed data. Fhing inverse prob-
lems are often ill-posed and some form of regularizatioadmired. These notes dis-
cuss parameter estimation in situations where the unkn@nampeters vary across
multiple scales. We illustrate the main ideas using a simpéel for groundwater
flow.

We will highlight various approaches to regularization iforerse problems, in-
cluding Tikhonov and Bayesian methods. We illustrate thdeas that arise when
considering inverse problems in the multiscale contexe Titst idea is that the
choice of space or set in which to seek the solution to therggvproblem is inti-
mately related to whether a homogenized or full multiscalet®on is required. This
is a choice of regularization. The second idea is that, if mdgenized solution to
the inverse problem is what is desired, then this can be ezedvfrom carefully de-
signed observations of the full multiscale system. Thaltldea is that the theory of
homogenization can be used to improve the estimation of lgemiaed coefficients
from multiscale data.
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1 Introduction

The objective of this overview is to demonstrate the impartale of multiscale
modelling in the solution of inverse problems for diffefi@hequations. The main
inverse problem we discuss is that of determining unknowarpaters by match-
ing observed data to a differential equation model invajuimose parameters. The
unknown parameters may be functions, in general, and thgyhaee variation
over multiple (length) scales. This multiscale structuikes the forward problem
more challenging: numerically computing the solution te differential equation
requires very high resolution. The multiscale structuse @omplicates the inverse
problem. Should we try to fit the data with a high-dimensiqraabmeter, or should
we seek a low-dimensional “homogenized” approximationhaf parameter? If a
low-dimensional parameter model is used, how should wewaddor the mismatch
between the true parameters and the low-dimensional epEsn? After obtain-
ing a solution to the inverse problem, one typically wantsitke further predictions
using whatever parameter is fit to the observed data, sontgeitant to consider
whether a low-dimensional representation of the unknowarpater is sufficient to
make additional predictions.

Throughout these notes the unknown parameters will be ddrmtu € X; typi-
cally uis a function assumed to lie in a Banach spAc&Ve usey € Y to denote the
data (for simplicity we often také = RN) andzto denote the predicted quantity, as-
sumed to be an element of a Banach spaoe, in some cases,Z&—valued random
variable. The mag/ : X — RN denotes the forward mapping from the unknown pa-
rameter to the data, and : X — Z (or % : X x Q — Z in the random case) denotes
the forward mapping from the parameter to the prediction.sdfmetimes refer to
¢ as theobservation operatoand.# as theprediction operatorBoth¥ and.# are
typically derived from a common solution operatr. X — P mappingu € X to
the solutionG(u) € P of a partial differential equation (PDE), whelPeis a Banach
space. For exampl€ may be derived by composir@gwith N linear functionals.

The ideal inverse problem is to determine= X from knowledge ofy € RN
where it is assumed thgt= ¢(u). In practice, however, the datais generated
from outside this clean mathematical model, so it is natr#hink of the datgy as
being given by

y=4(u)+¢ (1)

for some& € RN quantifying model err@rand observational noise. The valuegof
is not known, but it is common in applications to assume tbatesof its statistical
properties are known and these can then be built into theadsthsed to estimate
u. Once the functiom is determined by solving this inverse problem, it can be used
to make a predictioa = .% (u).

We illustrate three ideas that arise when attempting toestblg inverse problem
defined by[(IL) in the multiscale context:

1 Model error can be incorporated within the set of unknowrapeetersu and estimated using
data; however this idea is not pursued here.
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e (a) The choice of the space or set in which to seek the soltdgitire inverse prob-
lem is intimately related to whether a low-dimensional “remanized” solution
or a high-dimensional “multiscale” solution is required fvedictive capability.
This is a choice of regularization.

e (b) If a homogenized solution to the inverse problem is @ekithen this can be
recovered from carefully designed observations of thenfuiltiscale system.

e (c) The theory of homogenization can be used to improve ttimaton of ho-
mogenized parameters from observations of multiscale data

In Sectio 2 we consider in detail a worked example which etiies the use
of multiscale methods to approximate the forward probléhend.# for data and
predictions; this example will be used to illustrate manyhaf general ideas devel-
oped in these notes, and the three ideas (a)—(c) in partiQdatio 8 is devoted to a
brief overview of regularization techniques for inverselgems, and to discussion
of the idea (a). Sectidd 4 is devoted to the idea (b). We stuelptoblem of estimat-
ing a single scalar parameter in a homogenized model of ghwater flow, given
data which is generated by a full multiscale model. This magden as a surrogate
for understanding the use of real-world data (which is tgfycmultiscale in char-
acter) to estimate parameters in simpler homogenized mo8ettiob is devoted
to the idea (c). We study the use of ideas from multiscale aukitogy to enhance
parameter estimation techniques for homogenized modkks viewpoint taken is
that the statistics of the errgrappearing in[{il) can be understood using the theory
of homogenization for random media; when these statispioaperties depend on
the unknown parameterthe noisef is no longer additive and its dependenceuon
plays an important role in the parameter estimation process

1.1 Notation

The following notation will be used throughout. We Usg&to denote the Euclidean
norm onR™ (for possibly different choices of). We letS* (resp.S**) denote the
set of symmetric (resp. positive-definite) second ordesdaesiorRY. If I e S+, we
define the weighted norin|r = |I'*% -|onR™. Throughoutthe noteX is a Banach
space, containing the functions that we wish to estimatd,Eam Banach space
compactly embedded intd. When studying the inverse problem from a Bayesian
perspective we will use Gaussian priorsXndefined via a covariance operatér

on a Hilbert spacél O X, with norm|| - ||4. In this situationE will be the Hilbert

space with nornﬂ%*% |IH-
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1.2 Running Example

We consider a model for groundwater flow in a medium with pexiiléy tensork,
pressurep and Darcy velocity (or the volume flux of water per unit area) related
to the pressure via the Darcy law:

V=—E(Dp—pgéz) 2

where u is the fluid viscosity,p is the fluid densityg is the acceleration due to
gravity ande; is the unit vector in the-direction. We choose units in whigh= 1.
We also assume that we have a constant density fluid and redeérpressure by
addingpgz (zis the vertical direction) to writd{2) in the form= —kOp. Assum-
ing that the Darcy velocity is divergence-free, except atade known source/sink
locations, we obtain the following elliptic equation foetpressure:

O-v=f, xeD,
p=0, xedD, 3)
v=—klp

whereD c RY is an open and bounded set with regular boundary fascssumed
to be known. The permeability tensor fidddhowever, is assumed to be unknown
and must be determined from data. In order to make the ellRBE [3) for the
pressure well-posed, we assume that the permeability teké&oris an element of
S*+ and so we write it as the (tensor) exponentiék) = exp(u(x)), ue . Itis
natural to viewu as an element of := L®(D; S) and to consider weak solutions of
@) with f € H=1(D). Then we have a unique solutigne H}(D) satisfying

10pll2 < coexp(f[ullx) [l Flln-1, (4)

for somec; > 0 depending only od andD, and||u||x being the essential supremum
of the spectral radius of the matnixx), asx varies oveD:

||ul|x = ess-sug max|u(x)¢|
xeD Eerd
€[=1

Thus we may defin& : X — H}(D) by G(u) = p. Now consider a set of real-
valued continuous linear functionalg: H3(D) — R and define? : X — RN by
% (u)j = £;(G(u)). The inverse problem is to determioes X fromy € RN where
it is assumed tha is given by [1). Using[{4) one may show that X — H}(D)
(resp.¢ : X — RN) is Lipschitz. Indeed ifp; denotes the solution t@](3) with log
permeabilityy; then, we have

10— Opz iz < (0)?]us — allx exp( 2([usllx + uallx)) -2 (5)
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Study of the transport of contaminants in groundwater floav matural example
of a useful prediction that can be made once the inversegmois solved. To model
this scenario we consider a partiodg) € RY which is advected by the the ground-
water velocity fieldv/@, whereg is the porosity of the rock andis the Darcy ve-
locity field from (3), and subject to diffusion with coefficie2n. Assuming that the
contaminant is initially ak,; we obtain the stochastic differential equation (SDE):

dx— %) dt+ /27 dW,  X(0) = Xt (6)

whereW(t) is a standard Brownian motion @&f'. If we are interested in predicting
the location of the contaminant at tirfethen our prediction will be the function
Fn given by.Z, (u) = x(T). Here for each fixed) € [0,) the function#, maps
X into the family ofRY—valued random variables.

2 The Forward Problem: Multiscale Properties

Some inverse problems arising in applications have thegutpphat the forward
model¥ mapping the unknown to the data will produce similar outputboth
highly oscillatory functionss and on appropriately chosen smoothly varying func-
tions u. Furthermore, for some choices of prediction functi@nthe predictions
themselves will also be close for both highly oscillatorpdtionsu and on appro-
priately chosen smoothly varying functionsThese properties can be seen from an
application of multiscale analysis, and we illustrate tH@ynconsidering the prob-
lem introduced in Section 1.2. There are many texts on theryhef multiscale
analysis. For example, the basic homogenization theor&suogssed here are devel-
oped in [6]. A recent overview of the subject, with many otteferences and using
the same notational conventions that we adopt here, lis [24].

We consider a multiscale version of the running example f8&ttiod 1.2 where
the permeability tensor is= K¢(x) = K(x,x/€) whereK : D x T¢ — S+ is peri-
odic in the second argumerst,> 0 a small parameter. For now we have assumed
periodic dependence on the fast scaleKify however we will generalize this to
random dependence in later developments.

With this permeability we obtain the family of problems

0.V =f, xeD, (7a)
pf =0, xedD, (7b)
V¢ = —K®0pf. (7c)

If we setn = €np, then the transport of contaminants is given by the SDE

VE(xF) e
dxt = TdH— V2noedW,  x%(0) = Xinit. (8)
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Standard techniques from the theory of homogenizationlfiptie PDEs can be
used to show that fag small,

P°(X) ~ PA(X) 1= Po(X) + £P1(X,2) ©

wherepg andp; are defined as follows. First we define the effective (homget)
permeability tensoKg via solution of thecell problemfor x (x,y):

—Oy- (OyxK") =0y -KT, yeT™ (10)

Then
Ko() = [, Qxy)d, CEY
Q(X7 y) = K(X7 y) + K(X’ y) DVX(X7 y)T (12)

In this sense we observe that the effective diffusitigyx) is the average d(x,y)
over the fast scalg. This isnot equal to the average &f(x,y) overy, except in
trivial cases. We denote hy the logarithm oK so thatko = exp(up).

The functionpg solves the £ independent) elliptic PDE

O-vop=f, xeD, (13a)
Po=9g, xeadD, (13b)
Vo = —Kolpo. (13¢)

and the correctop; is given by

P1(xy) = X (%,Y) - Opo(X). (14)
Note that[(ID) may be written as

~Oy-(Q") =0, yeT" (15)

This shows tha), which is averaged to give the effective permeability teniso
divergence-free with respect to the fast variaple

Itis possible to prove that, in the limit @&s— 0, solutions to[{[7) converge to solu-
tions to [I3), the convergence being strong#D) and weak irH*(D) [10,[1,24].
However if we want to prove strong convergenceHh then we need to include
information about the corrector term. The following theorem and corollary sum-
marize these ideas. For proofs sée [1], or the discussidreiteits[10,24].

Theorem 1. Let f and p be the solutions of7)) and (I3). Assume that £ C*(D)
and that K(x,y) € C*(D;Cp(T9)). Then

lim [/ p* — p&l2 = O. (16)
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Corollary 1. Under the same conditions as in Theofdm 1 we have
Ip* = pofl .2 =0 and [|Op°— (1 +xy(-,-/&)")Opol2 = O

ase — 0.

In fact it is frequently the case that the convergence in Tér®8]l may be ob-
tained in a stronger topology. Reflecting this we make thkfiohg assumption.

Assumption 2 The function p converges to gin L* (D) and its gradient converges
to the gradient of p+ epy in L*(D) so that

||m € pt o — O
lim [0~ P&l

In AppendiX5.B we prove this assumption for the one dimeraiversion of[(¥).
The proof in the multidimensional case will be presentedwleere([22]. The proof
of this assumption in the multidimensional case is basecherestimates proved
in [2] (in particular, Lemma 16), see al$o [15, Lemma 2.1].

With these limiting properties of the elliptic proble (#)fend it is natural to
ask what is the limiting behaviour of governed by[{8). To answer this question
we define

dxo _ Vo(%o)

dad o
Notice that this ordinary differential equation (ODE) hator fieldvy which is
defined entirely through knowledge of the homogenized pehitiey Ko: onceKg
is known, the elliptic PDE(13) can be solved fay and thenvg is recovered from
(@3c). If we can show that solutions 61 (8) andl(17) are clbsathis will establish
that the prediction of particle transport in the mo@é! (8),dan be made accurately
by use of only homogenized information about the permdgbili

In proving such a result there are a number of technical ssatéch arise caused
by the presence of the boundddyof the domain in which the PDE](7) is posed. In
particular solutions of {8) may leau® requiring a definition of the velocity field
outsideD. These issues disappear if we consider the case vihésatself a box
of lengthL and is equipped with periodic boundary conditions instefadinchlet
conditions: we may then extend all fields to the whol&8fby periodicity. In this
case, the homogenization theory bt (7) with (7b) replacegériodic boundary
conditions is identical to that given above, except thabjli8 also replaced by
periodic boundary conditions. We wrii2 = (LT)9 and adopt this periodic setting
for the next theorem, which is proved in AppendixI5.3:

Theorem 3. Let ¥(t) and %(t) be the solutions to equatior{8) and (@7), with
velocity fields extended from B (LT)® to RY by periodicity, and assume that As-
sumptioi 2 holds. Assume also that €°(D) and that Kx,y) € C“(D;Cger(’]l‘d)).
Then

X0(0) = Xinit- (17)

limE sup [[x¢(t) —xo(t)|| = O.

£—0 0<t<T
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In summary, this example exhibits the property that, if #1egith scale is small,
the data generated frokf andK, may appear very similar due to homogenization
effects. Therefore, when trying to infer parameters frotadiais difficult to distin-
guish betweeiK¢ andKg without some form of regularization or prior assumptions
about the form of the parameter. On the other hand, Thelordro8ssthat knowing
only Ky is sufficient to make accurate predictions of the trajeewdf [8).

3 Regularization of Inver se Problems

In this section we describe various approaches to reguigrinverse problems,
motivating them by reference to the multiscale exampleéttevious section. The
approach to regularizing which is described in Sedfioh 8 @iveloped in detail in
[5]. The Tikhonov regularization approach from Secfiodi8.@eveloped in detail in
[16],[17]. Both of these regularization approaches are fipexiamples of the gen-
eral set-up often called PDE constrained optimizationcWhie discuss in Section
[B3; this subject is overviewed in[18]. An overview of they®aian approach to
inverse problems, a subject that we outline in Sedfioh 8.§ivien in [26] and([1]7].

3.1 Set-Up

Our objective here is to determinegiveny, whereu andy are related by[{1). We
assume that, whilst the actual valueéofs not available, it is reasonable to view it
as a single draw from a statistical distribution whose pridggare known to us. To
be concrete we assume tlais drawn from a mean zero Gaussian random variable
with covariancd™: we write this a€ ~ N(0,I ). We make the following continuity
assumption concerning the observation oper@toNote that this (local) Lipschitz
condition also implies an (exponential|jn||x) bound on|¢ (u)|.

Assumption 4 There are constants;c, > 0 such that, for ye X with |Jui||x <
ri=12,
| (u1) — ¥ ()| < crexp(car)||ur — Uzf|x.

In general the inverse problems such as that giverl by (1) §ithO are hard
to solve: they may have no solutions, multiple solutions swoldtions may exhibit
sensitive dependence on initial data. For this reason itatsral to seek a least
squares approach to finding functiamg/hich best explain the data. In view of the
assumed structure dna natural least squares functional is

o) = Sy 4w (19
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The weighting byl in the Euclidean norm induces a normalization on the model-
data mismatch. This normalization is given by the assumamtsird deviations of
the noise in a coordinate system defined by the eigenbadis for

Example 1Consider the running example of Sectfonl 1.2. Equafidn (Byvshthat
Assumptior{# holds in this case, noting ti¥au); = ¢;(p) for some linear func-
tional /; onH(D), with the choiceX = L*(D; "), providedf € H~1. We use this
example to illustrate why inverse problems are, in genéitl.

Assume that the linear functionalg satisfy the property that;(p® — po) — 0
ase — 0. This occurs if they are linear functionals @A(D), by Theoreni ! or if
Assumptior2 holds, if they are linear functionals (D). Writing this in terms
of ¥ we have|¥ (Uf) — 4 (up)| — 0 ase — 0. (Note that this occurs even though
ué andug are not themselves close.) Hence there is an uncountabily ffifunc-
tions (indexed by alk sufficiently small) which all return approximately the same
value of @(uf) and thus simply minimizingp may be very difficult. Furthermore,
there may be minimizing sequences which do not convergee¥ample fix a par-
ticular realization of the data given lyy=¢(up) whereuy is the homogenized log
permeability. Therb(uf) > 0 for all € > 0 and®(u¢) — 0 ase — 0, since

@()] = Sy~ F()E = 514(w0) ~ S ()} (19

On the other handg does not converge iX ase — 0.
O

In order to overcome the difficulties demonstrated in thisnegle regularization
is needed. In the remaining sections we discuss variousarzations, in general,
illustrating ideas by returning to the running example.

3.2 Regularization by Minimization Over a Convex, Compact Set

Recall thatE is a Banach space compactly embedded Kthet Exq={uc E:
llulle < a}. ThenEyqis a closed convex and bounded seEirand, as such, any
sequence irE;g must contain a weakly convergent subsequence with limigin
(see, for example, Theorem 1.17[in]18]). Now consider theimization problem

&= u|€r|1:_fad(1>(u). (20)

Theorem 5. Any minimizing sequende"} .+ for (20) contains a weakly conver-
gent subsequence in E with linitt Eag which attains the infimume(U) = @.

Proof. This is a classical theorem from the field of optimizatiore EEE] for details
and context. Sincgu"} is contained inEyq we deduce the existence of a subse-
quence (which for convenience we relabela8}) with weak limitt € Eaq. Thus

u" —Tin E. Hence, by compactness, — uin X. By Assumptiofi ¥4 we deduce that
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@ : E — Ris weakly continuous. By definition, for ady> 0 there existi = N(9)
such that
D<P(uy) <DP+5, vYn>N.

By weak continuity of® : E — R we deduce that
D<) < P+I.
The result follows sincéd is arbitrary. O

Example 2Consider the running example of Section 1.2. Aetenote a fixed sym-
metric positive-definite tensdk so that logA) is defined. We define the subspace
of tensor valued functions of the formi = ul 4 log(A), for some constani € R
noting that then exu’) = exp(u)A. By Lipschitz continuity of4 in U’ € X we de-
duce (abusing notation) Lipschitz continuity@fviewed as a function af € R. We
define

Eag={ueR:|u <a}. (21)

We may take the normi - ||g = |u|. Thus the probleni{20) attains its infimum for
someu € Eyq. The regularization of seeking to minimize over Eyq corresponds

to looking for solution over a one-parameter set of tensdagian which the free
parameter is bounded lay. Note that such a solution set automatically rules out the
oscillating minimizing sequences which were exhibited xaipldl. O

3.3 Tikhonov Regularization

Instead of regularizing by seeking to minimigeover a bounded and convex subset
of a compact sef in X, we may instead adopt the Tikhonov approach to regular-
ization. We consider the minimization problem

T= inf | (u), (22)
where N
I(u) = EHUH%N’(U)- (23)

Theorem 6. Any minimizing sequende"} .+ for (22) contains a weakly conver-
gent subsequence in E with lingitwhich attains the infimum{t) =1.

Proof. This is a classical theorem from the calculus of variatiees;[12] for details
and context. Sincéu"} is a minimizing sequence ardl > 0, we deduce that for
anyd > 0 there exist®N = N(J) such that

A —
SlulE<i+8, vn=N.
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From this it follows that{u"},.z+ is bounded inE and hence contains a weak
limit T, along a subsequence which, for convenience, we relael"asThe weak
continuity of @ : E — R, together with weak lower semicontinuity of the function
|- |2 — R implies the weak lower semicontinuity bf E — R. Hence

(U) < liminf 1 (up) <T.

Sincel (U) > T, the result follows. O

Example 3Consider the running example of Sectlonl1.2. Eet HS(D; ) and
note thatE is compactinX = L®(D; %) for s> d/2. Thus the probleni{22) attains
its infimum for somet € E. As with the example from the previous section the
regularization rules out highly oscillating minimizingegeences such as those seen
in Example_l. The choice of the paramedewill effect how much oscillation is
allowed in any minimizing sequencel

3.4 PDE Constrained Optimization

The regularizations imposed in the two previous subsesiioroled the imposition

of constraints on the inputto a PDE model and the resulting minimizations were
expressed in terms af alone. For at least two reasons it is sometimes of interest
to formulate the minimization problem simultaneously a¥erinput variable, to-
gether with the solution of the PDE= G(u) € P: firstly computational algorithms
which work to find(p,u) in P x X can be more effective than working entirely in
terms ofu € X; and secondly regularization constraints may be imposetewari-
ablep as well as onu. If J: P x X — R then this leads to constrained minimization
problems of the form

min J(p,u): p=G(u), c(p,u) € & (24)
(p,u)ePxX
where.Z” denotes the constraints imposed on both the ingarid on the outpup
from the PDE model. Typically the observation operafarX — RN is found from
G and then the information i@ can be built into the definition af.

Example 4Consider the running example from Sectfon] 1.2 and assuntettha
observational noisé ~ N(0, y?1). Define

3 o1 g 0o+ AL ulze + 221012
(p’u)_Z_VZJZJy_ i(p) +7||U||Hs+7|\p|\|3

for somes > d/2. ChoosingA; = A andA; = 0, together withc(p, u) = (p,u) and
# = P x X we obtain from[[24) the minimization from Examgle 3 in the e€as
I = y°l. Choosing); = A2 = 0, ¢(p,u) = (p,u) and.# = P x Eaq from Example
[2 we recover that example. Choosikg+# 0 and/or choosing the constraint s#t
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to impose constraints opleads to minimization in which the outpptof the PDE
model is constrained as well as the inpubat we are trying to estimate.O

3.5 Bayesian Regularization

The preceding regularization approaches have a nice matfeainstructure and
form a natural approach to the inverse problem when a uniqligien is to be
expected. Butin many cases it may be interesting or impbtadimd a large class of
solutions, and to give relative weights to their importaridas allows, in particular,
for predictions which quantify uncertainty. The Bayesigp@ach to regularization
does this by adopting a probabilistic framework in which $bé&uition to the inverse
problem is a probability measure of rather than a single elementX%f

We think of (U, y) € X x RN as a random variable. Our goal is to find the distri-
bution ofu giveny, often denoted by|y. We define the joint distribution d¢fu, y) as
follows. We assume thatand& appearing in[{{L) are indepenent mean zero Gaus-
sian random variables, supportedXmndRN respectively, with covariance opera-

tor /\i%ﬂ and covariance matrik respectively. By equatioin](1), the distributionyof

givenu, denoted/|u, is GaussialN(¢ (u),l" ). The measurgg = N(O, /\l%) is known
as theprior measure. It is most natural to define the meagigren a Hilbert space
H D X. Under suitable conditions d#, we havelp(X) = 1. This means that under
the measurel, u € X almost surely so tha# (u) is well-defined, almost surely. If
to(X) = 1, it follows that the Hilbert spacg with norm || - ||g = ||€~ Y2 || is
compactly embedded in%é. The spacé is known as the Cameron-Martin space.
In the infinite dimensional setting, functions drawn frpgare almost surely not in
the Cameron-Martin space. SE&[9, 20] for detailed disonssi Gaussian measures
on infinite dimensional spaces.

When solving the inverse problem, the aim is to find the pastaneasure
pY(du) = P(duly), and to obtain information about likely candidate solutidos
the inverse problem from it. Informal application of Bay&storem gives

P(uly) O P(y|u)po(u). (25)

The probability density function fdP(y|u) is, using the property of Gaussians, pro-
portional to

exp(— 51y~ #(W)[?) = exp(~O(w)).

The infinite dimensional analogue of this result is to shoat flY is absolutely
continuous with respect tag with Radon-Nikodym derivative relating posterior to
prior as follows:

duY 1

d—uo(u) =3 exp(—®(u)). (26)
Here @(u) is given by [I8) and = [y exp(—®(u)) to(du). The meaning of the
formula [28) is that expectations under the posterior megs¥ican be rewritten
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as weighted expectations with respect to the prior: for @tion.# on X we may
write

| N A
| F i) = [ 2 exp(~ () F(Wpo(du.

Theorem 7. ([11]) Assume thaji(X) = 1. Thenp?Y is absolutely continuous with
respect toup with Radon-Nikodym derivative given B6). Furthermore the mea-
surep? is locally Lipschitz in the data y with respect to the Helkmgnetric: there
is a constant G= C(r), such that, for all yy’ with max{|y, |y'|} <r,

dHELL(IJya IJ)/) S C|y_}/| (27)

If u, v are probability measures that are absolutely continuotis mspect to
the probability measurg, then the Hellinger metric is defined as

2
(1) = 3 | <\/ dﬁg’) - \/ d;g”) p(du)

For any function ofi which is square integrable with respect to bagtandv it may
be shown that the difference in expectations of that fun¢timderu and undew,
is bounded above by the Hellinger distance. In particubas, theorem shows that
the posterior mean and covariance operators correspotwega sety andy’ are
o(ly—y|) apart.

The choice of priofy, relates directly to the regularization of the inverse prob
lem. To see this we note that since the oper&tas necessarily positive and self-
adjoint we may write down the complete orthonormal system

1 .
X%ﬂ(nn: 2@, meZ', lim om=0. (28)
Thenu ~ L can be written via the Karhunen-Loéve expansion as
UX)= S OmNm@n(X) (29)
meZ*

where then, form an i.i.d. sequence of unit Gaussian random variablesmaly
regularize the inverse problem by modifying the decay rdtef For example,
choosingom = 0 for m¢ .#, where.# C Z* has finite cardinality restricts the
solution of the inverse problem to a finite dimensional sed, ia hence a regulariza-
tion. More generally, the rate of decay of thig (which are necessarily summable as
% is trace class) will effect the almost sure regularity prtips of functions drawn
from L and, by absolute continuity gf¥ with respect toug, of functions drawn
from Y.

In the case thaX is a subset oH = L2(D) with D c RY, the operato#’ may be
identified with an integral operator:

%(%qo)m) z/DC(XLXz)(D(XZ)dXZ
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for some kernet(xy,x2). The regularity ofc(xg,xp) determines the decay rate of
om [19]. If € = (—A)7 then the corresponding measuyrg has the property that
samples are almost surely in the Sobolev sgdtand in the Holder spadg® for
als<a- % (see[[13] for more details). In particular,df > d/2, thenu(X) =1
whenX = L*(D).

Priors which charge functions with a multiscale character be built in this
Gaussian context. One natural way to do this is to cho#gSas above so that it
contains two distinct sets of functions varying on lengthalss of (1) and 0'(¢)
respectively. A second natural way is to choose a covariammionc = ¢ which
has two scales.

The formula[(2B) shows quite clearly how regularization keoin the Bayesian
context: the main contribution to the expectation will cofrem places wherep
is close to its minimum value and whepg is concentrated; thus minimizing is
important, but this minimization is regularized through firoperties of the measure
HUo. We now develop this intuitive concept further by linkingtBayesian approach
to Tikhonov regularization and the functiorajiven by [23).

Givenz € E andd « 1 define the small ball probability

P(2) =P¥ (Jlu—2||x < 5).

Note that this ball is ifX but centred at a poirt< E, with E (the Cameron-Martin
space) compact iX. It is natural to ask wherd®(z) is maximized as a function
of z and placingz in E allows us to answer this question. Furthermore we then
see a connection between the Bayesian approach and thendiklapproach to
regularization. The next theorem shows that small ballgredrat minimizers of
(23) will have maximal relative probability under the Baigsposterior measure,

in the small ball limitd — O.

Theorem 8. ([14]) Assume thatip(X) = 1. Then

J°(z1)

5-0J9(2)

=exp(l(z2) — 1(z1))-

In the Bayesian context the solution of the Tikhonov regaéat problem is
known as the Maximum A Posteriori estimator (MAP estimaldy)L7].

4 Large DataLimits

In the previous section we showed how regularization plaggyaificant role in
the solution of inverse problems. Choosing the correctleg@ation is part of the
overall modelling scenario in which the inverse problemmitbedded, as we demon-
strated in the running example of Section|1.2. In some sitngit may be suitable
to look for the solution of the inverse problem over a smaltdiset of parameters,
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whilst in others it may be desirable to look over a largereiwdinite dimensional
set, in which oscillations are captured.

This section is devoted entirely to inverse problems wheiegle scalar parame-
ter is sought and we study whether or not this parameter recity identified when
a large amount of noisy data is available. The developmeigidsspecifically to the
running example, namely the PDH (3). For a fixed permealtuiigfficient generat-
ing the data, Fitzpatrick has also studied the consistendyagymptotic normality
of maximum likelihood estimates in the large data lifit/[1RElated work on pa-
rameter estimation in the context stochastic differergguations (SDEs) may be

found in [25)23].

4.1 The Statistical Model

We consider the problem of estimating a single scalar paeme R in the elliptic
PDE

O-v=f, xeD,
p=0, xedD, (30)
v=—explu)Alp

whereD ¢ RY is bounded and open, arfde H! as well as the constant sym-
metric matrixA are assumed to be known. We 8t R — H3(D) be defined by
G(u) = p. Then using the same linear functionals as in the running pl@from
Section[LR we may construct the observation oper&oiR — RN defined by
% (u)j =£j(G(u)). Our aim is to solve the inverse problem of determiningiven
y satisfying [[1). For simplicity we assume th&t~ N(0, y?l) which implies that
the observational noise on each linear functional is iN@D, y?). Sinceu is finite
dimensional we will simply minimizeb given by [I8): no further regularization is
needed becauseis already finite dimensional.

Notice that the solutiorp of (@0) is linear in exp—u) and that we may write
G(u) = exp(—u) p* wherep* solves

O.-.v=1f, xeDb,
p =0, xedD. (31)
v=—Alp*

Note that¥ (u); = exp(—u)¢;(p*) so that the least squares functioriall (18) has
the form

N
P =352 W ~ ()= 2—1,2 J;ij —exp(—u)/j(p")[%

It is straightforward to see th& has a unique minimizer satisfying
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vyt
SR = Siali(p)?

It is now natural to ask whether, for larg the estimata is close to the desired
value of the parameter. We study two situations: the firstrevtiee data is generated
by the model which is used to fit the data; and the second whedta is generated
by a multiscale model whose homogenized limit gives the rhatiéch is used to
fit the data.

(32)

4.2 Data From the Homogenized Model

We definepy = exp(—up) p* so thatpg solves[(3D) withu = up.

Assumption 9 We assume that the datay is generated from noisy obsergajem
erated by the statistical model:

yi = ¢i(Po) +¢j
where{&;} form an i.i.d. sequence of random variables distributed &8, )).

Theorem 10. Let Assumptiorf§ 9 hold and assume fimainfy e & .1 ¢;(p*)2 >
L > 0as N— . Thené-almost surely

lim |exp(—1) —exp(—up)| = 0.
N—o0

Proof. Substituting the assumed expression for the data from Asganid into the
formula [32) gives
exp(—1) = exp(—Up) + |1
where LN
= 8 2=t
%Zﬂ-“:léj(pﬂz

__ v
SiLi fi(pr)? — NL
for N sufficiently large. Sincé; is Gaussian we deduce thEtl2p = O(NP) as

N — oo. Application of the Borel-Cantelli lemma shows tHatconverges almost
surely to zero abl — 0. 0O

Therefore,

E[1] (33)

This shows that, in the large data limit, random observatienror may be av-
eraged out and the true value of the parameter recoverduk iidéalized scenario
where the data is taken from the statistical model used tttifge¢he parameter. The
condition thatL > 0 prevents additional observation noise from overwhelntiregy
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information obtained from additional measurements as . Itis a simple explicit
example of what is known gsosterior consistencf@] in the theory of statistics.

4.3 Data From the Multiscale M odel

In practice, of course, real data does not come from thesttati model used to
estimate parameters. In order to probe the effect that #m$rave on posterior con-
sistency we study the situation where the data is taken framuktiscale model
whose homogenized limit falls within the class used in tla¢istical model to esti-
mate parameters. Again we defipg= exp(—up) p* and we now defin@® to solve
(@) with K& chosen so that the homogenized coefficient associated histifeimily
is Ko = eXF(Uo)A.

Assumption 11 We assume that the data y is generated from noisy obsergaifon
a multiscale model:

yi =Li(P°) +¢;
with p® as above and théé;} an i.i.d. sequence of random variables distributed as

N(0, y2).

Theorem 12. Let Assumptiorls11 hold and assume that that the linear ifumeds
¢j are chosen so that

N
lim Iimsup% 10(p* — po)>=0 (34)

£=0 Noow =

andliminfy e 3111 ¢ (p)? > L > 0as N— co. Thené — almost surely

lim lim |exp(—U) —exp(—ug)| = O.
lim 1im |exp(—0) — exp(—uo)

Proof. Notice that the solution of the homogenized equatiopgis= exp(—up) p*.
We write

yi = £j(po) + £j(p° — po) + &;
= exp(—Uo)¢j(p*) + £;(p° — po) + &j.

Substituting this into the formul&{B2) gives
exp(—U) = exp(—Ug) + 11+ 15
wherel is as defined in the proof of Theorém 10 and is independesitarid

Siy 4 (pf - Po)ti(P").
Si1li(p)?

=
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The Cauchy-Schwarz inequality gives

z

1/2

(sales(of = p?)” <(
(z?:lgj(p*)z) 2 =

for N sufficiently large. As in the proof of Theordm]|10 we ha§ealmost surely,

131 <

2
S > 15(p° = po)l?
NL 4" )

lim |exp(—U) —exp(—up) — 15| = 0.
N—O
From this and[(34) the desired result now follows]

The assumptior (34) encodes the idea that, for smathe linear functionals
used in the observation process return nearby values whaieadpo the solution
p¢ of the multiscale model or to the solutigay of the homogenized equation. In
particular, Corollary1L implies that if¢; (p) i1 is afamily of bounded linear func-

tionals onL?(D), uniformly bounded inj, then [3%) will hold. On the other hand,
we may choose linear functionals that are bounded as furad@nH (D) yet un-
bounded ori.?(D). In this case Theorefd 1 shows thafl(34) may not hold and the
correct homogenized coefficient may not be recovered, evéreilarge data limit.

An analogous phenomenon occurs in inference for SDEs where dbservations

of a multiscale diffusion are too frequent (relative to thstfscale) then the correct
homogenized coefficients are not recovefed[[25, 23].

5 Exploiting Multiscale Properties Within Inver se Estimation

In this section we describe how ideas from homogenizatienrhcan be used to
improve the estimation of parameters in homogenized modé&lsonsider a regime
where the unknown parameter has small-scale fluctuatiaisrthy be character-
ized as random. In this case, if we attempt to recover the lgemiaed parameter
the erroré appearing in[(l1) is affected by the model mismatch. This isahee
the simplified, low-dimensional parameter used to fit thadadifferent from the
true unknown coefficient. So, even when there is no obsemailtinoise, the error
¢ has a statistical structure. Nevertheless, homogeniz#iory predicts that this
discrepancy betweeB(u) andy associated with model mismatch will have a uni-
versal statistical structure which can be exploited in tivelise problem, as we now
describe.

The specific ideas described here were developed by NoleRa@pahicolaou in
[21]] for one dimensional elliptic problems, including theogndwater flow prob-
lem that we study here. Bal and Rén [4] have employed simileas in the study
of Sturm-Liouville problems with unknown potential. We liedpy describing in
Sectior[ 5.1l the homogenization and fluctuation theory ferddse that the (scalar)
permeabilityk(x) is random. Then, in Sectiédn®.2 we show how these ideas can be
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used to develop an improved estimator for the homogenizemgability coeffi-
cient. We conclude with numerical results in Secfion 5.3.

5.1 The Model

In this section we will present the approach(of|[21] in thedist possible setting.
We consider the two-point boundary value problem

_ % (exp(u(x))%:) — f(x), xe[-11], (35a)
p(-1)=p(1) =0. (35b)

This is, of course[{3) in the one-dimensional setting 1.

It is assumed that the coefficiekfx) = exp(u(x)) is a single realization of a
stationary, ergodic and mixing random fiéd(k, w). Furthermore it is assumed that
k1 can be decomposed into a slowly varying non-random compptogrether with
a random, rapidly oscillating component:

1 1 X
k(x, @)  ko(X) +OoH (E’w) ’ (36)

wherep (X, w) is a stationary, mean zero random field with covariance

R(X) = E(L(X+y)u(y)).

We assume th&(0) = 1 and [ R(x) dx= 1. Thus,02 ande are the (given) variance
and correlation length of the fluctuations. We are intecestéhe case where< 1
so that the random fluctuations are rapid.

The solutionp = pe(x, w) of (35) depends om > 0 and on the realization of
k(x,w). However, in the limit ag — 0, pe coverges tqp(X) which is the solution
of the homogenized Dirichlet problem

- g (o0 ) = 10, xel-1.1 @372)
Po(—1) = po(1) = 0. (37b)

Observe that the homogenized coefficient is the harmoniocnneéa: ko(x) =
E[k—1]~L. Moreover, in the limit a€ — 0, the solutionp: has Gaussian fluctua-
tions about its asymptotic limit[3]. Specifically, one caye that

Pe (Xv w)

81—/290(") S0 /D Q(X,y; ko)Vo(y: ko) dW () (38)
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in distribution ass — 0, wheré\{(w) is a Brownian random field, which is a Gaus-
sian process. Herg)(x; ko) = ko(X) po(X), and the kerneQ(x, y; ko) is then related
to the Green'’s function for the one dimensional system:

Px) _ (0L/ko(X¥)\ (P)_ (9

Vi 0 O v 02/
If the 2 x 2 Green’s matrix for this system B(x,y; ko) : D x D — R? ® R?, then
Q(x,Y; ko) = G1.1(x,Y; ko). The important point here is that the integral

106.0) = 0 [ Qxyiko)vo(ys ko) AW (@)

which appears on the right side bf{38) is a centered Gaussiaom variable with
covariance

EN1001(2)] = 0% | Qxyiko)vo(y:ko)Qy ko) .

This covariance depends &p. The asymptotic theory given by the limit theorem
(38) gives us a good approximation of the statisticp«dk, w) even when there is no
observation noise, and shows that the fluctuations depekgl émthis simple case
presented here& can be computed explicitly. In other cases, it can be contpute
numerically; see[[21] for more details.

5.2 Enhanced Estimation

We now show how this asymptotic theory can be used to enhastteation of
the homogenized parametei(x). The inverse problem is to identify the parameter
ko(x) in the model

_%(<ko(x)%(po) = f(x), xe[-11], (39a)
Po(=1) = po(1) = 0. (39b)

We take the viewpoint that the data actually come from olaems of ps (X, w),
which is the solution of the multiscale modEI135) wktx, w) given by [36), so
there is a discrepancy between the model used to fit the ddtéhantrue model
which generates the data. Now the outstanding modellingeiss the choice of
statistical model for the errdy in ().

Suppose we make noisy observationspefx;) at points{xj}ﬂ-\‘:1 distributed
throughout the domain. Then the measurements are

yi = pe(Xj,w)+¢&, j=1,....N
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whereéj ~ N(0,y?) are mutually independent, representing observation nolse
limit (B8) we have just described tells us that fosmall, these measurements are
approximated well by

where{¢&; }ﬂ-\':l are Gaussian random variables with mean zero and covariance

Ci(ko,) = BIE[&] = 20, + £02 [ Qxj.y:kalvolyiko)*Qx Zko)dy  (40)
Therefore, we model the observations as

yic9(k)+&, j=1,...,N

where¥ (ko) = po(Xj; ko) with pg being the solution of39). The modified statistical
error &’ has two components. The first teyd; , is due to observation error. The
second term comes from the asymptotic theory and is asedoiéth the random
microstructure in the true parameték, w). Of course, ife is very small, relative
to y2, then the observation noise dominafes (40). In this caselikervations o
may be very close to observations of the homogenized salgipoand we might
simply assume tha§’ ~ N(0,y?l), ignoring the error associated with the model
mismatch. On the other hand, yf is small relative toc then the statistical error
&’ is dominated by the model mismatch. In this case, homoggoiztheory gives
us an asymptotic approximation of the true covariance stracof £/, which is
quite different fromN(0, y?I). See[[21] for a discussion of some properties of the
covariance matriC(ko, €).

Using the covarianc&(%#0), we make the approximation

1 1 T R
P(VWO)“m@(p(—E(y—g(ko)) C(ko; €) 1(y—£¢(ko))),

where| - | denotes the determinant. The paraméggk) is a function, in general,
and we may place a Gaussian prigron ug(x) = logky(x). Application of Bayes'’
theorem([(2b) (withg replacingu) gives that

1 1 -
Plialy) 0 == exp( =5 (v~ ¥ (ko)) Clkoie) (v~ () ) alloghe)

where the constant of proportionality is independeritpfThe maximum a poste-
riori estimator (MAP) is then found as the functikg(x) which maximize$P(ko|y)
which is the same as minimizingko) = — In(P(koly)). The key contribution of ho-
mogenization theory is to correctly identify the noise stane which has covariance
C(ko; €) depending orko(x), the parameter to be estimated.
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5.3 Numerical Results

In this section we demonstrate the results of a numericalpcation that show
some advantage to using the homogenization theory as wejhstvelescribed.
Given noisy observations qf¢(x;) we may compute the MAP estimatky using

(@) with covarianc€(ko; €) given by [40):

1 1 T _
7exp(——(y—€¢(ko)) C(ko; €) 1(y—€¢(ko)))uo(|ogko),
2mC(ko; 2
V/2mC(ko; )| @)

On the other hand, we might ignore the effect of the randonraostoucture and
simply useC = y?l, accounting only for observation noise:

k. = argmay,

ke = argmay xp(—%y’zly—g(ko)lz) Ho(logko). (42)

1
——€
V22|

Both estimatek; andk, are random variables, depending on the random data ob-
served, but we should hope thHatgives us a better approximation kf, since it
makes use of the true covarianEel(40). Indeed for simplalistatistical models,
it is easy to see that an efficient estimator, which realiregteoretically optimal
variance given by the Cramér-Rao lower bound, may be obddiy using the true
covariance of the data; however, using the incorrect camag may lead to an es-
timate with significantly higher variance than the theaatoptimum. See [21] for
more discussion of this point. The present setting is higlglinear and the vari-
ance of the estimatés andk, cannot be computed explicitly, sin€¢ko, €) depends
onkp in a nonlinear way through solution of the PDE. Neverthetessnumerical
results are consistent with the expectation that apprai@maf the true covariance
(through homogenization theory) yields a MAP estimatot tizes smaller variance,
relative to the estimate that makes no use of the homogémizaeory (see Figure

B3).

In Figure[d we show one realization of the true coefficikfx, w) which was
used to generate the data. The highly-oscillatory graphesgmts the true coeffi-
cientk(x, w) with variation on many scales. The slowly-varying harmomiean
ko(x) also is displayed here as the thick curve; this funckigis what we attempt
to estimate. The data was generated as follows. Using otieatan of k(x, w)
and given forcingf, we solve the Dirichlet boundary value probldml(35). The ob-
servation data involves point-wise evaluationpsfx;) at points{xj}ﬂ-\‘:1 spaced

uniformly across the domain, plus independent observatwseN (O, y?) at each
point of observation. Using this data, we compute estimatasdk, by minimizing
(41) and [(4R), respectively. For the computation shown hteeefunctionky(x) is
parameterized by the first three coefficients in a Fourigeseaxpansion. So, com-
putingk; andk, involves an optimization ifR3. To evaluateP(ko|y) at each step
in the minimization algorithm, we must solve the forward leom [39) with the
current estimate dé,, and in the case d we must also compute(ky, €). Seel[21]
for more details about this computation.
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Fig. 1 The thin erratic curve is one realization of the true coedfitk® (x, w). The thick curve is
the slowly-varying harmonic medg(x). This realization was used to generate the data.

Figurel2 compares the estimatgx) with the true functiorky(x). Since the esti-
mateRl(x) is a random function, we performed the experiment many tifgeser-
ating newk(x, w) to compute each estimaft@) and display the results of 100 exper-
iments. The data fok, is qualitatively similar. Nevertheless, the pointwiseiaace
Varlki(x)] is smaller thavar[kz(x)], as shown in Figuriel 3. This is consistent with
the linear estimation theory for which knowledge of the tda¢a covariance yields
an estimate with optimal variance.

Acknowledgements The authors thank A. Cliffe and Ch. Schwab for helpful disooiss con-
cerning the groundwater flow model.

Appendix 1

In this Appendix we prove Theorelm 3 which, recall, appliethie case wher&{7b)
and [I3b) are replaced by periodic conditionslos: (LT)d.
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k)

Fig. 2 The thick curve is the truky. The dashed series represent 100 independent realizafions
the estimaté;.

Theorem 13. Let ¥ (t) and »(t) be the solutions to equatior8) and (I7), with
velocity fields extended from B (LT)® to RY by periodicity, and assume that As-
sumptiof 2 holds. Assume also that €7 (D) and that K(x,y) € C“(D;Cger(ﬂl“d)).
Then

limE sup [[x5(t) —xo(t)|| = O.

£—0 0<t<T
Proof. To simplify the notation we will set the porosity of the roaklhe equal to
1, ¢ = 1. Recall that# (x) = K&(x)Op#(x). Our first observation is that, fqug(x)
given by [9),

KE(x)0p® (x) = K*(x)Opa(x) — 6°(x) (43)

where
5 (x) = —K#(0( P09 — PE(X))- (44)

From Assumptiofi]2 we deduce that
. . B
lim [[6°(x) |~ = 0.

From the definition o (x) it follows that
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x107°
45;¢

25

N

Var(ko(x))

=
o

Fig. 3 The upper series (0) is the empirical variaMzH[Rz(x)}. The lower series (-) Pdar[Rl(x)].
Both quantities were computed using 500 samples.

KE(x)Opa(x) = Q°(x)Upo(x) — €6f (X)
where
Of (x) = —KE()Oxpa(x,x/€),  QF(x) = Q(x,x/€). (45)

From the definition ofy; in (I4) we see that
16 (X)|L> < C.
Putting [43) and({45) together we see that
VE(X) = —QF (X)0po(X) + 65 (X) + €55 (X)

and we see fronl(44) and(45) that the perturbationg of) from QF (x) Jpo(X)
are small; it is thus natural to expect a limit theorem %érsolving [8) which is
Lagrangian transport in an appropriately averaged versi@f (x) Jpo(x). Further-
more, since&)(x,y) is divergence free in the fagtoordinate, by[(15), it is natural to
expect that the appropriate average is Lebesgue measurewWgemonstrate that
this is indeed the case.

From [8) we deduce that
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XE(t) = x(0) + /: (—Q%(X)Opo(X(s)) + 0% (X(s)) + €67 (X(S))) ds+ 1/2noe W(t).

(46)
Define nowV (x,y) = —Q(x,y)0po(X) and consider the system of SDEs
d dw
7 = (VO0Y) + 85(X) + 88 () + v/2M08 g (472)
dy 1 € € 210 le
5t = = (VoY) + M)+ )+ — 5 (47b)
Sincey = x/€ we see thak(t), the solution of[(4l7) is equal t& (t) appearing in
@9).
The proces$x(t), y(t)} is Markov with generator
1 &
2 = Z((VOuy) +8°09) - Oy +nody )
+((VO0Y) +8°() - Ox+ 8 (x) - Dy + Mol Oy + 1oy O )
+&Nolx + €05 (X) - Ox
1
=< (Lo+0°(x)-Oy) + A+ 2.
Consider now the Poisson equation
— 2P =V (x,y) —Vo(X) (48)

with (see [IB)(c))

Vo(¥) = | V(xy)dy

Equation[[4B) is posed dff' with periodic boundary conditions. Notice thegnters
merely as a parameter in this equation. The oper&ipis uniformly elliptic onT¢
and the right hand side averages to 0, hence, by Fredholi@taative this equation
has a solution which is unique, up to constants. We fix thisstaont by requiring
that [« @(x,y)dy = 0. We define®?(x) := ®(x,x/€) and similarly for.% ®*(x).
Applying Itd’s formula to® and evaluating at = x/& we obtain

d(Df(x) = %("%O(D'S—i-és(x) . Dy(D(X,X/S)) dt+ .2, 0% dt + £.2 @ dt
T ?DycbdeJr V/2n0elk@*dW
= _% (V (Xa X/E) _VO(X) + 58()() . Dy(D(X, X/S)) dt—i—flq)g + gfchs dt

+/ @ 0, DEAW + \/270e Dk DEAW,

Consequently,
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't 't
/Ov(x(s),y(s)) ds— /0 Vo(x(s))ds
t
- / (5°(X(9) Dy @(x(3), X(5)/£) + £ LD (x(3)) + 25507 (X(9)) ) ds
0
—g(@F0EW) — BF(E(0)) ) + VEME (D),
where .
_ /0 (w/znomycbf + e\/2n0DX¢>5) dw.
Since®(x,y) is periodic in both coordinates we have that
IDy@(x.x/e)[L= <C, [@*(X)[= <C, [ZA4P%||L= <C, [ L10°||=<C

and
E[MEt)IP<C, p>1. (49)

We combine the above calculations to obtain
+/ Vo(XE(8)) ds+ HE(t) + VEME(t),
where
t
HE(t) = —e((Df(xf(t)) - (DS(XS(O))) +/0 (05 (X*(s)) + €08 (xE(s))) ds
+ / (5°((9))- 0L @(x(3),X(9)/2) + £L20° (x(5)) + £2.20% (x(9)) ) dIs

and 3
NEE (t) = ME (1) + v/270W (1)

Our estimates imply that

limE sup [H%(t)| = 0.
€20 tefoT]

Furthermore, estimaté (49), together with the Burkhsdavis-Gundy inequality
imply that N
E sup [M#(t)| <C.
te[0,T]

—x 0)+./:vo(x(s))ds

Set(T) := Esupco 1) [¥*(t) — x(t)|. Becausey is periodic it is in fact globally
Lipschitz so that we obtain

On the other hand,

<c/ t)dt+hé(T),
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where
lim h®(T) = 0.
£—0
We use Gronwall’s inequality to deduce
6(T) <h® (1+CTET),

from which the claim follows. O

Appendix 2

In this appendix we study the homogenization problem (7 i@ dimension. In this
case we can calculate the homogenized coefficient explaniitl to prove Assump-
tion[2. More details can be found in[24, Ch. 12].

The Homogenized Equations

We taked = 1 in (@) and seD = [0,L]. Then the Dirichlet probleni{7) reduces to a
two—point boundary value problem:

- % <exp(u (xg)) %) =f forxe (OL), (50a)
pF(0) = p(L) = 0. (50b)

We assume thai(x,y) is smooth in both of its arguments and periodigyiwith
period 1. Furthermore, we assume that this function is bedrfcbom above and
below. Consequently, there exist constants @ < 3 < o such that

a <explu(x,y)) <p, Vvyel0,1]. (51)

We also assume thdtis smooth.

The cell problem becomes a boundary value problem for amardidifferen-
tial equation with periodic boundary conditions. Introthgcthe notatiork(x,y) :=
exp(u(x,y)), the cell problem can be written as

7} ox\  IKk(xy)
~ % (k(x,y)a—y> = oy fory € (0,1), (52a)
1
X is 1—periodic / X(xy)dy=0. (52b)
0

Notice that the macrovariableenters the cell problenh (b2) as a parameter. Since
d = 1 we only have one effective coefficient which is given by the dimensional
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version of [11)[(IR), namely
1
000 = [ (ke + kxS ) ) oy
= (kixy) (14 F ) (59

where we have introduced the notati@s(x,y)) := jbl ¢(x,y)dy. The homogenized
equation is then

—%((ko(x)dd—io> =f, xe(OL), (544)
p(0) = p(L) = O. (54b)

Explicit Solution of the Cell Problem

Equation [52k) can be solved exactly. After integratingaheation and applying
the periodic boundary conditions, we obtain

) vo [ dy+
Xy)=—-y+¢ | ——dy+c,
X(y)=—-y 1./0 Kooy &Y @

with 1
o) = 75— = (kixy) L
T ey
Therefore, from[(53) we obtain:
ko(X) = (k(xy) ). (55)

The constant; is irrelevant. This is the formula which gives the homogedizoef-
ficient in one dimension. It shows clearly that, even in tlisge one—dimensional
setting, the homogenized coefficient is not found by simpraging the unhomog-
enized coefficients over a period of the microstructurehBathe homogenized co-
efficient is theharmonic averagef the unhomogenized coefficient. It is quite easy
to show thaky(x) is bounded from above by the average&kof y). Notice that the
homogenized coefficient can be written in the form

ko(x) = €™ where uo(x):Iog((exp(—u(x,y)»’l). (56)
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Error Estimatesin W1®

The fact that we can obtain an explicit formula for the santbf the boundary
value problem[{50) as well as for the solution of the cell peaib(52) enables us to
prove Assumptiohl2.

Proposition 14 Let [ (x) be the solution of the two-point boundary value prob-
lem (50) where the log permeability(,y) is smooth in both of its arguments and
satisfieg5]). Let kx,y) = exp(u(x,y)) and define

V) =k(x2) %(x)

and

Vixy) =kixy) (1455 ) ) 200,

where p(x) is the solution of the homogenized equai{®4). Then
lim ||V#(x) =V (x,x/€)||.> = 0. (57)
£—0
Notice that, by [(TH), the correctgr(x,y) = X(x,y)%—’g(o(x). Hence, using the

bound [51) from below om, together with the definitiod9) gbZ, this theorem
delivers the following immediate corollary:

Corollary 2. Under the assumptions of Propositiod 14 we have
li E — pEllwie =O.
lim |[p* — Paflwe

Proof of Propositioi TWWe have that

ko(X)
k(xy)

dyx B
d_y(xvy) - _1+

Consequently

V) = ko0 0.

Define a functiorF by F'(z) = f(z). We solve the homogenized equation to obtain

with
Js ko H(2)F (2)dz
C=—7—71—"—.
J5 ko t(2)dz

Similarly, from (50) we obtain
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dpf
k (x ) = —F(x)+cf,
ax (x) +
with

< Jok H(zZ/e)F (2dz
sk Yzz/e)dz

From the above calculations we deduce that

IV () =V (x,%/€)[|L= = [c = c*|.

It suffices to show thdt — c&| = '(¢). This will follow from the fact that

/k (22/€)G /ko (2)dz+ O (e)

for any smooth functiors, ase — 0. To see this, define integbrandd € [0, ¢)
uniquely by the identity
L=Ne+o. (58)

Then note that, using the uniform boundskgr,y) from below, together with uni-
form (iny) Lipschitz properties o&(-,y) andG, we have forz, = ng,

(n+1)e

/ k Yz z/£)G(z)dz= Z)/ns “Yz,2/€)G(zy)dz+ O (¢)

(n+1)e

Z)/ns )G(zn)dz+ 6(€)

- Z)/nmﬂ) k' (2G(2)dz+ O (¢)

—/ ko L(2)G(z)dz+ o(e).

This completes the proof.00
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