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Exploring Mount Neverest

Michiel de Bondt

September 16, 2010

In one of the columns in the series ‘Perplexities’ in 1922, Henry Ernest
Dudeney formulated the following problem:

Professor Walkingholme, one of the exploring party, was allotted
the special task of making a complete circuit of the base of the
mountain at a certain level. The circuit was exactly a hundred miles
in length and he had to do it all alone on foot. He could walk twenty
miles a day, but he could only carry rations for two days at a time,
the rations for each day being packed in sealed boxes for convenience
in dumping. He walked his full twenty miles every day and consumed
one day’s ration as he walked. What is the shortest time in which
he could complete the circuit?

This problem can be found in the book ‘536 Puzzles & Curious Problems’
from Henry Ernest Dudeney, edited by Martin Gardner. This far, I did not find
an optimal solution to the problem. Albeit Martin Gardner is making fun on
it, the right interpretation of the problem is not clear to me at all. Let us first
formulate some ways to tackle the problem.

Solution of the problem

One way to make the circuit is doing the same as with a straight distance of one
hundred miles. No matter how you interpret this problem, this takes between 82
and 87 days (Dudeney found a solution of 86 days, but it can be done in 82 6097

6144

days). A better approach is to walk two round trips to the 50 miles distance
point on the other side of the mountain, since it requires between 41 and 43
days (Dudeney would have found a solution of 42 1

2
days if he had considered

this problem). But Dudeney found the following solution:

Algorithm 1. (23 1

2
days)

1. Dump 5 rations at 90-mile point and return to base (5 days).

2. Dump 1 at 85 and return to 90 (1 day).

3. Dump 1 at 80 and return to 90 (1 day).
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4. Dump 1 at 80, return to 85, pick up 1 and dump at 80 (1 day).

5. Dump 1 at 70 and return to 80 (1 day).

6. Return to base (1 day). We have thus left one ration at 70 and one at 90.

7. Dump 1 at 5 and return to base (1 day). If he must walk 20 miles he can
do so by going to 10 and returning to base.

8. Dump 4 at 10 and return to base (4 days).

9. Dump 1 at 10 and return to 5; pick up 1 and dump at 10 (1 day).

10. Dump 2 at 20 and return to 10 (2 days).

11. Dump 1 at 25 and return to 20 (1 day).

12. Dump 1 at 30, return to 25, pick up 1 and dump at 30 (1 day).

13. March to 70 (2 days).

14. March to base (1 1

2
days).

Now let us look at step 7. In my opinion, it only takes half a day. You
just throw away half of the content of one of the boxes. Apparently, Dudeney
and I have a disagreement on the interpretation of the problem. The problem
might be that unsealed boxes can not pass through the night, since the forest
ants creep into it. But then, you just can start walking around the mountain
in the middle of the day and do step 7 prior to the others. If Dudeney would
have allowed not to start at dawn, it is likely that he would have formulated
his solution accordingly, so we can add the following items to the analysis of
Gardner:

13. If he does not finish his unsealed box(es) before the night, the forest ants
will.

14. Having a long lie-in is a waste of time.

We can divide Dudeney’s solution in three parts:

Part A: a round trip to the 70 miles point from the base, in which boxes are
dumped on positions 70 and 90 for later use (steps 1 to 6, 10 days).

Part B: a one-way trip to the 70 miles point from the base around the mountain
(steps 7 to 13, 11 1

2
or 12 days).

Part C: walking from 70 to 100, using the boxes dumped in part A (step 14,
1 1

2
days).
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Since it is almost proved that Dudeneys solution can not be optimal if we count
12 days for part B, we allow starting on mid-day. Only for part C, it is imme-
diately clear that is optimal. Later, we will see that part A is optimal as well,
but part B can be improved, to 11 1

7
days exactly.

Before trying to find a better solution, it is always a good idea what oth-
ers did. When I searched the internet with google, I found the homepage of
a youngster called Nightvid Cole, who presents better solutions than that of
Dudeney. In the first one, he allows throwing away partially used boxes (and
this solution can easily be adapted to overcome the ants, starting on mid-day).
Albeit only part C of this solution is optimal, it requires 22 10

11
days instead of

23. The improvement is that he dumps boxes on positions 70 10

11
and 90 10

11
rather

than 70 and 90. Now part B must reach further, whence it takes 12 days now.
But probably, he reasoned the other way around: he reserved 12 days for

part B and then thought out an according solution. That was a very good idea,
but since he failed to optimize parts A and B, his solution is not optimal. So
I optimized parts A and B, which resulted in the following solution, a solution
that turned out to be optimal later on:

Algorithm 2. (22 9

16
days)

1. Dump one ration at 98 3

4
point and return to base (1

8
day).

2. Dump one ration at 97 1

2
, return to 98 3

4
, pick up one, dump at 91 1

4
and

return to base (1 day).

3. Dump one ration at 93 3

4
, return to 97 1

2
, pick up one, dump at 93 3

4
also

and return to base (1 day).

4. Dump two rations at 90 and return to base (2 days).

5. Dump one ration at 86 7

8
and return to 93 3

4
(1 day).

6. Dump one ration at 82 1

2
, return to 86 7

8
, pick up one, dump at 86 1

4
and

return to 90 (1 day).

7. Dump one ration at 80, return to 86 1

4
, pick up one and get to 82 1

2
(1 day).

8. Dump one ration at 71 1

4
and return to 80 (1 day).

9. Return to base (1 day). We have thus left one ration at 71 1

4
and one at

91 1

4
.

10. Dump five rations at 10 and return to base (5 days).

11. Dump one ration at 12 1

2
, return to 10, pick up one, dump at 12 1

2
also and

return to 10 (1 day).

12. Dump one ration at 20 and return to 10 (1 day).

13. Dump one ration at 20 5

8
, return to 20, pick up one, dump at 20 5

8
also and

return to 12 1

2
(1 day).
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14. Dump one ration at 26 9

16
and return to 20 5

8
(1 day).

15. Dump one ration at 31 1

4
, return to 26 9

16
, pick up one and get to 31 1

4
(1

day).

16. March to 71 1

4
(2 days).

17. March to base (1 7

16
day).

If you look at the above algorithm, then one thing immediately strikes: it
would have been nicer if the circuit would have been 160 kilometers, with a
unit distance of 32 kilometers a day. Dudeney only considered solutions from
which the eating and turning points were a multiple of 5 miles. This is however
impossible for a solution of 22 9

16
days (for 20

5
· 22 9

16
is not integral).

If professor Walkingholme must start at dawn, then the extra 7

8
days must

be used to increase the points where boxes are dumped in part A for use in
part C. Nightvid Cole found a solution of 23 1

3
days in this context, but again,

parts A and B are not optimal. The following optimal solution not only has
ugly positions, but also both part A and part B are partially done on the first
day.

Algorithm 3. (23 25

116
days)

1. Dump one ration at 8 18

29
and return to base (25

29
days).

2. Dump two rations at 99 9

29
and return to base ( 4

29
days).

3. Dump one ration at 96 26

29
, return to 99 9

29
, pick up two in turn, dump both

at 95 25

29
and return to base (1 day).

4. Dump one ration at 90 and return to base (1 day).

5. Dump one ration at 88 28

29
, return to 90, pick up one, dump at 88 28

29
also

and return to 95 25

29
(1 day).

6. Dump one ration at 82 12

29
and return to 88 28

29
(1 day).

7. Dump one ration at 75 20

29
and return to 82 12

29
(1 day).

8. Return to 96 26

29
, pick up one, dump at 95 20

29
and return to base (1 day).

We have thus left one ration at 8 18

29
, one at 75 20

29
and another one at 95 20

29
.

9. Dump one ration at 9 9

29
, return to 8 18

29
, pick up one, dump at 9 9

29
also

and return to base (1 day).

10. Dump five rations at 10 and return to base (5 days).

11. Dump one ration at 12 19

58
, return to 10, pick up one, dump at 12 19

58
also

and return to 9 9

29
(1 day).

12. Dump one ration at 19 19

29
and return to 10 (1 day).
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13. Dump one ration at 19 24

29
, return to 19 19

29
, pick up one, dump at 19 24

29
also

and return to 10 (1 day).

14. Dump one ration at 21 19

116
and return to 12 19

58
(1 day).

15. Dump one ration at 23 18

29
, return to 21 19

116
, pick up one, dump at 23 18

29
also

and return to 19 24

29
(1 day).

16. Dump one ration at 31 21

29
and return to 23 18

29
(1 day).

17. Dump one ration at 35 20

29
, return to 31 21

29
, pick up one and get to 35 20

29
(1

day).

18. March to 75 20

29
(2 days).

19. March to base (1 25

116
days).

Estimates for part A

If professor Walkingholme replaces his unsealed box by a new full box each time
he passes the base, then no rations carried in part A are used in part B and vice
versa. So we can see part A and part B as separate problems.

The optimality of part B of both solutions is almost proved in [1] and [4]. In
both articles, the problem of how far you can get in N days is solved for integers
N . But to cross a certain distance, it is very unlikely that you need an integral
number of days. The non-integral case is an easy variation, however. We will
use the techniques of these articles here.

Since part B is almost done in the above references, we only prove the
optimality of part A in full detail. For convenience, we measure the distance in
units of 20 miles from now and indicate the positions the other way around.

But before starting, it is always a good idea to determine what must be
done. In part A, professor Walkingholme must put boxes on positions γ and
γ−1, to be used in part C. If γ > 2, then another box on γ−2 and maybe more
boxes are needed, but taking γ > 2 is so bad that remission of the additional
costs of getting to the base does not affect the estimate. If on the other hand
γ < 1, then there does not need to be carried a box to γ − 1, but taking γ < 1
will turn out to be a bad idea as well.

Suppose for now that γ > 1 and let m be the moment of the first unsealing
after dumping a box on position γ to be used in part C, say at position r > 0.
Assuming that boxes are not carried back and forth unnecessarily, there is a
box on position γ and another box on a position between 0 and γ− 1 inclusive,
to be carried to γ − 1 at the end.

Let
0 < el ≤ el−1 ≤ · · · ≤ e2 ≤ e1

be the positions > 0 where a box is unsealed in part A before dumping a box
at γ (prior to m), and define

el+1 = el+2 = · · · = 0
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Suppose that before moment m, professor Walkingholme unseals the last box
on position ej . Then (γ − ej) + (γ − r) ≤ 1. Together with e1 ≥ ej , we get

γ ≤
1

2
e1 +

1

2
r +

1

2
(1)

This estimates r to be 2γ − e1 − 1 at least. In case γ ≤ 1, r might be negative.
Therefore we define r = 0 in case moment m takes place on a negative position.
e1 is always nonnegative by definition, thus (1) is also valid when γ ≤ 1.

Assume that γ > 1 and let t be the time professor Walkingholme uses for
part A. Then professor Walkingholme walks 1

2
t units in forward direction in

part A, whence by elementary logistics

γ + (γ − 1) + r +

k
∑

i=1

ei ≤
1

2
t (2)

for all k. Since γ − 1 ≤ 0 when γ ≤ 1, the above estimate is also valid when
γ ≤ 1. This estimate can only be effective when we show the optimality of an
algorithm for part A with γ ≥ 1 and r ≤ 1 . If r > 1, then there must be an
additional box on position r − 1 at least, whence

γ + (γ − 1) + r + (r − 1) +

k
∑

i=1

ei ≤
1

2
t

for all k. But this estimate is satisfied for r ≤ 1 as well, since then you just
subtract 1− r from the left hand side of (2). It is only not effective for r < 1.

If we take the average of the above estimate and (2), we get

γ + (γ − 1) + r +
r − 1

2
+

k
∑

i=1

ei ≤
1

2
t (3)

for all k, which can only be effective for r = 1. Notice that both (2) and (3) can
only be effective if k ≥ l.

Put e0 := r and define

di :=
1

2
ei +

1

2
ei+1 +

1

2

for all i ≥ 0. In order to get more information, we ask the following question:
how many units does professor Walkingholme walk within the interval [β,∞),
before unsealing the box on position r on moment m, where β ≥ 1

2
? To get the

right idea on this question, we assume that part A must satisfy the Dudeney
rule that boxes are only unsealed at dawn, albeit we need a more general result
(which is left to the reader, the days are too short to write it down).

To answer the question, we slice the total walk up to moment m into parts
wi, such that wi ends on the middle of the day that the box at ei is unsealed
(at dawn) and starts on the middle of the day before. w0 is just the last half-
day walk and also the first slice does not need to have length one. Now we
can estimate how many units professor Walkingholme walks within the interval
[β,∞) in wi for all i > 0:
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• Case β ≤ ei: At most the length of wi, i.e. one unit.

• Case β− 1

2
≤ ei ≤ β: At most 1− 2(β− ei) units, since a round trip from

β to ei is 2(β − ei) units.

• Case ei ≤ β − 1

2
: No units.

If i = 0, then we get half of the above estimates, since w0 is only half a mile.
Now take β = e2k+2 +

1

2
. Then i ≥ 2k + 2 implies the last case and i < 2k + 2

implies one of the first two cases of the above, i.e. 2(ei +
1

2
−max{ei, β}) units.

This makes a total of

α :=

(

e0 +
1

2
−max{e0, β}

)

+ 2

2k+1
∑

i=1

(

ei +
1

2
−max{ei, β}

)

=

2k+1
∑

i=0

(

ei +
1

2
−max{ei, β}

)

+

2k+2
∑

i=1

(

ei +
1

2
−max{ei, β}

)

= 2

2k+1
∑

i=0

di −

(

max{e0, β}+ 2

2k+2
∑

i=1

max{ei, β} −max{e2k+2, β}

)

= 2

2k+1
∑

i=0

di −max{e0, β} − 2

2k+2
∑

i=1

max{ei, β}+ β

units.
Scratching all the [β,∞)-parts of the wi’s together gives a walk that starts

at β and ends at max{e0, β}, of which

α− (max{e0, β} − β)

2

units are in backward direction and

α+ (max{e0, β} − β)

2
=

2k+1
∑

i=0

di −

2k+2
∑

i=1

max{ei, β}

≤

2k+1
∑

i=0

di −

k
∑

i=1

ei − (k + 2)β (4)

units are in forward direction. In order to get boxes on γ, e0, e1, . . ., professor
Walkingholme needs to march from β to γ if γ > β and from β to ei for all i
with ei > β, whence at least

(γ −min{γ, β}) +

∞
∑

i=0

(ei −min{ei, β})

≥ (γ − β) +

k
∑

i=0

(ei − β) +

∞
∑

i=k+1

(ei − ei)
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= γ + r +
k
∑

i=1

ei − (k + 2)β (5)

units in forward direction within [β,∞) are required. Combining (4), (5) and
e0 = r gives

γ + r + 2

k
∑

i=1

ei ≤

2k+1
∑

i=0

di (6)

Optimality of algorithms 2 and 3

Using (2) for k = 2, 3, 4 and (6) for k = 0, 1 gives

t ≥ 12
4

7
γ − 9

1

7
(7)

(add variables Ck ≥ 0 on the smaller sides of the inequalities to get equations),
which proves the optimality of part A of the second solution. Using (3) instead
of (2) gives

t ≥ 14γ − 11 (8)

which proves the optimality of part A of both Dudeney’s solution and the first
solution.

Next we sketch the optimality of part B. Let e1 ≥ e2 ≥ e3 ≥ · · · be the
positions where boxes are unsealed in part B before reaching γ from the other
side, and define di as above. In [1], the last inequality but one reads

e1 + 2

k
∑

i=2

ei ≤

2k−1
∑

i=1

di (9)

and the first inequality of lemma B, together with the above definition, looks
like

e1 + 2

k
∑

i=2

ei ≤ t− 1 (10)

except that the right hand side is N − 1 instead of t− 1. But an algorithm with
N boxes takes N days, thus (10) seems correct if t is the time part B takes in
days.

These inequalities can be proved with the techniques of the previous section.
Together with e1 + 1 = 5− γ, we get

t ≥ 13
5

7
(5− γ)− 36

6

7
(11)

t ≥ 16(5− γ)− 45 (12)

t ≥ 19
1

5
(5− γ)− 56

4

5
(13)

using (9) for k = 1, 2, . . . , n, and (10) for k = n+ 1, . . . , 2n to prove inequality
(n+ 6).
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Notice that part C takes γ days. Both (11) and (12) prove the optimality
of part B of algorithm 2 individually, but they need to cooperate to get the
optimality of algorithm 2 as a whole. (11) gives the bound 11 1

7
day on getting

to 3 1

2
as well.

If we charge part C for two days, i.e. the number of boxes unsealed in it,
which Nightvid Cole preferred, then it is also clear that algorithm 2 is optimal
among the solutions with γ > 1. But if γ ≤ 1, then it follows from (13) and (8)
that more than

(

12
4

7
γ − 9

1

7

)

+

(

19
1

7
(5 − γ)− 57

)

+ γ = 29
4

7
− 5

4

7
γ ≥ 24

days are necessary, so algorithm 2 is optimal in Coles’s way of measuring as
well. Furthermore, the straight line solution is also proved to be non-optimal
now.

Since the time used for part A and B together is optimal in the first solution,
the only way to improve it to an optimal solution in Dudeney’s way of measuring
is to decrease γ. It follows that algorithm 3 is optimal in Dudeney’s way of
measuring.

At last, the round trips to 2 1

2
, or actually to some position γ. The round

trip from the other side is in fact a round trip to 5 − γ. Let e1 be the largest
position where a box is unsealed. This can be before or after reaching γ, but
no other box need to be unsealed in between. Notice that the box for e1 can be
transported on the road to γ, thus e1 does not need to be counted for dropping.

Let r be the position where the first box after that on e1 and e2 ≥ e3 ≥ · · ·
be the positions where the boxes before that on e1 are unsealed. The last box
before that on e1 is unsealed on a position ≤ e2, after which a walk of two units
to r which meets γ follows. Hence

γ ≤
e2 + r + 2

2
(14)

Set di :=
1

2
ei+

1

2
ei+1+

1

2
for all i ≥ 2. By way of the techniques for estimating

part A, one can get the following inequalities for the round trip to γ.

γ + r + 2

k
∑

i=2

ei ≤
e2 + r + 2

2
+

2k
∑

i=2

di (15)

γ + r + (r − 1) + 2

k
∑

i=2

ei ≤
e2 + r + 2

2
+

2k+1
∑

i=2

di (16)

and

γ + r + (r − 1) + 2

k
∑

i=2

ei ≤
t

2
(17)

Using (14), (15) for k = 2, 3, 4, (16) for k = 4, 5, 6, 7, 8, and (17) for k = 9, 10,
. . . , 18, we get

t ≤ 27γ − 46
7

8
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whence at least (27γ − 46 7

8
) + (27(5 − γ) − 46 7

8
) = 41 1

4
days are necessary.

This bound can be attained with my way of measuring, with two round trips
to 2 1

2
, but in order to take into account the ants as well, different round trips

are necessary, e.g. to 2 1

2
± 1

72
, starting 1

3
way during the day and ending 7

12
way

during another day. The reader may verify this.
If the box on e1 is not unsealed before reaching γ, then we have γ ≥ r + 1,

and by adding (14), (15) for k = 2, 3, . . . , 8, and (17) for k = 9, 10, . . . , 17, to
the inequality γ ≥ r + 1, we can derive

t ≤ 25
6

7
γ − 44

If we use (16) instead of (15) for k = 8 (also for k = 7 and/or k = 6 when
desired), we get

t ≤ 26
1

7
γ −

313

7

Both bounds on t can be attained simultaneously, if and only if e1 = γ = 2 1

2
.
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