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DISCRETIZED CONFIGURATIONS AND PARTIAL

PARTITIONS

AARON ABRAMS, DAVID GAY, AND VALERIE HOWER

Abstract. We show that the discretized configuration space of k points

in the n-simplex is homotopy equivalent to a wedge of spheres of dimen-

sion n− k+1. This space is homeomorphic to the order complex of the

poset of ordered partial partitions of {1, . . . , n+1} with exactly k parts.

We also compute the Euler characteristic in two different ways, thereby

obtaining a topological proof of a combinatorial recurrence satisfied by

the Stirling numbers of the second kind.

1. Introduction

1.1. Configurations. The discretized configuration space Dk(X) was in-

troduced in [1] as a combinatorial model of the classical configuration space

of k-tuples of distinct points in a space X. (When k = 2 this has classically

been called the “deleted product.”) To define Dk(X) it is required that X

have the structure of a cell complex. In [1], and in the works of several

subsequent authors, the space X is a graph, i.e. a finite 1-complex.

To studyDk(X) for higher dimensionalX, it is natural to begin with some

basic building blocks. In this paper we consider the discretized configuration

spaces Dk(∆
n) where ∆n is the n-dimensional simplex. We prove

Theorem 1. The space Dk(∆
n) is homotopy equivalent to a wedge of spheres

of dimension n− k + 1.

Theorem 2. The number of spheres in the wedge is
k−1∑

i=1
(−1)i+k+1

(
k

i+1

)
in+1.

Note that if X is any simplicial complex then Dk(X) is built out of (prod-

ucts of) spaces of the form Di(∆
n).

1.2. Partitions. The partition lattice Πn is a classical combinatorial object

studied since antiquity. It is a poset whose elements are set partitions of

[n] = {1, . . . , n} and whose ordering is given by refinement. The order

complex of Πn has the homotopy type of a wedge of spheres (see [4]). The

(larger) lattice Π≤n of partial partitions has recently also been shown to

have the homotopy type of a wedge of spheres [2].
1
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These results are proved using the machinery of algebraic combinatorics.

The standard technique is to find a shelling of the order complex, often via an

EL- or CL-labelling of the poset [4]. One nice feature of these arguments is

that they often produce an explicit basis for the (unique) nonzero homology

group, and one can usually compute its Betti number.

1.3. Connection. The face poset of the space Dk(∆
n−1) can be identified

with a combinatorial object closely related to Π≤n, namely the poset Π̃k
≤n

of ordered partial partitions of [n] with exactly k parts. Thus Theorems 1

and 2 imply the following.

Theorem 3. The poset Π̃k
≤n has the homotopy type of a wedge of spheres

of dimension n − k. The number of spheres is the same as the expression

given in Theorem 2, with n replaced by n− 1.

Note that the symmetric group Sk acts on the space Dk(X) (and on the

poset Π̃k
≤n) by permuting coordinates. The quotient poset Πk

≤n is naturally

a sub-poset of Π≤n; its elements are the partial partitions of [n] with exactly

k parts. However, Πk
≤n does not have the homotopy type of a wedge of

spheres, as can be seen already in the case k = 2 (where one obtains a real

projective plane RP
n−2).

1.4. Paper contents. We start with definitions, examples and results (Sec-

tion 2). The proof of Theorem 1 is a direct computation using algebraic

topology. It takes two steps: in Section 3, we give an inductive argument

that the spaces are simply connected (when the dimension at least 2), and

then in Section 4 a spectral sequence computation shows that the spaces

have the same homology as a wedge of spheres. Together, these allow us to

use the Whitehead theorem to deduce the result.

In particular, we do not give a shelling of the spaces Dk(∆
n), although

we suspect that one may be possible.

Problem. Find a combinatorial proof of Theorem 1.

In Section 5 we describe two combinatorial proofs of Theorem 2. In

the first, we use the interpretation as a partition lattice to count the i-

dimensional cells in Dk(∆
n). This count involves the Stirling numbers of

the second kind, denoted
{
N

K

}

which (by definition) means the number of partitions of a set of size N into

exactly K nonempty subsets.

We also obtain a recurrence for the top Betti number by following through

the spectral sequence. One can prove that the expression in Theorem 2
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agrees with the actual Betti numbers for small k, and satisfies the same

recurrence; this establishes Theorem 2 in a different way.

2. Definitions, theorem, examples

2.1. Configurations. Let k, n ≥ 1 be fixed integers. The n-simplex ∆n is

the largest simplicial complex on the vertex set [n+ 1]. The space Dk(∆
n)

is the largest cell complex that is contained in the product (∆n)k minus its

diagonal {(x1, . . . , xk) ∈ (∆n)k | xi = xj for some i 6= j}. One can also

describe this as the union of those open cells of (∆n)k whose closure misses

the diagonal; explicitly,

Dk(∆
n) =

⋃

σ̄i pairwise disjoint
closed cells in ∆n

σ1 × · · · × σk

We visualize this space by imagining k “robots” in the space ∆n; then

Dk(∆
n) is the space of allowable configurations if a robot is said to “oc-

cupy” the entire closure of the cell in whose interior it is contained, and a

configuration is “allowable” if no two robots occupy the same point of ∆n.

The maximum dimension of a cell of Dk(∆
n) is n− k + 1.

Theorem 1 (again). For all n ≥ 1 and 2 ≤ k ≤ n+1, the space Dk(∆
n) is

homotopy equivalent to a wedge of spheres of dimension n− k + 1.

Proof. If n−k+1 = 0 then Dk(∆
n) is a discrete set of k! ≥ 2 points, hence a

wedge of 0-spheres. If n− k+1 = 1 then Dk(∆
n) is a connected 1-complex,

hence up to homotopy, a wedge of circles. If n− k + 1 > 1 then 2 ≤ k < n,

so Proposition 1 (Section 3) shows that Dk(∆
n) is simply connected and

Proposition 2 (Section 4) shows that Dk(∆
n) has the homology of a wedge

of spheres of dimension n− k+1. As there is clearly a map from a wedge of

spheres inducing isomorphisms on homology, the Whitehead theorem implies

the result. �

2.2. Examples. Let Kd denote the complete graph on the vertex set [d]

(i.e., the 1-skeleton of ∆d−1). Let Sd denote the d-sphere. Let ei denote the

ith standard basis vector of Rd, for 1 ≤ i ≤ d.

Example 1 (k = 2). We view ∆n as the convex hull of the n+ 1 standard

basis vectors ei in R
n+1. Then the Gauss map from D2(∆

n) to R
n+1 given

by (x, y) 7→ x−y is a homeomorphism onto S, the boundary of the polytope

with vertex set {ei − ej | i, j ∈ [n+ 1], i 6= j} in R
n+1. To see this, note that

the map is obviously continuous and surjective, and given a point in S one

can determine the coordinates x and y of the preimage as the “positive” and

“negative” parts of S. Thus the map is a bijection.
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The complex S is contained in the hyperplane {
∑

xi = 0} ∼= R
n and is

homeomorphic to Sn−1. This agrees with Theorems 1 and 2. Note also that

D2(∆
n−1) is contained in D2(∆

n) as an equator.

We next describe some small cases.

n = 2. The space D2(∆
2) is a connected 1-complex with six vertices, each

of valence two, and six edges. It is a hexagon. It is the same as D2(K3),

since neither robot may venture into the interior of the 2-cell of ∆2.

n = 3. The space D2(∆
3) is (the surface of) a cuboctahedron (Figure 1).

Deleting the triangular 2-cells leaves the planar 2-complex D2(K4).

Figure 1. D2(∆
3).

n = 4. The space D2(∆
4) is homeomorphic to S3. The space D2(K5) is a

subcomplex which is itself homeomorphic to a closed orientable surface of

genus six. This surface is a Heegaard splitting of D2(∆
4). The complemen-

tary handlebodies are made of prisms (∆2 × I and I ×∆2) and 3-simplices

(v ×∆3 and ∆3 × v).

Example 2 (k = n). In this case Dk(∆
n) is a connected 1-complex; a

simple count reveals that the rank of H1 is 1
2(n − 2)(n + 1)! + 1. It is true

but not obvious that this agrees with Theorem 2. If one quotients by the

action of the symmetric group Sk that permutes coordinates, the result is a

graph whose first Betti number is
(
n
2

)
.

2.3. Partitions. An ordered partition π of the set [n] = {1, . . . , n} is an

r-tuple (for some r) of disjoint non-empty sets π = (S1, . . . , Sr) whose union

is [n]. (The ordering is on the set of parts, but each part is an unordered

set.) An ordered partial partition of [n] is the same, except the union is only

required to be a subset of [n]. An ordered partial partition with exactly k

parts is an ordered partial partition with r = k.

Let Π̃k
≤n be the poset whose elements are the ordered partial partitions

of [n] with exactly k parts. The partial order is given by (S1, . . . , Sk) ≤

(T1, . . . , Tk) iff Si ⊆ Ti for each i.
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Note that Π̃k
≤n is not a lattice: the meet (Si)∧ (Ti) is (Si ∩Ti) if all these

sets are nonempty, but it is otherwise nonexistent; and similarly the join

(Si) ∨ (Ti) is (Si ∪ Ti) if all these sets are disjoint, but otherwise it does

not exist. Of course we may add a top and bottom element if we like. For

comparison, the poset of partial partitions Π≤n (see [2]) has a top element

consisting of the 1-part partition [n], and it is a lattice provided one includes

an empty partition at the bottom.

Proof of Theorem 3. The face poset of Dk(∆
n−1) is isomorphic to the poset

Π̃k
≤n, by mapping the face σ1×· · ·×σk to the element (Si) where Si is the set

of vertices of the cell σi. Thus the order complex of Π̃k
≤n is homeomorphic

to Dk(∆
n−1), so this is equivalent to Theorems 1 and 2. �

We remark once again that the quotient Πk
≤n of Π̃k

≤n by the symmetric

group Sk does not have the homotopy type of a wedge of spheres. When

k = 2, for example, the action is antipodal and the quotient is a projective

plane. Nevertheless Πk
≤n is a sub-poset of Π≤n, which is a wedge of spheres

up to homotopy (see the introduction).

3. The fundamental group

This is the first of the propositions referred to in the proof of Theorem 1.

Proposition 1. If 1 ≤ k < n then Dk(∆
n) is simply connected.

Proof. If k = 1 then Dk(∆
n) = ∆n, which is simply connected. If k = 2 we

have already seen that D2(∆
n) is homeomorphic to Sn−1, which is simply

connected if n > 2. We proceed by induction on k; let k > 2 be fixed. Note

that the hypothesis means that if all robots are at vertices, then there are

at least two unoccupied vertices.

To prove the theorem we will construct a set of generators of π1(Dk(∆
n))

and then we will show that each is null-homotopic.

Since Dk(∆
n) ⊂ (∆n)k, projection onto the first factor induces a map

ρ : Dk(∆
n) −→ ∆n. The inverse image of a point in the interior of an i-cell

of ∆n is isomorphic to Dk−1(∆
n−i). In particular, if v is a vertex of ∆n then

ρ−1(v) is simply connected, by induction.

Let v be the vertex n + 1 of ∆n and let T be the spanning tree of the

1-skeleton of ∆n (that is, Kn+1) consisting of all edges incident with v. The

space ρ−1(T ) is the union of n + 1 vertex spaces (i.e. the preimages of the

vertices), each of which is a copy of the simply connected space Dk−1(∆
n−1),

and n edge spaces (preimages of edges), each of which is a copy of the

connected (but not necessarily simply connected) space I × Dk−1(∆
n−2).

The edge spaces are attached to the vertex spaces by embeddings at the ends
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{0, 1} ×Dk−1(∆
n−2). Thus by the Seifert-van Kampen theorem, ρ−1(T ) is

simply connected.

Now consider Y = ρ−1(Kn+1). The space Y is obtained from ρ−1(T ) by

attaching
(
n
2

)
edge spaces I × Dk−1(∆

n−2) indexed by the pairs i, j ∈ [n]

with i < j. As there are no new vertex spaces, each such edge space results

in an HNN extension of the fundamental group; thus π1(Y ) is free of rank
(
n
2

)
.

Note that the entire 1-skeleton of Dk(∆
n) is contained in Y . Thus a

generating set for π1(Y ) will also generate π1(Dk(∆
n)). We now describe

such a generating set.

Fix a basepoint ⋆ ∈ ρ−1(v). For each i, j ∈ [n] choose a path αij in ρ−1(v)

from ⋆ to a configuration x with i and j unoccupied and each robot at a

vertex of ∆n. Let γij be the loop starting at x that leaves all robots fixed

except the first, and moves the first robot around the triangle v → i →

j → v. The loop αijγijα
−1
ij represents the generator of π1(Y ) arising from

attaching the edge space ρ−1([i, j]). Letting i, j vary, these
(
n
2

)
loops form

a free basis for π1(Y ).

But clearly each of these generators of π1(Y ) is null-homotopic inDk(∆
n),

as the loop γij bounds a 2-simplex in Dk(∆
n). We conclude that Dk(∆

n) is

simply connected, as desired. �

4. Homology

Here we prove the second of the propositions referred to in the proof of

Theorem 1, using a spectral sequence to compute the homology of Dk(∆
n).

All homology groups will have integer coefficients.

Recall or observe:

(1) Dk(∆
n) has dimension n− k + 1.

(2) If n− k + 1 > 0 then Dk(∆
n) is connected.

(3) D2(∆
n) is homeomorphic to a sphere of dimension n− 1.

(4) Dk(∆
k−1) is k! points.

Let n ≥ 1 and 1 ≤ k ≤ n be fixed.
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Again we consider the projection ρ : Dk(∆
n) −→ ∆n onto the first coor-

dinate. Note that ρ satisfies

ρ−1([i1]) ∼= Dk−1(∆
n−1)

ρ−1([i1, i2]) ∼= R×Dk−1(∆
n−2)

ρ−1([i1, i2, i3]) ∼= R
2 ×Dk−1(∆

n−3)

...

ρ−1([i1, i2, i3, · · · , in−k+1]) ∼= R
n−k ×Dk−1(∆

k−1)

ρ−1([i1, i2, i3, · · · , in−k+2]) ∼= R
n−k+1 ×Dk−1(∆

k−2)

where i1, i2, i3, · · · , in−k+2 are distinct vertices of ∆
n and the face [·] of ∆n is

the interior of the convex hull of the given vertices. We use ∆n(k) to denote

the k-dimensional faces of ∆n and ∆n
≤k =

⋃

i≤k ∆
n(i) for the k-skeleton of

∆n.

The map ρ gives a filtration of Dk(∆
n) as follows

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn−k ⊂ Xn−k+1 = Dk(∆
n)

where Xp = ρ−1(∆n
≤p). Moreover

Xp\Xp−1 =
⊔

f∈∆n(p)

ρ−1(f)

∼=
⊔

f∈∆n(p)

R
p ×Dk−1(∆

n−p−1)

We can hence construct a spectral sequence [3, p 327] (Er, dr) with

E1
p,q = Hp+q(Xp\Xp−1) =⇒ Hp+q(Dk(∆

n))

converging to homology with closed supports. Since Hp(R
p) = Z is the only

nonzero homology group of Rp we have

E1
p,q = Hp+q(Xp\Xp−1)

=
⊕

f∈∆n(p)

Hp+q(R
p ×Dk−1(∆

n−p−1))

=
⊕

f∈∆n(p)

Hq(Dk−1(∆
n−p−1)),

where we have used the Künneth formula.

Proposition 2. Let n ≥ 1 and 1 ≤ k ≤ n. Then

Hr(Dk(∆
n)) =

{

Z, if r = 0,

0, if 0 < r < n− k + 1,
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and Hn−k+1(Dk(∆
n)) is free abelian and nontrivial. Thus Dk(∆

n) has the

same homology as a wedge of spheres of dimension n− k + 1.

Proof. We induct on k; the cases k = 1, 2 are observations (2), (3) above.

Assume the theorem holds for configurations of k − 1 robots. Let (Er, dr)

be the spectral sequence from above. Using our inductive hypothesis, the

E1 term has nonzero entries only along the diagonal line p+ q = n− k + 1

and along row q = 0. The entries in the E1 term are as follows

q

E1
0,n−k+1

0 E1
1,n−k

0 0 E1
2,n−k−1

0 0 0 E1
3,n−k−2

0 0 0 0
. . .

0 0 0 0 · · ·
. . .

0 0 0 0 · · · · · · E1
n−k,1

E1
0,0 E1

1,0 E1
2,0 E1

3,0 · · · · · · E1
n−k,0 E1

n−k+1,0

p = 0 1 2 3 · · · · · · n− k n− k + 1

where

rankE1
p,n−k+1−p =

(
n+ 1

p+ 1

)

bn−k+1−p(Dk−1(∆
n−p−1)) for 0 ≤ p ≤ n− k,

rankE1
p,0 =

{(
n+1
p+1

)
for 0 ≤ p ≤ n− k

(k − 1)!
(
n+1
p+1

)
for p = n− k + 1,

and all other entries are zero.

The only possible nonzero higher differentials are the horizontal maps

d1p,0 : E
1
p,0 −→ E1

p−1,0 for 1 ≤ p ≤ n− k + 1, where

d1p,0 :
⊕

f∈∆n(p)

H0(Dk−1(∆
n−p−1)) −→

⊕

g∈∆n(p−1)

H0(Dk−1(∆
n−p))

is a direct sum of maps

H0(Dk−1(∆
n−p−1)) −→

⊕

g∈f(p−1)

H0(Dk−1(∆
n−p)) for f ∈ ∆n(p)

Note that if dimf ≤ n− k and g ∈ f(p− 1) then the map

Z ∼= H0(Dk−1(∆
n−p−1)) −→ H0(Dk−1(∆

n−p)) ∼= Z

is injective (hence an isomorphism) as it is induced by inclusion. Thus, com-

puting E2
p,0 = kerd1

p,0/imd1
p+1,0 is equivalent to computing the pth homology

group of ∆n for p < n− k, and we obtain E2
p,0 = 0 for p < n− k.
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For p = n − k, we have d1n−k,0 is equivalent to ∂n−k, where ∂ is the

boundary map for the n-simplex. For each (n− k + 1)-face f of ∆n, let γf
be a generator for the factor of H0(Dk−1(∆

k−2)) corresponding to the fiber

over f . Then

d1n−k+1,0

∣
∣⊕

f Z·γf

∼= ∂n−k+1

and hence imd1n−k+1,0
∼= im∂n−k+1 = ker∂n−k

∼= kerd1n−k,0, which yields

E2
n−k,0 = 0. Thus the only nonzero entries of the E2 term are E2

0,0
∼= Z and

also along the line p + q = n − k + 1 where we have free abelian groups.

We hence obtain the integer homology groups of Dk(∆
n) from E2 = E∞ by

adding along the lines p+ q = r, which proves the inductive step. �

5. The Euler characteristic

In this section we discuss the Euler characteristic of Dk(∆
n) from two

points of view: first via the interpretation of Dk(∆
n) as the order complex

of the poset Π̃k
≤n+1, and second via the spectral sequence computation from

Section 4.

5.1. Stirling numbers. Recall that the symmetric group Sk acts onDk(∆
n)

by permuting coordinates. This is a free cellular action, i.e. the quotient

UDk(∆
n) inherits a natural cell structure. An i-dimensional cell of Dk(∆

n)

corresponds to an ordered partial partition of [n + 1] which uses exactly

k + i of the elements from [n + 1], and an i-dimensional cell of UDk(∆
n)

corresponds to an unordered partial partition of [n + 1] which uses exactly

k + i of the elements from [n+ 1].

The Stirling number of the second kind, denoted S(n, k) or
{
n
k

}
, is by

definition the number of ways to partition a set of size n into exactly k

nonempty subsets. (These partitions are unordered.) Thus the number of

i-cells of UDk(∆
n) is

(
n+ 1

k + i

){
k + i

k

}

,

and the Euler characteristic of UDk(∆
n) is

n−k+1∑

i=0

(−1)i
(
n+ 1

k + i

){
k + i

k

}

.

As the Euler characteristic is multiplicative under covers, it follows that the

Euler characteristic of Dk(∆
n) is

(1) k!

n−k+1∑

i=0

(−1)i
(
n+ 1

k + i

){
k + i

k

}

.



10 AARON ABRAMS, DAVID GAY, AND VALERIE HOWER

There are many well-known formulae and recurrences for the Stirling num-

bers; for instance
{
n

k

}

=
1

k!

k∑

j=0

(−1)k−j

(
k

j

)

jn.

This provides one avenue to a proof of Theorem 2. By Equation (1), that

would follow from the combinatorial identity

k∑

j=0

(−1)n+j−1

(
k

j

)

(j − 1)n+1 = k!

n−k+1∑

i=0

(−1)i
(
n+ 1

k + i

){
k + i

k

}

,

which can indeed be proven by elementary combinatorial techniques.

Example 3 (k = 3). The preceding identity shows that D3(∆
n) is a wedge

of (2n+1 − 3) 2-spheres.

Example 4 (k = 4). Similarly, D4(∆
n) is a wedge of (3n+1 − 4 · 2n+1 + 6)

3-spheres.

5.2. Betti numbers from the spectral sequence. Another approach to

computing the Euler characteristic is to notice that the spectral sequence

yields a recursion satisfied by the top Betti number. One can then establish

Theorem 2 by showing that the formula in the statement of the theorem

satisfies the same recursion. Again, this can be carried out by elementary

(but non-trivial) combinatorial arguments.

Let βk,n denote the rank of Hn−k+1(Dk(∆
n)). We establish the following

recurrence for βk,n in terms of the values of βk−1,i for i < n.

Theorem 4. For 1 ≤ k ≤ n+ 1, we have

βk,n = −

(
n

k − 1

)

+

n−k+1∑

p=0

(
n+ 1

k + p− 1

)

βk−1,k+p−2.

It would be nice to have a geometric interpretation of this result. For

instance, it may be possible to describe bases for the top homology groups

in such a way that geometric relationships between the bases for different

values of k and n shed light on this recurrence.

In any case, the theorem itself follows immediately from the next two

lemmas.

Lemma. For 3 ≤ k ≤ n, define Yk,n := rankE2
n−k+1,0 where (Er, dr) is the

spectral sequence for Dk(∆
n). Then, we have

Yk,n = (k − 1)!

(
n+ 1

k − 1

)

−

(
n

k − 1

)

.
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Proof. As in Section 4, for each (n−k+1)-face f of ∆n, let γf be a generator

for the factor of H0(Dk−1(∆
k−2)) corresponding to the fiber over f . Then

we have the following

imd1n−k+1,0 = imd1n−k+1,0

∣
∣⊕

f Z·γf

kerd1n−k+1,0 = Z
( n+1

n−k+2) ⊕ . . .⊕ Z
( n+1

n−k+2)
︸ ︷︷ ︸

(k−1)!−1 factors

⊕ kerd1n−k+1,0

∣
∣⊕

f Z·γf

where

kerd1n−k+1,0

∣
∣⊕

f Z·γf

∼= ker∂n−k+1 = im∂n−k+2

and ∂ is the boundary map for the n-simplex. Next, we note that

rank(im∂n−k+2) =

(
n+ 1

n− k + 3

)

− rank(ker∂n−k+2)

=

(
n+ 1

n− k + 3

)

− rank(im∂n−k+3).

Thus, if we define fk := rank(im∂n−k+2) then we have f2 = 1 and fk =
(

n+1
n−k+3

)
− fk−1 for 3 ≤ k ≤ n. Iterating, we find fk =

∑k−2
j=0(−1)k+j

(
n+1
j

)
.

Thus

Yk,n = [(k − 1)! − 1]

(
n+ 1

k − 1

)

+ fk

= (k − 1)!

(
n+ 1

k − 1

)

+

k−1∑

j=0

(−1)k+j

(
n+ 1

j

)

= (k − 1)!

(
n+ 1

k − 1

)

−

(
n

k − 1

)

where in the last line we have used the elementary combinatorial identity
∑K

j=0(−1)j
(
N
j

)
= (−1)K

(
N−1
K

)
. �

Lemma. For 3 ≤ k ≤ n, let βk,n be the rank of the homology group

Hn−k+1(Dk(∆
n)). Then βk,n satisfies the following recursion:

βk,n = Yk,n +

n−k∑

p=0

(
n+ 1

p+ 1

)

βk−1,n−p−1,

where Yk,n is as in the above lemma.
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Proof. Since the spectral sequence (Er, dr) collapses at E2 and there is no

torsion in the E2-term, we have

βk,n = rankE2
n−k+1,0 +

n−k∑

p=0

rankE2
p,n+1−k−p

= Yk,n +

n−k∑

p=0

rankE1
p,n+1−k−p.

Since rankE1
p,n+1−k−p =

(
n+1
p+1

)
βk−1,n−p−1, the lemma holds. �
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