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1. Introduction

It is well known that the first and second kind Stirling numbers s(m, j) and S(m, j) [8] are
defined respectively by

x(x− 1) · · · (x−m+ 1) =

m
∑

j=0

s(m, j)xj ,(1.1)

m
∑

j=0

S(m, j)x(x − 1) · · · (x− j + 1) = xm.(1.2)

The Bell polynomials {Bn(x)}n≥0 are defined by

Bm(x) =
m
∑

j=0

S(m, j)xj .

It is clear that Bm(1) is the m-th Bell number, denoted by Bm, counting the number of
partitions of [m] = {1, 2, . . . ,m} (with B0 = 1). The Bell polynomials Bm(x) satisfy the
recurrence

Bm+1(x) = x

m
∑

j=0

(

m

j

)

Bj(x).(1.3)

The derangement polynomials {Dm(x)}m≥0 are defined by

Dm(x) =

m
∑

j=0

(

m

j

)

j!(x − 1)m−j .

Clearly, Dm(1) = m! and Dm(0) is the m-th derangement number, denoted by Dm, counting
the number of fixed-point-free permutations on [m] (with D0 = 1). The derangement poly-
nomials Dm(x), also called x-factorials of m, have been considerably investigated by Eriksen,
Freij and Wästlund [2], Sun and Zhuang [10]. They obey the recursive relation

Dm(x) = mDm−1(x) + (x− 1)m.(1.4)
1
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Recently, Sun [11] discovered experimentally that for a fixed positive integer m the sum
∑p−1

k=0
Bk/(−m)k modulo a prime p not dividing m is independent of the prime p, a typical

case being

p−1
∑

k=0

Bk

(−8)k
≡ −1853 (mod p) for all primes p 6= 2 .

Later, Sun and Zagier [13] confirmed this conjecture and proved the nice result.

Theorem 1.1. For any integer m ≥ 1 and any prime p ∤ m, there hold

(−x)m
p−1
∑

k=1

Bk(x)

(−m)k
≡ (−x)p

m−1
∑

k=0

(m− 1)!

k!
(−x)k (mod p).

Particularly, the case x = 1 generates

p−1
∑

k=1

Bk

(−m)k
≡ (−1)m−1Dm−1 (mod p).(1.5)

Here for two polynomials P (x), Q(x) ∈ Zp[x], by P (x) ≡ Q(x) (mod p) we mean that the
corresponding coefficients of P (x) and Q(x) are congruent modulo p.

In this note, we establish a more general result of Sun and Zagier’s congruence.

Theorem 1.2. For any integers n ≥ 0,m ≥ 1 and any prime p ∤ m, there hold

xm
p−1
∑

k=1

Bn+k(x)

(−m)k
≡ xp

n
∑

k=0

S(n, k)(−1)m+k−1Dm+k−1(1− x) (mod p),(1.6)

or equivalently

xm
n
∑

j=0

s(n, j)

p−1
∑

k=1

Bj+k(x)

(−m)k
≡ (−1)m+n−1xpDm+n−1(1− x) (mod p).(1.7)

In particular, the case x = 1 leads to

Corollary 1.3. For any integers n ≥ 0,m ≥ 1 and any prime p ∤ m, there hold

p−1
∑

k=1

Bn+k

(−m)k
≡

n
∑

k=0

S(n, k)(−1)m+k−1Dm+k−1 (mod p),(1.8)

or equivalently

n
∑

j=0

s(n, j)

p−1
∑

k=1

Bj+k

(−m)k
≡ (−1)m+n−1Dm+n−1 (mod p).(1.9)

2. Proof of Theorem 1.2

Define the generalized Bell umbra Bx, given by Bx

m = Bm(x). (See [5, 6] for more infor-
mation on the umbra calculus.) Then (1.3) can be rewritten as Bx

m+1 = x(Bx + 1)m. By
linearity, for any polynomial f(x) we have

Bxf(Bx) = xf(Bx + 1),

which, by induction on integer m ≥ 0, yields

Bx(Bx − 1) · · · (Bx −m+ 1)f(Bx) = xmf(Bx +m).(2.1)
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Lemma 2.1. For any integers m,n ≥ 0, there hold

Bx(Bx − 1) · · · (Bx −m+ 1)Bx

n = xm(Bx +m)n.(2.2)

or equivalently

m
∑

j=0

s(m, j)Bj+n(x) = xm
n
∑

j=0

(

n

j

)

Bj(x)m
n−j ,(2.3)

Proof. The case f(x) = xn in (2.1) produces (2.2). By setting x = Bx in (1.1), then (2.2) is
just the umbral representation of (2.3). 2

Lemma 2.2. For any integer m ≥ 1, there hold

(Bx − 1)(Bx − 2) · · · (Bx −m+ 1) = (−1)m−1Dm−1(1− x),(2.4)

or equivalently

m
∑

j=0

s(m, j)Bj−1(x) = (−1)m−1Dm−1(1− x).(2.5)

Proof. Let Am(x) denote the expression on the left hand side of (2.4), by the case n = 0 in
(2.2), we have

Am+1(x) = (Bx − 1) · · · (Bx −m+ 1)(Bx −m)

= Bx(Bx − 1) · · · (Bx −m+ 1)−m(Bx − 1) · · · (Bx −m+ 1)

= xm −mAm(x).

By (1.4), it is routine to check that (−1)mDm(1−x) also obey the same recurrence as Am+1(x)
and A1(x) = 1 = D0(1− x). Hence Am+1(x) = (−1)mDm(1− x), which proves (2.4).

For (2.5), by setting x = Bx in (1.1) after dividing an x on the two sides of (1.1), we can
represent (2.5) umbrally as (2.4) and vice versa. 2

Remark 2.3. The case x = 1 in (2.5) produces

m
∑

j=0

s(m, j)Bj−1 = (−1)m−1Dm−1.

It is curious that such a simple and interesting identity did not appear in the literature.

Remark 2.4. By the orthogonal relationship between the two types of Stirling numbers,

m
∑

j=k

s(m, j)S(j, k) = δm,k,(2.6)

where δm,k is the Kronecker symbol defined by δm,k = 1 if m = k and δm,k = 0 otherwise, one
can obtain another equivalent form of (2.3) and (2.5)

Bm+n(x) =

m
∑

k=0

S(m,k)xk
n
∑

j=0

(

n

j

)

Bj(x)k
n−j ,(2.7)

Bm−1(x) =
m
∑

k=0

S(m,k)(−1)k−1Dk−1(1− x).

It should be noticed that (2.7) has been obtained by Spivey [7] in the case x = 1, Gould and
Quaintance [4], Belbachir and Mihoubi [1] using different methods. By S(p, 1) = S(p, p) = 1
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and p|S(p, k) for a prime p and 1 < k < p, we have immediately the following congruence
relations

Bp+n(x) ≡ xpBn(x) + Bn+1(x) (mod p),(2.8)

Bp−1(x) ≡ 1 +Dp−1(1− x) (mod p).(2.9)

Note that (2.8) has been obtained by Gertsch and Robert [3], and the case x = 1 in (2.8)
reduces to the well-known Touchard’s congruence Bp+n ≡ Bn +Bn+1 (mod p) [14]. The case
x = 1 in (2.9) yields a new congruence

Bp−1 ≡ 1 +Dp−1 (mod p).(2.10)

Later, Sun [12] informed us that they also independently obtained (2.10) as a corollary of
(1.5).

Proof of Theorem 1.2. It suffices to prove (1.7), for (1.6) can be obtained from (1.7) by
using the orthogonality in (2.6). Setting x = Bx in the Lagrange congruence

x(x− 1) · · · (x− p+ 1) ≡ xp − x (mod p),

by (2.2) in the case n = 0, we have

Bx

p −Bx ≡ xp (mod p).

Using the congruence
(

p−1

k

)

≡ (−1)p−k−1(mod p) and the Fermat’s congruence mp−1 ≡
1 (mod p), where m is any integer not divided by the prime p, we get

xm
n
∑

j=0

s(n, j)

p−1
∑

k=1

Bj+k(x)

(−m)k

= xm
p−1
∑

k=1

1

(−m)k

n
∑

j=0

s(n, j)Bj+k(x)

≡ xm
p−1
∑

k=1

(

p− 1

k

)

mp−k−1xn(Bx + n)k (mod p)

= xm+n((Bx + n+m)p−1 −mp−1)

= Bx(Bx − 1) · · · (Bx − (m+ n) + 1)(Bx

p−1 −mp−1)

≡ Bx(Bx − 1) · · · (Bx − (m+ n) + 1)(Bx

p−1 − 1) (mod p)

= (Bx − 1) · · · (Bx − (m+ n) + 1)(Bx

p −Bx)

≡ xp(Bx − 1) · · · (Bx − (m+ n) + 1) (mod p)

= (−1)m+n−1xpDm+n−1(1− x),

as desired. 2

3. Special Consequences

The cases n = 1 and n = 2 in (1.8) produce

Corollary 3.1. For any integer m ≥ 1 and any prime p ∤ m, there hold

p−1
∑

k=1

Bk+1

(−m)k
≡ (−1)mDm (mod p),(3.1)

p−1
∑

k=1

Bk+2

(−m)k
≡ (−1)m(Dm −Dm+1) (mod p).
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Corollary 3.2. For any integers n,m ≥ 0 and any prime p, there hold

Dpn+m ≡ (−1)nDm (mod p),(3.2)

p−1
∑

k=1

(−1)kBn+k ≡ Vn (mod p),(3.3)

p−1
∑

k=1

Bn+k −
n−1
∑

k=1

Bk ≡ Dp−1 (mod p).(3.4)

where Vn =
∑n

k=0(−1)n−k
(

n
k

)

Bk is the number of partitions of [n] without singletons (i.e.,
one-element subsets) [9].

Proof. Setting m := pn+m in (3.1), by (−1)pn ≡ (−1)n (mod p), one can get (3.2). Setting
m = 1 in (1.8), we have

p−1
∑

k=1

(−1)kBn+k ≡

n
∑

k=0

S(n, k)(−1)kDk (mod p)

=

n
∑

k=0

S(n, k)(B − 1)(B − 2) · · · (B− k)

= (B− 1)n =

n
∑

k=0

(−1)n−k

(

n

k

)

Bk

=

n
∑

k=0

(−1)n−k

(

n

k

)

Bk = Vn,

where B := Bx|x=1 is the Bell umbra. Thus (3.3) follows.

By the Touchard’s congruence, we have

p−1
∑

k=1

Bn+k −

n−1
∑

k=1

Bk

≡

p−1
∑

k=1

Bn+k −

n−1
∑

j=1

(Bp+j −Bj+1) (mod p)

=

p−1
∑

k=1

Bn+k −
n−1
∑

j=1

p−1
∑

k=1

(Bj+k+1 −Bj+k)

=

p−1
∑

k=1

Bn+k −

p−1
∑

k=1

n−1
∑

j=1

(Bj+k+1 −Bj+k)

=

p−1
∑

k=1

Bn+k −

p−1
∑

k=1

(Bn+k −Bk+1)

=

p−1
∑

k=1

Bk+1 ≡ Dp−1 (mod p),

where the last step is obtained by setting m := p− 1 in (3.1). 2
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