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Abstract

We devise a fairly general sufficient condition ensuring that the endomorphism
monoid of a countably infinite ultrahomogeneous structure (i.e. a Fräıssé limit) em-
beds all countable semigroups. This approach provides us not only with a framework
unifying the previous scattered results in this vein, but actually yields new applications
for endomorphism monoids of the (rational) Urysohn space and the countable universal
ultrahomogeneous semilattice.
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Introduction

The principal source of motivation for this paper stems from fascinating objects of model
theory called Fräıssé limits. Namely, by a well-known result of R. Fräıssé [12, 13] (see also
[16]), if C is a countable set of finitely generated first-order structures of a fixed countable
signature which is (up to isomorphism) closed for taking finitely generated substructures,
enjoys the amalgamation property (AP) and the joint embedding property (JEP), then there
is a unique countable structure F with the following two features:

• the set of all finitely generated substructures of F coincides (up to isomorphism) with
C ,

• F is ultrahomogeneous, meaning that any isomorphism between its finitely generated
substructures extends to an automorphism of F .

Such F is called the C -universal ultrahomogeneous structure or, following [16], the Fräıssé
limit of C . The corresponding class C with the above properties is called a Fräıssé class.
Conversely, it is known that every countably infinite ultrahomogeneous structure arises in
this way: it is simply the limit of the class of structures isomorphic to its finitely generated
substructures. Of course, if all of this happens within a locally finite class of structures
(e.g. relational structures with finitely many constants), then it suffices to replace ‘finitely
generated’ by ‘finite’ in the above definitions.
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Historically, the two oldest examples of Fräıssé limits are the rational Urysohn space
UQ, the limit of the class of all finite metric spaces with rational distances, and the linear
order of the rationals, Q, which is the limit of the class of all finite linear orders. Other
well-known classes admitting Fräıssé limits include finite simple graphs, finite posets, and
finite semilattices, resulting in the random graph R [3, 4], the random (generic) poset P

[9, 23], and the countable universal homogeneous semilattice Ω [10], respectively.
More recently, searching for a broader perspective to the notion of ultrahomogeneity,

P. J. Cameron and J. Nešetřil [5] introduced the concept of homomorphism-homogeneity.
A structure A is homomorphism-homogeneous if any homomorphism B → A defined on
a finitely generated substructure B of A can be extended to an endomorphism of A. In
particular, any endomorphism of B extends to an endomorphism of A. Now, a somewhat
more sophisticated question arises whether one can select these extensions in a ‘regular’
fashion, in the sense that it is possible to choose, for each ϕ ∈ End(B), an extension
ϕ̂ ∈ End(A) such that the mapping ϕ 7→ ϕ̂ is a monoid embedding End(B) → End(A).
The same question applies to an arbitrary substructure B of A.

Here we consider the case when A is a countably infinite ultrahomogeneous structure,
that is, a Fräıssé limit. Since A is universal for a certain class of countable structures, it
is to be expected that End(A), the endomorphism monoid of A, will exhibit a very rich
structure and to some extent ‘inherit’ the universal properties of A. In fact, if for some
(countably) infinite substructure B of A there is an embedding End(B) → End(A) and B
admits any self-map of the set B as its endomorphism, then Self(ℵ0), the monoid of all
self-maps of a countably infinite set, embeds into End(A). Since any countable semigroup
embeds into Self(ℵ0) (by the semigroup analogue of the Cayley theorem) it would then
follow that the monoid End(A) is countably universal, i.e. that it contains a copy of each
countable semigroup.

For example, it was shown in [2] that this is true in the case of the random graph R,
while the same conclusion is reached in [6] for the generic poset P. Furthermore, Uspenskij
[25] proved that every topological group with a countable base is isomorphic to a topological
subgroup of the isometry (i.e. automorphism) group of the Urysohn space U [18, 24], which
implies that every countable group embeds into Aut(UQ). Also, for any countably infinite
ultrahomogeneous simple graphG (a complete list of these is given by Lachlan andWoodrow
[19]) it is true that the symmetric group Sym(ℵ0), and thus any countable group, embeds
into Aut(G), see [15]. This is, however, no longer true if we move into the realm of monoids
and semigroups: it follows from [21] that R is actually the only countable ultrahomogeneous
graph whose endomorphism monoid embeds all countable semigroups. Moreover, an easy
exercise shows that no nontrivial finite group embeds into End(Q), the monoid of all order-
preserving mappings of Q.

In this paper we develop a system of conditions on a Fräıssé class C under which its
limit F = Flim(C ) has the property that End(F ) embeds the endomorphism monoid of its
arbitrary substructure, with universality consequences as sketched above. After introduc-
ing the required preliminary notions and constructions, in Section 2 we state our general
method. The concrete applications are presented in Section 3. First, we review the results
of [2, 6] in the light of the presented general approach. We also derive some new conse-
quences by proving that both End(UQ) and End(Ω) contain copies of Self(ℵ0). Some open
problems are discussed as well.
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1 Preliminaries: pushouts, amalgams, amalgamated sums

For a Fräıssé class C , let C denote the class of all countable structures all of whose finitely
generated substructures belong to C . We shall be concerned with Fräıssé classes C for which
C , considered as a concrete category of first-order structures, admits certain constructions
and properties (see [20] for the basics of category theory). The most fundamental such
construction will be that of a pushout. Let X,Y,Z be objects of a category C, along with
morphisms f : X → Y and g : X → Z; such configuration

Y X
foo g // Z

is referred to as a span. The pushout of this span consists of an object P and two morphisms
i1 : Y → P and i2 : Z → P such that:

(a) the diagram

Y
i1 // P

X

f

OO

g
// Z

i2

OO

commutes,

(b) for any object Q and morphisms j1 : Y → Q and j2 : Z → Q for which the part of
following diagram involvingX,Y,Z,Q is commutative, there exists a unique morphism
u : P → Q making the whole diagram

Q

Y
i1 //

j1
11

P

u
??�������

X

f

OO

g
// Z

i2

OO j2

MM

commutative.

A standard argument shows that the pushout is unique up to an isomorphism. The diagram
from item (a) above will be called a pushout square (in C). Throughout the paper the
composition of morphisms will follow the right-to-left convention, so that if α : A→ B and
β : B → C, then their composition is βα : A → C. Thus the condition (b) asserts the
existence of a unique morphism u such that ui1 = j1 and ui2 = j2, where j1f = j2g.

Recall that an amalgam (in a concrete category) is a span (A,B,C, f, g) such that
f : B → A and g : B → C are embeddings. If A,B,C ∈ C for some class C , then we have
an amalgam in C . The amalgamation property for C , mentioned earlier, asserts that any
amalgam in C can be embedded into a structure D ∈ C , i.e. that there are embeddings
j1 : A → D and j2 : C → D such that j1f = j2g. If C is a class of finitely generated
structures with the AP (for example, a Fräıssé class), then it is a part of folklore in model
theory that the statement of the AP extends to non-finitely generated members of C in the
following sense (see e.g. [7] for a proof).
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Lemma 1.1. Let (A,B,C, f, g) be an amalgam such that B ∈ C and A,C ∈ C . Then it
can be embedded into some structure D ∈ C .

Now suppose that (A,B,C, f, g) is an amalgam in a concrete category C which admits
pushouts. Then the C-pushout P of (A,B,C, f, g) is usually called the amalgamated free
C-sum of this amalgam and denoted by A ∗B C. If, in addition, A,B,C belong to a class
C (contained in C) which has the AP, then i1, i2 must be embeddings. Indeed, by the AP
there exists a structure D ∈ C and embeddings j1 : A→ D and j2 : C → D; but then there
is a homomorphism u : A ∗B C → D such that ui1 = j1 and ui2 = j2, prompting i1, i2 to
be embeddings as well.

Here we are going to consider Fräıssé classes C satisfying the following strict amalgama-
tion property : we require that for any amalgam (A,B,C, f, g) in C there exists a structure
P ∈ C and embeddings i1 : A→ P and i2 : C → P such that

A
� � i1 // P

B
� � g //?�

f

OO

C
?�

i2

OO
(1.1)

is a pushout square in C , considered as a category. (Here we follow the convention that
‘hooked’ arrows always denote embeddings.) In other words, for any amalgam (A,B,C, f, g)
in C , their amalgamated free C -sum exists and belongs to C . The condition of the strict
AP for C can be extended in a fashion similar to the previous lemma.

Lemma 1.2. Let C be a Fräıssé class enjoying the strict AP. Then for any amalgam
(A,B,C, f, g) such that B ∈ C and A,C ∈ C there exists a P ∈ C such that (1.1) is a
pushout square in C .

Proof. First of all, consider the case when B,C ∈ C and A ∈ C . Without loss of generality
we can assume that B is a substructure of both A and C and A ∩ C = B. Let A =
{a0, a1, . . .} be an enumeration of the elements of A. Consider the sequence of finitely
generated substructures of A defined by A0 = B and An+1 = 〈An ∪ {amn}〉 for all n > 0,
where mn = min{i : ai /∈ Bn}. Clearly, Ai ∈ C for all i since A ∈ C and A =

⋃
j<ω Aj .

Now let Pn be a sequence of structures and hn : An → Pn a sequence of embeddings
defined as follows. We set P0 = C and h0 = 1B (where throughout the paper 1X denotes
the identity mapping on the set X), that is, h0 is just the inclusion map of B into C.
For n > 0, Pn+1 and hn+1 are defined by the requirement that the following diagram is a
pushout square in C :

Pn
� � // Pn+1

An
� � ⊆ //?�

hn

OO

An+1
?�

hn+1

OO

where the symbol ⊆ will always denote the corresponding inclusion map. Note that Pn+1

exists and belongs to C by the strict AP. Therefore, we have a sequence of pushout squares:

C = P0
� � // P1

� � // P2
� � // . . .

B = A0
� � ⊆ //

?�

h0

OO

A1
� � ⊆ //?�

h1

OO

A2
� � ⊆ //?�

h2

OO

. . .
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Without loss of generality we can assume that Pn is a substructure of Pn+1 for all n > 0,
so let P =

⋃
j<ω Pj . Clearly, P ∈ C as a union of a chain of structures from C . Moreover,

h0 ⊆ h1 ⊆ h2 ⊆ . . . and i1 =
⋃
j<ω hj is an embedding A →֒ P . Let i2 denote the obvious

embedding C = P0 →֒ P . Then the diagram (1.1) commutes and is easily seen to be a
pushout square in C .

The statement of the lemma is now extended to the case when C ∈ C essentially by
repeating an argument analogous to the above one.

Let us now quickly review the general synopsis of constructing the Fräıssé limit of a
Fräıssé class C , cf. Hodges [16]. Recall that a structure C is a one-point extension of its
substructure B of there is an element x ∈ C \ B such that C is generated by B ∪ {x}.
Trivially, if B is finitely generated, so is C.

For a structure A ∈ C , we first construct its extension A⋆. Let

{(Bi, Ci) : i < ω}

be the enumeration of all pairs of structures such that Bi ∈ C is a finitely generated sub-
structure of A, while Ci is a one-point extension of Bi belonging to C ; for each isomorphism
type we take one such extension. (Here we consider extensions (B,C) and (B,C ′) isomor-
phic if there is an isomorphism ι : C → C ′ such that ι|B = 1B .) Now we construct a chain
of structures Ai, i > 0, by successive amalgamations of these extensions. More precisely,
let A0 = A and assume that An has already been constructed for some n > 0 such that
A ⊆ An ∈ C . Then Bn is a substructure of A and so of An, whence (Bn, An, Cn,1Bn ,1Bn)
is an amalgam such that Bn, Cn ∈ C and An ∈ C . By Lemma 1.1, there exists a structure
An+1 ∈ C which embeds this amalgam. As we have just seen, in the case when C satisfies
the strict AP we can be more specific at this point and let An+1 = An ∗Bn Cn (the free
sum is taken with respect to C ), by Lemma 1.2. Clearly, there is no loss of generality in
assuming that An ⊆ An+1, so that A is a substructure of An+1. Finally, we let

A⋆ =
⋃

n<ω

An.

Of course, this construction can be iterated, so that we apply ℵ0 successive rounds of
amalgamation. Namely, let A(0) = A and define A(n+1) = (A(n))⋆ for all n > 0. We set

FA =
⋃

n<ω

A(n),

which is an extension of A. Any finitely generated substructure of FA must belong to some
A(m), and since A(m) ∈ C the finitely generated structure in question belongs to C ; hence,
FA ∈ C . A standard model-theoretic argument (which can be found in [7]) shows that FA
is precisely the Fräıssé limit of C .

Proposition 1.3. For any A ∈ C we have FA ∼= Flim(C ).

Now we would like to modify the above construction, so that instead of amalgamating
the extensions Ci one by one into A⋆ we do it “all at once”. To this end, suppose we have
a structure A and a family of its substructures {Bi : i ∈ I}, while {Ci : i ∈ I} is another
family of structures such that A ∩ Ci = Bi for each i ∈ I (so that Bi is a substructure of
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Ci). Furthermore, for any i, j ∈ I, i 6= j, we assume that (Ci \Bi) ∩ (Cj \Bj) = ∅. Then
the tuple

(A, (Bi, Ci)i∈I)

is called a rooted multi-amalgam. For a class C of finitely generated structures of a fixed
signature let A ∈ C be a countable structure, and assume Bi’s are finitely generated
substructures of A, Bi ∈ C , while Ci ∈ C are their finitely generated extensions (disjoint
outside A). Then we call (A, (Bi, Ci)i∈I) a rooted multi-amalgam over C , and the structure
A is its root.

A

Bi

Bj

Bk

Ci

Cj

Ck

Figure 1.1. A rooted multi-amalgam

The free C -sum of the rooted amalgam (A, (Bi, Ci)i∈I) over C is a structure D ∈ C

with the following properties:

(a) there are embeddings f : A → D and gi : Ci → D, i ∈ I, such that f |Bi
= gi|Bi

for
any i ∈ I,

(b) for any structure D′ ∈ C and any homomorphisms ϕ : A → D′, ψi : Ci → D′, i ∈ I,
such that for any i ∈ I we have ϕ|Bi

= ψi|Bi
, there exists a unique homomorphism

δ : D → D′ extending all the given homomorphisms, that is, such that we have δf = ϕ
and δgi = ψi for all i ∈ I.

Speaking just a bit more loosely, the free sum is freely generated within C by its partial
substructure A ∪

⋃
i∈I Ci. Yet another way of saying this is that the free C -sum is the

colimit of the following diagram:

A

Bi_�

⊆

��

. �

⊆

>>}}}}}}}}
Bj

_�

⊆

��

?�
⊆

OO

Bk_�

⊆

��

P0

⊆

``BBBBBBBB
. . .

Ci Cj Ck . . .

(1.2)

The free C -sum D of (A, (Bi, Ci)i∈I), if it exists, is unique up to isomorphism and generated
by f(A) ∪

⋃
i∈I gi(Ci). We denote it by

∐∗(A, (Bi, Ci)i∈I).
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Q

C0
� � ⊆ //

ψ0
11

P1

m1

??~~~~~~~~

B0
� � ⊆ //?�

⊆

OO

A
?�

⊆

OO ϕ

JJ C1
ψ1 // Q

B1
� � ⊆ //?�

⊆

OO

A

ϕ
??��������

� � ⊆ // P1

m1

OO Q

Cn
� � ⊆ //

ψn
..

Pn+1

mn+1

=={{{{{{{{

Bn
� � ⊆ //?�

⊆

OO

Pn
?�

⊆

OO mn

II

(a) (b) (c)

Figure 1.2. Three commuting diagrams

Lemma 1.4. Let C be a Fräıssé class enjoying the strict AP. Then for every rooted multi-
amalgam (A, (Bi, Ci)i∈I) over C the free C -sum

∐∗(A, (Bi, Ci)i∈I) exists and belongs to
C .

Proof. Since each Bi, Ci is finitely generated, the index set I is countable, so there is no
loss of generality if we assume that I is in fact the ordinal ω. Let us inductively define a
sequence of structures Pi, i > 0, as follows. First of all, let P0 = A. Given Pn, let Pn+1

be the (C -)pushout of the amalgam (Cn, Bn, Pn,1Bn ,1Bn) (note that Bn is a substructure
of A = P0 and so of each Pn). This pushout exists and belong to C by Lemma 1.2. Also,
there will be no loss of generality in assuming that Pn is actually a substructure of Pn+1

for each n > 0.
Let P =

⋃
j<ω Pj . Clearly, P ∈ C , since P is the union of a chain of structures from C .

Let us show that P satisfies the properties required by the free C -sum of (A, (Bi, Ci)i∈I),
i.e. that it is the colimit of the diagram (1.2) in C . Obviously, the condition (a) from the
definition of a free C -sum is satisfied, as both A and all Ci’s (in fact, the whole rooted multi-
amalgam (A, (Bi, Ci)i<ω)) are contained in P , so the corresponding inclusion mappings will
take the role of f and the gi’s.

Now let Q ∈ C and let ϕ : A → Q, ψi : Ci → Q, i > 0, be homomorphisms such
that ϕ|Bi

= ψi|Bi
for all i. By the construction of P1, there is a unique homomorphism

m1 : P1 → Q such that the diagram in Fig. 1.2 (a) commutes. The diagram in Fig. 1.2 (b)
also commutes: the triangle commutes by Fig. 1.2 (a), while the square commutes by the
initial assumption on Q. Hence, the outer square in the diagram in Fig. 1.2 (c) commutes
for n = 1, so there is a unique homomorphism m2 : P2 → Q that makes the entire diagram
commutative for n = 1. By induction, for every n > 1, there is a unique homomorphism
mn+1 : Pn+1 → Q such that the diagram in Fig. 1.2 (c) commutes. Thus we have a sequence
of homomorphisms ϕ ⊆ m1 ⊆ m2 . . ., so define m =

⋃
j<ωmj. Clearly, m : P → Q and the

diagram in Fig. 1.3 (a) commutes or all i > 0.
Let m′ : P → Q be another homomorphism that makes the diagram in Fig. 1.3 (a)

commutative for all i > 0, and let us show that m′ = m. Let m′
n = m′|Pn : Pn → Q

for n > 1, and let m′
0 = m′|A. Clearly, m′

0 = ϕ (see Fig. 1.3 (a)). Specializing to i = 0
and using the fact that C0 and A are substructures of P1, we get the diagram in Fig.
1.3 (b). Therefore, m′

1 = m1 since m1 is the unique homomorphism P1 → Q that makes
the diagram commutative. On the other hand, the diagram in Fig. 1.3 (c) commutes
(the two triangles commute because of the assumptions on m′ and the fact that m′

1 is a

7



A
ϕ //	 i

⊆

%%

Q

Bi_�

⊆

��

?�

⊆

OO

Ci

ψi

99

� � ⊆ // P

m

OO A
ϕ //
 j

⊆

%%

Q

B1_�

⊆

��

?�

⊆

OO

C1

ψ1

88

� � ⊆ // P1

m′

1

OO Q

C2
� � ⊆ //

ψ2
..

P2

m′

2

??~~~~~~~~

B2
� � ⊆ //?�

⊆

OO

P1
?�

⊆

OO m′

1

JJ

(a) (b) (c)

Figure 1.3. The mediating homomorphism

restriction of m′
2 and m′

2 is a restriction of m′). Therefore, m′
2 = m2 since m2 is the unique

homomorphism P2 → Q that makes the diagram commutative. Proceeding by induction
we obtain m′

n = mn for every n > 1, so m′ = m. This completes the proof that P is the
colimit of the diagram (1.2) in C , i.e. that P is the free C -sum of (A, (Bi, Ci)i∈I).

Example 1.5. 1. Finite simple graphs have the strict AP, since the free sum of an amal-
gam of finite graphs is basically the amalgam itself. So, the free sum of a rooted
multi-amalgam (A, (Bi, Ci)i∈I) over the class of finite simple graphs is the graph with
the vertex set A ∪

⋃
i<ω Ci in which the set of edges is just the union of edges of A

and Ci’s.

2. Finite posets have the strict AP: consequently, the free sum
∐∗(A, (Bi, Ci)i∈I) of a

rooted multi-amalgam over the class of finite posets is just the transitive closure of
the reflexive and antisymmetric relation on A∪

⋃
i<ω Ci obtained as the union of order

relations on A and Ci’s.

3. As is well-known (see [14]), if V if a variety of algebras, then
∐∗(A, (Bi, Ci)i∈I) is just

the free algebra freely generated in V by the partial algebra (A, (Bi, Ci)i∈I), which
exists if and only if the rooted multi-amalgam (A, (Bi, Ci)i∈I) can be embedded into
a member of V; essentially, for algebraic structures the ordinary and the strict AP
for the class of finitely generated members of V are equivalent (bearing in mind
Lemmata 1.1 and 1.2). Therefore, finite semilattices, finite distributive lattices and
finite Boolean algebras, respectively, have the strict AP and thus all free sums of their
rooted multi-amalgams exist in the corresponding varieties.

Given the notion of a rooted multi-amalgam and the conclusion of Lemma 1.4, we
change a bit the construction of the extension A⋆ of a structure A ∈ C . As before, let
{(Bi, Ci) : i < ω} be an arbitrary enumeration of all pairs where Bi is a finitely generated
substructure of A and Ci is a one-point extension of Bi, such that each isomorphism type
of such pairs is represented exactly once. Then, clearly, (A, (Bi, Ci)i∈I) is a rooted multi-
amalgam over C , so we redefine

A⋆ =
∐∗(A, (Bi, Ci)i∈I).

It is not difficult to show that if we iterate this construction and define

F ∗
A =

⋃

n<ω

A(n),

8



then the result is again isomorphic to the Fräıssé limit of C . In other words, we have the
following variant of the previous proposition.

Proposition 1.6. For any A ∈ C we have F ∗
A
∼= Flim(C ).

Proof. By [16, Lemma 6.1.3], since F ∗
A is countably infinite, it suffices to show that it is

weakly homogeneous (or that it realizes all one-point extensions in the terminology of [9]),
i.e. that for each finitely generated substructure B of F ∗

A and its one-point extension C ∈ C

there should be an embedding f : C → F ∗
A such that f |B = 1B .

Indeed, since B is finitely generated, there exists an index k < ω such that B ⊆ A(k).

Furthermore, if {(B
(k)
i , C

(k)
i ) : i < ω} is the enumeration of all isomorphism types of finitely

generated substructures of A(k) and its one-point extensions, yielding the components of
the rooted multi-amalgam the free sum of which is A(k+1), then for some p < ω we have

B = B
(k)
p and C ∼= C

(k)
p . By the properties of the free C -sum, the latter isomorphism gives

rise to an embedding of C into A(k+1), and thus into F ∗
A.

2 A general embedding theorem

A fundamental property of the free C -sum is that in order to extend an endomorphism ϕ
of a structure A to an endomorphism ϕ̂ of A⋆, one only needs to define homomorphisms
ψi : Ci → A⋆, i < ω, which agree with ϕ on each Bi. This underlines the importance of
the following configuration: we have a finitely generated structure B ∈ C and a surjective
homomorphism f : B → B′, where B′ ∈ C ; at the same time, we have a one-point extension
C of B. In fact, we have a span

C B?
_1Boo f // // B′

where we follow the convention that ‘double-headed’ arrows stand for surjective homomor-
phisms (recall that ‘hooked’ ones denote embeddings).

We say that a class C enjoys the one-point homomorphism extension property (1PHEP)
if for any B,B′, C ∈ C forming a configuration as above there exists an extension C ′ of
B′ and a surjective homomorphism f∗ : C → C ′ such that f∗|B = f ; in other words, the
following diagram commutes:

C
f∗ // // C ′

B
f // //?�

1B

OO

B′
?�

1B′

OO

As it easily turns out, C ′ is either a one-point extension of B′, or it coincides with B′. As
noticed in Remark 3.1 of [7], this property of a Fräıssé class C is equivalent to the homomor-
phism amalgamation property (HAP) intimately related to homomorphism-homogeneity. In
fact, by Proposition 3.8 of [7], the ultrahomogeneous structure Flim(C ) is homomorphism-
homogeneous if and only if C has the 1PHEP. Results of [7] show that 1PHEP is enjoyed
by the classes of finite simple graphs, finite posets, finite metric spaces (with rational dis-
tances), as well as by each class of finitely generated algebras with the congruence extension
property (CEP) [14] closed under taking homomorphic images, such as finite semilattices.

9



We need a stronger form of the 1PHEP for our purpose, related to a construction that
in a way represents the analogue of the amalgamated free sum for the spans considered
here. We say that a class of structures C has the strict 1PHEP if any span of the form

C B?
_ioo f // // B′

where B,B′, C ∈ C and C is a one-point extension of B, has a pushout P ∈ C with respect
to C as a category, and if

C
f ′ // P

B
f // //?�

i

OO

B′

i′

OO

is a pushout square in C , then i′ is an embedding and the homomorphism f ′ is surjective.
In other words, the pushout of the above span serves as a witness in the particular instance
of the 1PHEP for the span in question.

The following is the main result of this paper.

Theorem 2.1. Let C be a Fräıssé class satisfying the following three properties:

(i) C enjoys the strict AP.

(ii) C enjoys the strict 1PHEP.

(iii) For any B,C ∈ C such that C is a one-point extension of B, the pointwise stabilizer
of B in Aut(C) is trivial.

Then for any A ∈ C there is an embedding of End(A) into End(A⋆). Consequently, if
F = Flim(C ), then End(A) embeds into End(F ).

Proof. We start by considering an arbitrary ϕ ∈ End(A). As mentioned in the beginning

of this section, our first task here is to specify homomorphisms ψ
(ϕ)
i : Ci → A⋆, i < ω,

agreeing with ϕ on each Bi. For convenience, write ϕi = ϕ|Bi
. Then there is an index

j < ω such that ϕ(Bi) = Bj. By (ii) we have the pushout square

Ci
ξ
(ϕ)
i // // C ′

i

Bi ϕi

// //?�

⊆

OO

Bj
?�

⊆

OO

However, Bj has come with the accompanying Cj such that the extension (Bj , Cj) is of the

same isomorphism type as (Bj , C
′
i). Therefore, there is an isomorphism ι

(ϕ)
i : C ′

i → Cj such
that

Ci
ξ
(ϕ)
i // // C ′

i

ι
(ϕ)
i // Cj

Bi ϕi

// //?�

⊆

OO

Bj
O/

⊆
__@@@@@@@

?�

⊆

OO

10



Since BiBjCiC
′
i is a pushout square and Cj is isomorphic to C ′

i, it follows that BiBjCiCj

is also a pushout square. Now we define ψ
(ϕ)
i = ι

(ϕ)
i ξ

(ϕ)
i ; therefore, we have a family of

homomorphisms

(ϕ, (ψ
(ϕ)
i )i<ω)

defined on the components of the rooted multi-amalgam in C whose sum is A⋆. By the
properties of the free C -sum, this family extends to a unique endomorphism ϕ̂ of A⋆. We
claim that the assignment ϕ 7→ ϕ̂ is a monoid embedding End(A) → End(A⋆). Since
ϕ̂|A = ϕ we have that the latter assignment is injective, and since (1A, (1Ci

)i<ω) yields
1̂A = 1A⋆ , we need to prove that for any two ϕ,ϕ′ ∈ End(A) we have

ϕ̂′ϕ = ϕ̂′ϕ̂.

To this end, let ϕ′ be another endomorphism of A, Φ = ϕ′ϕ and ϕ′
i = ϕ′|Bi

, Φi = Φ|Bi

for any i < ω. We still assume that the index j is selected for a given arbitrary i such
that ϕ(Bi) = Bj . So, let φ′j(Bj) = Bk. By the definition of ϕ̂′ there exist a surjective

homomorphism ξ
(ϕ′)
j : Cj → C ′

j and an isomorphism ι
(ϕ′)
j : C ′

j → Ck, where (Bk, Ck) is the
representative of the isomorphism type of (Bk, C

′
j), such that BjBkCjCk in the following

diagram

Ci
ξ
(ϕ)
i // // C ′

i

ι
(ϕ)
i // Cj

ξ
(ϕ′)
j // // C ′

j

ι
(ϕ′)
j // Ck

Bi
φi

// //?�

⊆

OO

Bj
O/

⊆
__????????

?�

⊆

OO

φ′j

// // Bk
O/

⊆
__@@@@@@@@

?�

⊆

OO

is a pushout square. Then, by the properties of pushouts, BiBkCiCk is a pushout square.
On the other hand, we can repeat the procedure in a slightly different setting to get the
following pushout square

Ci
ξ
(ϕ′ϕ)
i // // C ′′

i

ι
(ϕ′ϕ)
i // Ck

Bi
Φi=ϕ′

jϕi

// //?�

⊆

OO

Bk
P0

⊆
``AAAAAAAA

?�

⊆

OO

Therefore, there exist homomorphisms m,n : Ck → Ck such that the diagram below com-
mutes (both inner and the outer square are pushout squares):

Ck

n
~~||

||
||

||

Ci
ψ
(ϕ′ϕ)
i // //

ψ
(ϕ′)
j ψ

(ϕ)
i ,, ,,

Ck

m
>>||||||||

Bi Φi

// //?�

⊆

OO

Bk
?�

⊆

OO

. �

⊆

LL

11



In particular,

mψ
(ϕ′ϕ)
i = ψ

(ϕ′)
j ψ

(ϕ)
i ,

n(ψ
(ϕ′)
j ψ

(ϕ)
i ) = ψ

(ϕ′ϕ)
i .

Then

nmψ
(ϕ′ϕ)
i = n(ψ

(ϕ′)
j ψ

(ϕ)
i ) = ψ

(ϕ′ϕ)
i ,

mn(ψ
(ϕ′)
j ψ

(ϕ)
i ) = mψ

(ϕ′ϕ)
i = ψ

(ϕ′)
j ψ

(ϕ)
i .

Since both ψ
(ϕ′)
j ψ

(ϕ)
i and ψ

(ϕ′ϕ)
i are surjective, it follows that mn = nm = 1Ck

, so m and n
are mutually inverse automorphisms of Ck fixing Bk pointwise. The requirement (iii) now
yields that m = n = 1Ck

, whence

ψ
(ϕ′)
j ψ

(ϕ)
i = ψ

(ϕ′ϕ)
i .

This completes the proof that ϕ̂′ϕ = ϕ̂′ϕ̂.

We say that a one-point extension C of B is uniquely generated if for any x, x′ ∈ C \B
such that 〈B ∪ {x}〉 = 〈B ∪ {x′}〉 we have x = x′. We focus our interest to Fräıssé classes
with this property, since it is always present in (but, as we shall see, not confined to) the
case when the signature of C contains no operation symbols (in particular, in all relation
structures): the unique generator is the single element in C \ B. Notice that the uniquely
generated one-point extensions instantly satisfy condition (iii) from the previous theorem,
so that it may be dropped altogether e.g. for classes of relational structures.

Corollary 2.2. Let C be a Fräıssé class satisfying the condition of uniquely generated one-
point extensions. If C satisfies the strict AP and the strict 1PHEP, then for any A ∈ C ,
End(A) embeds into End(A⋆) and so into the endomorphism monoid of Flim(C ).

3 Applications

3.1 The cases of the random graph and the generic poset

As noted in items 1 and 2 of Example 1.5, the classes of finite simple graphs and finite
posets enjoy the strict AP and thus admit free sums of their rooted multi-amalgams. Of
course, these classes have the property of uniquely generated one-point extensions, thus we
may use Corollary 2.2. Our aim in this section is to briefly reprove the main results of the
notes [2] and [6] in order to show that they are transparent instances of our general scheme.

Lemma 3.1. The class of finite simple graphs satisfies the strict 1PHEP.

Proof. Let G be a finite simple graph, f : G → G′ a surjective graph homomorphism and
H = G ∪ {v} a one-point extension of G (for convenience, we assume that the embedding
i from the definition of the strict 1PHEP is an inclusion map). Let NG(v) ⊆ V (G) be the
set of all vertices adjacent to v. Define H ′ to be the graph obtained from G′ by adjoining
a new vertex v′ which is adjacent to all vertices from {f(w) : w ∈ NG(v)} and no other

12



vertex from V (G′). Furthermore, let f ′ be the homomorphism extending f by sending v

to v′.
We claim that H ′, along with 1G′ and f ′, is a pushout for the span (G,G′,H, f,1G).

Indeed, let Γ be a graph such that there are homomorphisms g : G′ → Γ and h : H → Γ
with gf = h|G. Now there is only one function u : V (H ′) → V (Γ) such that u|V (G′) = g and
uf ′ = h: it is defined by u(x) = g(x) for x ∈ V (G′) and u(v′) = h(v). Since g is a graph
homomorphism, and since for any w ∈ NG(v) we have that u(f ′(w)) = uf(w) = h(w)
is adjacent to h(v) = u(v′) (as h is a homomorphism, too), it follows that u is a graph
homomorphism as well. Since f ′ is surjective, the lemma is proved.

Corollary 3.2 ([2]). Self(ℵ0) (and so any countable semigroup) embeds into End(R), the
endomorphism monoid of the countably infinite random graph.

Proof. In Corollary 2.2 choose A to be the countably infinite graph with no edges, since
then End(A) ∼= Self(ℵ0).

Lemma 3.3. The class of finite posets satisfies the strict 1PHEP.

Proof. Let P be a finite poset, f : P → P ′ a surjective poset homomorphism (order-
preserving map) and Q = P ∪ {x} a one-point extension of P . In order to define the poset
Q, let

L = {p ∈ P : p < x} and U = {p ∈ P : x < p}.

Clearly, we have ℓ < u for any ℓ ∈ L and u ∈ U ; therefore we have that f(ℓ) 6 f(u) holds in
P ′. We distinguish between two cases. If f(L)∩f(U) = ∅, then we define Q to be the poset
obtained from P ′ by inserting a new element x′ ‘between’ the down-set f(L) and up-set
f(U): we have y < x′ if and only if y ∈ f(L) and x′ < y if and only if y ∈ f(U) (the other
elements of P ′ are set to be incomparable to x′). Then, the homomorphism f ′ : Q→ Q′ is
defined as the extension of f obtained by sending x 7→ x′. However, if f(L) ∩ f(U) 6= ∅,
then for any y ∈ f(L) ∩ f(U), ℓ′ ∈ f(L) and u′ ∈ f(U) we have ℓ′ 6 y 6 u′, implying that
such y must be unique: we have f(L) ∩ f(U) = {y0} for some y0 ∈ P ′. Then we define
Q′ = P ′ and f ′ : Q→ P ′ is an extension of f determined by f(x) = y0. In both cases f ′ is
surjective.

We claim that Q′ is the pushout of the span (P,P ′Q, f,1P ), together with the poset
homomorphisms (order-preserving maps) 1P ′ and f ′; that is, we claim that there is a unique
order-preserving map m : Q′ → X making the following diagram commutative:

X

Q
f ′ // //

h
11

Q′

m

>>~~~~~~~

P
f // //?�

⊆

OO

P ′
?�

⊆

OO g

MM

where X is a poset, while g : P ′ → X and h : Q → X are order-preserving functions such
that gf = h|P . As in the case of graphs, there is a single function m : Q′ → X that makes
the above diagram commutative, and it is defined by m(y) = g(y) for all y ∈ P ′ and, if
x′ exists, m(x′) = h(x). Thus it remains to verify that m is order-preserving on Q′. This
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is clear if Q′ = P ′ since then m = g; hence, we may assume that f(L) ∩ f(U) = ∅ and
Q′ = P ′∪{x′}. If y ∈ P ′ is such that y < x′, then y ∈ f(L), so m(y) = g(y) = gf(ℓ) = h(ℓ)
for some ℓ ∈ L. Since ℓ < x and h is order-preserving on Q, we have m(y) = h(ℓ) 6 h(x) =
m(x′). The conclusion that x′ < z for z ∈ P ′ implies m(xx′) 6 m(z) follows in a dual
fashion. Finally, m preserves the order on the remaining pairs of distinct elements of Q′ as
it agrees with g on such pairs; therefore, m is a poset homomorphism.

Corollary 3.4 ([6]). Self(ℵ0) (and so any countable semigroup) embeds into End(P), the
endomorphism monoid of the generic poset.

Proof. In Corollary 2.2 choose A to be the countably infinite anti-chain.

Actually, in [6] strict endomorphisms of P were used in order to obtain a more specific
version of the above result, thus avoiding the case when Q′ = P ′ in the above lemma.
Still, even the strict endomorphisms were sufficient to accomplish the desired embedding
of Self(ℵ0) into End(P).

3.2 The case of the (rational) Urysohn space

The traditional way to work with metric spaces is to consider them as pairs (X, dX ) con-
sisting of a non-empty set of points X and a distance function (a metric) dX : X×X → R+

0

satisfying the triangle inequality. However, there is an easy trick to convert them into first-
order relational structures by defining, for each α ∈ R, α > 0, a binary relation Rα on X so
that (x, y) ∈ Rα if and only if d(x, y) < α. Furthermore, we may restrict the set of possible
distances between points to some countable subset of R+

0 , thus obtaining structures over
a countable signature; for example, the set Q+

0 of non-negative rationals will serve this
purpose.

In a posthumous paper [24] (probably the last contribution before his utterly tragic
and untimely death), P. S. Urysohn showed that up to isometry (a distance preserving
bijection) there is a unique complete separable metric space U which is ultrahomogeneous
and universal, i.e. which embeds all separable metric spaces. Today, U is called the Urysohn
space (see, e.g., [17, 18, 22, 26, 27] for further background). There is one construction of U
which will be of a particular interest for us. Namely, let C be the class of all finite metric
spaces with rational distances; it is easily verified that C is a Fräıssé class. Therefore, this
class has a Fräıssé limit, which is denoted by UQ and called the rational Urysohn space.
This space is not complete, but its completion UQ has all the defining properties of the
Urysohn space, so UQ must be isometric to U by Urysohn’s result.

It was proved in [7, Lemma 3.5] that the class of finite metric spaces has the 1PHEP—
and the same is true if we confine ourselves only to spaces with rational distances—implying
that both UQ and U are homomorphism-homogeneous. Here the notion of a homomorphism
of metric spaces transpires from its first-order-structure representation: for metric spaces
X,Y , a function f : X → Y is a homomorphism if it is non-expanding, that is,

dY (f(x1), f(x2)) 6 dX(x1, x2)

holds for all x1, x2 ∈ X. In other words, we have the 1-Lipschitz mappings.
Here we prove a somewhat stronger result.
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Lemma 3.5. Let Σ be an additive submonoid of R+
0 . The class MΣ of all finite metric

spaces with distances in Σ enjoys the strict 1PHEP.

Proof. Let X be a finite metric space and Y = X ∪ {x∗} its one-point extension. Let
f : X → X ′ be a surjective non-expanding map. Let P = X ′ ∪ {y∗} where y∗ 6∈ X ′ is a
new point. Let us define a metric on P as follows: for x, x′ ∈ X ′ let dP (x, x

′) = dX′(x, x′),
while

dP (y
∗, x) = min{dY (x

∗, w) + dX′(f(w), x) : w ∈ X}.

It is easy to verify that dP is indeed a metric on P . Note that since all the distances in X ′

and Y are from Σ, so are all distances in P . The mapping g : Y → P defined by g(x) = f(x)
for x ∈ X and g(x∗) = y∗ is clearly a surjective homomorphism and the diagram

Y
g // // P

X
f // //?�

⊆

OO

X ′
?�

⊆

OO

commutes. Let us show that this is a pushout square (in MΣ, but actually it will be a
pushout square in the category of all metric spaces). Let Z be a finite metric space (with
distances from Σ), and let µ : Y → Z and ν : X ′ → Z be homomorphisms such that
µ|X = νf :

Z

Y
g // //

µ
00

P

u
>>}}}}}}}}

X
f // //?�

⊆

OO

X ′
?�

⊆

OO ν

MM

Then there exists exactly one mapping u : P → Z such that the diagram above commutes,
namely, the one defined by:

u(x) = ν(x), (x ∈ X ′),

u(y∗) = µ(x∗).

Let us show that u is non-expanding, i.e. a homomorphism of metric spaces. Let x, x′ ∈ X ′.
Then dZ(u(x), u(x

′)) = dZ(ν(x), ν(x
′)) 6 dX′(x, x′) = dP (x, x

′), since ν is a homomor-
phism. To show dZ(u(x), u(y

∗)) 6 dP (x, y
∗) note that there exists a w ∈ X such that

dP (y
∗, x) = dY (x

∗, w) + dX′(f(w), x). Hence,

dP (y
∗, x) = dY (x

∗, w) + dX′(f(w), x)

= dZ(µ(x
∗), µ(w)) + dZ(ν(f(w)), ν(x)) [µ and ν are hom’s]

= dZ(µ(x
∗), µ(w)) + dZ(µ(w), ν(x)) [νf = µ|X ]

6 dZ(µ(x
∗), ν(x)) [triangle inequality]

= dZ(u(y
∗), u(x)), [definition of u]

as required.
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Metric spaces do not admit coproducts—for example, the existence of a hypothetical
coproduct of a metric space X and a trivial space would result in a one-point extension of X
by a ‘farthest’ possible point, whereas the values appearing in the vector of distances from
the new point to the old ones are obviously not bounded. However, the free amalgamated
sum of an amalgam of two spaces exists provided their nonempty intersection is finite.

Lemma 3.6. For any additive submonoid Σ of R+
0 , the class MΣ has the strict AP.

Proof. Let (X,Y,Z,1Y ,1Y ) be an amalgam of finite matric spaces with distances from Σ,
so that Y = X ∩Z. We define a metric space M on X ∪Z with distances from Σ and prove
that M has the properties required by the definition of the free amalgamated sum X ∗Y Z
with respect to MΣ. If either u, v ∈ X, or u, v ∈ Z, then the distance dM (u, v) coincides
with the distance in the corresponding metric space. If, however, x ∈ X and z ∈ Z, then
we define

dM (x, z) = min{dX(x, y) + dZ(y, z) : y ∈ Y }.

Notice that the indicated minimum exists because Y is finite. A straightforward verification
shows that all triangle inequalities are satisfied, so that we indeed obtain a metric space.
Moreover, M ∈ MΣ.

Assume now that for a (countable) metric space M ′ (with distances from Σ) we have
given metric space homomorphisms f : X → M ′ and g : Z → M ′ such that f and g agree
on Y . We have that the binary relation h = f ∪ g is a function, and we know that it is
non-expanding on pairs of points that both belong either to X, or to Z. Now let x ∈ X \Z
and z ∈ Z \X. Then dM (x, z) = dX(x, y0) + dZ(y0, z) for a particular y0 ∈ Y , so

dM ′(h(x), h(z)) = dM ′(f(x), g(z))

6 dM ′(f(x), f(y0)) + dM ′(g(y0), g(z))

6 dX(x, y0) + dY (y0, z) = dM (x, z),

bearing in mind that f(y0) = g(y0) and that f and g are homomorphisms (i.e. non-
expanding functions). Therefore, h : M → M ′ is a homomorphism of metric spaces, and
we are done, since h is obviously the unique function extending both f and g to M .

We can now turn to the main results of this section.

Corollary 3.7. Self(ℵ0) (and so any countable semigroup) embeds into End(UQ).

Proof. First of all, note that by Lemmata 1.4 and 3.6 if all the distances in X and Zi,
i ∈ I, are rational, so are the distances in

∐∗(X, (Yi, Zi)i∈I). Now apply Corollary 2.2
while selecting A to be the countably infinite metric space in which the distance between
any two different points is 1 (the unit ℵ0-simplex) and noticing that any self-map of A is a
metric space endomorphism of A.

Proposition 3.8. End(UQ) embeds into End(U), so the assertion of Corollary 3.7 holds
for U as well.

Proof. Any homomorphism of metric spaces is a uniformly continuous mapping—recall
that we are concerned with particular Lipschitz functions. Therefore, any homomorphism
f : X → Y of metric spaces, where Y is complete, extends uniquely to the completion X of

16



X yielding a (uniformly continuous) function f : X → Y . Thus if x, y ∈ X and if {xn}n<ω
and {yn}n<ω are any Cauchy sequences converging to x and y, respectively, then

d(f(x), f(y)) = d(f( lim
n→∞

xn), f( lim
n→∞

yn))

= d( lim
n→∞

f(xn), lim
n→∞

f(yn))

= lim
n→∞

d(f(xn), f(yn))

6 lim
n→∞

d(xn, yn) = d(x, y),

implying f to be a homomorphism.
So, for any f, g ∈ End(UQ) we have f , g ∈ End(U), and both gf and gf are endomor-

phisms (thus uniformly continuous functions) of U extending gf . Since U = UQ, we must
have gf = gf , and the proposition follows.

Remark 3.9. Since metric space endomorphisms are just a particular type of Lipschitz
functions, the monoid of all Lipschitz functions of both UQ and U also embeds Self(ℵ0).

Problem 3.10. Is every topological semigroup with a countable base isomorphic to a topo-
logical subsemigroup of End(U) ?

3.3 The case of the countable universal ultrahomogeneous semilattice

In previous applications of our general results we confined ourselves solely to relational
structures; here we consider an example in algebraic ones. However, there is a sense in
which semilattices are a unique type of algebra with respect to the method used in this
paper (in particular, in Corollary 2.2), making them similar to relational structures.

Lemma 3.11. Any semilattice (S,∧) which is a one-point extension of its subsemilattice
T is uniquely generated over T .

Proof. Assume S = 〈T ∪ {x1}〉 = 〈T ∪ {x2}〉 for some x1, x2 ∈ S \ T . Bearing in mind that
∧ is a commutative and idempotent operation, there exist t, t′ ∈ T such that x2 = x1 ∧ t
and x1 = x2 ∧ t

′. Hence, x1 ∧ t
′ = x1 and thus

x1 = x1 ∧ t ∧ t
′ = x1 ∧ t = x2,

as wanted.

This behavior is actually quite untypical for algebraic structures: in general, a one-
point extension of an algebra can have many relative generators. Basically, the whole
Galois theory is built around the simple idea of subfield-fixing automorphisms of a given
field. Similarly, any n × n regular diagonal matrix having 1 as all but one of its diagonal
entries gives rise to a nonidentical automorphism of an n-dimensional vector space fixing
pointwise one of its (n− 1)-dimensional subspaces.

Recall (e.g. from [14]) that an algebra A has the congruence extension property (CEP)
if for any subalgebra B of A and any congruence ρ of B there exists a congruence θ of A,
whose restriction to B is precisely ρ, that is, θ ∩ (B × B) = ρ. Semilattices represent a
classical example of algebras with the CEP, so the following lemma applies in particular to
them.
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Lemma 3.12. Let A be an algebra with the CEP, and let B be a subalgebra of A. Then for
every congruence ρ of B the congruence θ of A generated by ρ (i.e. the smallest θ ∈ ConA
containing ρ) has the property that θ ∩ (B ×B) = ρ.

Proof. Since A has the CEP, there exists a congruence θ′ of A such that θ′ ∩ (B ×B) = ρ;
but then ρ ⊆ θ′, implying θ ⊆ θ′. Therefore,

ρ ⊆ θ ∩ (B ×B) ⊆ θ′ ∩ (B ×B) = ρ,

thus θ ∩ (B ×B) = ρ holds as well.

The next assertion is a stronger form of Lemma 3.6 from [7].

Lemma 3.13. Let C be a class of finitely generated algebras with the CEP closed for taking
homomorphic images. Then C (and, in particular, the class of all finite semilattices) has
the strict 1PHEP.

Proof. Let A,B,B′ ∈ C are such that f : B → B′ is a surjective homomorphism and B is
a subalgebra of A (the restriction that A is a one-point extension of B will turn out to be
immaterial). Then ker f is a congruence of B. By the CEP and the previous lemma, if θ is
the congruence of A generated by the relation ker f , then θ ∩ (B × B) = ker f . Therefore,
B′ ∼= B/ ker f embeds into A/θ by the (well-defined) mapping ι : f(b) 7→ b/θ, b ∈ B. On
the other hand, the natural homomorphism νθ : A→ A/θ is obviously surjective. Summing
up, the following diagram commutes:

A
νθ // // A/θ

B
f // //?�

⊆

OO

B′
?�

ι

OO

By the given conditions, A/θ ∈ C . We claim that the above diagram is a pushout square
in C .

To this end, assume that C ∈ C , while g : B′ → C and f : A → C are two homomor-
phisms such that gf = h|B :

C

A
νθ // //

h
11

A/θ

u

==||||||||

B
f // //?�

⊆

OO

B′
?�

ι

OO g

LL

Clearly, a function u : A/θ → C makes the above diagram commutative if and only if it
satisfies the condition u(a/θ) = h(a) for all a ∈ A. It is immediate that there is at most
one such function; we argue that such function exists, i.e. that the considered condition
consistently defines a function u. For this it suffices to show that θ ⊆ ker h. However, note
that ker f ⊆ ker gf ; thus if η is the smallest congruence of A containing the relation ker gf ,
then θ ⊆ η. But gf = h|B , which implies ker gf = ker h ∩ (B × B) and so ker gf ⊆ kerh.
Since kerh is a congruence of A it follows that η ⊆ kerh, yielding the desired conclusion
θ ⊆ ker h. Finally, it is routinely verified that the mapping u is a homomorphism, which
completes the proof.
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Remark 3.14. We have already recorded in item 3 of Example 1.5 that the Fräıssé class
of finite semilattices has the strict AP. It is possible, however, to be more specific than
this. Namely, it is not difficult to prove the following handy representation: we can take∐∗(A, (Bi, Ci)i∈I) to consist of all finite subsets X of A∪

⋃
i<ω Ci such that |X∩A| 6 1 and

|X∩Ci| 6 1 for all i < ω. Furthermore, X∧Y is defined so that for C ∈ {A}∪{Ci : i < ω}
if any of X ∩ C, Y ∩ C is empty, then (X ∧ Y ) ∩ C = (X ∪ Y ) ∩ C, while otherwise if
X ∩C = {x} and Y ∩ C = {y} then (X ∧ Y ) ∩ C = {x ∧ y}.

By the following main result of this section we supply an affirmative solution to Problem
4.1 from our recent paper [8].

Corollary 3.15. Self(ℵ0) (and so any countable semigroup) embeds into End(Ω), the en-
domorphism monoid of the countable universal ultrahomogeneous semilattice.

Proof. In Corollary 2.2 (which applies because of Lemma 3.11), choose the initial semilattice
A to be F (ℵ0) the free semilattice on a countably infinite set of generators. Namely, any
self-map of the free generating set of F (ℵ0) induces an endomorphism of F (ℵ0). Such
endomorphisms form a submonoid of End(F (ℵ0)) that is isomorphic to Self(ℵ0).

Previously it was only known that Self(ℵ0) is a homomorphic image of a subsemigroup
of End(Ω) [7, Corollary 4.5] and that End(Ω) embeds all finite semigorups [8, Corollary
4.4]. We refer to [1, 8, 9, 10] for further properties of Ω, its automorphism group and its
endomorphism monoid.

Problem 3.16. Is it possible to embed Self(ℵ0) into End(D) and End(A), the endomor-
phism monoids of the countable universal ultrahomogeneous distributive lattice [11] and the
countable atomless Boolean algebra, respectively?

The main obstacle here is the lack of the property of uniquely generated one-point
extensions, i.e the existence of nontrivial automorphisms of a one-point extension fixing
pointwise the initial structure. Of course, other methods might be developed for approach-
ing this problem; just as a very simple example, let us mention that Self(ℵ0) embeds into
the endomorphism monoid of the Fräıssé limit of the class of all finite-dimensional vector
spaces over a given field F. This is because the limit in question is the ℵ0-dimensional
vector space over F, which is at the same time a free algebra in the variety of vector spaces
over F, so any self-map of its basis extends uniquely to a linear map of this space into itself.
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