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1. Introduction

The aim of this paper is to analyze the strategies of firms in an oligopoly
market when the firms have the opportunity to make an irreversible investment. The
revenue of each firm is uncertain depending on the future condition of the market.
By using the option pricing theory, we calculate the opportunity values of
the firms and study their strategic entry decisions under the game-theoretic real
options framework.

When a firm has the possibility to make an irreversible investment with future
uncertainty, there is an option to delay. By analogy with a financial call option, it is
optimal to delay exercising the option in the hope of gaining a higherfpaythe
futured. Using this insight, the real options approach improves the traditional net-
present-value (NPV) method by incorporating the flexibility on decision making
(see, e.g., McDonald and Siegel, 1986). An excellent overview of the real options
approach is found in Dixit and Pindyck (1994) and Trigeorgis (1996).

1) See, e.g., Kijima (2002) for details of the option pricing theory.
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Recently, the basic model has been extended in various?waymong them,
Huisman (2001), Pawlina and Kort (2001) and Weeds (2002) considered the game-
theoretic real options approach to incorporate strategic interactions between firms
in a duopoly market. When related options are held by two firms with a first-mover
advantage, each firm’s ability to delay is undermined by the fear of pre-emption. In
particular, under a winner-takes-all situation, the option will be exercised as soon as
the paydf from doing so becomes marginally positive, and the traditional NPV rule
resurfaces as the appropriate method of investment decision. On the other hand, if
the market is not under such an extreme, the value of the option to delay should be
evaluated under an environment with well-specified strategic interactions.

In the game-theoretic real options framework, assuming that the underlying
market uncertainty follows a geometric Brownian motion, it is shown that there
are three types of equilibria (i.e. pre-emptive leader—follower equilibria, joint-
investment equilibria, and their mixture) in the case of strategic substitutibime
presence of strategic interactions may push a firm to invest earlier and, as for the
basic model, the firm value as well as the optimal trigger point for the investment
decision increases as the market uncertainty increases. These results have been ex-
tended to the case offtlision processes with general volatility structure by Kijima
and Shibata (2002).

In this paper, we extend the results in the duopoly case to an oligopoly market.
That is, we consider strategic entry decisions in an oligopoly market with symmet-
ric firms when the underlying state variable follows a geometric Brownian motion.
Using the standard arguments, the value functions of each firm for various situa-
tions are obtained, i.e. when it is the leader or the follower. It is shown that the
value functions are increasing and convex (concave, respectively) in the initial state
variable for the follower (the leader). Based on these results and invoking clas-
sic results in game theory, we show that there always exists a critical point for each
firm to pre-empt. In other words, even in the oligopoly case, there are three types of
equilibria, pre-emptive leader—follower equilibria, joint-investment equilibria, and
their mixture. The critical point is decreasing in the number of active firms in the
market and always smaller than the optimal trigger point in the ordinary real op-
tions criterion. Nevertheless, the critical point for pre-emption can never be smaller
than the traditional NPV criterion.

Even in a highly competitive market, the value of the option to delay exists and
there is a possibility that many (but may not be all) firms start investing simulta-

2) Other extensions include Alvarez and Stenbacka (2001) and Bernardo and Chowdhry (2002).
Bernardo and Chowdhry (2002) considerediacomplete model where a firm cannot observe the
state variable completely. Alvarez and Stenbacka (2001) considered a multi-stage technology project in
which investment opportunities are available at each stage of the project. The multi-stage real option is
similar to acompound option studied by Geske (1979) in the finance literature.

3) This result has apparent economic implications in the context of industrial organization theory. That
is, competition can introduce a strategic benefit to investment against the incumbent monopolist's claim
that the introduction of competition will reduce future profits and delay investments. See, e.g., Nielsen
(2002) for details.



Real Options in an Oligopoly Market 49

neously (i.e. a mixture of joint and sequential investments) at the critical point for
pre-emption. As a result, the investment decision may have been too early to pro-
duce a positive profit. This may explain why many Internet companies entered the
market even though they have not yet been profifable

When the number of potential firms in a market becomes infinity, Grenadier
(2002) claimed that the critical point for investment decision converges to the
traditional NPV criterion (i.e. simultaneous investment). The claim is justified,
because there is no need to wait in such a competitive market when th& payo
from exercising the option becomes marginally positive. Although Grenadier (2002)
considered a dierent model from ours, this paper also shows that there only exists
a joint-investment equilibrium with probability one. However, the critical point can
be diferent from the NPV criterion, and the investment decision may be too early
to produce a positive profit.

This paper is organized as follows. In the next section, we describe the model
and provide the information necessary for what follows. Section 3 calculates the
firm values in the case of sequential investments. It is shown that optimal thresh-
old for the ki"-to-invest is decreasing ik and increasing in the market uncer-
tainty. Based on the results, we then consider equilibria in the oligopoly market
in Section 4. We shall show that there exist not only joint-investment equilibria
but also sequential-investment equilibria (pre-emptive leader—follower equilibria)
in our oligopoly market. Section 5 considers a huge market including the case
of infinitely many firms, and Section 6 concludes this paper. Proofs are given in
Appendix.

2. The Setup

Considem € N firms in a market with the opportunity to make an irreversible
investment. All firms can be active on the market to produce a single product
and compete with each other to maximize their profits. The revenue of each firm
is uncertain depending on the future condition of the market. We describe this
uncertainty by state variabl¥ = (Xwr, Which evolves in time according to a
geometric Brownian motion given by

% =udt+odz, t>0, (1)
t

where &)z, denotes the standard Brownian motion, and where the mean growth
rateu as well as the volatilityr is a positive constant. As usual, the mean growth
rate is assumed to be strictly less than the risk-neutral discount fadtery < r.
Also, it is assumed throughout that the firms are risk neutral.

Suppose thdk, k < n, firms are active on the market. The revenue flow of each
active firm is given byp(X) = X, nx € Ry, whenX; = x. The constantgy are

4 Schwartz and Moon (2001) developed &efient model to explain this phenomenon without consid-
ering strategic interactions.
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non-increasing irk, k = 1,2,...,n, meaning that an investment is less profitable
when more firms have invested. This situation is callstfategic substitution and

often observed in a market consisting of competing f'mEhe sunk cost for each

firm to adopt the investment opportunity is assumed to be a constant and equal to
| € R,. Thatis, all firms on the market have the same technology (symmetric
firms).

Each firm seeks an optimal adoption strategy to the investment opportunity.
However, since revenue is uncertain, the adoption time is a random variable. At
each timg, the firm must decide whether it should adopt the investment opportunity
or not based on the informatiof available at time®. Hence, the adoption time
is a stopping time.

The adoption strategy for each firm is not only a stopping time, but also it should
take the non-cooperative competing firms’ strategies into account. In other words,
we seek an optimal adoption strategy to maximize the value function of each firm
within the non-cooperative game-theoretic framework. It should be noted that the
optimal adoption time may be infinity; in this case, the optimal strategy is never to
invest.

3. Sequential Investments

Suppose that the constanigare strictly decreasing ik for the sake of sim-
plicity. Then, there always exists a first-mover advantage and each firm’s ability to
delay is undermined by the fear of pre-emption. In this section, we calculate the
value function of each firm when the firms make investments sequentially in time.

Let 7; denote the adoption time of firj) and letx; be the associated trigger
point (threshold), i.ex; = inf{t € R, : X = X;}. Associated with the collection
of the adoption (stopping) times are the ordered sequence of randomtimnes
T) < -+ < T(y. Thatis, by definitionz) = min{ry, 72,..., n}, and

T(k+1)=min{Tj . J e{l,...,n}, Tj >T(k)}, k=12,....,.n-1

In particular,r@y = maxri, 72, .., ™). Similarly, we denote the ordered sequence
of the thresholds by, k=1,2,...,n.

Dynamic games are usually solved backwards. Hence, we start with our analy-
ses by assuming that ¢ 1) firms have already invested.

3.1. The Value Function for the L ast-to-I nvest

Suppose that the current timetis R, and assume thét-1) < t}, i.e. there
remains only one firm that has not invested before tima this monopoly situa-

%) The case of strategic compliment can be studied similarly. However, this case yields no strategic
interaction and we omit the results.

6 Throughout the paper, we fix a filtered probability spate%, (Fi)ter, . P), where the filtration
(Fi)ier, is generated by the state varialde The filtration represents the resolution over time of the
information commonly available to the firms. It is assumed that= {Q, 0}, i.e., no information is
available at time 0.
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tion, the value function of the firm is given by

V() (X) = ess supE* [ f eV Xds — e Y]

T €Tt ()

ﬁ] , @

where77 is the set of stopping times not less thaand wheré&*[-|#;] denotes the
timet conditional expectation operator given tb@t= x. For notational simplicity,
we shall writeE*[-] for the time 0 conditional expectation operai-|#o]. Also,
the optimal adoption threshold and time are denotedgg)andrzn), respectively,
i.e.,rz‘n) =inf{te R, : X = xz‘n)}.

Using the strong Markov property and the time homogeneity of the geometric
Brownian motionX, the value function (2) is rewritten as

Vin(x) = BX [0 | B0 [ f e”nnxtdt}. (3)
0

The next proposition can be shown by solving the value-matching condition.
The proof is given in the appendix.

Proposition 3.1. The optimal threshold x’("n) to adopt the investment opportunity
isgiven by
B r-u
o1 l. 4)
The trigger point Xn) is strictly increasing in volatility o-. The Laplace transform
of the optimal adoption time ) isgiven by

S
—I7} _ X %
EX [e r <n>] = [x_] , X < Xy
()
Here, S isthe positive root of the quadratic equation Q(y) = 0, where
1 1
Qly) = 50'2)’2 + (ﬂ - EU'Z)Y— r.

Accordingly, the optimal adoption timr—%fn) is finite with probability one. The
value function (3) is obtained as

Xy =

2 ot
Y | \r=g ™= K%
V(n)(X) = () H (5)
Iy <X
- —MX , Xy < X
Note that, from (4),
LI I
r—u X -1
It follows that the value function is alternatively written as
X / I
Viny(X) = ( — ) —, Xy > X.
Xm) B-1 o
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3.2. The Value Function for the Second L ast-to-1 nvest

Suppose thatrp-» < t}, i.e. there remain two firms that have not invested
before timet. In this duopoly situation, the value function of the leader among the
two firms is given by

?i]

o) . o0
EX l f e 1 Xds— e oY) 4 f eV Xds
T, T,
o)

=) ®
ﬁ]
00
= EX [e_rT(n—l)]]EX(n—l) [f e"snn_lxsdx}
0

EX I f eV X ds— e o) /ﬁ}
—EX [e‘”fn)] EXv [ f € "S(mn_1 — ) XsdX|,
0

V(n—l)(x)

T-1)
—-E* [ f eV (-1 — 1) Xsds

wherer;, ,, denotes the optimal adoption time for the leader. The optimal adoption
time 77, for the follower has been obtained above. It is well known (see, e.g.,
Huisman, 2001) that, as in (4), the optimal threshcﬂgl) to adopt the investment
opportunity is given by
. B rT-u
X(nil) B- 1 TTn-1
Sincem,_1 > m,, we havexZ‘n 1 < X;,. The value function is obtained as

(M)ﬂ [R5

Vin-1)(X) = 0 _[ Jﬁ =M e (6)

1 >0.

Xmy> Xn-1) < X< X
Xy

r_#x ) <

Note here that, whed; > xfn), there is no need to wait for the investment and,
hence, a simultaneous investment occurs to the both firms.

3.3. The Value Function for the General Case

Finally, we consider the general case. Supposeithat) < t}, i.e. there are

k firms that have not invested before tirheln this oligopoly situation, the value
function of the leader among tlkdirms is given by

Tfk+1) 9 r(zh )

V(k)(X) = EX f e (s mXsds — e T

W
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n-1 T* 00
(j+1)
+E| > f ’ e-f<*t>njxsds+ﬁ +EX f e-f(*%nxsds‘?—;}
j=k+1 v 7() o)
= EX f e Xds— e w Y| |7
W

—EX

n 00
Z f e (mj_y - ﬂj)xsds‘ft} ,
=k 1 VT

HO)

wherer(;, denotes the optimal adoption time for theh investor withz, ,,
co. Using the strong Markov property and the time homogeneity of the geometric
Brownian motionX, we obtain that

Ex[ e (=Y (f e’sﬂkX +Sds )
0
- E[ e f e-'S(fr,-_l—n,->xTa>+sd$|ﬁ]

j=k+1
EX [e‘”fw]EX?k) [ f e S Xds — |}
0

n

_ Z EX [e*”?J)]EXZn [f e_rs(ﬂjl—ﬂj)XSdS].
0

j=k+1

Vi (%) ﬁ}

The next result can be proved similarly to Proposition 3.1.

Proposition 3.2. The optimal threshold x X 10 adopt the investment opportunity
isgiven by
. _ B T-u
X = B - 5—1 I —1. (7)
The trigger point X is gtrictly increasing in k and in volatility . The Laplace
transform of the optimal adoption time T isgiven by

EX [e_”Zk)] = (Xi(

®)

B
) , X < X

In the standard real options analyses, i.e. if the market is monopoly, the thresh-
old for making investment decision increases as the volatility increases. Proposition
3.2 shows that this result also holds even in our oligopoly market.

The key issue in Proposition 3.2 is that the optimal threslx%deepends only
onng, not on the other revenue structures. Also, from (7), we have

I
m)(x —l—ﬁTl, k—l,2,...,n. (8)
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It follows from Proposition 3.2 that the value function is obtained as

B n
X I ( ] (7TJ 1—7TJ)
—| 777~ 2, —Xj)» X< X
(X(k)) B-1 Zh\X)

n

5
K X | (mjoa—m;)
X x—1- (—) —X <X<X,
n }l - - o Xw (k)"
r—u iSa1 WX r-u

If X > X4, the leader should invest immediately to leave the situation Vit
firms being not invested before tinhe

Remark 3.1. In the traditional NPV approach, the trigger point to invest is given
by

N _I—H C
X(j)_ﬂ—jl’ j=12,...,n (10)
SinceB > 1 in our setting, it follows from (7) that?]!) < X forall j=1,2,...,n

Hence, the investment timing in the real options approach is always delayed com-
pared to the NPV criterion.

4. Equilibria

In this section, we focus on Markov perfect equilibria so that the outcome of the
non-cooperative game takes one of two forms, a pre-emptive leader—follower out-
come or a joint-investment outcome, depending on parameter VYallieshis end,
we first discuss the properties of the value functions under the strategic interactions.

LetV, k)(x) (V(T)(x), respectively) be the value function for a firm when the firm

has not (has) invested for th&-to-invest opportunity.
4.1. The Duopoly Case

As before, we start with our analyses by assuming that @) firms have
already invested. Suppose that two firmend j are under strategic interaction,
and assume that firmdecides to invest immediately. Then, from (6), the value
function for firmi (the leader) is given by

B
X | n-1—7n
X=1-]—| —/—X,, X< X, 11

(in)) r—u ® K -

Viry(®) = iy

Note that the value functlor\/n 1)(X) satisfies the value-matching condition
Vin-1(Xw) = Vi ). 1-€-

Vin-1 () = Mx(n) l. 12)

7) See, e.g., Fudenberg and Tirole (1985) for details.
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On the other hand, from (5), the value function for fijrfthe follower) is given
by

Vi
X b
VO (x):[T] {—”x* —I}, X< X (13)
Q) Xy) \T—p @ Q)

Note that the value functiol?, (x) satisfies not only the value-matching con-
dition but also the smooth-pasting condititf@; (x.) = VI¥(x: ), because it is

. . . ) LX) (n) (n)/?

determined so as to optimize the trigger paiqt. Here, the prime denotes the
derivative. It follows that the value functid&fﬁ])(x) satisfies

s« Tt s« , « Tn
Vo) == Vo) = (14)

It is readily seen that the value functi 1)(X) is strictly concave inx e
(0,x ) while the value functlor\/0 (x) is strlctly convex inx € (0, Xn) ) since
B > 1 These value functions are depicted in Figure 1. Here, the straight line
represents the value functisff (x), x > 0.

SlnceV (- 1)(x) is strictly concave an&'&)(x) is strictly convex inx € (O, x(n))
there exists a unique roozf 1) € o, (n)) for the equationv - 1)(X) (n)(x)
The existence follows from the conditions (12) and (14). Alx‘@m) < -1
(to be proved later). Therefore, we conclude that, in the duopoly market, firm

has an incentive to invest immediately whefy ;) < x < x;_;, since we have

V':]Ll)(x) > V(On)(x) for xF;_l < X < Xi. These results have been obtained by
Huisman (2001), Pawlina and Kort (2001) and Weeds (2002).

\% m
V(n)

Vi |

0
V(n)

Figure 1 Value functions for the duopoly market.
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4.2. The Oligopoly Case

Suppose thak(- 1) firms have already invested, and assume thatifiamong
the remainingif — k + 1) firms, decides to invest immediately. Then, from (9), the
value function for firmi (the leader) is given by

n s
m Tk L X Tj_1—Tj
Vigd = 7 x| ;‘1(’%)) S Ky X<y @9

The value funct|orvm (x) represents the present value of the profit obtained after
carring out the mvestment and satisfies the value-matching convt‘p)cﬁn(m)) =
Vi Xray)- N
On the other hand, suppose that firrdecides to be a follower and take the
(k + 1) investment opportunity. The value function for fiirin this case is given

by

B n B
I — .
V((I)<+1)(X) - (X*L] m - Z ( 1( ] e X(l)’ X< Xz<k+1)~ (16)

(k+1) iSa2 \ X

The value functlon\/‘l’(+l (X) represents the option value to delay the investment
opportunlty, and satlsﬂes not only the value-matching cond‘t@nl)(x(m))

y(X+1))» but also the smooth-pasting conditiufff, ;,(X., 1)) =

(k+l (k+1) (k+1)

Lemmad4.l. Foral k=12, ...,n- 1, we have the following.

(1) The value function V(X) is stnctly concave in x € (0, ), while the value
function V. () |sstr|ctly convexin x € (0, X(k+1))

(2) We haver)(x) > V(k+l)(x) andV, k)(x) > V(°k+1)(x) for x < Xiy-

Collecting the information obtained above, we can depict the value functions
(k)(x) ande+l)(x) as in Figure 2. Also, smc@’(“lg)(x) is strictly concave and

k+l (X) is strictly convex inx € (O, )(*m) there exists a unique roofk)
(O, x(k+1)) for the equatio (k)(x) (k+1)2 X).
As to the critical p0|nts<(k), we have the following.

Proposition 4.1. Thecritical value X}, X isstrictly decreasing ink, and x(FI’() < Xy
forallk=1,2...,n-1

The next result is a direct consequence of the properties of the value functions
stated above.

Proposition 4.2. In the oligopoly market, we have V. (k)(x) >V k+1)(x) for x(k)
X < Xg,1)- Hence, firmi hasan incentive to invest immediately when xj, < X < X

We are now in a position to state our main result. Recall from Proposition 4.2
that each firm has an incentive to pre-empt.
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m
V( k)

Viesn

Figure 2 Value functions for the oligopoly market.

Theorem 4.1. Suppose that there are n firms that have not invested in the mar-
ket. Then, we have the following outcomes for theinitial state x.

(0) If x < x5y, then either
(0-1) each firminvests at t|mr(1), @ RS (n 1) T(ny N SEQUENCE,

(0-2) some m firms invest at time T(l), and the other (n — m) firms invest

simultaneously or sequentially after time 7

(0-3)all firmsinvest simultaneously at t|mr(1)

(me1)r ©

(1) If X3y < X < X, then either

(1-1) one firm invests now, the other firms invest at .
sequence,

(1-2)somem, m > 1, firmsinvest simultaneously now, the other (n—m) firms
invest simultaneously or sequentially after time *

(1-3) all firmsinvest simultaneously now.

P * H
@ 0 Ty Ty 10

(m+l)’

(K) 1 X < X < X5y, then either
(k-1) somekﬂrmsmve;t now, the other (n—K) firmsinvest at 7},
7, N sequence,
(k-2) some m, m > k, firmsinvest simultaneously now, the other (n—m) firms
invest simultaneously or sequentially after time *
(k-3) all firmsinvest simultaneously now.

P
(k+1)r """ Tn-1)»

(m+1)’

(n) Ifx> Xiry» then all firmsinvest simultaneously now.
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From Theorem 4.1, we note that there is the possibility of sequential equlibria
in our oligopoly market. Note also that, in the inter{nﬁo <X< xfkﬂ)}, although
the outcome that only one of the firms invests is a Pareto optimum, there is the pos-
sibility that more than two firms invest simultaneously. As a result, option values to
delay the investment are substantially undermined and the value functions for some
firms may become negative.

Nevertheless, the investment decision is always delayed compared to the NPV
counterpart, as the next result reveals.

Proposition 4.3. For eachk = 1,2,...,n - 1, we have xfk) > xN | where the

(k)
NPV criterion xj,, is defined in (10).

More precisely, consider the situation that no firms are active in the market.
If firm i adopts the NPV criterion to enter the market, the firm invests as soon as
the underlying state variable reaches the trigger pxﬂr)tt As a result, the value
function of firmi becomes

n n(x Y- .
Vi(X) = r—yX_I_Z[xT.] ]rf,ulx(j)’ X1y < X < Xy
=2 \ ()

Of course, this value function can be negative until the state variabkcomes
suficiently large.

On the other hand, even though fijnadopts the real options criterion to enter
the market, the fear of pre-emption may push some firms to invest as soon as the
state variable reaches the critical po&ﬁ? under strategic interactions. As a result,
if k firms invest simultaneously, the value function of fifrbecomes, from (15),

n B
Tk X ﬂ-j_l B ﬂ-j * P *
Vi(X) = ——x—-1 - ( . ) — X X1y < X< Xy
r—s ;;1 o) ToH
But, again, this value can be negative before the underlying state vaxibbtmes
suficiently large.
Finally, we consider the comparative statics of the critical paﬁgtfor pre-

emption with respect to volatility-.

Proposition 4.4. Thecritical point x(ﬁ’() for pre-emptionisincreasingin volatility
o if and only if
P
*w -1
sz+1) Bk —pB + 1

log 0, a7

Whereyk = /a1 > 1.

Proposition 4.4 states that, when the critical poafgtfor pre-emption is close
to the optimal trigger poinXZ‘k+l), the critical point is decreasing in volatility. How-
ever, when the critical poim(ﬁ’() is far from sz+1)’ the critical point is increasing
in volatility. This is interesting, because the optimal trigger pamtis monotone
increasing with respect to the volatility.
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5. Real Options in a Huge Market

In this section, we consider the case of infinitely many firms. That is, suppose
that there are infinitely many potential firms that can enter a market. As before, we
assume that the revenue flow of each active firm is givep(ky= mx when there
arek active firms in the market. It is assumed that the constaig decreasing in
k and converges to a constanask — oo,

To this end, suppose first that there exists sormech thatry = = for all k > n.

That is, there is no strategic competition after-(1) firms have invested. Then, no
firms feel the fear of pre-emption and they behave as firms in a monopoly market.
Hence, the value function for each firm in this case is exactly the same as that for
the last-to-invest firm discussed in Section 3. More precisely, the optimal trigger
point x* for each firm is given by (4) withr, being replaced byt. The optimal
adoption timer* is finite with probability one, and the value function is obtained as
(5) with r, and Xn) being replaced by andx*, respectively.

Consider next the case that<{ 2) firms have invested before timelf 7, 1 >
7 = 7, then there exists a first-mover advantage and a firm may invest earlier than
its optimal trigger point. In fact, we are in the same situation as Proposition 4.1 and
a firm has an incentive to invest earlier as fak/ﬁ;gl)(x) > Vg, (X) holds.

The general case is also the same as that in Section 4. That is, a firm has an
incentive to invest earlier as far a@‘_l)(x) > V(?()(x), xfk) < X < Xy, When there
are k — 1) firms that have not invested yet. Note that these value functions depend
only onn, not on the number of remaining firms. Accordingly, the critical point
x('T() for pre-emption remains the same. The next proposition summarizes.

Proposition 5.1. Consider a market with infinitely many potential firms. If there
exists some n such that m, = x for all k > n, then we have the same equilibria as
Theorem 4.1.

Recall that, in Proposition 5.1 represents the number of firms that the first-
mover advantage disappears completely. It is readily seen that the value functions
V(?() andVg are decreasing in. Hence, in such a highly competitive market, firms
become less profitable asncreases. Also, while the optimal trigger poi((*\;) as
well as the NPV critical poinb(a‘() is independent of, the critical pointx(Pk) for
pre-emption is fiected by the increase of

The trigger point for pre-emption can never be smaller than the traditional NPV
criterion. However, even in a highly competetive market, there is a possibility that
many firms start investing simultaneously (i.e. joint-investment equilibria). As a
result, the investment decision may have been too early to produce a positive profit.
This may explain why many Internet companies entered the market even though
they have not yet been profitable.

8) We assume that the constanis equal to the cost expenditurgi.e., the profit of each active firm
converges to zero when the number of such firms increases to infinity.
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Suppose next thai is strictly decreasing ik = 1,2,.... That is, there always
exists a first-mover advantage in the market. Then, firms always feel the fear of pre-
emption and there is no need to wait. Hence, as soon as the state variable reaches
some critical point”, some firms decide to enter the market. The probability that
only finitely many firms enter the market is zero. Therefore, there is some critical
level that infinitely many firms enter the market simultaneously. The critical level
is larger tharx('\‘l), but can be smaller than the NPV criterizi(]bo). The next theorem
summarizes.

Theorem 5.1. Suppose that 7 is strictly decreasingink = 1, 2,. ... Then, there
are only joint-investment equilibria. The critical point for investment decision is
larger than x?‘l), but can be smaller than the traditional NPV criterion ><?‘oo).

6. Concluding Remarks

In this paper, we analyze the strategies of firms in an oligopoly market when
the firms have the opportunity to make an irreversible investment. By using the
option pricing theory, we calculate the opportunity values of the firms and study
their strategic entry decisions under the game-theoretic real options framework.

Assuming that the underlying market uncertainty follows a geometric Brownian
motion, we show that there are three types of equilibria (i.e. pre-emptive leader—
follower equilibria, joint-investment equilibria, and their mixture). The presence of
strategic interactions may push a firm to invest earlier and, as for the ordinary real
options model, the firm value as well as the trigger point increases as the market
uncertainty increases. Moreover, it is shown that the critical point for pre-emption
is always smaller than the trigger point.

In a highly competitive market, there is a possibility that many firms start in-
vesting simultaneously (i.e. a mixture of sequential and joint investments). As a
result, the investment decision may have been too early to produce a positive profit.
This may explain why many Internet companies entered the market even though
they have not yet been profitable.

Finally, when the number of firms in the market becomes infinity, this paper
shows that there only exist joint-investment equilibria. The critical point for in-
vestment decision is larger thacﬂ), but can be smaller than the traditional NPV
criterion .

However, the assumption of geometric Brownian motions for the underlying
state variable is problematic, because Davis (1998) reported through an empirical
work that the volatility of state variable varies over the life of the real options.
Hence, as in Kijima and Shibata (2002), it is of great interest to extend our model
to the case of diusion processes with general volatility structure. Also, in an actual
project, investment opportunities are usually available at each stage of the project.
Hence, as in Alvarez and Stenbacka (2001), it is also of importance to extend our
model to the compound option framework.
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Appendix

Proof of Proposition 3.1. It is well known that the Laplace transform of the
optimal adoption time, satisfies the ordinary fierential equation
X2 2
T”W’(x) + LW (X) = PW(X).

It follows thatW(x) = (x/x;‘n))ﬁ for somex;,. The optimal thresholel is obtained
by the smooth-pasting condition. That is,

X —argmax()—()ﬁ{ dl y—|}
™ y y) \r—u '

Finally, differentiation of the threshold with respecttgields

Xy _ 6xz‘n)% _(_1 r—u, as 20
do B do \(B-12 n, Jdo
where we have used the fact tf% < 0. O

Proof of Lemma 4.1. The strict concavity oVg (x) in x € (0, X(k+1) is ob-
vious, sinceB > 1. To prove the strict convexity o}(k 1)(x) define the function

0k(x) 1= Vi (X) = Vii,1y(X)- Then, we obtaimy(x) = XBLy with

L K 1 1 | 1 1
k= % \B—1  (v* _ - vt \8 (v 3 [°
r—u (X(k))ﬁ 1 (X(k+1))ﬁ 1 (X(k))ﬁ (X(k+1))B

where we have used Equation (8). Note that, from Proposition 3.1, We@?\te

Xk+1) SO that
T . 1 1
LKZ(—X' —|) — T (>
r—u ) (X(k))ﬁ (X(k+1))ﬁ

which is positive. It follows that

Vo= 019 =% ) L,
j=k j=k

with Ly = 0, which is strictly convex sincg > 1, proving the first part of the
lemma.
To prove the second part, define the functjg(x) := V(k)(x) - V(”k‘ﬂ)(x). Then,

) = e [X ¥ (K1) ]
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2
It suffices to prove tha(0) = 0, yk(xz‘k+l)) =0, and(9 y).zgx) < 0. The first two

equations are obvious. To prove the third assertion, we obtain

yi(X) _ M
OX? r

__7r/5+l [_,B(ﬂ _ 1))([3—2(Xzsk+1))—ﬁ+l] ,

which is negative, sincg > 1 andr > u. The other part is obvious from the proof
of the first part. O

Proof of Proposition 4.1. The first assertion is a direct consequence of Lemma
4.1(2). To prove the second assertion, define the funchigr) = V{Q (x) -
V(fl’(+1)(x), k=12...,n-1. It sufices to prove thabk(xz‘k)) > 0. To this end,
we note that

Tk x Y B T
¢k(X) = qx— I —[ } { - 1} I, (Al)

Xikk+l) B—1n

where we have used (7). Substitutixy into (A.1), we obtain

o 1 Tk+1 ¢ ﬁ Tk
(X)) = 1 [ﬁTl _( Tk ) {m M1 1}]

Let us define the functiohg(a) := (B — 1)¢>k(xz*k))I*1 with a = w1/ € (0,1).
Then,

hda) =1-paf1+ (B - 1)e.
Note thathy(a) > O for all a € (0,1) implies k(X)) > 0. This holds true since
hg(1) = 0 and
(@) =p@B- 1 [1-a']<0, O<a<l

. Py _ P *
Slnce¢k(x(k)) = 0, we conclude that(k) < X

Proof of Proposition 4.3. Let ¢x(X) be defined as in the proof of Proposition
4.1. Then,¢k(xz*k+l)) = ¢k(x(ﬁ'<)) = 0 andg¢y/(x) < O for all x. Hence gx(x) < 0 and

X < Xy, implies thatx < x(F:(). It follows from (A.1) that¢k(x'(\l‘()) < 0, since

e X = 1. LN s,
r—u p-1 Tk+1
Hence,xzf() < X{» Proving the proposition. |



Real Options in an Oligopoly Market 63

Proof of Proposition 4.4. Let ¢x(x) be defined as in (A.1). Then, by definition,
X 1s the unique solution to the equation

K X / B
—X-1= —V—131, X < Xy, A.2
-y (szﬂ)) {ﬁ—lyk } X (A.2)

whereyy = mx/mks1 > 1. Let us define

s
X B
—W—1;.
sz+1)] {ﬁ - lyk }

Then, after some algebra, we obtain

o[ [ 4]
Xkr1) p-1" Xy B-1]

Hence,f’(8) < 0 (> O, respectively) ak = x?k) if

f(ﬁ)=[

Xgo Ye—1
Xy PY—p+1
which is (17). That is, the right-hand side in (A.2) decreases (increases) around

X = x(FI’() if f/(8B) < 0 (> 0). On the other hand, the left-hand side in (A.2) is
independent oB. Therefore, the solution to (A.2) is decreasing (increasing) with

log <0 (>0), (A.3)

respect te if (A.3) holds. S.ince(;£ < 0, the result follows. O
(o
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