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1. Introduction

The aim of this paper is to analyze the strategies of firms in an oligopoly
market when the firms have the opportunity to make an irreversible investment. The
revenue of each firm is uncertain depending on the future condition of the market.
By using the option pricing theory, we calculate the opportunity values of
the firms and study their strategic entry decisions under the game-theoretic real
options framework.

When a firm has the possibility to make an irreversible investment with future
uncertainty, there is an option to delay. By analogy with a financial call option, it is
optimal to delay exercising the option in the hope of gaining a higher payoff in the
future1). Using this insight, the real options approach improves the traditional net-
present-value (NPV) method by incorporating the flexibility on decision making
(see, e.g., McDonald and Siegel, 1986). An excellent overview of the real options
approach is found in Dixit and Pindyck (1994) and Trigeorgis (1996).

1) See, e.g., Kijima (2002) for details of the option pricing theory.
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Recently, the basic model has been extended in various ways2). Among them,
Huisman (2001), Pawlina and Kort (2001) and Weeds (2002) considered the game-
theoretic real options approach to incorporate strategic interactions between firms
in a duopoly market. When related options are held by two firms with a first-mover
advantage, each firm’s ability to delay is undermined by the fear of pre-emption. In
particular, under a winner-takes-all situation, the option will be exercised as soon as
the payoff from doing so becomes marginally positive, and the traditional NPV rule
resurfaces as the appropriate method of investment decision. On the other hand, if
the market is not under such an extreme, the value of the option to delay should be
evaluated under an environment with well-specified strategic interactions.

In the game-theoretic real options framework, assuming that the underlying
market uncertainty follows a geometric Brownian motion, it is shown that there
are three types of equilibria (i.e. pre-emptive leader–follower equilibria, joint-
investment equilibria, and their mixture) in the case of strategic substitution3). The
presence of strategic interactions may push a firm to invest earlier and, as for the
basic model, the firm value as well as the optimal trigger point for the investment
decision increases as the market uncertainty increases. These results have been ex-
tended to the case of diffusion processes with general volatility structure by Kijima
and Shibata (2002).

In this paper, we extend the results in the duopoly case to an oligopoly market.
That is, we consider strategic entry decisions in an oligopoly market with symmet-
ric firms when the underlying state variable follows a geometric Brownian motion.
Using the standard arguments, the value functions of each firm for various situa-
tions are obtained, i.e. when it is the leader or the follower. It is shown that the
value functions are increasing and convex (concave, respectively) in the initial state
variable for the follower (the leader). Based on these results and invoking clas-
sic results in game theory, we show that there always exists a critical point for each
firm to pre-empt. In other words, even in the oligopoly case, there are three types of
equilibria, pre-emptive leader–follower equilibria, joint-investment equilibria, and
their mixture. The critical point is decreasing in the number of active firms in the
market and always smaller than the optimal trigger point in the ordinary real op-
tions criterion. Nevertheless, the critical point for pre-emption can never be smaller
than the traditional NPV criterion.

Even in a highly competitive market, the value of the option to delay exists and
there is a possibility that many (but may not be all) firms start investing simulta-

2) Other extensions include Alvarez and Stenbacka (2001) and Bernardo and Chowdhry (2002).
Bernardo and Chowdhry (2002) considered anincomplete model where a firm cannot observe the
state variable completely. Alvarez and Stenbacka (2001) considered a multi-stage technology project in
which investment opportunities are available at each stage of the project. The multi-stage real option is
similar to acompound option studied by Geske (1979) in the finance literature.
3) This result has apparent economic implications in the context of industrial organization theory. That
is, competition can introduce a strategic benefit to investment against the incumbent monopolist’s claim
that the introduction of competition will reduce future profits and delay investments. See, e.g., Nielsen
(2002) for details.
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neously (i.e. a mixture of joint and sequential investments) at the critical point for
pre-emption. As a result, the investment decision may have been too early to pro-
duce a positive profit. This may explain why many Internet companies entered the
market even though they have not yet been profitable4).

When the number of potential firms in a market becomes infinity, Grenadier
(2002) claimed that the critical point for investment decision converges to the
traditional NPV criterion (i.e. simultaneous investment). The claim is justified,
because there is no need to wait in such a competitive market when the payoff

from exercising the option becomes marginally positive. Although Grenadier (2002)
considered a different model from ours, this paper also shows that there only exists
a joint-investment equilibrium with probability one. However, the critical point can
be different from the NPV criterion, and the investment decision may be too early
to produce a positive profit.

This paper is organized as follows. In the next section, we describe the model
and provide the information necessary for what follows. Section 3 calculates the
firm values in the case of sequential investments. It is shown that optimal thresh-
old for the kth-to-invest is decreasing ink and increasing in the market uncer-
tainty. Based on the results, we then consider equilibria in the oligopoly market
in Section 4. We shall show that there exist not only joint-investment equilibria
but also sequential-investment equilibria (pre-emptive leader–follower equilibria)
in our oligopoly market. Section 5 considers a huge market including the case
of infinitely many firms, and Section 6 concludes this paper. Proofs are given in
Appendix.

2. The Setup

Considern ∈ N firms in a market with the opportunity to make an irreversible
investment. All firms can be active on the market to produce a single product
and compete with each other to maximize their profits. The revenue of each firm
is uncertain depending on the future condition of the market. We describe this
uncertainty by state variableX = (Xt)t∈R+ which evolves in time according to a
geometric Brownian motion given by

dXt

Xt
= µdt + σdzt, t ≥ 0, (1)

where (zt)t∈R+ denotes the standard Brownian motion, and where the mean growth
rateµ as well as the volatilityσ is a positive constant. As usual, the mean growth
rate is assumed to be strictly less than the risk-neutral discount factorr, i.e. µ < r.
Also, it is assumed throughout that the firms are risk neutral.

Suppose thatk, k ≤ n, firms are active on the market. The revenue flow of each
active firm is given byρ(x) = πk x, πk ∈ R+, whenXt = x. The constantsπk are

4) Schwartz and Moon (2001) developed a different model to explain this phenomenon without consid-
ering strategic interactions.
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non-increasing ink, k = 1,2, . . . , n, meaning that an investment is less profitable
when more firms have invested. This situation is called astrategic substitution and
often observed in a market consisting of competing firms5). The sunk cost for each
firm to adopt the investment opportunity is assumed to be a constant and equal to
I ∈ R+. That is, all firms on the market have the same technology (symmetric
firms).

Each firm seeks an optimal adoption strategy to the investment opportunity.
However, since revenue is uncertain, the adoption time is a random variable. At
each timet, the firm must decide whether it should adopt the investment opportunity
or not based on the informationFt available at timet6). Hence, the adoption time
is a stopping time.

The adoption strategy for each firm is not only a stopping time, but also it should
take the non-cooperative competing firms’ strategies into account. In other words,
we seek an optimal adoption strategy to maximize the value function of each firm
within the non-cooperative game-theoretic framework. It should be noted that the
optimal adoption time may be infinity; in this case, the optimal strategy is never to
invest.

3. Sequential Investments

Suppose that the constantsπk are strictly decreasing ink for the sake of sim-
plicity. Then, there always exists a first-mover advantage and each firm’s ability to
delay is undermined by the fear of pre-emption. In this section, we calculate the
value function of each firm when the firms make investments sequentially in time.

Let τ j denote the adoption time of firmj, and letxj be the associated trigger
point (threshold), i.e.τ j = inf {t ∈ R+ : Xt = x j}. Associated with the collection
of the adoption (stopping) times are the ordered sequence of random timesτ(1) ≤
τ(2) ≤ · · · ≤ τ(n). That is, by definition,τ(1) = min{τ1, τ2, . . . , τn}, and

τ(k+1) = min{τ j : j ∈ {1, . . . , n}, τ j > τ(k)}, k = 1,2, . . . , n − 1.

In particular,τ(n) = max{τ1, τ2, . . . , τn}. Similarly, we denote the ordered sequence
of the thresholds byx(k), k = 1,2, . . . , n.

Dynamic games are usually solved backwards. Hence, we start with our analy-
ses by assuming that (n − 1) firms have already invested.

3.1. The Value Function for the Last-to-Invest

Suppose that the current time ist ∈ R+, and assume that{τ(n−1) < t}, i.e. there
remains only one firm that has not invested before timet. In this monopoly situa-

5) The case of strategic compliment can be studied similarly. However, this case yields no strategic
interaction and we omit the results.
6) Throughout the paper, we fix a filtered probability space (Ω,F , (Ft)t∈R+ , P), where the filtration
(Ft)t∈R+ is generated by the state variableX. The filtration represents the resolution over time of the
information commonly available to the firms. It is assumed thatF0 = {Ω, ∅}, i.e., no information is
available at time 0.
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tion, the value function of the firm is given by

V(n)(x) = ess sup
τ(n)∈Tt

E
x

[∫ ∞

τ(n)

e−r(s−t)πnXsds − e−r(τ(n)−t)I

∣∣∣∣∣∣Ft

]
, (2)

whereTt is the set of stopping times not less thant, and whereEx[·|Ft] denotes the
time t conditional expectation operator given thatXt = x. For notational simplicity,
we shall writeEx[·] for the time 0 conditional expectation operatorEx[·|F0]. Also,
the optimal adoption threshold and time are denoted byx∗(n) andτ∗(n), respectively,
i.e.,τ∗(n) = inf {t ∈ R+ : Xt = x∗(n)}.

Using the strong Markov property and the time homogeneity of the geometric
Brownian motionX, the value function (2) is rewritten as

V(n)(x) = Ex
[
e−rτ∗(n)

]
E

x∗(n)

[∫ ∞

0
e−rtπnXtdt

]
. (3)

The next proposition can be shown by solving the value-matching condition.
The proof is given in the appendix.

Proposition 3.1. The optimal threshold x∗(n) to adopt the investment opportunity
is given by

x∗(n) =
β

β − 1
r − µ
πn

I. (4)

The trigger point x∗(n) is strictly increasing in volatility σ. The Laplace transform
of the optimal adoption time τ∗(n) is given by

E
x
[
e−rτ∗(n)

]
=

 x
x∗(n)


β

, x < x∗(n).

Here, β is the positive root of the quadratic equation Q(y) = 0, where

Q(y) :=
1
2
σ2y2 +

(
µ − 1

2
σ2

)
y − r.

Accordingly, the optimal adoption timeτ∗(n) is finite with probability one. The
value function (3) is obtained as

V(n)(x) =



 x
x∗(n)


β {
πn

r − µ
x∗(n) − I

}
, x∗(n) > x,

πn

r − µ
x − I, x∗(n) ≤ x.

(5)

Note that, from (4),
πn

r − µ x∗(n) − I =
I
β − 1

.

It follows that the value function is alternatively written as

V(n)(x) =

 x
x∗(n)


β

I
β − 1

, x∗(n) > x.
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3.2. The Value Function for the Second Last-to-Invest

Suppose that{τ(n−2) < t}, i.e. there remain two firms that have not invested
before timet. In this duopoly situation, the value function of the leader among the
two firms is given by

V(n−1)(x) = E
x


∫ τ∗(n)

τ∗(n−1)

e−r(s−t)πn−1Xsds − e−r(τ∗(n−1)−t)I +
∫ ∞

τ∗(n)

e−r(s−t)πnXsds

∣∣∣∣∣∣Ft


= E

x


∫ ∞

τ∗(n−1)

e−r(s−t)πn−1Xsds − e−r(τ∗(n−1)−t)I

∣∣∣∣∣∣Ft


−Ex


∫ ∞

τ∗(n)

e−r(s−t)(πn−1 − πn)Xsds

∣∣∣∣∣∣Ft


= E

x
[
e−rτ∗(n−1)

]
E

x∗(n−1)

[∫ ∞

0
e−rsπn−1Xsdx

]

−Ex
[
e−rτ∗(n)

]
Ex∗(n)

[∫ ∞

0
e−rs(πn−1 − πn)Xsdx

]
,

whereτ∗(n−1) denotes the optimal adoption time for the leader. The optimal adoption
time τ∗(n) for the follower has been obtained above. It is well known (see, e.g.,
Huisman, 2001) that, as in (4), the optimal thresholdx∗(n−1) to adopt the investment
opportunity is given by

x∗(n−1) =
β

β − 1
r − µ
πn−1

I > 0.

Sinceπn−1 > πn, we havex∗(n−1) < x∗n. The value function is obtained as

V(n−1)(x) =



 x
x∗(n−1)


β

I
β − 1

−
 x

x∗(n)


β
πn−1 − πn

r − µ
x∗(n), x < x∗(n−1),

πn−1

r − µ
x − I −

 x
x∗(n)


β
πn−1 − πn

r − µ
x∗(n), x∗(n−1) ≤ x < x∗(n),

πn

r − µ x − I, x∗(n) ≤ x.

(6)

Note here that, whenXt ≥ x∗(n), there is no need to wait for the investment and,
hence, a simultaneous investment occurs to the both firms.

3.3. The Value Function for the General Case

Finally, we consider the general case. Suppose that{τ(k−1) < t}, i.e. there are
k firms that have not invested before timet. In this oligopoly situation, the value
function of the leader among thek firms is given by

V(k)(x) = E
x


∫ τ∗(k+1)

τ∗(k)

e−r(s−t)πkXsds − e−r(τ∗(k)−t)I

∣∣∣∣∣∣Ft


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+Ex


n−1∑

j=k+1

∫ τ∗( j+1)

τ∗( j)

e−r(s−t)π jXsds

∣∣∣∣∣∣Ft

 + Ex


∫ ∞

τ∗(n)

e−r(s−t)πnXsds

∣∣∣∣∣∣Ft



= E
x


∫ ∞

τ∗(k)

e−r(s−t)πkXsds − e−r(τ∗(k)−t)I

∣∣∣∣∣∣Ft



−Ex


n∑

j=k+1

∫ ∞

τ∗( j)

e−r(s−t)(π j−1 − π j)Xsds

∣∣∣∣∣∣Ft

 ,

whereτ∗( j) denotes the optimal adoption time for thej-th investor withτ∗(n+1) =

∞. Using the strong Markov property and the time homogeneity of the geometric
Brownian motionX, we obtain that

V(k)(x) = E
x

[
e−r(τ∗(k)−t)

(∫ ∞

0
e−rsπkXτ∗(k)+sds − I

) ∣∣∣∣∣∣Ft

]

−
n∑

j=k+1

E
x

[
e−r(τ∗( j)−t)

∫ ∞

0
e−rs(π j−1 − π j)Xτ∗( j)+sds

∣∣∣∣∣∣Ft

]

= E
x
[
e−rτ∗(k)

]
E

x∗(k)

[∫ ∞

0
e−rsπkXsds − I

]

−
n∑

j=k+1

E
x
[
e−rτ∗( j)

]
E

x∗( j)

[∫ ∞

0
e−rs(π j−1 − π j)Xsds

]
.

The next result can be proved similarly to Proposition 3.1.

Proposition 3.2. The optimal threshold x∗(k) to adopt the investment opportunity
is given by

x∗(k) =
β

β − 1
r − µ
πk

I. (7)

The trigger point x∗(k) is strictly increasing in k and in volatility σ. The Laplace
transform of the optimal adoption time τ∗(k) is given by

E
x
[
e−rτ∗(k)

]
=

 x
x∗(k)


β

, x < x∗(k).

In the standard real options analyses, i.e. if the market is monopoly, the thresh-
old for making investment decision increases as the volatility increases. Proposition
3.2 shows that this result also holds even in our oligopoly market.

The key issue in Proposition 3.2 is that the optimal thresholdx∗(k) depends only
onπk, not on the other revenue structures. Also, from (7), we have

πk

r − µ
x∗(k) − I =

I
β − 1

, k = 1,2, . . . , n. (8)
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It follows from Proposition 3.2 that the value function is obtained as

V(k)(x) =



 x
x∗(k)


β

I
β − 1

−
n∑

j=k+1

 x
x∗( j)


β

(π j−1 − π j)

r − µ
x∗( j), x < x∗(k),

πk

r − µ
x − I −

n∑
j=k+1

 x
x∗( j)


β

(π j−1 − π j)

r − µ
x∗( j), x∗(k) ≤ x < x∗(k+1).

(9)

If Xt ≥ x∗(k+1), the leader should invest immediately to leave the situation with (k−1)
firms being not invested before timet.

Remark 3.1. In the traditional NPV approach, the trigger point to invest is given
by

xN
( j) =

r − µ
π j

I, j = 1,2, . . . , n. (10)

Sinceβ > 1 in our setting, it follows from (7) thatxN
( j) < x∗( j) for all j = 1,2, . . . , n.

Hence, the investment timing in the real options approach is always delayed com-
pared to the NPV criterion.

4. Equilibria

In this section, we focus on Markov perfect equilibria so that the outcome of the
non-cooperative game takes one of two forms, a pre-emptive leader–follower out-
come or a joint-investment outcome, depending on parameter values7). To this end,
we first discuss the properties of the value functions under the strategic interactions.

Let Vo
(k)(x) (Vm

(k)(x), respectively) be the value function for a firm when the firm

has not (has) invested for thekth-to-invest opportunity.

4.1. The Duopoly Case

As before, we start with our analyses by assuming that (n − 2) firms have
already invested. Suppose that two firmsi and j are under strategic interaction,
and assume that firmi decides to invest immediately. Then, from (6), the value
function for firmi (the leader) is given by

Vm
(n−1)(x) =

πn−1

r − µ
x − I −

 x
x∗(n)


β
πn−1 − πn

r − µ
x∗(n), x < x∗(n). (11)

Note that the value functionVm
(n−1)(x) satisfies the value-matching condition

Vm
(n−1)(x∗(n)) = Vm

(n)(x∗(n)), i.e.

Vm
(n−1)(x∗(n)) =

πn

r − µ
x∗(n) − I. (12)

7) See, e.g., Fudenberg and Tirole (1985) for details.
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On the other hand, from (5), the value function for firmj (the follower) is given
by

Vo
(n)(x) =

 x
x∗(n)


β {
πn

r − µ
x∗(n) − I

}
, x < x∗(n). (13)

Note that the value functionVo
(n)(x) satisfies not only the value-matching con-

dition but also the smooth-pasting conditionVo′
(n)(x∗(n)) = Vm′

(n)(x∗(n)), because it is
determined so as to optimize the trigger pointx∗(n). Here, the prime denotes the
derivative. It follows that the value functionVo

(n)(x) satisfies

Vo
(n)(x∗(n)) =

πn

r − µ x∗(n) − I, Vo′
(n)(x∗(n)) =

πn

r − µ . (14)

It is readily seen that the value functionVm
(n−1)(x) is strictly concave inx ∈

(0, x∗(n)), while the value functionVo
(n)(x) is strictly convex inx ∈ (0, x∗(n)) since

β > 1. These value functions are depicted in Figure 1. Here, the straight line
represents the value functionVm

(n)(x), x ≥ 0.
SinceVm

(n−1)(x) is strictly concave andVo
(n)(x) is strictly convex inx ∈ (0, x∗(n)),

there exists a unique rootxP
(n−1) ∈ (0, x∗(n)) for the equationVm

(n−1)(x) = Vo
(n)(x).

The existence follows from the conditions (12) and (14). Also,xP
(n−1) < x∗(n−1)

(to be proved later). Therefore, we conclude that, in the duopoly market, firmi
has an incentive to invest immediately whenxP

(n−1) < x < x∗(n−1), since we have
Vm

(n−1)(x) > Vo
(n)(x) for xP

(n−1) < x < x∗(n). These results have been obtained by
Huisman (2001), Pawlina and Kort (2001) and Weeds (2002).

0
x

V

−I

x∗(n)x∗(n−1)

xp

(n−1)

Vo
(n)

Vm
(n−1)

Vm
(n)

Figure 1 Value functions for the duopoly market.
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4.2. The Oligopoly Case

Suppose that (k− 1) firms have already invested, and assume that firmi, among
the remaining (n − k + 1) firms, decides to invest immediately. Then, from (9), the
value function for firmi (the leader) is given by

Vm
(k)(x) =

πk

r − µ
x − I −

n∑
j=k+1

 x
x∗( j)


β
π j−1 − π j

r − µ
x∗( j), x < x∗(k+1). (15)

The value functionVm
(k)(x) represents the present value of the profit obtained after

carring out the investment, and satisfies the value-matching conditionVm
(k)(x∗(k+1)) =

Vm
(k+1)(x∗(k+1)).

On the other hand, suppose that firmi decides to be a follower and take the
(k + 1)th investment opportunity. The value function for firmi in this case is given
by

Vo
(k+1)(x) =

 x
x∗(k+1)


β

I
β − 1

−
n∑

j=k+2

 x
x∗( j)


β
π j−1 − π j

r − µ
x∗( j), x < x∗(k+1). (16)

The value functionVo
(k+1)(x) represents the option value to delay the investment

opportunity, and satisfies not only the value-matching conditionVo
(k+1)(x∗(k+1)) =

Vm
(k+1)(x∗(k+1)), but also the smooth-pasting conditionVo′

(k+1)(x∗(k+1)) = Vm′
(k+1)(x∗(k+1)).

Lemma 4.1. For all k = 1,2, . . . , n − 1, we have the following.
(1) The value function Vm

(k)(x) is strictly concave in x ∈ (0, x∗(k+1)), while the value
function Vo

(k+1)(x) is strictly convex in x ∈ (0, x∗(k+1)).
(2) We have Vm

(k)(x) > Vm
(k+1)(x) and Vo

(k)(x) > Vo
(k+1)(x) for x ≤ x∗(k).

Collecting the information obtained above, we can depict the value functions
Vm

(k)(x) and Vo
(k+1)(x) as in Figure 2. Also, sinceVm

(k)(x) is strictly concave and
Vo

(k+1)(x) is strictly convex inx ∈ (0, x∗(k+1)), there exists a unique rootxP
(k) ∈

(0, x∗(k+1)) for the equationVm
(k)(x) = Vo

(k+1)(x).
As to the critical pointsxP

(k), we have the following.

Proposition 4.1. The critical value xP
(k) is strictly decreasing in k, and xP

(k) < x∗(k)
for all k = 1,2, . . . , n − 1.

The next result is a direct consequence of the properties of the value functions
stated above.

Proposition 4.2. In the oligopoly market, we have Vm
(k)(x) > Vo

(k+1)(x) for xP
(k) <

x < x∗(k+1). Hence, firm i has an incentive to invest immediately when xP
(k) < x < x∗(k).

We are now in a position to state our main result. Recall from Proposition 4.2
that each firm has an incentive to pre-empt.
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V

0 x

−I

x∗(k) x∗(k+1)

xP
(k)

xP
(k−1)

Vm
(k+1)Vm

(k)
Vo

(k+1)

Vm
(k−1)

Vo
(k)

Figure 2 Value functions for the oligopoly market.

Theorem 4.1. Suppose that there are n firms that have not invested in the mar-
ket. Then, we have the following outcomes for the initial state x.

(0) If x < xP
(1), then either

(0-1) each firm invests at time τP(1), τ
P
(2), · · ·, τ

P
(n−1), τ

∗
(n) in sequence,

(0-2) some m firms invest at time τP(1), and the other (n − m) firms invest

simultaneously or sequentially after time τP(m+1), or

(0-3) all firms invest simultaneously at time τP(1).

(1) If xP
(1) ≤ x < xP

(2), then either

(1-1) one firm invests now, the other firms invest at τP(2), · · ·, τ
P
(n−1), τ

∗
(n) in

sequence,
(1-2)some m, m > 1, firms invest simultaneously now, the other (n−m) firms

invest simultaneously or sequentially after time τP(m+1), or
(1-3) all firms invest simultaneously now.

(k) If xP
(k) ≤ x < xP

(k+1), then either

(k-1) some k firms invest now, the other (n−k) firms invest at τP(k+1), · · ·, τ
P
(n−1),

τ∗(n) in sequence,
(k-2) some m, m > k, firms invest simultaneously now, the other (n−m) firms

invest simultaneously or sequentially after time τP(m+1), or
(k-3) all firms invest simultaneously now.

(n) If x ≥ x∗(n), then all firms invest simultaneously now.
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From Theorem 4.1, we note that there is the possibility of sequential equlibria
in our oligopoly market. Note also that, in the interval{xP

(k) ≤ x < xP
(k+1)}, although

the outcome that only one of the firms invests is a Pareto optimum, there is the pos-
sibility that more than two firms invest simultaneously. As a result, option values to
delay the investment are substantially undermined and the value functions for some
firms may become negative.

Nevertheless, the investment decision is always delayed compared to the NPV
counterpart, as the next result reveals.

Proposition 4.3. For each k = 1,2, . . . , n − 1, we have xP
(k) > xN

(k), where the

NPV criterion xN
(k) is defined in (10).

More precisely, consider the situation that no firms are active in the market.
If firm i adopts the NPV criterion to enter the market, the firm invests as soon as
the underlying state variable reaches the trigger pointxN

(1). As a result, the value
function of firmi becomes

Vi(x) =
π1

r − µ
x − I −

n∑
j=2

 x
x∗( j)


β
π j−1 − π j

r − µ
x∗( j), xN

(1) ≤ x < xP
(1).

Of course, this value function can be negative until the state variablex becomes
sufficiently large.

On the other hand, even though firmj adopts the real options criterion to enter
the market, the fear of pre-emption may push some firms to invest as soon as the
state variable reaches the critical pointxP

(1) under strategic interactions. As a result,
if k firms invest simultaneously, the value function of firmj becomes, from (15),

Vj(x) =
πk

r − µ
x − I −

n∑
j=k+1

 x
x∗( j)


β
π j−1 − π j

r − µ
x∗( j), xP

(1) ≤ x < x∗(1).

But, again, this value can be negative before the underlying state variablex becomes
sufficiently large.

Finally, we consider the comparative statics of the critical pointxP
(k) for pre-

emption with respect to volatilityσ.

Proposition 4.4. The critical point xP
(k) for pre-emption is increasing in volatility

σ if and only if

log
xP

(k)

x∗(k+1)

+
yk − 1

βyk − β + 1
< 0, (17)

where yk = πk/πk+1 > 1.

Proposition 4.4 states that, when the critical pointxP
(k) for pre-emption is close

to the optimal trigger pointx∗(k+1), the critical point is decreasing in volatility. How-
ever, when the critical pointxP

(k) is far from x∗(k+1), the critical point is increasing
in volatility. This is interesting, because the optimal trigger pointx∗(k) is monotone
increasing with respect to the volatility.
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5. Real Options in a Huge Market

In this section, we consider the case of infinitely many firms. That is, suppose
that there are infinitely many potential firms that can enter a market. As before, we
assume that the revenue flow of each active firm is given byρ(x) = πk x when there
arek active firms in the market. It is assumed that the constantπk is decreasing in
k and converges to a constantπ ask → ∞8).

To this end, suppose first that there exists somen such thatπk = π for all k ≥ n.
That is, there is no strategic competition after (n− 1) firms have invested. Then, no
firms feel the fear of pre-emption and they behave as firms in a monopoly market.
Hence, the value function for each firm in this case is exactly the same as that for
the last-to-invest firm discussed in Section 3. More precisely, the optimal trigger
point x∗ for each firm is given by (4) withπn being replaced byπ. The optimal
adoption timeτ∗ is finite with probability one, and the value function is obtained as
(5) with πn andx∗(n) being replaced byπ andx∗, respectively.

Consider next the case that (n − 2) firms have invested before timet. If πn−1 >
πn = π, then there exists a first-mover advantage and a firm may invest earlier than
its optimal trigger point. In fact, we are in the same situation as Proposition 4.1 and
a firm has an incentive to invest earlier as far asVm

(n−1)(x) > Vo
(n)(x) holds.

The general case is also the same as that in Section 4. That is, a firm has an
incentive to invest earlier as far asVm

(k−1)(x) > Vo
(k)(x), xP

(k) ≤ x < x∗(k), when there
are (k − 1) firms that have not invested yet. Note that these value functions depend
only on n, not on the number of remaining firms. Accordingly, the critical point
xP

(k) for pre-emption remains the same. The next proposition summarizes.

Proposition 5.1. Consider a market with infinitely many potential firms. If there
exists some n such that πk = π for all k ≥ n, then we have the same equilibria as
Theorem 4.1.

Recall that, in Proposition 5.1,n represents the number of firms that the first-
mover advantage disappears completely. It is readily seen that the value functions
Vo

(k) andVm
(k) are decreasing inn. Hence, in such a highly competitive market, firms

become less profitable asn increases. Also, while the optimal trigger pointx∗(k) as
well as the NPV critical pointxN

(k) is independent ofn, the critical pointxP
(k) for

pre-emption is affected by the increase ofn.
The trigger point for pre-emption can never be smaller than the traditional NPV

criterion. However, even in a highly competetive market, there is a possibility that
many firms start investing simultaneously (i.e. joint-investment equilibria). As a
result, the investment decision may have been too early to produce a positive profit.
This may explain why many Internet companies entered the market even though
they have not yet been profitable.

8) We assume that the constantπ is equal to the cost expenditureI, i.e., the profit of each active firm
converges to zero when the number of such firms increases to infinity.
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Suppose next thatπk is strictly decreasing ink = 1,2, . . .. That is, there always
exists a first-mover advantage in the market. Then, firms always feel the fear of pre-
emption and there is no need to wait. Hence, as soon as the state variable reaches
some critical pointxP, some firms decide to enter the market. The probability that
only finitely many firms enter the market is zero. Therefore, there is some critical
level that infinitely many firms enter the market simultaneously. The critical level
is larger thanxN

(1), but can be smaller than the NPV criterionxN
(∞). The next theorem

summarizes.

Theorem 5.1. Suppose that πk is strictly decreasing in k = 1,2, . . .. Then, there
are only joint-investment equilibria. The critical point for investment decision is
larger than xN

(1), but can be smaller than the traditional NPV criterion xN
(∞).

6. Concluding Remarks

In this paper, we analyze the strategies of firms in an oligopoly market when
the firms have the opportunity to make an irreversible investment. By using the
option pricing theory, we calculate the opportunity values of the firms and study
their strategic entry decisions under the game-theoretic real options framework.

Assuming that the underlying market uncertainty follows a geometric Brownian
motion, we show that there are three types of equilibria (i.e. pre-emptive leader–
follower equilibria, joint-investment equilibria, and their mixture). The presence of
strategic interactions may push a firm to invest earlier and, as for the ordinary real
options model, the firm value as well as the trigger point increases as the market
uncertainty increases. Moreover, it is shown that the critical point for pre-emption
is always smaller than the trigger point.

In a highly competitive market, there is a possibility that many firms start in-
vesting simultaneously (i.e. a mixture of sequential and joint investments). As a
result, the investment decision may have been too early to produce a positive profit.
This may explain why many Internet companies entered the market even though
they have not yet been profitable.

Finally, when the number of firms in the market becomes infinity, this paper
shows that there only exist joint-investment equilibria. The critical point for in-
vestment decision is larger thanxN

(1), but can be smaller than the traditional NPV
criterion xN

(∞).
However, the assumption of geometric Brownian motions for the underlying

state variable is problematic, because Davis (1998) reported through an empirical
work that the volatility of state variable varies over the life of the real options.
Hence, as in Kijima and Shibata (2002), it is of great interest to extend our model
to the case of diffusion processes with general volatility structure. Also, in an actual
project, investment opportunities are usually available at each stage of the project.
Hence, as in Alvarez and Stenbacka (2001), it is also of importance to extend our
model to the compound option framework.
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Appendix

Proof of Proposition 3.1. It is well known that the Laplace transform of the
optimal adoption timeτ∗(n) satisfies the ordinary differential equation

x2σ2

2
W ′′(x) + µxW ′(x) = rW(x).

It follows thatW(x) = (x/x∗(n))
β for somex∗(n). The optimal thresholdx∗(n) is obtained

by the smooth-pasting condition. That is,

x∗(n) = argmax
y

(
x
y

)β {
πn

r − µ
y − I

}
.

Finally, differentiation of the threshold with respect toσ yields

dx∗(n)

dσ
=
∂x∗(n)

∂β

dβ
dσ
=

(
−1

(β − 1)2
r − µ
πn

I

)
dβ
dσ
> 0

where we have used the fact that
dβ
dσ
< 0. �

Proof of Lemma 4.1. The strict concavity ofVm
(k)(x) in x ∈ (0, x∗(k+1)) is ob-

vious, sinceβ > 1. To prove the strict convexity ofVo
(k+1)(x), define the function

ok(x) := Vo
(k)(x) − Vo

(k+1)(x). Then, we obtainok(x) = xβLk with

Lk =
πk

r − µ


1

(x∗(k))
β−1
− 1

(x∗(k+1))
β−1

 − I


1

(x∗(k))
β
− 1

(x∗(k+1))
β

 ,
where we have used Equation (8). Note that, from Proposition 3.1, we havex∗(k) >
x∗(k+1) so that

Lk ≥
(
πk

r − µ
x∗(k) − I

) 
1

(x∗(k))
β
− 1

(x∗(k+1))
β

 ,
which is positive. It follows that

Vo
(k)(x) =

n∑
j=k

o j(x) = xβ
n∑

j=k

L j,

with Ln+1 = 0, which is strictly convex sinceβ > 1, proving the first part of the
lemma.

To prove the second part, define the functionγk(x) := Vm
(k)(x) − Vm

(k+1)(x). Then,

γk(x) =
πk − πk+1

r − µ
[
x − xβ(x∗(k+1))

−β+1
]
.
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It suffices to prove thatγk(0) = 0, γk(x∗(k+1)) = 0, and
∂2γk(x)
∂x2

< 0. The first two

equations are obvious. To prove the third assertion, we obtain

∂2γk(x)
∂x2

=
πk − πk+1

r − µ
[
−β(β − 1)xβ−2(x∗(k+1))

−β+1
]
,

which is negative, sinceβ > 1 andr > µ. The other part is obvious from the proof
of the first part. �

Proof of Proposition 4.1. The first assertion is a direct consequence of Lemma
4.1(2). To prove the second assertion, define the functionφk(x) := Vm

(k)(x) −
Vo

(k+1)(x), k = 1,2, . . . , n − 1. It suffices to prove thatφk(x∗(k)) > 0. To this end,
we note that

φk(x) =
πk

r − µ x − I −
 x

x∗(k+1)


β {

β

β − 1
πk

πk+1
− 1

}
I, (A.1)

where we have used (7). Substitutingx∗(k) into (A.1), we obtain

φk(x∗(k)) = I

 1
β − 1

−
(
πk+1

πk

)β {
β

β − 1
πk

πk+1
− 1

} .

Let us define the functionhk(a) := (β − 1)φk(x∗(k))I
−1 with a = πk+1/πk ∈ (0,1).

Then,

hk(a) = 1− βaβ−1 + (β − 1)aβ.

Note thathk(a) > 0 for all a ∈ (0,1) impliesφk(x∗(k)) > 0. This holds true since
hk(1) = 0 and

h′k(a) = β(β − 1)aβ−1
[
1− a−1

]
< 0, 0 < a < 1.

Sinceφk(xP
(k)) = 0, we conclude thatxP

(k) < x∗(k). �

Proof of Proposition 4.3. Let φk(x) be defined as in the proof of Proposition
4.1. Then,φk(x∗(k+1)) = φk(xP

(k)) = 0 andφ′′k (x) < 0 for all x. Hence,φk(x) < 0 and
x < x∗(k) implies thatx < xP

(k). It follows from (A.1) thatφk(xN
(k)) < 0, since

πk

r − µ
xN

(k) = I,
β

β − 1
> 1,

πk

πk+1
> 1.

Hence,xN
(k) < xP

(k), proving the proposition. �
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Proof of Proposition 4.4. Letφk(x) be defined as in (A.1). Then, by definition,
x∗(k) is the unique solution to the equation

πk

r − µ
x − I =

 x
x∗(k+1)


β {

β

β − 1
yk − 1

}
I, x < x∗(k), (A.2)

whereyk = πk/πk+1 > 1. Let us define

f (β) =

 x
x∗(k+1)


β {

β

β − 1
yk − 1

}
.

Then, after some algebra, we obtain

f ′(β) =

 x
x∗(k+1)


β 

{
β

β − 1
yk − 1

}
log

x
x∗(k+1)

+
yk − 1
β − 1

 .
Hence,f ′(β) < 0 (> 0, respectively) atx = xP

(k) if

log
xP

(k)

x∗(k+1)

+
yk − 1

βyk − β + 1
< 0 (> 0), (A.3)

which is (17). That is, the right-hand side in (A.2) decreases (increases) around
x = xP

(k) if f ′(β) < 0 (> 0). On the other hand, the left-hand side in (A.2) is
independent ofβ. Therefore, the solution to (A.2) is decreasing (increasing) with

respect toβ if (A.3) holds. Since
dβ
dσ
< 0, the result follows. �
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