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form valuation of credit default swap with counterparty risk. The inter-dependent
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1. Introduction

According to the Credit Derivatives Report of British Bankers’ Association
(2002), nearly half of the market share of credit derivatives trading is captured
by single-named credit swap contracts. A credit default swap (CDS) is a contract
agreement which allows the transfer of credit risk of a risky asset/basket of risky
assets from one party to the other. A financial institution may use a CDS to trans-
fer credit risk of a risky asset while continues to retain the legal ownership of the
asset1). The rapid growth of the credit default swap market has reached to the
stage where credit default swaps on reference entities are more actively traded than
bonds issued by the reference entities. The choice of credit sensitive instruments

∗ The opinions expressed in this paper are exclusively the personal views of the author and should not
be cited as opinion and interpretation of HSBC, Hong Kong, China.
1) Apart from hedging purpose, CDSs are recently often used by synthetic deal managers to tailor credit
risk and create arbitrage opportunity not available in the cash markets.
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for empirical studies on default risk has slowly moved from risky corporate bonds
to credit default swaps on the bonds (Longstaff et al. 2003; Ericsson et al., 2004).
Default swap premia are believed to reflect changes in credit risk more accurately
and quickly than corporate bond yield spreads.

Assume that party A holds a corporate bond and faces the credit risk arising
from default of the bond issuer (reference party C). To seek protection against such
default risk, party A enters a CDS contract in which he agrees to make a stream
of periodic premium payments, known as the swap premium to party B (CDS pro-
tection seller). In exchange, party B promises to compensate A (CDS protection
buyer) for its loss in the event of default of the bond (reference asset). A CDS
involves three parties: protection buyer, protection seller, and issuer of the refer-
ence bond. Unlike interest rate swaps and currency swaps, where cash flows are
exchanged between the two counterparties periodically, the protection seller pays
only when default of the reference bond occurs.

As remarked by Jarrow and Yu (2001), “an investigation of counterparty risk
is incomplete without studying its impact on the pricing of credit derivatives.” We
would like to address the following queries in this paper. How does the inter-
dependent default risk structure between the protection seller and the reference
bond affect the swap rate? Should we go to a European bank or a Korean bank
as the protection seller for a Korean bond? Can the protection seller fulfill its
obligation to make the compensation payment at the end of the settlement period,
given that its credit quality may have deteriorated due to contagious effect arising
from the default of the reference bond? What would be the impact on the swap
rate due to potential replacement cost of entering a new CDS contract when the
protection seller defaults prior to the reference bond? To determine a fair swap
rate of a CDS in the presence of counterparty risks, the inter-dependent default risk
structures between these parties must be considered simultaneously.

For interest rate swaps, theoretical analyzes show that the difference in swap
rates between two counterparties of different credit ratings is much less than the
difference in their debt rates. For example, for a 5-year interest rate swap be-
tween a given party paying LIBOR and another party paying a fixed rate, Duffie
and Huang (1996) find that the replacement of the given fixed-rate counterparty
with a lower quality counterparty whose bond yields are 100 basis points higher
would only increase the swap rate by roughly 1 basis point. However, the very
nature of contingent compensation payment upon default in a CDS may lead to a
higher counterparty risk exposure compared to that of an interest rate swap. Our
results show that CDS dealers should not quote the same rates to all counterpar-
ties irrespective of their credit ratings, like the usual practice in interest rate swaps
market.

There have been numerous works on credit default swap valuation. Duffie
(1999) proposes a non-model based pricing approach where a credit default swap
is priced by reference to spreads over the riskfree rate of par floating rate bonds of
the same quality. He also discusses the estimation of the hazard rate from default-
able bond prices. Based on the reduced form approach with correlated market and
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credit risks, Jarrow and Yildirim (2002) obtain closed form valuation formula for
the swap rate of a CDS. In their model, the default intensity is assumed to be “al-
most” linear in the short interest rate. To examine the impact of counterparty risk
on the pricing of a CDS, Jarrow and Yu (2001) assume an inter-dependent default
structure that avoids looping default and simplifies the payoff structure where the
protection seller’s compensation is made only at the maturity of the swap. They dis-
cover that a CDS may be significantly overpriced if the default correlation between
the protection seller and reference entity is ignored. Hull and White (2001) apply
the credit index model for valuing CDS with counterparty risk. They argue that if
the default correlation between the protection seller and the reference entity is pos-
itive, then the default of the counterparty will result in a positive replacement cost
for the protection buyer. Their results show that the CDS swap rates increase with
credit index correlation and the rates may differ by more than 10% when the pro-
tection seller’s credit rating decreases from AAA to BBB and the value of the credit
index correlation is 0.6 or higher. Using a structural default correlation model, Kim
and Kim (2003) conclude that the pricing error in a CDS can be quite substantial
if the correlation between the default risks of the counterparty and reference bond
is ignored. Chen and Filpovic (2003) develop a generalized affine model to price
credit default swaps under default correlations and counterparty risk. By the spec-
ification analysis of the affine process, they manage to incorporate market-credit
risk correlation, joint credit migrations and firm specific default risk into their pric-
ing model. Yu (2004) uses the “total hazard” approach to construct the default
processes from independent and identically distributed exponential random vari-
ables. He obtains an analytic expression of the joint distribution of default times
in his two-firm and three-firm contagion models. Under the framework of conta-
gious defaults, the default risk is modeled by the reduced form approach, where
the probability of default is determined by an exogenously specified instantaneous
default intensity. The contagious defaults are effected by inter-dependent default
risk structure between the parties, where the default intensity of one party increases
when the default of another party occurs.

In this paper, we would like to analyze the impact of correlated risks between
the three parties in a CDS using similar contagion models. Instead of following
Yu’s approach, we employ the change of measure introduced by Collins-Dufresne
et al. (2002) in our valuation procedures. Using this change of measure, our coun-
terparty risk model reduces to the standard reduced form model. Specifically, the
probability measure of firmi is defined by its default intensity which is absolutely
continuous with respect to the risk neutral measure and zero probability is assigned
to firm i if default occurs before maturity. Compared to the total hazard construc-
tion (Yu, 2004), the analytic derivation procedures using the change of measure
approach become less tedious. In his CDS pricing model, Yu (2004) places several
assumptions on the payment structures in order to simplify his calculations. Firstly,
the protection buyer is assumed to make continuous premium payment at the swap
rate till expiration, provided that the buyer does not default prior to expiry. How-
ever, the swap payment terminates upon default of either one of the three parties in
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market practice. Secondly, the protection seller is assumed to make the contingent
compensation payment on the expiration date, provided that the protection seller
survives beyond the expiration date of the swap.

Distinctive from others’ work on CDS valuation with counterparty risk, we con-
sider the more realistic scenario in which the compensation payment upon default
of the reference party is made at the end of the settlement period after default. If
the protection seller defaults prior to the reference entity, then the protection buyer
renews the CDS with a new counterparty. Supposing that the default risks of the
protection seller and reference entity are positively correlated, we would like to es-
timate the expected replacement cost due to an increase in the swap rate in the new
CDS. The change of measure technique provides an effective tool for CDS valua-
tion in our more refined pricing model. Furthermore, we extend our counterparty
risk framework to the three-firm contagion model by including the possibility of
default of the protection buyer. This represents an extension from unilateral default
to bilateral defaults among the counterparties.

The paper is organized as follows. In Section 2, we present the setup of the two-
firm contagion model. We employ the inter-dependent default model to analyze the
effects ofsettlement risk andreplacement cost on the fair swap rate of a CDS. In
Section 3, the analysis of correlated default risks in CDS valuation is extended to
the three-firm model where all three parties have inter-dependent default structure.
The paper is ended with conclusive remarks in the last section.

2. Two-firm Model

We consider an uncertain economy with a time horizon ofT described by a
filtered probability space (Ω,F , {Ft}Tt=0, P) satisfyingF = FT , whereP is the risk-
neutral (equivalent martingale) measure in the sense of Harrison and Kreps (1979),
that is, all security prices discounted by the risk-free interest rate processrt are
martingale underP. We use the Cox framework to specify the random default
times. We denote the default time of firmi by

τi = inf

{
t :

∫ t

0
λi

s ds ≥ Ei

}
, (1a)

where{Ei}i∈I is a set of independent unit exponential random variables. We further
assume thatτi possesses a strictly positiveFt-predictable intensityλi

t with right-
continuous sample paths such that

Mi
t = Nt −

∫ t∧τi

0
λi

s ds (1b)

is a (P,Ft)-martingale. Under the above characterization, given theF X
t -adapted

intensityλi
t, the conditional survival probability of firmi is given by

P[τi > T |Ft] = E

[
exp

(
−

∫ T

t
λi

s ds

) ∣∣∣∣Ft

]
. (2)
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In this section, we perform credit default swap valuation using the two-firm
contagion model. The likelihood of default of the protection seller (firm B) with
random default timeτB and the reference entity (firm C) with random default time
τC are modeled by their correlated default intensities while the protection buyer
(firm A) is assumed to be default-free. Under the CDS contract, a periodic stream of
swap premium payments will be paid to the protection seller until the occurrence of
a contractually defined credit event (either protection seller defaults or the reference
entity defaults) or the expiration of the contract, whichever comes earlier. If the
reference entity defaults prior to the expiration of the contract, then the protection
buyer receives the compensation from the protection seller on the settlement date
(at the end of the settlement period). The compensation is given by the difference
between the face value and the recovery value of the reference entity, less the swap
premium that has accrued since the last payment date. The accrued premium is
calculated on a time-proportional basis. If the protection seller defaults prior to the
default of the reference entity, the contract terminates. The protection buyer enters
a new contract with another counterparty for the remaining life of the original CDS.

To simplify our CDS valuation, we assume a flat term structure of riskless in-
terest rater2). In our two-firm contagion model, the inter-dependent default risk
structure between firm B and firm C is characterized by the correlated default in-
tensities:

λB
t = b0 + b21{τC≤t} (3a)

λC
t = c0 + c21{τB≤t}, (3b)

where the default intensityλB
t (λC

t ) jumps by the amountb2 (c2) when firm C (B)
defaults. The parametersb0, b2, c0 andc2 are assumed to be constant and distinct.
Without loss of generality, we take the notional to be $1 and assume zero recovery
upon default. Since it takes no cost to enter a CDS, the value of the swap rateS 2(T )
under this two-firm model is determined by

n∑
i=1

E
[
e−rTi S 2(T ) 1{τB∧τC>Ti}

]
+ S 2(T )A2(T )

= E
[
e−r(τC+δ)1{τC≤T }1{τB>τC+δ}

]
, (4)

where{T1, · · · ,Tn} are the swap payment dates with 0= T0 < T1 < · · · < Tn = T
andδ is the length of the settlement period. Here,τC + δ represents the settlement
date at the end of the settlement period. We assume that the payment dates are
uniformly distributed, that is,Ti+1−Ti = ∆T for 1 ≤ i ≤ n−1. The first term in Eq.
(4) gives the present value of the sum of periodic swap payments (terminated when
either B or C defaults or at maturity) andS 2(T )A2(T ) is the present value of the

2) Without loss of analytical tractability, our framework can be extended to stochastic interest rate within
the class of affine structure.
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accrued swap premium for the fraction of period betweenτC and the last payment
date. The present value of accrued swap premium is given by

S 2(T )A2(T ) = S 2(T )
n∑

i=1

E

[
e−rτC

(
τC − Ti−1

∆T

)
1{Ti−1<τC<Ti}1{τB>τC }

]
, (5)

where the accrued premium is paid atτC and
τC − Ti−1

∆T
represents the fraction of

the time interval between successive payment dates. To computeS 2(T ), we set
the present value of protection buyer’s payment equal to the present value of the
compensation payment made atτC + δ, conditional on default ofC prior to T and
no default ofB prior toτC+δ. The buyer may face potential replacement cost when
τB < min(τC ,T ). However, sinceS 2(T ) represents the fair swap rate charged by
the seller partyB, the replacement cost should not be included in the calculation of
the swap premium.

Compared to other CDS valuation models in the literature, our pricing frame-
work models the payoff structures closer to reality, in particular, the compensation
is payable in the end of settlement period afterC’s default, and periodic discrete
payments are made atT1, . . . ,Tn.

2.1. Change of Measure

We adopt the change of measure introduced by Collins-Dufresne et al. (2002)
in our valuation procedure of the swap rate. Accordingly, we define a firm-specific
probability measurePi which puts zero probability on the paths where default
occurs prior to the maturityT . Specifically, the change of measure is defined by

ZT �
dPi

dP

∣∣∣∣∣∣FT

= 1{τi>T } exp

(∫ T

0
λi

s ds

)
, (6)

wherePi is a firm-specific (firmi) probability measure which is absolutely contin-
uous with respect toP on the stochastic interval [0, τi). One can show thatZT is a
uniformly integrableP-martingale with respect toFT and is almost surely strictly
positive on [0, τi) and almost surely equal to zero on [τi,∞) [see Collins-Dufresne
et al. (2004)]. To proceed the calculations under the measurePi, we enlarge the
filtration toF i = (F i

t )t≥0 as the completion ofF = (Ft)t≥0 by the null sets of the
probability measurePi.

Under the default risk structure specified in Eq. (3a, b), the survival probabili-
ties of firm B and firm C are defined recursively through each other and this leads
to the phenomenon of “looping default”. Under the new measurePB defined by Eq.
(6), λC

t = c0 for t < T , so this effectively neglect the impact of firm B’s default on
the intensity of firm C, so looping default no longer exists. An analogous argument
also holds under the measurePC .

Using the change of measure, the joint density of default times (τB, τC) is found
to be (see Appendix A)
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f (t1, t2) =

{
c0(b0 + b2)e−(b0+b2)t1−(c0−b2)t2, t2 ≤ t1,
b0(c0 + c2)e−(c0+c2)t2−(b0−c2)t1, t2 > t1.

(7)

The marginal density of the default timesτB andτC can be obtained by integrating
the joint densityf (t1, t2). This gives

P[τB ∈ dt1]
dt1

=
(b0 + b2)c0

c0 − b2

[
e−(b0+b2)t1 − e−(b0+c0)t1

]
+ b0e−(b0+c0)t1 (8a)

and
P[τC ∈ dt2]

dt2
=

(c0 + c2)b0

b0 − c2

[
e−(c0+c2)t2 − e−(b0+c0)t2

]
+ c0e−(b0+c0)t2. (8b)

Consequently, the marginal survival probabilities are given by

P[τB > t1] =
c0e−(b0+b2)t1 − b2e−(b0+c0)t1

c0 − b2
, (9a)

and

P[τC > t2] =
b0e−(c0+c2)t2 − c2e−(b0+c0)t2

b0 − c2
. (9b)

2.2. Swap Premium in the Two-firm Model

Using the joint densityf (t1, t2) given in Eq. (7) and performing the expectation
calculations in Eq. (4), one can show that the swap premium is given by (see
Appendix B)

S 2(T ) =
c0e−(b0+b2+r)δ(1− e−βT )

β

[
e−β∆T (1− e−βn∆T )

1− e−β∆T
+ A2(T )

]−1

, (10)

whereβ = b0 + c0 + r and the expression forA2(T ) is given in Appendix B. It
is interesting to observe thatS 2(T ) is independent ofc2, though the calculation
of S 2(T ) involvesE[e−rTi1{τB∧τC>Ti}]. A more careful consideration reveals that an
increase of the default intensity ofC by c2 due to B’s default would have impact
only on the replacement cost. Since the calculation ofS 2(T ) does not include the
effect of replacement cost, the independence ofS 2(T ) on c2 seems logically.

The impact of contagious default structure between the protection seller B and
the reference asset C on the swap premium is illustrated in Figure 1. Consistent with
our intuition, the swap premium decreases withb0 as the protection buyer is willing
to pay a lower premium when dealing with a more risky protection seller. The swap
premium becomes smaller asb2 assumes a higher value because the default of C
increases the default probability of B. Similar to other credit risk factors, the swap
premium is highly sensitive to the underlying default risk of C proxied byc0.

From Eq. (10), one deduces that the swap premium is not quite sensitive to
the length of the protection period. This is consistent with the empirical studies by
Aunon-Nerin et al. (2002). They have tested several specifications for the maturity
effect, but none of them appear to be significant.
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Figure 1 Swap premium in a two-firm model. The protection buyer (firm A) is assumed to be default-
free. The swap premiumS 2(T ) is plotted against various parameters in the contagion risk model, illus-
trating the impact of the intrinsic and correlated risks of the reference entity and protection seller on
the swap premium. The base parameter values are:r = 0.05, δ = 0.25, ∆T = 0.25, b0 = 0.15, b2 =

0.15, c0 = 0.1, c2 = 0.1,T = 10.
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2.3. Settlement Risk and Replacement Cost

We now turn our attention to the settlement risk and replacement cost in a CDS.
Suppose a financial institution enters a CDS to protect its underlying asset. But
this does not mean that default risk can be fully hedged due to the possibility of
swap seller’s default occurred before the settlement date. Observe that if firm B is
default-free, the swap premium is then given by

n∑
i=1

E
[
e−rTi S̄ 2(T ) 1{τC>Ti}

]
+ S̄ 2(T )Ā2(T ) = E

[
e−r(τC+δ)1{τC≤T }

]
, (11)

where

Ā2(T ) =
n∑

i=1

E

[
e−rτC

(
τC − Ti−1

∆T

)
1{Ti−1<τC<Ti}

]
.

To examine the effect of settlement risk on the swap premium, we define the swap
premium spreadV(T ) to be the difference of the swap premium with and without
settlement risk, that is,

V(T ) = S̄ 2(T ) − S 2(T ). (12)

Intuitively speaking, it is not clear that whetherV(T ) is strictly positive. In a CDS,
the protection buyer inevitably faces a trade-off between a higher present value of
compensation for its loss in the event of C’s default, that is,

E
[
e−r(τC+δ)1{τC≤T }

]
≥ E

[
e−r(τC+δ)1{τC≤T }1{τB>τC+δ}

]
and a higher present value of total swap payments due to an obligation to make
compensation to swap buyer upon the default of underlying asset, that is,

E
[
e−rTi1{τC>Ti}

]
+ Ā2(T ) ≥ E

[
e−rTi1{τB∧τC>Ti}

]
+ A2(T ).

It is quite straightforward to deriveS 2(T ), which can be obtained by settingb0 =

b2 = 0 in S 2(T ).
The change on settlement risk premium with respect to the settlement periodδ

is illustrated in Figure 2. We observe that the settlement risk premium increases as
δ becomes larger, and its sensitivity is very significant. Doubling the value ofc0

from 0.1 to 0.2 leads to a significant increase of 60 basis points in the settlement risk
premium. The effect of b0 andb2 have relatively less influence on the settlement
risk premium. We find that the default correlation between the protection seller and
the reference asset, proxied byb2, is slightly more important than the underlying
risk of the protection seller when settlement risk is analyzed. This suggests that
the protection buyer should be aware of the credit rating of its counterparty B, its
correlated default risk with the reference asset as well as the settlement period in
order to determine a fair swap premium.

From protection buyer’s perspective, it is uncertain to pay a stream of fixed
payments for credit protection throughout the whole period due to the default of
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Figure 2 Change of settlement risk premium onδ. The base parameter values are:r = 0.05, ∆T =
0.25, b0 = 0.15, b2 = 0.15, c0 = 0.1, c2 = 0.1.

the protection seller. In the presence of counterparty risk, the credit rating of the
reference entity varies over time. This results a change in swap premium when
entering a CDS at a different time. Specifically, the protection buyer can benefit or
lose from a new contact, depending upon the credit rating of the reference entity at
the default time of the original protection seller. In our model, the rating movement
depends on the sign ofb2 andc2. We define the replacement cost as the excess
premium required to enter a new contract upon the default of the original protec-
tion seller. Mathematically, the default intensity of the reference entity becomes a
constant after the default of the protection seller, that is,

λC
t = c0 + c2. (13)

Assume that the effect of swap maturity is very insensitive to the premium so that
we can ignore this factor into consideration. LetS̃ 2 denote the price of a CDS with
the above default intensity. Conditional on the default of the protection seller before
maturity, the replacement cost is̃S 2 − S 2. To magnify the effect of counterparty
risk on the replacement cost, assuming all other factors being fixed, the expected
replacement cost3) is given by

3) Another possible way to compute the present value of replacement cost is to use theLIBOR risky
measure introduced by Scḧonbucher (2000). One can take the spot swap rateS 0 observed in the market
and take the expectatione−rT E[(S T − S 0)] whereS T is the forward swap rate.
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Table 1 The entries illustrate the effect of the underlying default risk (b0 andc0) and the counterparty
risk (b2 andc2) on the swap premium (first row), settlement premium (second row) and replacement
cost (third row). We take the notional to be $1, risk-free interest rater to be 5%, maturityT of 10 years,
and settlement periodδ of 0.25 year.

(b0, c0)

(b2, c2) (0.05, 0.05) (0.1, 0.05) (0.05, 0.1)

1.21% 1.21% 2.44%
(0.05, 0.05) 0.02% 0.03% 0.05%

0.59% 0.85% 0.63%
1.20% 1.20% 2.41%

(0.1, 0.05) 0.04% 0.05% 0.08%
0.62% 0.89% 0.73%
1.22% 1.21% 2.44%

(0.05, 0.1) 0.02% 0.03% 0.05%
1.12% 1.67% 1.23%

P[τB < T ](S̃ 2 − S 2).

The relation between the default intensity parameters and swap premium, settle-
ment premium and expected replacement cost is illustrated in Table 1. The results
illustrate the quantitative insight of how the inter-dependent default structure af-
fects swap premium as well as settlement risk and replacement cost. We observe
that the expected replacement cost increases with the level of counterparty risk, i.e,
b2 andc2. Our finding indicates that the effect of counterparty risk on the reference
entity has a much stronger influence on the replacement cost than that on the pro-
tection seller. Also, the swap settlement premium increases withb2. This means
that the protection buyer faces a higher settlement risk when the protection seller
has a stronger correlation with the reference entity.

3. Credit Default Swap with Defaultable Buyer

To study the effect of correlated default risk between all parties in a CDS on
the swap premium, we extend our counterparty risk model to the three-firm model.
The default risk structure is specified by the inter-dependent default intensities

λA
t = a0 + a11{τB≤t} + a21{τC≤t}, (14a)

λB
t = b0 + b11{τA≤t} + b21{τC≤t}, (14b)

λC
t = c0 + c11{τA≤t} + c21{τB≤t}. (14c)

From this setting, it is evident that the default probability of each party in the
CDS depends on the default status of other firms. This model nests a number of
simpler models. For instance, it reduces to the two-firm model in Section 2 if
we takea0 = a1 = a2 = 0. If we takec1 = c2 = 0, the default status of both
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counterparties in the CDS do not affect the credit rating of the reference asset. One
may provide the financial interpretation as follows: the reference asset, say a risky
bond, is issued by a large firm C whose default has an economy-wide impact. A
small firm A holds this bond and wants to enter a CDS for the protection of the bond
upon C’s default. Suppose that A finds a swap seller, say B, in the same sector, so
A and B have correlated default risk.

3.1. Swap Premium in the Three-firm Model

We employ the three-firm model specified by Eqs. (6a, 6b, 6c) to price a CDS.
Under this framework, we study the effect of each party’s default on the swap pre-
mium. Suppose that the protection buyer (firm A) holds a defaultable asset issued
by firm C, and enter a CDS contract from the protection seller (firm B). Distinct
from the two-firm model, the protection buyer is obligated to pay the periodic swap
premium until the expiration of the contract, or the occurrence of the default either
by the protection seller, the reference asset or itself, whichever is earlier. As be-
fore, upon the default of the reference asset, the protection buyer receives from the
protection seller the difference between the face value and the recovery value of the
reference entity. Moreover, if the protection buyer defaults prior to the default of
the reference asset, the protection seller can simply walk away from the contract
and has no obligation to pay the compensation to the protection seller.

In the presence of defaultable swap buyer, the swap premium is determined by

n∑
i=1

E
[
e−rTi S 3(T ) 1{τA∧τB∧τC>Ti}

]
+ S 3(T )A3(T )

= E
[
e−r(τC+δ)1{τC≤T }1{τA>τC }1{τB>τC+δ}

]
. (15)

To determine the swap premiumS 3(T ), it requires the knowledge of the joint den-
sity f (t1, t2, t3) of (τA, τB, τC). By following similar calculation procedures as those
for the two-firm model, the joint densityf (t1, t2, t3) is found to be

f (t1, t2, t3) =



a0(b0 + b1)(c0 + c1 + c2)
×e−(a0−b1−c1)t1−(b0+b1−c2)t2−(c0+c1+c2)t3, t1 < t2 < t3,
a0(c0 + c1)(b0 + b1 + b2)
×e−(a0−b1−c1)t1−(c0+c1−b2)t3−(b0+b1+b2)t2, t1 < t3 < t2,
b0(a0 + a1)(c0 + c1 + c2)
×e−(b0−a1−c2)t2−(a0+a1−c1)t1−(c0+c1+c2)t3, t2 < t1 < t3,
c0(a0 + a2)(b0 + b1 + b2)
×e−(c0−a2−b2)t3−(a0+a2−b1)t1−(b0+b1+b2)t2, t3 < t1 < t2,
b0(c0 + c2)(a0 + a1 + a2)
×e−(b0−c2−a1)t2−(c0+c2−a2)t3−(a0+a1+a2)t1, t2 < t3 < t1,
c0(b0 + b2)(a0 + a1 + a2)
×e−(c0−b2−a2)t3−(b0+b2−a1)t2−(a0+a1+a2)t1, t3 < t2 < t1.

(16)
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With the aid of f (t1, t2, t3), the swap premiumS 3(T ) is given by

S 3(T ) = Lχ(T )

[
e−α∆T (1− e−αn∆T )

1− e−α∆T
+ A3(T )

]−1

e−rδ, (17)

whereα = a0 + b0 + c0 + r, Lχ(T ) andA3(T ) are presented in Appendix D. Note
that when we seta0 = a1 = a2 = 0, S 3(T ) reduces to the swap premiumS 2(T ) in
Eq. (10).

In Figures 3 and 4, we plot the swap premium against varying values of default
intensity parameters in the three-form model. Figure 3 illustrates that the reference
asset’s default risk proxied byc0 gives the most significant impact on swap pre-
mium, and an increasing higher value ofc0 gives rise to a higher swap premium.
On the other hand, the default risk of the protection buyer has little impact on the
swap premium, i.e., an increase in the likelihood of default of the protection buyer
(a higher value ofa0) only increases the swap premium marginally. It is because
when the financial health of the protection seller affects the default status of the un-
derlying asset, this contagion effect makes the underlying asset more risky, in turn
the protection seller would take a higher swap premium. Unlike the effect of the
protection seller and the underlying asset, this effect is of third-order, so the impact
is much less significant.

The expression for the swap premium in Eq. (17) shows no dependence on
a1, c1, andc2. Financially speaking, prior to the default of the underlying asset,
the default event of the protection buyer or the protection seller will terminate the
contract. This explains whya1, c1 andc2 have no influence on the swap premium.
ThoughS 3(T ) in Eq. (17) has dependence ona2, one can show that the change
of the swap premium is insensitive toa2, and this can be explained by a similar
argument. Figure 4 illustrates the change of swap premium with respect to varying
levels of the default risk of the protection seller. The swap premium declines with
the credit quality of the protection seller proxied byb0. However, the degree of
magnitude in the change is relatively low compared with that ofc0. In addition, a
stronger correlated default risk with other counterparties on the protection seller, a
lower swap premium the protection buyer is willing to pay, as seen by the increases
in b1 andb2 lead to lower swap premium, while the swap premium is more sensitive
to b2. The order of sensitivity to the protection seller isb2, b0 andb1. Similar to
the two-firm model, the swap premium is also insensitive to maturity.

4. Conclusion

In this paper, using both the two-firm and three-firm contagion risk models,
we provide the insight on how counterparty risks influence the swap rate in a credit
default swap. It may be possible for a financial institution to have good estimates of
marginal distributions (or default intensities), yet end up with the wrong evaluation
of its credit exposure. For example, firm A could estimate a parametric model
using the bond prices issued by firm B. However, if the counterparty risk for firm
B is incorrectly identified by another party whose default is independent of firm
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C, this could severely overprice the swap rate due to neglect of default correlation.
Our findings can be summarized as follows:

1. For CDS valuation, the swap premium can be significantly affected by coun-
terparty risk. If the protection seller (firm B) has a higher correlation with the
reference asset (firm C), then the swap premium becomes slightly lower. It is
due to the fact that the swap buyer (firm A) is expected to pay a lower swap
premium for less protection on its reference asset. On the other hand, when
C has a higher correlation with A and B, the swap premium has no change
at all. Though the occurrence of default either of A or B (prior to the default
of C) increases the default probablility of C, the contract is then immediately
terminated, so it has no impact on the swap premium. The same reasoning
can be used to explain the insignificant change on the swap premium due to
the impact of A’s default on B. Due to the very nature of the CDS structure,
the impact of default either of B or C on A does not give any change on
the swap premium. Suppose B defaults prior to C, A can simply walk away
and enter a new contract for the remaining period. When A survives longer
than C during the life of the contract, A will receive compensation from B,
independent of whether A defaults or not before the settlement date. In sum-
mary, the default risk of C is the primary determinant of the swap premium,
and a higher value ofc0 leads to a significant increase in swap premium.
Both results agree with financial intuition. Furthermore, the swap premium
increases witha0 and declines withb0, but this effect is comparatively less
pronounced.

2. The swap premium shows almost a flat term structure for all maturities. This
behavior is probably attributed to our CDS payment structure. When B de-
faults prior to C’s default, the protection buyer can simply walk away and en-
ters a new contract for the remaining period. However, when the protection
buyer defaults prior to C’s default, B has the right to terminate the contract
and has no obligation on the protection. This leads to the insensitivity of the
swap premium with respect to maturity.

3. The change of settlement risk premium with respect to the settlement period
is highly sensitive: a longer settlement period, a higher settlement risk pre-
mium. This suggests that the protection buyer should be aware of the credit
rating of its counterparty B and the settlement period in order to determine a
fair swap premium.

Our work also provides the motivation for investigating other credit risk issues.
It is worth to study the effect of counterparty risk on other credit derivatives and
structured products. Since the default intensity of one party jumps until another
party defaults, the contagion model is unable to capture the intermediate change in
credit rating of counterparties prior to credit event. Unlike structural models, it is
not appropriate to use our framework to price structured credit products with strong
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dependence on the prior-to-maturity change in credit rating. On the other hand,
the contagion model provides nice analytic tractability for multi-asset instruments
while most structural models have great difficulty to provide an extension to the
inter-dependent default structure for a basket of multiple assets.

Appendix

A. Joint density of default times (τB, τC)

Let EC[·] denote the expectation taken under the measurePC . For t1 < t2, the
joint distribution of the pair of default times is found to be

P[τB > t1, τ
C > t2]

= E
[
1{τB>t1}1{τC>t2}

]
= EC

[
1{τB>t1} exp

(
−

∫ t2

0
(c0 + c21{τB≤s}) ds

)]
= e−c0t2EC

[
1{τB>t1} exp

(
−c2(t2 − τB)1{τB≤t2}

)]
= e−c0t2

[∫ t2

t1

b0e−b0u−c2(t2−u) du +
∫ ∞

t2

b0e−b0u du

]

= b0e−(c0+c2)t2

[
e−(b0−c2)t1 − e−(b0−c2)t2

b0 − c2

]
+ e−(b0+c0)t2.

The fourth equality follows from the fact thatλB
t = b0 for t ≤ t2 underPC . By a

similar argument, fort2 < t1, the joint distribution is given by

P[τB > t1, τ
C > t2] = c0e−(b0+b2)t1

[
e−(c0−b2)t2 − e−(c0−b2)t1

c0 − b2

]
+ e−(b0+c0)t1.

The differentiation ofP[τB > t1, τC > t2] with respect tot1 and t2 gives the joint
density of the default times in Eq. (7).

B. Swap premium S 2(T ) of the two-firm model

Using the joint densityf (t1, t2), we obtain

E

[
e−

∫ τC+δ
0

r ds1{τC≤T }1{τB>τC+δ}

]
=

c0e−(b0+b2+r)δ[1 − e−(b0+c0+r)T ]
b0 + c0 + r

.

To evaluateE
[
e−rTi1{τB∧τC>Ti}

]
, we can take the advantage of the change of measure

to avoid tedious integration involvingf (t1, t2). Specifically, we have
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E
[
e−rTi1{τB∧τC>Ti}

]
= e−rTi E

[
1{τB>Ti}1{τC>Ti}

]
= e−rTi EC

[
1{τB>Ti} exp

(
−

∫ Ti

0
(c0 + c2)1{τB≤s} ds

)]
= e−(c0+r)Ti EC

[
1{τB>Ti}

]
= e−(b0+c0+r)Ti .

By lettingβ = b0+ c0+ r and observing∆T = Ti+1−Ti for 1 ≤ i ≤ n−1, we obtain

n∑
i=1

e−(b0+c0+r)Ti =
e−β∆T (1− e−βn∆T )

1− e−β∆T
.

In Appendix D, we will deriveA3(T ). SinceA3(T ) is an extension ofA2(T ) with
the inclusion of the default possibility of the protection buyer,A3(T ) is reduced to
A2(T ) by takinga0 = 0. Combining all these results, we obtain the swap premium
S 2(T ) in Eq. (10). As a result, we obtain

A2(T ) =
c0

∆T

[
1− e−(b0+c0+r)T

(b0 + c0 + r)2
− Te−(b0+c0+r)T

b0 + c0 + r

]

− c0

b0 + c0 + r

N∑
i=1

Ti−1

[
e−(b0+c0+r)Ti−1 − e−(b0+c0+r)Ti

]
.

C. Joint density of default times (τA, τB, τC)

Supposet1 < t2 < t3, we have

P[τA > t1, τ
B > t2, τ

C > t3]

= E
[
1{τA>t1}1{τB>t2}1{τC>t3}

]
= EC

[
1{τA>t1}1{τB>t2} exp

(
−

∫ t3

0
(c0 + c11{τA≤s} + c21{τB≤s}) ds

)]

= e−c0t3EC
[
1{τA>t1}1{τB>t2} e

−c1(t3−τA) 1{τA≤t3}−c2(t3−τB) 1{τB≤t3}
]
.

Note that

1{τA>t1}1{τB>t2}
= 1{t1<τA≤t2}1{t2<τB≤t3} + 1{t2<τA≤t3}1{t2<τB≤t3} + 1{τA>t3}1{t2<τB≤t3}
+1{t1<τA≤t2}1{τB>t3} + 1{t2<τA≤t3}1{τB>t3} + 1{τA>t3}1{τB>t3}.
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Hence, we have

P[τA > t1, τ
B > t2, τ

C > t3]

= e−(c0+c1+c2)t3EC
[
1{t1<τA≤t2}1{t2<τB<t3}e

c1τ
A+c2τ

B]
+ e−(c0+c1+c2)t3 EC

[
1{t1<τA≤t2}1{τB>t3}e

c1τ
A]

+ e−(c0+c1+c2)t3EC
[
1{t2<τA≤t3}1{t2<τB≤t3}e

c1τ
A+c2τ

B]
+ e−(c0+c1+c2)t3EC

[
1{t2<τA≤t3}1{τB>t3}e

c1τ
A]

+ e−(c0+c1+c2)t3EC
[
1{t2<τB≤t3}1{τA>t3}e

c2τ
B]

+ e−(c0+c1+c2)t3EC
[
1{τA>t3}1{τB>t3}

]
.

Under the measurePC and fort < t3, the default intensitiesλA
t andλB

t are given by

λA
t = a0 + a11{τB≤t}
λB

t = b0 + b11{τA≤t}.

Using the joint density of (τA, τB)

f (u1, u2) = a0(b0 + b1)e−(b0+b1)u2−(a0−b1)u1, u1 < u2,

one can computeEC
[
1{t1<τA≤t2}1{τB>t3}e

c1τ
A
]

and other similar terms.
Once we have obtainedP[τA > t1, τB > t2, τC > t3], we differentiate the distri-

bution function with respect tot1, t2 andt3 to give the joint density function

f (t1, t2, t3) = a0(b0 + b1)(c0 + c1 + c2) e−(a0−b1−c1)t1−(b0+b1−c2)t2−(c0+c1+c2)t3,

for t1 < t2 < t3.

We can obtainf (t1, t2, t3) for other permutation in a similar manner and get the
results in Eq. (16).

D. Swap premium S 3(T ) of the three-firm model

Using the joint density functionf (t1, t2, t3) for t3 < t2 < t1 andt3 < t1 < t2, we
obtain

Lχ(T )

� E
[
e−r(τC+δ)1{τC≤T }1{τA>τC }1{τB>τC+δ}

]
=

c0(a0 + a2)e−(b0+b1+b2+r)δ

(a0 + a2 − b1)(a0 + b0 + c0 + r)

[
1− e−(a0+b0+c0+r)T

]
− c0(a0 + a2)(b0 + b1 + b2)e−(a0+a2+b0+b2+r)δ

(a0 + a2 − b1)(a0 + b0 + c0 + r)(a0 + a2 + b0 + b2)

[
1− e−(a0+b0+c0+r)T

]
+

c0(b0 + b2)(b0 + b1 + b2)e−(a0+a2+b0+b2+r)δ

(a0 + b0 + c0 + r)(a0 + a2 + b0 + b2)

[
1− e−(a0+b0+c0+r)T

]
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where the vector of parametersχ = (a0, a2, b0, b1, b2, c0) captures the correlated
default “characteristic.” The expectationE

[
e−rTi 1{τA∧τB∧τC>Ti}

]
can be handled in

a similar fashion as that in the two-firm model. The expectation calculations are
given by

E
[
e−rTi1{τA∧τB∧τC>Ti}

]
= e−rTi EA

[
1{τB>Ti}1{τC>Ti} exp

(
−

∫ Ti

0
(a0 + a1)1{τB≤s} + a21{τC≤s} ds

)]
= e−(a0+r)Ti EA

[
1{τB>Ti}1{τC>Ti}

]
.

For t ≤ Ti, the dynamics of the default intensities of firm B and firm C underPA

are

λB
t = b0 + b21{τC≤t}
λC

t = c0 + c21{τB≤t}.

Using the result in the two-firm model (see Appendix B), we have

EA
[
1{τB>Ti}1{τC>Ti}

]
= e−(b0+c0)Ti ,

and so
E

[
e−rTi1{τA∧τB∧τC>Ti}

]
= e−(a0+b0+c0+r)Ti .

This leads to
n∑

i=1

E
[
e−rTi 1{τA∧τB∧τC>Ti}

]
=

e−α∆T (1− e−αn∆T )
1− e−α∆T

,

whereα = a0 + b0 + c0 + r. It remains to evaluateA3(T ), which is defined by

A3(T ) =
n∑

i=1

E

[
e−rτC

(
τC − Ti−1

∆T

)
1{Ti−1<τC<Ti}1{τA∧τB>τC }

]
.

Using f (t1, t2, t3) for t3 < t2 < t1 andt3 < t1 < t2, and performing straightforward
integration, we obtain

E
[
e−rτC 1{Ti−1<τC<Ti}1{τA∧τB>τC }

]
=

c0

a0 + b0 + c0 + r

[
e−(a0+b0+c0+r)Ti−1 − e−(a0+b0+c0+r)Ti

]
,

and

E
[
τCe−rτC 1{Ti−1<τC<Ti}1{τA∧τB>τC }

]
= c0

[
e−(a0+b0+c0+r)Ti−1 − e−(a0+b0+c0+r)Ti

(a0 + b0 + c0 + r)2

+
Ti−1e−(a0+b0+c0+r)Ti−1 − Tie−(a0+b0+c0+r)Ti

a0 + b0 + c0 + r

]
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As a result, we obtain

A3(T ) =
c0

∆T

[
1− e−(a0+b0+c0+r)T

(a0 + b0 + c0 + r)2
− Te−(a0+b0+c0+r)T

a0 + b0 + c0 + r

]
− c0

(a0 + b0 + c0 + r)∆T
n∑

i=1

Ti−1

[
e−(a0+b0+c0+r)Ti−1 − e−(a0+b0+c0+r)Ti

]
.
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