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1. Introduction

Laplace transforms have been widely used in valuing financial derivatives. For
example, Carr and Madan (1999) propose Fourier transforms with respect to log-
strike prices; Geman and Yor (1993), Fu, Madan, and Wang (1999) use Laplace
transforms to price Asian options in the Black-Scholes setting; Laplace transforms
for double-barrier and lookback options under the CEV model are given in
Davydov and Linetsky (2001); Petrella and Kou (2004) use a recursion and
Laplace transforms to price discretely monitored barrier and lookback options.
For a survey of Laplace transforms in option pricing, see Craddock, Heath, Platen
(2000).

This paper aims at using one-dimensional and two-dimensional Laplace trans-
forms to price options under a double exponential jump diffusion model (Kou,
2002). The model is proposed to incorporate jumps into the classical Black-Scholes
model, while still retaining tractability for path-dependent options, such as barrier,
lookback, and American options. This is made possible mainly because the jump
size in this model has a two-sided exponential distribution, which leads to an ex-
plicit calculation of the distribution of first passage times, thanks to the memory-
less property of the exponential distribution; see Kou and Wang (2003, 2004).
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Some identities and representations (though not explicit calculations) based on the
Wiener-Hopf factorization for two-sided jump processes are given in Asmussen et
al. (2004), Boyarchenko and Levendorskiı̆ (2002), and Kyprianou and Pistorius
(2003); see also Avram et al. (2004) and Rogers (2000) for first passage times
related to one-sided jump processes. Numerical solutions based on solving par-
tial integro-differential equations are given in Cont and Voltchkova (2005) and
d’Haullin et al. (2003). For a survey of other alternative models for equity and
interest rate derivatives with jumps, see Cont and Tankov (2004a), Hull (2002),
Kijima (2002), and Glasserman and Kou (2004).

The current paper extends the study of option pricing under the double expo-
nential jump diffusion model in three ways. First, we provide an approximation
for finite-time horizon American options by generalizing the approximation in Ju
(1998) for the classical Brownian model to the case of jump diffusions. Second,
we give a simple formula for barrier options by using a two-dimensional Laplace
transform, one for the space and one for the time; the new formulae after two-
dimensional transforms are much simpler than the one-dimensional transform for-
mulae in Kou and Wang (2003), and the new formulae are much easier for im-
plementation. Third, we show ways to invert the Laplace transform via the Euler
inversion, which does not require high-precision calculation and leads to fast and
accurate results for a variety of options, including European call and put options,
American options, barrier and lookback options.

The rest of the paper is organized as follows: In Section 2 we review the double
exponential jump diffusion model and give some preliminary results for European
call and put options. In Section 3 an approximation for American options are given,
while we study barrier and lookback options in the last section.

2. Background and Preliminary Results

2.1. The Model

The double exponential jump diffusion model assumes the return process has
two components, a continuous part modeled as Brownian motion, and a jump part
with jumps having a double exponential distribution and with jump times driven by
a Poisson process. It is shown (Kou, 2002) that under such a model, when using
a HARA type utility function for a representative agent, the rational-expectations
equilibrium price of an option is given by the expectation of the discounted option
payoff under a risk-neutral measure1) P∗. UnderP∗, for the asset priceS (t) the
return processX(t) := log(S (t)/S (0)) is given by

X(t) =

(
r − δ − 1

2
σ2 − λζ

)
t + σW(t) +

N(t)∑
i=1

Yi, X(0) = 0, (1)

1) The measureP∗ is called risk-neutral sinceE∗(e−(r−δ)T S (T )) = S (0).
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where r is the risk-free rate,δ the continuous dividend yield,W(t) standard
Brownian motion,N(t) a Poisson Process with rateλ and Yi i.i.d. jumps with
double exponential distribution

f ∗Y (y) ∼ p · η1e−η1y1{y≥0} + q · η2eη2y1{y<0}, η1 > 1, η2 > 0.

The utility function of the representative agent will affect all the risk-neutral
parameters includingp, q ≥ 0, p+q = 1, λ ≥ 0, η1 > 1, η2 > 0, andζ := E∗

[
eY

]
−1

= pη1/(η1 − 1)+ qη2/(η2 + 1)− 1.
The moment generating function ofX(t) is

E∗
[
eθX(t)

]
= exp(G(θ)t), (2)

where the functionG(x) is defined as

G(x) := x

(
r − δ − 1

2
σ2 − λζ

)
+

1
2

x2σ2 + λ

(
pη1

η1 − x
+

qη2

η2 + x
− 1

)
, (3)

Kou and Wang (2003) show that forα > 0, the equationG(x) = α has exactly four
rootsβ1,α, β2,α,−β3,α,−β4,α, where

0 < β1,α < η1 < β2,α < ∞, 0 < β3,α < η2 < β4,α < ∞. (4)

In Appendix B we provide the formulae for the four roots of the equationG(x) = α,
which is essentially a quartic equation. The explicit formulae ofβ’s are crucial for
the Euler algorithm in Laplace inversion.

When pricing options we often also resort to another probability measure,
defined as̃P, under which the assetS (t) is the numeraire. Kou and Wang (2004)
show that, under̃P, X(T ) still has a double exponential distribution as in (1), with
drift r − δ + 1

2σ
2 − λζ and jump parameters

λ̃ = λ(ζ + 1), p̃ =
pη1

(ζ + 1)(η1 − 1)
, η̃1 = η1 − 1, η̃2 = η2 + 1.

The moment generating function ofX(t) under the alternative probability measure
P̃ is given byẼ

[
eθX(t)

]
= exp(G̃(θ)t), with

G̃(x) := x

(
r − δ + 1

2
σ2 − λ̃ζ̃

)
+

1
2

x2σ2 + λ̃

(
p̃η̃1

η̃1 − x
+

q̃η̃2

η̃2 + x
− 1

)
.

2.2. Preliminary Results for European Call and Put Options

In this section we derive Laplace transforms for pricing of European call and
put options. In principle, the Laplace transforms for the prices of European call
and put options can be obtained by using standard results from Fourier transforms
for general Ĺevy processes (see Cont and Tankov, 2004a, pp 361-362). For com-
pleteness, we shall include an explicit calculation for the double exponential jump
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model, as the proof is very simple using an idea of Carr and Madan (1999) along
with a change of the order of integration; and the proof is also useful for the deriva-
tion in the later sections.

To fix the notation, the price of a European call with maturityT and strikeK, is
given by

CT (k) = e−rT E∗
[
(S (T ) − K)+

]
= e−rT E∗

[(
S (0)eX(T ) − e−k

)+]
, (5)

wherek = − log(K), and the price of a similar European put

PT (k′) = e−rT E∗
[
(K − S (T ))+

]
= e−rT E∗

[(
ek′ − S (0)eX(T )

)+]
,

wherek′ = log(K). Alternatively, a change of numeriare argument easily yields
that the price of a call/put option can be computed as

CT (k) = S (0)Ψ̃C(k) − e−ke−rTΨC(k), PT (k′) = ek′e−rTΨP(k′) − S (0)Ψ̃P(k′), (6)

where
ΨC(k) = P∗(S (T ) ≥ e−k), Ψ̃C(k) = P̃(S (T ) ≥ e−k),

ΨP(k′) = P∗(S (T ) < ek′ ), Ψ̃P(k′) = P̃(S (T ) < ek′ ),

and P̃ is the probability measure defined in the previous section under which the
numeraire asset corresponds toS (t). Therefore, we can also price a call/put option
by inverting the Laplace transforms for these probabilities.

Lemma 1. The Laplace transform with respect to k of CT (k) in (5) is given by

f̂C(ξ) :=
∫ ∞

−∞
e−ξkCT (k)dk = e−rT S (0)ξ+1

ξ(ξ + 1)
exp(G(ξ + 1)T ), ξ > 0. (7)

and the Laplace transform with respect to k′ for the put option PT (k′) is

f̂P(ξ) :=
∫ ∞

−∞
e−ξk

′
PT (k′)dk′ = e−rT S (0)−(ξ−1)

ξ(ξ − 1)
exp(G(−(ξ − 1)T ), ξ > 1. (8)

The Laplace transforms with respect to k and k′ of ΨC(k) and ΨP(k′) are

f̂ΨC (ξ) :=
∫ ∞

−∞
e−ξkΨC(k)dk =

S (0)ξ

ξ
exp(G(ξ)T ), ξ > 0, (9)

f̂ΨP (ξ) :=
∫ ∞

−∞
e−ξk

′
ΨP(k′)dk′ = e−rT S (0)−ξ

ξ
exp(G(−ξ)T ), ξ > 0, (10)

The Laplace transforms of Ψ̃C(k) and Ψ̃P(k′) are similar except with G̃ in place of
G.
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Proof. By (5) the Laplace transform for the call option is

f̂C(ξ) = e−rT
∫ ∞

−∞
e−ξkE∗

[(
S (0)eX(T ) − e−k

)+]
dk.

Applying the Fubini theorem yields for everyξ > 0,

f̂C(ξ) = e−rT E∗
[∫ ∞

−∞
e−ξk

(
S (0)eX(T ) − e−k

)+
dk

]
= e−rT E∗

[∫ ∞

−X(T )−logS (0)
e−ξk

(
S (0)eX(T ) − e−k

)
dk

]
= e−rT E∗

[
S (0)eX(T )eξ(X(T )+logS (0)) 1

ξ
− e(ξ+1)(X(T )+logS (0)) 1

ξ + 1

]
= e−rT S (0)ξ+1

ξ (ξ + 1)
E∗

[
e(ξ+1)X(T )

]
,

from which (7) follows readily from (2). The proof of (8) is similar. For (9), note
that

f̂ΨC (ξ) =
∫ ∞

−∞
e−ξkE∗1{S (T )≥e−k} dk =

∫ ∞

−∞
e−ξkE∗1{k≥− logS (T )} dk.

By Fubini’s Theorem, we can interchange the order of integration and write

f̂ΨC (ξ) = E∗
[∫ ∞

− logS (T )
e−ξk dk

]
=

1
ξ

E∗
[
S (T )ξ

]
=

S (0)ξ

ξ
E∗

[
eξX(T )

]
,

from which (9) follows. The proof of (10) is similar. �

It is also possible to compute the sensitivities of the option by inverting the
derivatives of the option’s Laplace transform in (7), as detailed in the following
corollary.

Corollary 1. For any maturity T and strike K, we have

∆(CT (k)) =
∂

∂S (0)
CT (k) = L−1

ξ

(
e−rT S (0)ξ

ξ
exp(G(ξ + 1)T )

)
|k=− log K ,

Γ(CT (k)) =
∂2

∂2S (0)
CT (k) = L−1

ξ

(
e−rT S (0)ξ−1 exp(G(ξ + 1)T )

)
|k=− log K ,

∆(PT (k′)) =
∂

∂S (0)
PT (k′) = −L−1

ξ

(
e−rT S (0)−ξ

ξ
exp(G(−(ξ − 1)T )

)
|k′=log K ,

Γ(PT (k′)) =
∂2

∂2S (0)
PT (k′) = L−1

ξ

(
e−rT S (0)−(ξ+1) exp(G(−(ξ − 1)T )

)
|k′=log K ,

where L−1
ξ means the Laplace inversion with respect to ξ.
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Proof. The results follow easily by interchanging derivatives and integrals,
which is legitimate by using Theorem A. 12 on pp. 203-204 in Schiff (1999). �

We shall invert the transforms above in the complex plane, using the two-sided
extension of the Euler algorithm as described and implemented in Petrella (2004).
To check the accuracy of the inversion, in Table 1 we compare the inversion results
with the prices obtained by using the closed-form formulae derived by Kou (2002).
From the tables we see that the results from both inversion methods, LT1 and LT2,
agree to the fifth decimal with the analytical solutions for European call and put
options2).

3. American Options

For brevity we shall only consider finite-time horizon American put options.
Related American calls can be priced by exploiting the symmetric relationship in
Schroeder (1999)

CA(S (0),K, r, δ, σ, λ, p, η1, η2,T ) = PA(K, S (0), δ, r, σ, λ̃, p̃, η̃1, η̃2,T ).

To price American options we use a piecewise exponential approximation of the
early exercise boundary, as suggested in Ju (1998).

Extending previous work by Carr et al. (1992), Gukhal (2001) and Pham (1997)
show that under jump diffusion models the value at timet of an American put option
with maturityT > t on an asset with valueS t at timet (PA(S t, t,T ) from now on)
is given by

PA(S t, t,T ) = PE(S t, t,T ) +
∫ T

t
e−r(s−t)rKE∗

[
1{S s≤S ∗s }|S t

]
ds

− δ
∫ T

t
e−r(s−t)E∗

[
S s1{S s≤S ∗s }|S t

]
ds (11)

− λ
∫ T

t
e−r(s−t)E∗

[
{PA(VS s− , s,T ) − (K − VS s− )} 1{S s−≤S ∗

s− }1{VS s−>S ∗
s− }|S t

]
ds,

wherePE(S t, t,T ) is the value of the corresponding European put option, log(V) =
Y with an independent double exponential distribution, andS ∗s is the early exercise
boundary at times, such that if the stocks priceS s goes belowS ∗s at time s, then
it is optimal to exercise immediately. Gukhal (2001) provides an interpretation of
the four terms in (11): The value of an American put is given by the correspond-
ing European put option valuePE(X, t,T ) to which we add the present value of

2) Because of the difficulty in precise calculation of the normal distribution function and theHh(x)
function for very positive and negativex, it is possible that for very large values of the return variance
σ2T and for very high jump rateλ (though perhaps not within the typical parameter ranges seen in
finance applications) the closed-form formulae may not give accurate results. In such cases, the inver-
sion method still performs remarkably well, giving results as accurate as the ones presented herein.
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Table 1 Accuracy check, the Laplace inversion methods versus closed-form (CF) soluation. In the
table LT1 is obtained by inverting the Laplace transforms in (7) and (8), and LT2 by inverting seperately
the Laplace transforms of the probabilities in (9) andΨ̃. The running times of LT1 and LT2 are all less
than a tenth of a second for each option price on a Pentium IV, 1.8 Ghz, using a C++ implementation.

European Call - Double Exponential Jump-Diffusion Model
S 0 = 100,r= 0.05,σ = .3, T = 1.0, p = 0.6

η1 = η2 = 20.0 η1 = η2 = 40.0

Price LT1 Price LT2 Price CF Price LT1 Price LT2 Price CF

λ = 1.0 19.9547611 19.9547611 19.9547612 19.7633112 19.7633112 19.7633113
K = 90 λ = 3.0 20.4568712 20.4568712 20.4568712 19.8941074 19.8941074 19.8941074

λ = 5.0 20.9431418 20.9431418 20.9431418 20.0236702 20.0236702 20.0236702

λ = 1.0 14.5393158 14.5393158 14.5393157 14.3099234 14.3099234 14.3099234
K = 100 λ = 3.0 15.1347529 15.1347529 15.1347529 14.4657297 14.4657297 14.4657297

λ = 5.0 15.7050995 15.7050995 15.7050995 14.6195549 14.6195549 14.6195549

λ = 1.0 10.3484566 10.3484566 10.3484566 10.1033152 10.1033153 10.1033153
K = 110 λ = 3.0 10.9816866 10.9816866 10.9816867 10.2681125 10.2681125 10.2681125

λ = 5.0 11.5866915 11.5866915 11.5866915 10.4307424 10.4307424 10.4307424

European Put - Double Exponential Jump-Diffusion Model
S 0 = 100,r= 0.05,σ = .3, T = 1.0, p = 0.3

η1 = η2 = 20.0 η1 = η2 = 40.0

Price LT1 Price LT2 Price CF Price LT1 Price LT2 Price CF

λ = 1.0 5.5661158 5.5661156 5.5661156 5.3741449 5.3741447 5.3741447
K = 90 λ = 3.0 6.0666513 6.0666511 6.0666511 5.5051816 5.5051814 5.5051814

λ = 5.0 6.5483603 6.5483601 6.5483600 5.6348256 5.6348255 5.6348254

λ = 1.0 9.6534727 9.6534725 9.6534725 9.4317515 9.4317513 9.4317513
K = 100 λ = 3.0 10.2313887 10.2313885 10.2313885 9.5853257 9.5853255 9.5853255

λ = 5.0 10.7844632 10.7844630 10.7844630 9.7369176 9.7369174 9.7369174

λ = 1.0 14.9652637 14.9652635 14.9652634 14.7361097 14.7361095 14.7361094
K = 110 λ = 3.0 15.5650780 15.5650778 15.5650778 14.8961635 14.8961633 14.8961633

λ = 5.0 16.1404471 16.1404469 16.1404469 15.0542275 15.0542272 15.0542272

interest accrued on the strike price in the exercise region (IA, from now), subtract
the present value of dividends lost in the exercise region (DL, from now on), and
subtract the last term in (11), to be denoted byRCJ(t,T ), which represents the
rebalancing costs due to jumps from the early exercise region to the continuation
region and is absent in the case of pure-diffusion.

The termRCJ(t,T ) takes into account of the possibility of an upward jump that
will move the asset price from the early exercise to the continuation region. Conse-
quently, this term diminishes when the upward jump rateλp is small. Furthermore,
intuitively this term should also be very small whenever a jump from the early exer-
cise to the continuation region only causes minimal changes in the American option
value, which in particular requires that the overshoot over the exercise boundary is
not too large. This happens if the overshoot jump size has small mean, which in
the double exponential case is 1/η1. In other words, the termRCJ(t,T ) should be
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negligible for either smallλp or largeη1. The following proposition provides a
bound forRCJ(t,T ), which confirms our intuition.

Proposition 1. For T > t, under the double exponential jump diffusion model,
the following bound holds for RCJ(t,T )

RCJ(t,T ) ≤ λp
η1

η1 − 1
K · U(t,T ). (12)

where U(t,T ) =
∫ T

t
E∗

[(
S ∗

s−
S s−

)−(η1−1)
1{S s−≤S ∗

s− }|S t

]
ds.

The proof is deferred to the appendix. From (12) we can conclude that the term
RCJ(t,T ) may be neglected when we have small upside jump rateλp or when the
parameterη1 is large (in which case the integrand insideU(t,T ) will be small).
While we refer to Cont and Tankov (2004b) for more details on parameter estima-
tion under the double exponential model, we believe that in most practical cases
η1 > 10. Therefore, we should expect that the upper boundU(t,T ) in (12) is typi-
cally very small, and we can ignore the termRCJ(t,T ) in equation (11) for practical
usage.

Observing that at the optimal exercise boundaryS ∗t , PA(S ∗t , t,T ) = K − S ∗t , we
obtain an integral equation forS ∗t

K − S ∗t = PE(S ∗t , t,T ) +
∫ T

t
e−r(s−t)rKE∗

[
1{S s≤S ∗s }|S t = S ∗t

]
ds

−
∫ T

t
e−r(s−t)δE∗

[
S s1{S s≤S ∗s }|S t = S ∗t

]
ds,

ignoring the termRCJ(t,T ). To solve this integral equation, we shall use a piece-
wise exponential function representation for the early exercise boundary as in Ju
(1998).

More precisely, withn intervals of size∆T = T/n we approximate the optimal
boundaryS ∗t by ann-piece exponential functioñS t = exp(s∗i + αit) for t ∈ [(i −
1)∆T, i∆T ) with i = 1, .., n. In our numerical experiments, evenn = 3 or 5 will give
sufficient accuracy in most cases.

To determine the value of the constantss∗i andαi in each interval, we make use
of the “value-matching” and “smoothing-pasting” conditions (requiring the slope at
the contacting point to be−1 to make the curve smooth). Thus, starting fromi = n
going backwards toi = 1 we solve recursively atti = (i − 1)∆T the two unknowns
s∗i andαi in terms of the system of two equations, i.e., the value matching equation

K − S̃ i = PE(S̃ i, ti,T ) +
n∑

j=i

IA j(S̃ i, t j) −
n∑

j=i

DL j(S̃ i, t j), (13)
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and the smoothing pasting equation

−1 =
∂

∂S̃ i

PE(S̃ i, ti,T ) +
n∑

j=i

∂

∂S̃ i

IA j(S̃ i, t j) −
n∑

j=i

∂

∂S̃ i

DL j(S̃ i, t j), (14)

whereS̃ i ≡ S̃ ti = exp{s∗i + αiti},

IA j(S t, u) = rK
∫ t j+1

u
e−r(s−t)E∗

[
1{S s≤S̃ s}|S t

]
ds, t ≤ u, u ∈ [t j, t j+1),

DL j(S t, u) = δ
∫ t j+1

u
e−r(s−t)E∗

[
S s1{S s≤S̃ s}|S t

]
ds, t ≤ u, u ∈ [t j, t j+1).

This system of equations can be solved numerically via an iterative procedure to be
specified shortly, if the right-hand sides of (13) and (14) can be computed. To this
end, we shall derive Laplace transforms for these terms in the following theorem.

Theorem 1. Let ξ > 0, the Laplace transforms with respect to s∗i of IA j and
DL j are given by

f̂IA j(ξ) =
rK · S −ξt

ξ(G(−ξ) − r + ξα j)
e(G(−ξ)−r)(u−t)+ξα ju

[
e(G(−ξ)−r+ξα j)(t j+1−u) − 1

]
, (15)

f̂DL j(ξ) =
δ · S −(ξ−1)

t

ξ(G̃(−ξ) − δ + ξα j)
e(G̃(−ξ)−δ)(u−t)+ξα ju

[
e(G̃(−ξ)−δ+ξα j)(t j+1−u) − 1

]
, (16)

where

f̂IA j (ξ) =
∫ ∞

−∞
e−ξs

∗
i IA j(S t)ds∗j , f̂DL j(ξ) =

∫ ∞

−∞
e−ξs

∗
i DL j(S t)ds∗j .

Thus, for all j = 1, ..., n we have

∂

∂S t
IA j = −L−1

ξ

 rK · S −(ξ+1)
t

(G(−ξ) − r + ξα j)
e(G(−ξ)−r)(u−t)+ξα ju

[
e(G(−ξ)−r+ξα j)(t j+1−u) − 1

] ,
(17)

∂

∂S t
DL j = −L−1

ξ

 δ · (ξ − 1) · S −ξt

ξ(G̃(−ξ) − δ + ξα j)
e(G̃(−ξ)−δ)(u−t)+ξα ju

[
e(G̃(−ξ)−δ+ξα j)(t j+1−u) − 1

] ,
(18)

where L−1
ξ means the Laplace inversion with respect to ξ.
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Proof. By the Fubini theorem, the Laplace transform forIAj is

f̂IA j(ξ) = rK
∫ ∞

−∞
e−ξs

∗
j

∫ t j+1

u
e−r(s−t)E∗

[
1{S s≤exp(s∗j+α j s)} |S t

]
ds ds∗j

= rK
∫ t j+1

u
e−r(s−t)E∗

[∫ ∞

−∞
e−ξs

∗
j 1{s∗j≥logS s−α j s}ds∗j |S t

]
ds

=
rK
ξ

∫ t j+1

u
e−r(s−t)E∗

[
e−ξ(logS s−α j s) |S t

]
ds

=
rK · S −ξt

ξ

∫ t j+1

u
e−r(s−t)+ξα j sE∗

(S s

S t

)−ξ
|S t

 ds

=
rK · S −ξt

ξ

∫ t j+1

u
e−r(s−t)+ξα j s+G(−ξ)(s−t) ds,

from which (15) follows readily. Equation (16) can be derived in the same way
by using the measurẽP, and is thus omitted. Theorem A. 12 on pp. 203-204 in
Schiff (1999) justifies interchanging derivatives and integrals, which leads to (17)
and (18). �

In summary, we have the following algorithm.

The Algorithm:
1. Compute the approximation exercise boundaryS̃ by letting i going back-

wards fromn to 1 while, at each time pointti one solves the system of two equations
in (13) and (14) to gets∗i andαi, with the right hand side of (13) and (14) being
obtained by inverting Laplace transforms in Theorem 1. The system of two equa-
tions can be solved, for example, by using the multi-dimensional secant method by
Broydn (as implemented in Press et al., 1993).

2. After the boundarỹS is obtained, at any timet ∈ [ti, ti+1), the value of the
American put option is given by

PE(S t, t,T ) + IAi(S t, t) +
n∑

j=i+1

IA j(S t, t j) − DLi(S t, t) −
n∑

j=i+1

DL j(S t, t j).

Note thatIA j andDLj involve bothS t andS̃ .
In our numerical implementation, we use the two-sided Euler algorithm in

Petrella (2004) to do inversion in Step 1. The initial values for the secant method
is obtained by settingαi = 0 and using the critical value in the approximation
given by Kou and Wang (2004) as an initial value ofS ∗i .

In Tables 2 and 3 we report the prices using a 3 and 5-piece exponential func-
tion approximation of the boundary (3EXP and 5EXP respectively, from now on
and in the tables). We compare our results with the “true” values computed using
the tree method as in Amin (1993) and the prices obtained by the analytic approx-
imation in Kou and Wang (2004) (KW from now on and in the tables). In Amin’s
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tree method we use 1600 steps and the two-point Richardson extrapolation for the
square-root convergence rate, ensuring an accuracy of about a penny. The running
time of the new algorithm is less than 2 seconds for 3EXP and 4 seconds for 5EXP,
compared to more than an hour required by the Amin’s tree method. In most cases
3EXP provides an estimate of the option price more accurate than KW, and, as we
would expect, 5EXP has even better accuracy. We also find that adding additional
segments to the piecewise function does not significantly increase the accuracy of
the results beyond what we get using 5EXP.

While here we focus on jump diffusion processes, one may speculate that the
method might work for general processes, so long as the overshoot from upward
jumps is not too large so that the rebalance cost term can still be ignored, since the
calculation in Theorem 1 can be easily extended to more general models. This will
be on our future research agenda.

4. Barrier and Lookback Options

Barrier and lookback options are among the most popular path-dependent deriva-
tives traded in exchanges and over-the-counter markets worldwide. The payoffs of
these options depend on the extrema of the underlying asset. For a complete de-
scription of these and other related contracts we refer the reader to Hull (2002).
To study barrier and lookback options, it is crucial to understand the first passage
timesτb defined by

τb := inf {t ≥ 0; X(t) ≥ b} , b > 0,

whereX(τb) := lim sup
t→∞

X(t), on the set{τb = ∞} . In the standard Black-Scholes

setting, closed-form solutions for barrier and lookback options have been derived
by Merton (1973) and Goldman et al. (1979). For the double exponential jump
diffusion model, Kou and Wang (2003) shows that the memoryless property of the
exponential distribution leads to (1) the conditional memoryless property of the
jump overshoot; (2) the conditional independence of the overshoot,X(τb) − b, and
the first passage timeτb, given that the overshoot is bigger than 0; (3) and analytical
solutions for the Laplace transforms ofτb.

4.1. Pricing Barrier Options

We will focus on the pricing of an up-and-in call option (UIC, from now on);
other types of barrier options can be priced similarly and using the symmetries
described in the Appendix of Petrella and Kou (2004) and Haug (1999). The price
of an UIC is given by

UIC(k,T ) = E∗
[
e−rT

(
S (T ) − e−k

)+
1{τb<T }

]
, (19)

whereH > S (0) is the barrier level,k = − log(K) the transformed strike andb =
log(H/S (0)). Using a change of numeraire argument, Kou and Wang (2004) obtain

UIC(k,T ) = S (0)Ψ̃UI(k,T ) − Ke−rTΨUI(k,T ), (20)
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Table 2 Comparison of the new approximation with the approximation in Kou and Wang (2004) with
S (0) = 100 andT = 0.25 years. The “true price” is caculated by Amin’s tree method. The CPU time
for Amin’s method is more than one hour, while the CPU times for 3EXP and 5EXP are about 2 and 4
seconds, respectively.

American Put - Double Exponential Jump-Diffusion Model

Parameter Values True 3EXP 5EXP KW

K σ λ η1 η2 Value Value Time Rel. Err. Value Time Rel. Err. Value Rel. Err.

110 0.2 3 25 25 10.48 10.45 1.23 -0.3% 10.46 3.05 -0.2% 10.43 -0.5%
110 0.2 3 25 50 10.42 10.40 1.29 -0.2% 10.41 3.27 -0.1% 10.38 -0.4%
110 0.2 3 50 25 10.36 10.36 1.36 0.0% 10.36 2.83 0.0% 10.31 -0.5%
110 0.2 3 50 50 10.31 10.31 1.41 0.0% 10.31 3.44 0.0% 10.26 -0.5%
110 0.2 7 25 25 10.81 10.78 1.52 -0.3% 10.80 3.65 -0.1% 10.79 -0.2%
110 0.2 7 25 50 10.68 10.65 1.43 -0.3% 10.66 3.66 -0.2% 10.64 -0.4%
110 0.2 7 50 25 10.51 10.51 1.50 0.0% 10.51 2.26 0.0% 10.47 -0.4%
110 0.2 7 50 50 10.39 10.39 1.37 0.0% 10.39 2.32 0.0% 10.34 -0.5%
110 0.3 3 25 25 11.90 11.89 1.35 -0.1% 11.90 2.41 0.0% 11.86 -0.3%
110 0.3 3 25 50 11.84 11.83 1.32 -0.1% 11.83 2.41 -0.1% 11.79 -0.4%
110 0.3 3 50 25 11.78 11.78 1.71 0.0% 11.78 2.65 0.0% 11.73 -0.4%
110 0.3 3 50 50 11.72 11.72 1.82 0.0% 11.72 2.69 0.0% 11.67 -0.4%
110 0.3 7 25 25 12.23 12.21 1.22 -0.2% 12.22 2.95 -0.1% 12.19 -0.3%
110 0.3 7 25 50 12.09 12.07 1.35 -0.2% 12.08 3.00 -0.1% 12.05 -0.3%
110 0.3 7 50 25 11.94 11.95 1.45 0.1% 11.95 2.73 0.1% 11.90 -0.3%
110 0.3 7 50 50 11.80 11.80 1.29 0.0% 11.81 2.59 0.1% 11.75 -0.4%

100 0.2 3 25 25 3.78 3.76 1.25 -0.5% 3.77 3.08 -0.3% 3.78 0.0%
100 0.2 3 25 50 3.66 3.65 1.27 -0.3% 3.65 3.29 -0.3% 3.66 0.0%
100 0.2 3 50 25 3.62 3.62 1.31 0.0% 3.62 2.88 0.0% 3.62 0.0%
100 0.2 3 50 50 3.50 3.50 1.42 0.0% 3.50 3.00 0.0% 3.50 0.0%
100 0.2 7 25 25 4.26 4.25 1.51 -0.2% 4.26 3.48 0.0% 4.27 0.2%
100 0.2 7 25 50 4.01 4.00 1.43 -0.2% 4.00 3.69 -0.2% 4.02 0.2%
100 0.2 7 50 25 3.91 3.91 1.71 0.0% 3.91 2.29 0.0% 3.91 0.0%
100 0.2 7 50 50 3.64 3.64 1.36 0.0% 3.64 2.34 0.0% 3.64 0.0%
100 0.3 3 25 25 5.63 5.62 1.40 -0.2% 5.63 2.44 0.0% 5.62 -0.2%
100 0.3 3 25 50 5.55 5.54 1.27 -0.2% 5.54 2.40 -0.2% 5.54 -0.2%
100 0.3 3 50 25 5.50 5.50 1.75 0.0% 5.51 2.64 0.2% 5.50 0.0%
100 0.3 3 50 50 5.42 5.42 1.88 0.0% 5.42 2.59 0.0% 5.41 -0.2%
100 0.3 7 25 25 5.99 5.98 1.19 -0.2% 5.99 2.95 0.0% 5.99 0.0%
100 0.3 7 25 50 5.81 5.80 1.32 -0.2% 5.80 2.95 -0.2% 5.81 0.0%
100 0.3 7 50 25 5.71 5.71 1.49 0.0% 5.71 2.64 0.0% 5.71 0.0%
100 0.3 7 50 50 5.52 5.52 1.29 0.0% 5.52 2.55 0.0% 5.51 -0.2%

90 0.2 3 25 25 0.75 0.74 1.28 1.3% 0.74 3.21 -1.3% 0.76 1.3%
90 0.2 3 25 50 0.65 0.65 1.30 0.0% 0.65 3.25 0.0% 0.66 1.5%
90 0.2 3 50 25 0.68 0.68 1.23 0.0% 0.68 2.97 0.0% 0.69 1.5%
90 0.2 3 50 50 0.59 0.59 1.44 0.0% 0.59 2.89 0.0% 0.60 1.7%
90 0.2 7 25 25 1.03 1.02 1.51 -1.0% 1.02 3.18 -1.0% 1.04 1.0%
90 0.2 7 25 50 0.82 0.82 1.43 0.0% 0.82 3.65 0.0% 0.83 1.2%
90 0.2 7 50 25 0.87 0.87 1.68 0.0% 0.87 2.26 0.0% 0.88 1.1%
90 0.2 7 50 50 0.66 0.66 1.45 0.0% 0.66 2.47 0.0% 0.67 1.5%
90 0.3 3 25 25 1.92 1.91 1.34 -0.5% 1.92 2.40 0.0% 1.93 0.5%
90 0.3 3 25 50 1.85 1.84 1.23 -0.5% 1.84 2.39 -0.5% 1.86 0.5%
90 0.3 3 50 25 1.84 1.84 1.69 0.0% 1.84 2.60 0.0% 1.85 0.5%
90 0.3 3 50 50 1.77 1.77 1.65 0.0% 1.77 2.56 0.0% 1.78 0.6%
90 0.3 7 25 25 2.19 2.18 1.38 -0.5% 2.18 2.97 -0.5% 2.20 0.5%
90 0.3 7 25 50 2.03 2.02 1.28 -0.5% 2.02 2.96 -0.5% 2.03 0.0%
90 0.3 7 50 25 2.01 2.00 1.39 -0.5% 2.01 2.61 0.0% 2.02 0.5%
90 0.3 7 50 50 1.84 1.84 1.43 0.0% 1.84 2.54 0.0% 1.85 0.5%



Pricing Path-Dependent Options with Jump Risk via Laplace Transforms 13

Table 3 Comparison of the new approximation with the true price and the approximation in Kou and
Wang (2003) withS (0) = 100 andT = 1.0 years.

American Put - Double Exponential Jump-Diffusion Model

Parameter Values True 3EXP 5EXP KW

K σ λ η1 η2 Value Value Time Rel. Err. Value Time Rel. Err. Value Rel. Err.

110 0.2 3 25 25 12.37 12.33 1.06 -0.3% 12.35 2.48 -0.2% 12.32 -0.4%
110 0.2 3 25 50 12.17 12.12 1.06 -0.4% 12.14 2.48 -0.2% 12.11 -0.5%
110 0.2 3 50 25 12.04 12.05 1.08 0.1% 12.06 2.55 0.2% 12.00 -0.3%
110 0.2 3 50 50 11.84 11.84 1.10 0.0% 11.84 2.44 0.0% 11.78 -0.5%
110 0.2 7 25 25 13.29 13.23 1.02 -0.5% 13.26 3.06 -0.2% 13.27 -0.2%
110 0.2 7 25 50 12.85 12.76 1.21 -0.7% 12.78 3.25 -0.5% 12.79 -0.5%
110 0.2 7 50 25 12.54 12.57 1.10 0.2% 12.58 2.30 0.3% 12.54 0.0%
110 0.2 7 50 50 12.08 12.08 1.08 0.0% 12.09 2.57 0.1% 12.03 -0.4%
110 0.3 3 25 25 15.79 15.77 1.12 -0.1% 15.78 2.58 -0.1% 15.76 -0.2%
110 0.3 3 25 50 15.63 15.61 1.11 -0.1% 15.62 2.55 -0.1% 15.59 -0.3%
110 0.3 3 50 25 15.51 15.53 1.39 0.1% 15.53 2.84 0.1% 15.49 -0.1%
110 0.3 3 50 50 15.36 15.36 1.34 0.0% 15.36 2.80 0.0% 15.32 -0.3%
110 0.3 7 25 25 16.51 16.50 1.03 -0.1% 16.51 2.96 0.0% 16.51 0.0%
110 0.3 7 25 50 16.17 16.13 1.05 -0.2% 16.14 3.15 -0.2% 16.14 -0.2%
110 0.3 7 50 25 15.89 15.94 1.15 0.3% 15.94 3.13 0.3% 15.91 0.1%
110 0.3 7 50 50 15.53 15.55 1.14 0.1% 15.56 2.90 0.2% 15.52 -0.1%

100 0.2 3 25 25 6.60 6.57 1.04 -0.5% 6.58 2.40 -0.3% 6.62 0.3%
100 0.2 3 25 50 6.36 6.32 1.04 -0.6% 6.33 2.42 -0.5% 6.37 0.2%
100 0.2 3 50 25 6.26 6.26 1.08 0.0% 6.27 2.46 0.2% 6.29 0.5%
100 0.2 3 50 50 6.01 6.00 1.09 -0.2% 6.01 2.32 0.0% 6.03 0.3%
100 0.2 7 25 25 7.57 7.53 1.03 -0.5% 7.55 3.01 -0.3% 7.62 0.7%
100 0.2 7 25 50 7.07 7.01 1.22 -0.8% 7.02 3.50 -0.7% 7.09 0.3%
100 0.2 7 50 25 6.83 6.85 1.09 0.3% 6.85 2.29 0.3% 6.88 0.7%
100 0.2 7 50 50 6.28 6.28 1.05 0.0% 6.28 2.37 0.0% 6.31 0.5%
100 0.3 3 25 25 10.10 10.09 1.11 -0.1% 10.09 2.40 -0.1% 10.13 0.3%
100 0.3 3 25 50 9.94 9.92 1.12 -0.2% 9.92 2.46 -0.2% 9.96 0.2%
100 0.3 3 50 25 9.83 9.84 1.36 0.1% 9.85 2.83 0.2% 9.87 0.4%
100 0.3 3 50 50 9.67 9.67 1.34 0.0% 9.68 2.83 0.1% 9.70 0.3%
100 0.3 7 25 25 10.81 10.80 1.03 -0.1% 10.81 2.96 0.0% 10.86 0.5%
100 0.3 7 25 50 10.46 10.43 1.04 -0.3% 10.44 3.16 -0.2% 10.49 0.3%
100 0.3 7 50 25 10.22 10.26 1.15 0.4% 10.26 3.18 0.4% 10.29 0.7%
100 0.3 7 50 50 9.85 9.86 1.13 0.1% 9.87 3.66 0.2% 9.89 0.4%

90 0.2 3 25 25 2.91 2.89 1.05 -0.7% 2.90 2.43 -0.3% 2.96 1.7%
90 0.2 3 25 50 2.70 2.68 1.04 -0.7% 2.69 2.38 -0.4% 2.75 1.9%
90 0.2 3 50 25 2.66 2.67 1.08 0.4% 2.67 2.55 0.4% 2.72 2.3%
90 0.2 3 50 50 2.46 2.45 1.08 -0.4% 2.45 2.30 -0.4% 2.51 2.0%
90 0.2 7 25 25 3.68 3.66 1.03 -0.5% 3.67 2.96 -0.3% 3.75 1.9%
90 0.2 7 25 50 3.24 3.20 1.21 -1.2% 3.21 3.23 -0.9% 3.29 1.5%
90 0.2 7 50 25 3.12 3.14 1.09 0.6% 3.14 2.28 0.6% 3.20 2.6%
90 0.2 7 50 50 2.66 2.66 1.08 0.0% 2.66 2.43 0.0% 2.72 2.3%
90 0.3 3 25 25 5.79 5.78 1.15 -0.2% 5.79 2.48 0.0% 5.85 1.0%
90 0.3 3 25 50 5.65 5.63 1.11 -0.4% 5.63 2.46 -0.4% 5.70 0.9%
90 0.3 3 50 25 5.58 5.58 1.37 0.0% 5.58 2.83 0.0% 5.64 1.1%
90 0.3 3 50 50 5.43 5.42 1.34 -0.2% 5.43 2.78 0.0% 5.49 1.1%
90 0.3 7 25 25 6.42 6.40 1.03 -0.3% 6.41 2.95 -0.2% 6.49 1.1%
90 0.3 7 25 50 6.09 6.07 1.03 -0.3% 6.07 3.11 -0.3% 6.15 1.0%
90 0.3 7 50 25 5.92 5.94 1.15 0.3% 5.94 3.92 0.3% 6.00 1.4%
90 0.3 7 50 50 5.59 5.59 1.14 0.0% 5.59 3.55 0.0% 5.65 1.1%
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where

ΨUI(k,T ) = P∗(S (T ) ≥ e−k, τb < T ), Ψ̃UI(k,T ) = P̃(S (T ) ≥ e−k, τb < T ),
(21)

and show how to price an UIC option by inverting the one-dimensional Laplace
transforms for the joint distributions in (20) as in Kou and Wang (2003).

Here we present an alternative approach that relies on a two-dimensional
Laplace transform for both the option price in (19) and the probabilities in (20).
The formulae after doing two-dimensional transforms become much simpler
than the one-dimensional formulae in Kou and Wang (2003), which involve many
special functions.

Theorem 2. For ξ and α such that 0 < ξ < η1 − 1 and α > max(G(ξ + 1)− r,0)
(such a choice of ξ and α is possible for all small enough ξ as G(1)− r = −δ < 0),
The Laplace transform with respect to k and T of UIC(k,T ) is given by

f̂UIC(ξ, α) =

∫ ∞

0

∫ ∞

−∞
e−ξk−αT UIC(k,T )dkdT

=
Hξ+1

ξ(ξ + 1)
1

r + α −G(ξ + 1)

(
A(r + α)

η1

η1 − (ξ + 1)
+ B(r + α)

)
,

(22)

where

A(h) := E∗
[
e−hτb 1{X(τb)>b}

]
=

(η1 − β1,h)
(
β2,h − η1

)
η1

(
β2,h − β1,h

) [
e−bβ1,h − e−bβ2,h

]
, (23)

B(h) := E∗
[
e−hτb 1{X(τb=b}

]
=
η1 − β1,h

β2,h − β1,h
e−bβ1,h +

β2,h − η1

β2,h − β1,h
e−bβ2,h , (24)

with b = log(H/S (0)). If 0 < ξ < η1 and α > max(G(ξ),0) (again this choice of ξ
and α is possible for all ξ small enough as G(0) = 0), then the Laplace transform
with respect to k and T of ΨUI(k,T ) in (21) is

f̂ΨUI (ξ, α) =
∫ ∞

−∞

(∫ ∞

0
e−ξk−αTΨUI(k,T )dT

)
dk =

Hξ

ξ

1
α −G(ξ)

(
A(α)

η1

η1 − ξ + B(α)

)
.

(25)

The Laplace transforms with respect to k and T of Ψ̃UI(k,T ) is given similarly with
G̃ replacing G and the functions Ã and B̃ defined similarly.
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Proof. It follows from (19) and the Fubini theorem that

f̂UIC(ξ, α) =

∫ ∞

0

∫ ∞

−∞
e−ξk−(r+α)T E∗

[(
S (T ) − e−k

)+
1{τb<T }

]
dkdT

= E∗
[∫ ∞

0
e−(r+α)T 1{τb<T }

(∫ ∞

− logS (T )
e−ξk

(
S (T ) − e−k

))
dkdT

]
=

1
ξ(ξ + 1)

E∗
[∫ ∞

0
e−(r+α)T 1{τb<T }S (T )ξ+1dT

]
=

1
ξ(ξ + 1)

E∗
[
e−(r+α)τb

∫ ∞

0
e−(r+α)tS (t + τb)ξ+1dt

]
.

However, the strong Markov property ofX implies that

E∗
[∫ ∞

0
e−(r+α)tS (t + τb)ξ+1dt |Fτb

]
= S (τb)ξ+1

∫ ∞

0
e−(r+α)teG(ξ+1)t dt

=
S (τb)ξ+1

r + α −G(ξ + 1)
.

Therefore,

f̂UIC(ξ, α)

=
1

ξ(ξ + 1)
1

r + α −G(ξ + 1)
E∗

[
e−(r+α)τb S (τb)ξ+1

]
=

1
ξ(ξ + 1)

1
r + α −G(ξ + 1)

{
E∗

[
e−(r+α)τb Hξ+11{X(τb)>b}

]
E∗[e(ξ+1)χ+]

+E∗
[
e−(r+α)τb Hξ+11{X(τb)=b}

]}
=

Hξ+1

ξ(ξ + 1)
1

r + α −G(ξ + 1)

{
A(r + α)

η1

η1 − (ξ + 1)
+ B(r + α)

}
,

whereχ+ is an exponential random variable with rateη1. Here the second equality
follows from a conditional independent and memoryless property shown in Kou
and Wang (2003). The calculations ofA(h) andB(h) are also from Kou and Wang
(2003).

For the Laplace transform of the probabilityΨUI , we have

f̂ΨUI (ξ, α) =

∫ ∞

0

[∫ ∞

−∞
e−ξk−αT · E∗

{
1{k>− log(S (T )), τb<T}

}
dk

]
dT

= E∗
{∫ ∞

τb

[∫ ∞

− logS (T )
e−ξk−αT dk

]
dT

}
=

1
ξ

E∗
{∫ ∞

τb

S (T )ξe−αT dT

}
=

1
ξ

E∗
{

e−ατb

∫ ∞

0
{S (t + τb)}ξe−αtdt

}
.
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The strong Markov property implies that

E∗
{∫ ∞

0
{S (t + τb)}ξe−αtdt|Fτb

}
= {S (τb)}ξ

∫ ∞

0
etG(ξ)e−αtdt =

{S (τb)}ξ
α −G(ξ)

.

Therefore,

f̂ΨUI (ξ, α)

=
1
ξ

1
α −G(ξ)

E∗
{
e−ατb {S (τb)}ξ

}
=

1
ξ

1
α −G(ξ)

{
E∗

[
e−ατb Hξ1{X(τb)>b}

]
E∗[eξχ+] + E∗

[
e−ατb Hξ1{X(τb)=b}

]}
=

Hξ

ξ

1
α −G(ξ)

{
A(α)

η1

η1 − ξ + B(α)

}
,

by the conditional memoryless property, from which (25) follows. �

In Table 4 we price up-and-in calls using the two-dimensional transform herein
and compare the results with the one-dimensional transform in Kou and Wang
(2003) (KW from now on and in the table) and Monte Carlo simulation (MC). LT1
indicates the price obtained by inverting (22), LT2 uses (20), in which the probabil-
ities are obtained by inverting the transforms in (25). To perform the inversion, we
use the two-sided Euler method as in Petrella (2004). Our results from LT1 match
to the fourth digit the ones obtained by KW in which a one-dimensional transform
is inverted via the Gaver-Stehfest (GS) algorithm. From the tables we see that
three inversion methods provide values which are all within the 95% confidence
interval obtained via Monte Carlo simulation. Furthermore, the results obtained
either inverting directly (22) or inverting (25) and then using (20) differ for less
than 2× 10−4, confirming the accuracy of the transform approach.

The LT1 and LT2 algorithms have three advantages compared to KW: (1) The
formulae for the two-dimensional transforms are much easier to compute, sim-
plifying the implementation of the methods. (2) Although we are inverting two-
dimensional transforms, the LT methods are significantly faster, mainly because of
the simplicity in the Laplace transform formulae. (3) High-precision calculation
(with about 80 digit accuracy) as required by the GS inversion is no longer needed
in the EUL inversion. The EUL inversion is made possible mainly because of the
simplicity of the two-dimensional inversion formulae in Theorem 2, as no special
functions are involved and all the roots ofG(x) are given in analytical forms.

4.2. Pricing Lookback Options via Euler Inversion

For simplicity, we shall focus on a standard lookback put option, while the
derivation for a standard lookback call is similar. The price of a standard lookback
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Table 4 The two dimensional Laplace inversion using the Euler Method (EUL) vs. Monte Carlo
(MC) and the one-dimensional inversion in Kou and Wang (2004) via the Gaver-Stehfest inversion
method (GS). The MC (along with its standard error reported in the brackets) is obtained by using
16,000 time steps and 20,000 simulation paths. Note that the MC underestimates the option’s price due
to the systematic discretization bias in simulation. On a Pentium IV 1.8 GHz, the EUL requires about 6
and 11 seconds for LT1 and LT2, respectively, in a C++ implementation, while the GS takes about 70
seconds running in Mathematica. A precision of 12 digits will suffice for the EUL, compared with the
80 digits accuracy required by the GS.

Up-and-In Call - Double Exponential Jump-Diffusion Model, VaryingH
S 0 = 100,K = 102,r = 0.05,σ = .2, T = 1.0, p = 0.5

η1 = η2 = 30.0 η1 = η2 = 40.0

H λ Price LT1 Price LT2 Price KW Price MC Price LT1 Price LT2 Price KW Price MC

0.5 9.52560 9.52560 9.52565 9.50518 9.48082 9.48082 9.48082 9.45745
(0.10102) (0.10038)

105 1.0 9.62850 9.62850 9.62850 9.63707 9.53974 9.53974 9.53975 9.54124
(0.10311) (0.10162)

2.0 9.83076 9.83076 9.83073 9.84272 9.65637 9.65636 9.65634 9.65847
(0.10602) (0.10329)

0.5 9.46795 9.46787 9.46795 9.44522 9.42263 9.42256 9.42264 9.39553
(0.10124) (0.10061)

110 1.0 9.57222 9.57214 9.57222 9.58343 9.48243 9.48236 9.48244 9.48706
(0.10330) (0.10182)

2.0 9.77707 9.77699 9.77706 9.78397 9.60074 9.60067 9.60074 9.60157
(0.10623) (0.10350)

0.5 9.21925 9.21913 9.21924 9.19926 9.17155 9.17143 9.17156 9.15492
(0.10195) (0.10131)

115 1.0 9.32954 9.32942 9.32955 9.33598 9.23512 9.23501 9.23514 9.23907
(0.10402) (0.10253)

2.0 9.54573 9.54562 9.54574 9.54535 9.36072 9.36060 9.36072 9.35698
(0.10693) (0.10421)

Up-and-In Call - Double Exponential Jump-Diffusion Model, VaryingK
S 0 = 100,H = 115,r = 0.05,σ = .2, T = 1.0, p = 0.5

η1 = η2 = 30.0 η1 = η2 = 40.0

K λ Price LT1 Price LT2 Price KW Price MC Price LT1 Price LT2 Price KW Price MC

0.5 9.64680 9.64686 9.64682 9.62480 9.59898 9.59903 9.5990 9.58070
(0.10435) (0.10371)

101 1.0 9.75755 9.75760 9.75757 9.76223 9.66291 9.66297 9.66293 9.66519
(0.10640) (0.10493)

2.0 9.97456 9.97461 9.97457 9.97351 9.78917 9.78923 9.78919 9.78551
(0.10929) (0.10658)

0.5 7.98683 7.98689 7.98685 7.97048 7.93950 7.93956 7.93952 7.92508
(0.09488) (0.09423)

105 1.0 8.09581 8.09586 8.09582 8.10582 8.00209 8.00215 8.00211 8.00779
(0.09698) (0.09548)

2.0 8.30966 8.30971 8.30967 8.30908 8.12582 8.12588 8.12584 8.12085
(0.09995) (0.09720)

0.5 6.47897 6.47905 6.47897 6.46558 6.43239 6.43247 6.43241 6.41893
(0.08571) (0.08506)

109 1.0 6.58586 6.58593 6.58588 6.59610 6.49355 6.49363 6.49357 6.49715
(0.08788) (0.08635)

2.0 6.79588 6.79595 6.79590 6.79550 6.61457 6.61465 6.61459 6.60972
(0.09092) (0.08811)
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put is given by

LP(T ) = E∗
[
e−rT

{
max

{
M, max

0≤t≤T
S (t)

}
− S (t)

}]
= E∗

[
e−rT max

{
M, max

0≤t≤T
S (t)

}]
− S (0),

whereM ≥ S (0) is the prefixed maximum at time 0. For anyξ > 0, the Laplace
transform of the lookback put with respect to the time to maturityT is given by
(see Kou and Wang, 2004)∫ ∞

0
e−αT LP(T )dT =

S (0)Aα
Cα

(
S (0)

M

)β1,α+r−1

+
S (0)Bα

Cα

(
S (0)

M

)β2,α+r−1

+
M
α + r

− S (0)
α
,

(26)
where

Aα =

(
η1 − β1,α+r

)
β2,α+r

β1,α+r − 1
, Bα =

(
β2,α+r − η1

)
β1,α+r

β2,α+r − 1
, Cα = (α+r)η1

(
β2,α+r − β1,α+r

)
,

andβ1,α+r, β2,α+r are the two positive roots of the equationG(x) = α + r, as in (4).
We shall invert the transform in (26) in the complex domain by using the Euler

inversion algorithm (EUL from now on) developed by Abate and Whitt (1995),
rather than in the real domain by the Gaver-Stehfest algorithm (GS) as in Kou and
Wang (2004). The main reason for this is that the EUL inversion (which is carried
out in the complex-domain) does not require the high numerical precision of the
GS: A precision of 12 digits will suffice for the EUL, compared with the 80 digits
accuracy required by the GS. The EUL algorithm is made possible partly due to an
explicit formula for the roots ofG(x) given in Appendix B.

In Table 5 the results of a standard lookback put from both the EUL and GS
are compared to Monte Carlo simulation. The difference between the EUL and GS
results are small, always less than 3×10−5. Ultimately, the EUL implementation is
preferable, since it’s simple to implement, and it converges fast without requiring
high numerical precision as in the GS.
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Table 5 The one-dimensional Laplace inversion using the Euler Method (EUL) vs. Monte Carlo (MC)
and the Gaver-Stehfest inversion (GS). The MC (along with the standard errors reported in the brackets)
is obtained by using 16,000 time steps and 20,000 simulation paths. Note that the MC underestimates
the option’s price due to the systematic discretization bias in simulation. On a Pentium IV 1.8 GHz,
the EUL requires less than a tenth of a second in C++, while the GS takes about a second running in
Mathematica. However, a precision of 12 digits will suffice for the EUL, compared with the 80 digits
accuracy required by the GS.

Lookback Put - Double Exponential Jump-Diffusion Model
S 0 = 100,r= 0.05,σ = .3, T = 1.0, p = 0.6

η1 = η2 = 20.0 η1 = η2 = 40.0

Price EU Price GS Price MC Price EU Price GS Price MC

λ = 1.0 24.23879 24.23882 24.16946 23.77979 23.77982 23.70445
(0.10869) (0.10677)

M = 105 λ = 3.0 25.48160 25.48163 25.37234 24.12663 24.12666 24.03585
(0.11432) (0.10842)

λ = 5.0 26.69433 26.69436 26.56639 24.47053 24.47056 24.38635
(0.11851) (0.10919)

λ = 1.0 24.52690 24.52693 24.47471 24.06711 24.06713 24.00876
(0.10962) (0.10772)

M = 107 λ = 3.0 25.77029 25.77032 25.68097 24.41321 24.41324 24.33702
(0.11522) (0.10936)

λ = 5.0 26.98331 26.98334 26.86858 24.75636 24.75639 24.68697
(0.11933) (0.11010)

λ = 1.0 24.90497 24.90499 24.87471 24.44494 24.44497 24.40841
(0.11087) (0.10902)

M = 109 λ = 3.0 26.14708 26.14711 26.08224 24.78954 24.78957 24.73374
(0.11643) (0.11064)

λ = 5.0 27.35861 27.35864 27.26071 25.13121 25.13124 25.08016
(0.12045) (0.11136)

λ = 1.0 25.36984 25.36987 25.36425 24.91037 24.91040 24.89819
(0.11245) (0.11065)

M = 111 λ = 3.0 26.60843 26.60846 26.56792 25.25268 25.25271 25.22194
(0.11794) (0.11226)

λ = 5.0 27.81635 27.81638 27.73967 25.59210 25.59212 25.56427
(0.12187) (0.11296)

λ = 1.0 25.91832 25.91835 25.93659 25.46031 25.46035 25.47421
(0.11434) (0.11258)

M = 113 λ = 3.0 27.15091 27.15094 27.13539 25.79953 25.79955 25.79597
(0.11974) (0.11416)

λ = 5.0 28.35295 28.35298 28.29797 26.13593 26.13595 26.13531
(0.12358) (0.11485)

λ = 1.0 26.54712 26.54715 26.58930 26.09154 26.09157 26.13197
(0.11650) (0.11480)

M = 115 λ = 3.0 27.77118 27.77121 27.78305 26.42690 26.42693 26.45186
(0.12181) (0.11637)

λ = 5.0 28.96505 28.96508 28.93415 26.75954 26.75957 26.78472
(0.12556) (0.11703)
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A. Appendix: Proof of Proposition 1

We assume for notational simplicity thatt = 0.We want to bound the quantity

λ

∫ T

0
e−rsE∗

[
{PA(VS s− , s,T ) − (K − VS s− )} 1{S s−≤S ∗

s− }1{VS s−>S ∗
s− }

]
ds. (27)

We assumer ≥ δ, since, if r < δ, it is never optimal to exercise the Ameri-
can put option early and its price is given by the equivalent European put option
price. Whenr ≥ δ, Chen and Yeh (2002) provide the upper boundPA(S s, s,T ) <
E∗

[
max

(
K − e(δ−r)(T−s)S T ,0

)
|S s

]
. We also know that

E∗
[
max

(
K − e(δ−r)(T−s)S T ,0

)
|S s = VS s−

]
= E∗

[
K − e(δ−r)(T−s)S T |S s = VS s−

]
+ E∗

[
max

(
e(δ−r)(T−s)S T − K,0

)
|S s = VS s−

]
= K − VS s− + E∗

[
max

(
e(δ−r)(T−s)S T − K,0

)
|S s = VS s−

]
. (28)

Combining (28) and the upper bound above we have

PA(VS s− , s,T ) − (K − VS s− ) ≤ E∗
[
max

(
e(δ−r)(T−s)S T − K,0

)
|S s = VS s−

]
≤ VS s− .

Therefore,

λ

∫ T

0
e−rsE∗

[
{PA(VS s− , s,T ) − (K − VS s−)} 1{S s−≤S ∗

s− }1{VS s−>S ∗
s− }

]
ds

≤ λ

∫ T

0
e−rsE∗

[
VS s−1{S s−≤S ∗

s− }1{VS s−>S ∗
s− }

]
ds

= λ

∫ T

0
e−rsE∗

[
S s−1{S s−≤S ∗

s− }E
∗ [V1{VS s−>S ∗

s− ,S s−≤S ∗
s− }|S s−

]]
ds. (29)

But by the memoryless property and the conditional independence,

E∗
[
V1{VS s−>S ∗

s− ,S s−≤S ∗
s− }|S s−

]
= E∗

[
eY1{Y>ln(S ∗

s− /S s− )>0}
]
=

pη1

η1 − 1

(
S ∗s−
S s−

)−(η1−1)

.

(30)
Plugging (30) back in (29) we obtain

λ

∫ T

0
e−rsE∗

[
{PA(VS s− , s,T ) − (K − VS s−)} 1{S s−≤S ∗

s− }1{VS s−>S ∗
s− }

]
ds

≤ λ
pη1

η1 − 1

∫ T

0
E∗

S s−

(
S ∗s−
S s−

)−(η1−1)

1{S s−≤S ∗
s− }

 ds

≤ λK
pη1

η1 − 1

∫ T

0
E∗

(S ∗s−
S s−

)−(η1−1)

1{S s−≤S ∗
s− }

 ds,

sinceS s− ≤ S ∗s− ≤ K. �
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B. Appendix: Roots of the equation G(x) = α

The equationG(x) = α, with G(x) defined in (3), is essentially a quartic equa-
tion. Rearranging the terms, it can be shown that the roots of the equation satisfy

ax4 + bx3 + cx2 + dx1 + e = 0,

where

a = σ2, b = 2µ − σ2 (η1 − η2) , c = −σ2η1η2 − 2µ (η1 − η2) − 2λ − 2α,

d = −2µη1η2 − 2λp (η1 + η2) + 2λη1 + 2α(η1 − η2), e = 2αη1η2,

with µ = r − δ − 1
2σ

2 − λζ. The technique to solve the quartic equation was first
developed by Ferrari (we refer the interested reader to Boyer and Merzbach, 1991,
and Borwein and Erd́elyi, 1995). It can be shown that the roots in (4) are given by

β1 = − b
4a
+

p1 − p̃2

2
, β2 = − b

4a
+

p1 + p̃2

2
, β3 =

b
4a
+

p1 − p2

2
, β4 =

b
4a
+

p1 + p2

2
,

where

p1 =
√

B3 +C0 +C1, p2 =

√
B4 −C0 −C1 − B5

4p1
, p̃2 =

√
B4 −C0 −C1 +

B5

4p1

B0 = c2 − 3bd + 12ae, B1 = 2c3 − 9bcd + 27ad2 + 27b2e − 72ace,

B2 =

√
B2

1 − 4B3
0, B3 =

b2

4a2
− 2c

3a
, B4 =

b2

2a2
− 4c

3a
, B5 = 4

bc
a2
− 8

d
a
−

(
b
a

)3

,

B̃ =
3
√

B1 + B2, C0 =

3√
2B0

3aB̃
, C1 =

B̃

3
3√
2a
.
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