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1. Introduction

Introduced by Finkel and Bentley [5], the quadtree structure is a comparison based

algorithm designed for retrieving multidimensional data. It is often studied in computer

science because of its numerous applications. The aim of this paper is to study the

mean cost of the so-called partial match queries in random quadtrees. This problem

was first analyzed by Flajolet et al. [6].

Let us briefly describe the discrete model. We choose to focus only on the two-

dimensional case. Let P1, . . . , Pn be n independent random variables uniformly dis-

tributed over (0, 1)2. We shall assume that the points have different x and y coor-

dinates, an event that has probability 1. We construct iteratively a finite covering

of [0, 1]2 composed of rectangles with disjoint interiors as follows. The first point P1

divides the original square [0, 1]2 into four closed quadrants according to the vertical
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and horizontal positions of P1. By induction, a point Pk divides the quadrant in which

it falls into four quadrants according to its position in this quadrant, see Fig. 1. Hence

the n points P1, . . . , Pn give rise to a covering of [0, 1]2 into 3n + 1 closed rectangles

with disjoint interiors that we denote by Quad(P1, . . . , Pn).
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Figure 1: Two splittings of [0, 1]2 with resp. 8 and 100 points.

We are interested in the partial match query. As explained by Flajolet and Sedgewick

[8, Example VII.23.], given x0 ∈ [0, 1], it determines the set of points Pi, i ∈ {1, . . . , n},

with x coordinates equal to x0, regardless of the y coordinates (that set is either empty

or a singleton). Denoting the vertical segment [(x, 0), (x, 1)] by Sx, the cost of this par-

tial match query is measured by the number Nn(x) of rectangles of Quad(P1, . . . , Pn)

intersecting Sx minus 1 (N0(x) = 0 by convention). Our main result is:

Theorem 1. For every x ∈ [0, 1], we have the following convergence:

n−β
∗
E
[
Nn(x)

]
−→
n→∞

K0

(
x(1− x)

)β∗/2
,

where β∗ =

√
17− 3

2
and K0 =

Γ (2β∗ + 2) Γ(β∗ + 2)

2Γ3(β∗ + 1)Γ2
(
β∗

2 + 1
) .

Flajolet et al. [6] obtained the convergence in mean of the cost of partial match queries

when x is random with the uniform law on [0, 1] and independent of P1, . . . , Pn. We

shall give another proof of this result using fragmentation theory. As a by-product

of our techniques, we shall prove in Corollary 2 below that when rescaled by n1−
√
2,

Nn(0) converges in L2 (its convergence in mean was obtained in [6]).

The paper is organized as follows. Section 2 introduces the model embedded in

continuous-time and presents the first properties. Section 3 is devoted to the link
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between quadtrees and fragmentation theory. Section 4, the most technical one,

contains the proof of the convergence at a fixed point x without knowing the limit.

The identification of the limit is done in Section 5 using a fixed point argument for

integral equation.

Acknowledgement. We would like to express our gratitude to Philippe Flajolet

who introduced us to the problem of partial match query. We are indebted to Nicolas

Broutin and to Ralph Neininger for fruitful discussions. We also deeply thank Jean

Bertoin for his careful reading of the first versions of this work.

2. Notations and first properties

In order to apply probabilistic techniques, we first introduce a continuous-time

version of the quadtree: the points P1, . . . , Pn are replaced by the arrival points of

a Poisson point process over R+ × [0, 1]2 with intensity dt ⊗ dxdy. All the results

obtained in this model can easily be translated into results for the discrete-time model.

2.1. The continuous-time model

Let Π be a Poisson point process on R+ × [0, 1]2 with intensity dt ⊗ dxdy. Let

((τi, xi, yi), i ≥ 1) be the atoms of Π ranked in the increasing order of their τ -component.

We define a process (Q(t))t≥0 with values in finite covering of [0, 1]2 by closed rectangles

with disjoint interiors as follows. We first introduce the operation SPLIT: for every

subset R of [0, 1]2 and for every (x, y) ∈ [0, 1]2,

SPLIT(R, x, y) =
{
R∩ [0, x]× [0, y], R∩ [0, x]× [y, 1], R∩ [x, 1]× [0, y], R∩ [x, 1]× [y, 1]

}
.

In other words, if R is a rectangle with sides parallel to the x and y axes, then

SPLIT(R, x, y) is the set of the four quadrants in R determined by the point (x, y).

We may now recursively define the process (Q(t))t≥0. Let τ0 = 0. For every t ∈ [0, τ1),

define Q(t) = {[0, 1]2}, and for every t ∈ [τi, τi+1), denoting by R the only element (if

any) of Q(τi−1) such that (xi, yi) is in the interior of the rectangle R, let

Q(t) = SPLIT(R, xi, yi) ∪Q (τi−1) \ {R}.
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Observe that a.s., for every i ∈ Z+, there indeed exists a unique rectangle of Q(τi) such

that (xi+1, yi+1) is in its interior, hence the process (Q(t))t≥0 is well defined up to an

event of zero probability. In the sequel we shall assume that the points of Π always fall

in the interior of some rectangle of (Q(t))t≥0. As explained in the introduction, we are

interested in the number of rectangles of Q(t) intersecting the segment Sx, specifically

we set:

Nt(x) = #
{
R ∈ Q(t) : R ∩ Sx 6= ∅

}
− 1,

so that Nt(x) = 0 for every 0 ≤ t < τ1. Recalling that τn is the arrival time of the n-th

point of Π, Q(τn) has the same distribution as the random variable Quad(P1, . . . , Pn)

of the introduction. In particular, for every (n, x) ∈ N× [0, 1], we have Nτn(x) = Nn(x)

in distribution.

2.2. Main equations

Let x ∈ [0, 1]. We denote by A the set of words over the alphabet {0, 1},

A =
⋃
n≥0

{0, 1}n,

where by convention {0, 1}0 = {∅}. Thus, if u ∈ A, u is either ∅ or a finite sequence

of 0 and 1. If u and v are elements of A then uv denotes the concatenation of the

two words u and v. We label the rectangles appearing in (Q(t))t≥0 whose intersection

with the segment Sx is non-empty by elements of A according to the following rule.

By convention R∅(x) is the unit square [0, 1]2. The first point (τ1, x1, y1) of Π splits

[0, 1]2 into four rectangles, a.s. only two of them intersect Sx, we denote the bottom

rectangle by R0(x) and the top one by R1(x). Inductively, for every u ∈ A, a point of

Π eventually falls into Ru(x), dividing it into four rectangles. Almost surely, only two

of them intersect Sx, denote the bottom one by Ru0(x) and the top one by Ru1(x).

For u ∈ A, we denote the minimal (resp. maximal) horizontal coordinate of Ru(x) by

Gu(x) (resp. Du(x)), and define the place of x in Ru(x) to be

Xu(x) =
x−Gu(x)

Du(x)−Gu(x)
.

If u 6= ∅, we denote the parent of u by ←−u which is the word u without its last letter.

We write Mu(x) for the ratio of the (two-dimensional) Lebesgue measure Leb(Ru(x))
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of Ru(x) by the measure of R←−u (x),

Mu(x) =
Leb

(
Ru(x)

)
Leb

(
R←−u (x)

) .
We also set for all x ∈ [0, 1], M∅(x) = 1. For u ∈ {0, 1} and t ≥ 0, we introduce the

“subquadtree” Qu,x(t) = {R ∈ Q(t+ τ1) : R ⊂ Ru(x)}. Then, for every t ≥ 0, one has:

Nt(x) = 1t≥τ1 + 1t≥τ1
∑

u∈{0,1}

(
#
{
R ∈ Qu,x(t− τ1) : R ∩ Sx 6= ∅

}
− 1
)
. (1)

If R is a rectangle with sides parallel to the x and y axes, we denote by ΦR :

R2 → R2 the only affine transformation that maps the bottom left vertex of R to

(0, 0), the bottom right vertex of R to (1, 0) and the up left vertex of R to (0, 1).

It should be plain from properties of Poisson point measures that, conditionally on

(Mu(x), Xu(x), Ru(x)), the process (ΦRu(x)(Qu,x(t)))t≥0 has the same distribution

as the process (Q̃(Mu(x)t))t≥0, where Q̃ is an independent copy of Q. In particu-

lar, conditionally on (Mu(x), Xu(x)), the number of rectangles in Qu,x that intersect

Sx (minus 1), viewed as a process of t, has the same distribution as the process

(ÑMu(x)t(Xu(x)))t≥0 where Ñ is defined from Q̃ is the same way as N is defined

from Q. Since M0(x) and M1(x) have the same distribution, (1) yields

E [Nt(x)] = P(t ≥ τ1) + 2E
[
ÑM0(x)(t−τ1)(X0(x))

]
, (2)

with the convention Ñt(x) = 0 whenever t < 0. More generally, if we write zk ∈ A for

zk = 0 . . . 0 repeated k times, then for every positive integer k,

E [Nt(x)] = gk(t) + 2kE
[
ÑMz1 (x)...Mzk

(x)t−Fk
(Xzk(x))

]
, (3)

where gk is a function such that 0 ≤ gk ≤ 2k − 1 and Fk is a nonnegative random

variable defined by

Fk =

k∑
i=1

τ̃i

k∏
j=i

Mzj (x),

with (τ̃i)i≥1 a sequence of independent exponential variables with parameter 1.

We know compute the joint distribution of (M0(x), X0(x)) which will be of great

use throughout this work. If f is a nonnegative measurable function, easy calculations
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yield

E
[
f
(
M0(x), X0(x)

)]
=

∫ 1

0

du

∫ 1

0

dv

(
1x<uf

(
uv,

x

u

)
+ 1x>uf

(
(1− u)v,

x− u
1− u

))

=

∫ 1

x

dy

y

∫ x
y

0

dmf(m, y) +

∫ x

0

dy

1− y

∫ 1−x
1−y

0

dmf(m, y) (4)

=

∫ x

0

dm

∫ 1

x

dy

y
f(m, y) +

∫ 1

x

dm

∫ x
m

x

dy

y
f(m, y)

+

∫ 1−x

0

dm

∫ x

0

dy

1− y
f(m, y) +

∫ 1

1−x
dm

∫ x

1− 1−x
m

dy

1− y
f(m, y).(5)

2.3. Depoissonization

The following lemma contains a large deviations argument that will enable us to

shift results from the continuous-time model to the discrete-time one.

Lemma 1. For every ε > 0, we have

E

[
sup
x∈[0,1]

∣∣Nτn(x)−Nn(x)
∣∣21τn /∈[n(1−ε),n(1+ε)]

]
−→
n→∞

0.

Proof. Note that for every x ∈ [0, 1], t 7→ Nt(x) is non-decreasing and that Nt(x) is

at most the number of points fallen so far: Nt(x) ≤ max {i ∈ Z+ : τi ≤ t}. In particular

Nτn(x) ≤ n, thus we have

sup
x∈[0,1]

∣∣Nτn(x)−Nn(x)
∣∣21τn>n(1+ε) ≤ n21τn>n(1+ε).

A large deviations argument ensures that n2P(τn > n(1 + ε)) tends to 0 as n → ∞.

On the other hand, applying the Cauchy-Schwarz inequality, we obtain

E

[
sup
x∈[0,1]

∣∣Nτn(x)−Nn(x)
∣∣21τn<n(1+ε)

]
≤
√
E [(max {i ∈ Z+ : τi ≤ n})4]

√
P
(
τn < n(1− ε)

)
.

As E[(max{i ∈ Z+ : τi ≤ n})4] = O(n4), large deviations ensure that the quantity in

the right-hand side tends to 0 as n→∞. Finally, Lemma 1 is proved.

3. Particular cases and fragmentation theory

We give below the definition of a particular case of fragmentation process. For

more details, we refer to [1]. Let ν be a probability measure on {(s1, s2) : s1 ≥

s2 > 0 and s1 + s2 ≤ 1}. A self-similar fragmentation (Ft)t≥0 with dislocation
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measure ν and index of self-similarity 1 is a Markov process with values in the set

S↓ = {(s1, s2, . . . ) : s1 ≥ s2 ≥ · · · ≥ 0 and
∑
i si ≤ 1} describing the evolution

of the masses of particles that undergo fragmentation. The process is informally

characterized as follows: if at time t we have F (t) = (s1(t), s2(t), . . . ), then for every

i ≥ 1, the i-th “particle” of mass si(t) lives an exponential time with parameter si(t)

before splitting into two particles of masses r1si(t) and r2si(t), where (r1, r2) has

been sampled from ν independently of the past and of the other particles. In other

words, each particle undergoes a self-similar fragmentation with time rescaled by its

mass. In the next section we establish a link between fragmentation theory and the

process Nt(U), where U is a r.v. uniformly distributed over [0, 1] and independent of

(Q(t))t≥0. This connection will provide a new proof of a result of [6] and [3]. See also

[4] for another recent application of fragmentation theory to a combinatorial problem

where the exponent
√
17−3
2 appears.

3.1. The uniform case

We consider here the case where the point x is chosen at random uniformly over

[0, 1] and independently of (Q(t))t≥0.

Proposition 1. Let U be a random variable uniformly distributed over [0, 1] and inde-

pendent of the quadtree (Q(t))t≥0. Let u ∈ A and denote by u0 = ∅, u1, . . . , uk = u its

ancestors. Then Xu(U) is uniform over [0, 1] and independent of (Mu1(U), . . . ,Muk
(U)),

which is a sequence of independent random variables all having density 2(1−m)1m∈[0,1].

Proof. We prove Proposition 1 by induction on k. Let u ∈ A. Denote by u0 =

∅, u1, . . . , uk = u its ancestors. Integrating (4) for x ∈ [0, 1], we deduce that for every

v ∈ {0, 1}, Xv(U) and Mv(U) are independent and distributed according to

1u∈[0,1]du⊗ 1m∈[0,1]2(1−m)dm. (6)

Recalling that Qu1,U (t) = {R ∈ Q(t+τ1) : R ⊂ Ru1(U)}, conditionally on (Xu1(U),Mu1(U)),

the process ΦRu1
(U)(Qu1,U ) has the same distribution as (Q̃(Mu1

(U)t))t≥0, where Q̃

is an independent copy of Q. Since Xu1
(U) is uniform over [0, 1], we deduce by

induction on the subquadtree Qu1,U that Xu(U) is uniform over [0, 1] and independent

of (Mu2(U), . . . ,Muk
(U)) which is a sequence of independent r.v. all having density
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2(1−m)1m∈[0,1]. Furthermore it is easy to see that

E
[
(Xui

(U),Mui
(U))2≤i≤k

∣∣(Xu1
(U),Mu1

(U))
]

= E
[
(Xui

(U),Mui
(U))2≤i≤k

∣∣Xu1
(U)
]
.

Hence by (6), Xu(U) is also independent of Mu1
(U).

Letting m(t) = E[Nt(U)], (recall that when t < 0, Nt(x) = 0 for all x ∈ [0, 1])

equation (2) becomes

m(t) = P(t ≥ τ1) + 2E
[
m(M(t− τ1))

]
, (7)

where M is independent of τ1 and has density 2(1−m)1m∈[0,1].

Proposition 2. Let U be uniform over [0, 1] and independent of (Q(t))t≥0. We have

the following convergence

lim
t→∞

t−β
∗
E
[
Nt(U)

]
=

Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
, where β∗ =

√
17− 3

2
.

Proof. We consider an auxiliary fragmentation process (Ft)t≥0 with index of self-

similarity 1 and dislocation probability measure ν given by∫
ν(ds1, ds2)f(s1, s2) = E

[
f
(
M1(U) ∨M0(U),M1(U) ∧M0(U)

)]
.

In other words, the dislocation measure is given by the law of the decreasing ordering

of {M0(U),M1(U)}. More precisely (Ft)t≥0 takes its values in S↓ and satisfies the

following equation in distribution which completely characterizes its law:

(Ft)
(d)
=

(
(1t<τ ) +̇

(
1t≥τM0(U) ·F (0)

M0(U)(t−τ)

)
t≥0

+̇
(
1t≥τM1(U) ·F (1)

M1(U)(t−τ)

)
t≥0

)↓
,

with (F
(0)
t )t≥0 and (F

(1)
t )t≥0 two independent copies of (Ft)t≥0 also independent of

(M0(U),M1(U), τ) and τ an independent exponential variable with parameter 1. The

symbol +̇ means concatenation of sequences and (.)↓ is the decreasing reordering (and

erasing of zeros). Then, it is straightforward to see that the expectation of the number

#Ft of fragments of Ft minus 1 satisfies the same equation as E[Nt(U)], namely letting

m(t) = E[#Ft − 1] for t ≥ 0, and m(t) = 0 for t < 0 we have

m(t) = P(t ≥ τ1) + 2E
[
m(M(t− τ1))

]
, (8)
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where M is independent of τ1 and has density 2(1 −m)1m∈[0,1]. By (7) and (8), the

functions m and m satisfy the same integral equation,

f(t) = 1− e−t + 2

∫ 1

0

dm 2(1−m)

∫ t

0

ds e−sf
(
m(t− s)

)
.

Differentiating with respect to t, we see that both m and m are solutions of the Cauchy

problem for the integro-differential equation ∂tf(t) = 1− f(t) +

∫ 1

0

dm 2(1−m)f(mt),

f(0) = 0.

Uniqueness of solution of this kind of integro-differential equation is known, see e.g. [9].

We deduce that for every t ≥ 0, m(t) = m(t). We now focus on m(t). Following [2,

Section 3], we let for every β > 0, ψ(β) = 1−
∫
ν(ds1, ds2)(sβ1 +sβ2 ). An easy calculation

yields:

ψ(β) =
β2 + 3β − 2

(β + 1)(β + 2)
.

In particular the Malthusian exponent associated to ν, which is characterized by ψ(β) =

0 (see [1, Section 1.2.2]), is

β∗ =

√
17− 3

2
.

Applying [2, Theorem 1], we get:

lim
t→∞

t−β
∗
E[#Ft] =

Γ(1− β∗)
β∗

4

2β∗ + 3

∞∏
k=1

(
1− β∗

k

)(
1− β∗

k +
√

17

)(
1 +

β∗

k + 1

)(
1 +

β∗

k + 2

)
.

Finally, we use the Weierstrass identity for the gamma function: for every complex

number z ∈ C \ Z−,

Γ(z + 1) = e−γz
∞∏
k=1

(
1 +

z

k

)−1
ez/k,

where γ is the Euler–Mascheroni constant. We conclude that

lim
t→∞

t−β
∗
E[Nt(U)] =

4

β∗(2β∗ + 3)

Γ(
√

17 + 1)

Γ(
√

17− β∗ + 1)

1

Γ2(β∗ + 2)

1

1 + β∗/2
=

Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
,

which completes the proof of the proposition.

Remark 1. One can derive the following equality in distribution from (1):

Nt(U)
(d)
= 1τ1≤t +N

(0)
M0(U)(t−τ1)

(
X0(U)

)
+N

(1)
M1(U)(t−τ1)

(
X1(U)

)
,
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where (N
(0)
t )t≥0 and (N

(1)
t )t≥0 are independent copies of the process (Nt)t≥0. We have

already noticed that X0(U) and X1(U) are also uniform and independent of (N
(0)
t )t≥0,

of (N
(1)
t )t≥0 and of (M0(U),M1(U)). If X0(U) and X1(U) were independent, then

Nt(U) would satisfy the same distributional equation as (#Ft − 1)t≥0. However, this

is not the case since we have X0(U) = X1(U). This explains why we had to work with

expectations.

Corollary 1. ([6], [3].) We have

lim
n→∞

n−β
∗
E
[
Nn(U)

]
=

Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
.

Proof. This is a straightforward application of Lemma 1 and Proposition 2.

3.2. Case x = 0

As a further example of the connection with fragmentation theory, we derive asymp-

totics properties for Nt(0). In this case, the sequence of the areas of the rectangles

crossed by S0 is a fragmentation process, enabling us to state a convergence of Nt(0),

once rescaled, in L2. A convergence in mean has already been obtained in [6, Theorem

6] and [7].

Theorem 2. The random variable

Mt =
∑
u∈A

Leb
(
Ru(0)

)√2−1
1Ru(0)∈Q(t), t ≥ 0,

is a uniformly integrable martingale which converges almost surely to M∞ as t → ∞.

The distribution of M∞ is characterized by

E[M∞] = 1 and M∞
(d)
= M0(0)

√
2−1M(0)

∞ +M1(0)
√
2−1M(1)

∞ , (9)

where M
(0)
∞ and M

(1)
∞ are two independent copies of M∞ also independent of (M0(0),M1(0)).

Furthermore, we have the following convergence in L2:

t1−
√
2Nt(0) −→

t→∞

Γ(2
√

2)√
2Γ3(
√

2)
M∞.

Proof. It is easy to check from properties of Poisson measures that the rearrangement

in decreasing order of the masses of the rectangles living at time t and intersecting S0,(
Leb

(
Ru(0)

)
1Ru(0)∈Q(t)

)↓
t≥0

,
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is a self-similar fragmentation with index 1 and dislocation probability measure given

by the decreasing ordering of {M0(0),M1(0)}. As in the proof of Proposition 2, we

introduce for every β > 0, Ψ(β) = 1− E[M0(0)β +M1(0)β ], which is easily computed:

Ψ(β) =
(β + 1)2 − 2

(β + 1)2
.

Thus the Malthusian exponent p∗ of this fragmentation satisfying Ψ(p∗) = 0 is

p∗ =
√

2− 1.

The first two points of the theorem follow from classical results of fragmentation theory,

see [1, Theorem 1.1]. We refer to [10] for the characterization of the law of M∞ via

the distributional equation (9) and to [11] for some of its properties. The last point

comes from [2, Corollary 6] and the Weierstrass identity for the gamma function used

in a similar manner as in the proof of Proposition 2.

Corollary 2. We have the following convergence in L2:

n1−
√
2Nτn(0) −→

n→∞

Γ(2
√

2)√
2Γ3(
√

2)
M∞.

Proof. This proposition easily derives from Lemma 1 and Theorem 2.

Remark 2. Observe that Corollary 2 implies the following convergence in distribution:

n1−
√
2Nn(0) −→

n→∞

Γ(2
√

2)√
2Γ3(
√

2)
M∞.

Remark 3. It is worthwhile to notice that the behavior of the cost of the partial match

query in the case x = 0 is drastically different from its behavior in the case when x is

uniform or x is fixed in (0, 1) (see Theorem 1 and Proposition 2).

3.3. An a priori uniform bound

This section is devoted to the proof of an a priori uniform bound on s−β
∗E[Nt(x)]

over (x, s) ∈ (0, 1)× (0,∞) that will be useful in many places.

Lemma 2. There exists C <∞ such that

sup
x∈(0,1)

sup
s>0

E
[
s−β

∗
Ns(x)

]
≤ C. (10)
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Proof. As a warmup, we start by proving that there exists C1 < ∞ such that for

every x ∈ (0, 1),

sup
s>0

E
[
s−β

∗
Ns(x)

]
≤ C1

x ∧ (1− x)
. (11)

Combining (2) with the densities computed in (4), we deduce that for every x ∈ (0, 1)

t−β
∗
E[Nt(x)] = t−β

∗
P(t ≥ τ1) + 2

(∫ 1

x

dy

y

∫ x
y

0

dmE
[
t−β

∗
Nm(t−τ1)(y)

]
+

∫ x

0

dy

1− y

∫ 1−x
1−y

0

dmE
[
t−β

∗
Nm(t−τ1)(y)

])
. (12)

By monotony of t 7→ Nt(x) we have E
[
t−β

∗
Nm(t−τ1)(y)

]
≤ E

[
t−β

∗
Nt(y)

]
. Further-

more, recalling that β∗ < 1, there exists a constant C ′ such that for every t > 0,

t−β
∗P(t ≥ τ1) ≤ C ′. Hence

t−β
∗
E[Nt(x)] ≤ C ′ + 2

(∫ 1

x

xdy

y2
E
[
t−β

∗
Nt(y)

]
+

∫ x

0

(1− x)dy

(1− y)2
E
[
t−β

∗
Nt(y)

])
≤ C ′ +

2

x ∧ (1− x)

∫ 1

0

dyE
[
t−β

∗
Nt(y)

]
= C ′ +

2

x ∧ (1− x)
E
[
t−β

∗
Nt(U)

]
.

It has been shown in Proposition 2 that E
[
t−β

∗
Nt(U)

]
has a finite limit as t → ∞,

and for every t > 0, E [Nt(U)] ≤ t. Thus the quantity E
[
t−β

∗
Nt(U)

]
is bounded over

(0,∞). The inequality (11) follows from these considerations.

Introducing S(x) = sups>0 s
−β∗E[Ns(x)] for every x ∈ [0, 1], we have just shown

that S(x) ≤ C1(x ∧ (1− x))−1. Using (12), we have for every x ∈ (1/2, 1):

S(x) = sup
t>0

{
t−β

∗
P(t ≥ τ1) + 2

(∫ 1

x

dy

y

∫ x
y

0

dmE
[
t−β

∗
Nm(t−τ1)(y)

]
+

∫ x

0

dy

1− y

∫ 1−x
1−y

0

dmE
[
t−β

∗
Nm(t−τ1)(y)

])}

≤ C ′ + 2 sup
t>0

{∫ 1

x

dy

y

∫ 1

0

dmE
[
t−β

∗
Nt(y)

]
+

∫ 1/2

0

dy

1− y

∫ 1

0

dmE
[
t−β

∗
Nt(y)

]}

+2 sup
t>0

∫ x

1/2

dy

1− y

∫ 1−x
1−y

0

dmmβ∗
E
[
(mt)−β

∗
Nmt(y)

]
≤ C ′ + 8 sup

t>0

∫ 1

0

dyE
[
t−β

∗
Nt(y)

]
+ 2

∫ x

1/2

dy

1− y

∫ 1−x
1−y

0

dmmβ∗
S(y)

≤ C2 +
2

β∗ + 1
(1− x)β

∗+1

∫ x

1/2

dy
1

(1− y)β∗+2
S(y). (13)
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Let us show that this implies that for every x ∈ (0, 1), S(x) ≤ 100C2. Arguing

by contradiction, suppose that there exists a ∈ (1/2, 1) such that S(a) > 100C2.

Let S = supx∈[1/2,a] S(x). By (11), S is finite; there exists b ∈ [1/2, a] such that

S(b) ≥ 0.9S. In particular, S(b) ≥ 0.9 supx∈[1/2,b] S(x) and S(b) > 90C2. Applying

(13) at b, we get

S(b) ≤ 90−1S(b) +
2

β∗ + 1
(1− b)β

∗+1

∫ b

1/2

dy
1

(1− y)β∗+2
0.9−1S(b)

≤ 90−1S(b) +
2 · 0.9−1

(β∗ + 1)2
S(b),

leading to a contradiction since (β∗ + 1)2 > 2·0.9−1

1−90−1 . Finally, S(x) ≤ 100C2 for every

x ∈ (0, 1).

4. The convergence at fixed x ∈ (0, 1)

We prove in this section that when x ∈ [0, 1] is fixed, t−β
∗E[Nt(x)] admits a finite

limit as t → ∞. The results of the preceding section do not directly apply since the

place X0(x) of x in the rectangle R0(x) highly depends on x. Recall notation zk for

the word composed of k zeros 0 . . . 0 ∈ A. The guiding idea is that the splittings tend

to make Xzk(x) uniform and independent of Mzk(x).

4.1. A key Markov chain

Fix x ∈ (0, 1). To simplify notation, for every k ≥ 1, we write Xk for Xzk(x)

and Mk for Mzk(x). We shall focus on the process (Xk,Mk)k≥0, which is obviously a

homogeneous Markov chain starting from (x, 1) whose transition probability is given

by (4) or (5). Let k ≥ 1. We denote by Fk the filtration generated by (Xi,Mi)1≤i≤k.

It is easy to see that the transition probability only depends on Xk, that is

E
[
(Xk+i,Mk+i)i≥1|Fk

]
= E

[
(Xk+i,Mk+i)i≥1|Xk

]
.

Proposition 4.1. Fix x ∈ (0, 1). There exists a coupling of the chain (Xk,Mk)k≥0

with a random time T ∈ Z+ such that for any k ≥ 0, conditionally on {T ≤ k},

the r.v. Xk is uniformly distributed over [0, 1], independent of (Mi)1≤i≤k and of T .

Furthermore, we have

E
[
1.15T

]
< +∞.
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Proof. For any k ≥ 1 we consider the event

Ek = {Mk < Xk−1 ∧ (1−Xk−1)} .

Using the explicit densities (4) and (5), one sees that conditionally on Fk−1 and on

the event Ek of probability −(Xk−1 ∧ (1−Xk−1)) ln(Xk−1(1−Xk−1)), the conditional

distribution of Xk is

1

− ln
(
Xk−1(1−Xk−1)

) ( 1

1− y
1y∈(0,Xk−1) +

1

y
1y∈(Xk−1,1)

)
dy.

In particular, conditionally on Ek and Fk−1, the variable Xk is independent of Mk and

has a density bounded from below by −1/ ln(Xk−1(1−Xk−1)). Thus, we can construct

simultaneously with (Xk,Mk)k≥0 a sequence of random variables (Bk)k≥0 ∈ {0, 1}Z+ as

follows. Suppose that we have constructed (Xi,Mi, Bi)0≤i≤k−1. Then independently of

Fk−1, toss a Bernoulli variable of parameter −(Xk−1∧(1−Xk−1)) ln(Xk−1(1−Xk−1)).

If 0 comes out, we consider that we are on the event Eck, then put Bk = 0 and sample

(Xk,Mk) with the conditional distribution on Eck and Fk−1. If 1 comes out, we consider

that we are on the event Ek and we proceed to the following.

1. First sample Mk from its distribution conditionally on Ek and Fk−1.

2. Then independently ofMk, toss a Bernoulli variableBk of parameter−1/ ln(Xk−1(1−

Xk−1)). If Bk = 1, sample Xk uniformly from [0, 1] and independently of

(M1, . . . ,Mk). Otherwise, sample Xk with density

1

− ln
(
Xk−1(1−Xk−1)

)
− 1

((
1

1− y
− 1

)
1y∈(0,Xk−1) +

(
1

y
− 1

)
1y∈(Xk−1,1)

)
dy,

independently of (M1, . . . ,Mk).

The device provides us with a Markov chain (Xk,Mk, Bk)k≥0 such that the first two

coordinates have the law of the process introduced before Proposition 4.1. We then let

T = inf{k ≥ 0, Bk = 1}.

By definition of T , the random variable XT is sampled uniformly over [0, 1] and

independently of (M1, . . . ,MT ). We deduce that the process (XT+i,MT+i)i≥1 has the

same distribution as the process (Xzk(U),Mzk(U))k≥1 defined in Proposition 1, hence
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an easy adaptation of Proposition 1 shows that for every positive integer i, XT+i is

uniformly distributed over [0, 1] independent of (M1, . . . ,MT+i) and of T . This proves

the first part of Proposition 4.1.

For the second part, we need to evaluate the tail of the random time T . We introduce

the following variation. Let (X̂k)k≥0 be a Markov chain with space state (0, 1) ∪

{∂}, where ∂ is a cemetery point. Informally, this chain is the chain (Xk) until we

reach the time T , then it is killed and sent to the cemetery point. Thanks to the

calculation presented at the beginning of the proof, it should be clear that given Xk−1

and conditionally on {T ≥ k − 1}, the probability of the event {T = k} is Xk−1 ∧

(1−Xk−1). Thus the transition probability for the chain (X̂k) is defined as follows: for

every x ∈ (0, 1),

p(x, dy) = x ∧ (1− x)δ∂ +

(
1− x

(1− y)2
1y∈(0,x) +

x

y2
1y∈(x,1) − x ∧ (1− x)

)
dy,

and p(∂,dy) = δ∂ . By construction of this chain, the stopping time T̂ = inf{k ≥ 1 :

X̂k = ∂} has the same distribution as T . In order to estimate T̂ , we define the following

potential function V : (0, 1) ∪ {∂} → [1,∞]:

V (x) = 1x=∂ +
10√
x

1x∈(0,1/2) +
10√
1− x

1x∈[1/2,1).

Then one can show that for every x ∈ (0, 1) ∪ {∂},∫
p(x, dy)V (y) ≤ 0.85V (x) + 1{∂}(x),

so that [12, Theorem 15.2.5] may be applied: there exists ε > 0 such that for all

x ∈ (0, 1),

E

T̂−1∑
k=0

V
(
X̂k

)
1.15k

 ≤ ε−11.15−1V (x),

from which we deduce that

E
[
1.15T̂

]
<∞

(note that the last quantity is not uniformly bounded for x ∈ (0, 1)). This completes

the proof of Proposition 4.1.

In the remaining part of this section, x is fixed in (0, 1). Coming back to (3) and

writing Mk = M1M2 . . .Mk for the Lebesgue measure of Rzk(x), we have

t−β
∗
E [Nt(x)] = t−β

∗
(
gk(t) + 2kE

[
ÑMkt−Fk

(Xk)1T>k

]
+ 2kE

[
ÑMkt−Fk

(Xk)1T≤k

] )
. (14)
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We shall treat separately the last two terms of (14).

4.2. Study of t−β
∗
2kE[ÑMkt−Fk

(Xk)1T>k]

We shall see that t−β
∗
2kE[ÑMkt−Fk

(Xk)1T>k] is arbitrarily small uniformly in t

provided that the integer k is chosen large enough. Observe

t−β
∗
2kE

[
ÑMkt−Fk

(Xk)1T>k
]
≤ t−β

∗
2kE

[
ÑMkt

(Xk)1T>k
]

= 2kE
[
M

β∗

k (Mkt)
−β∗

ÑMkt
(Xk)1T>k

]
= 2kE

[
M

β∗

k 1T>kE
[

(Mkt)
−β∗

ÑMkt
(Xk)

∣∣∣σ(Mk, Xk, T )
]]
.

Letting φ be the map (s, u) 7→ E[s−β
∗
Ns(u)], we have:

t−β
∗
2kE

[
ÑMkt−Fk

(Xk)1T>k
]
≤ 2kE

[
M

β∗

k 1T>kφ(Mkt,Xk)
]
.

Thanks to (10), φ ≤ C, so that the quantity in the last display is at most C2kE
[
M

β∗

k 1T>k

]
.

Hölder’s inequality yields for every p > 1

C2kE
[
M

β∗

k 1T>k

]
≤ C2kE

[
M

β∗p

k

]1/p
E [1T>k]

1−1/p
.

The last term is easily treated, by Markov’s inequality we have E [1T>k] ≤ 1.15−kE[1.15T ].

Concerning E[M
β∗p

k ] we have

E
[
M

β∗p

k

]
≤ E

[
Mz2(x)β

∗p . . .Mzk(x)β
∗p
]

=

∫ 1

0

f (x)(y)dyE
[
Mz1(y)β

∗p . . .Mzk−1
(y)β

∗p
]
,

where f (x) is the density of X1 under P. It is easy to see from (4) that f (x) is bounded

from above by (x ∧ (1− x))−1. Hence

E
[
M

β∗p

k

]
≤ 1

x ∧ (1− x)

∫ 1

0

dyE
[
Mk−1(y)β

∗p
]
.

Recall from Proposition 1 that when x = U is uniform over [0, 1] and independent

of (Q(t))t≥0, then Mz1(U), . . . ,Mzk(U) are independent and distributed according to

1m∈[0,1]2(1−m)dm. In particular

E
[
M0(U)β

∗p
]

=
2

(β∗p+ 1)(β∗p+ 2)

and thus ∫ 1

0

dyE
[
Mk−1(y)β

∗p
]

=

(
2

(β∗p+ 1)(β∗p+ 2)

)k−1
.
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Gathering all these estimates, we obtain

t−β
∗
2kE

[
NMkt−Fk

(Xk)1T>k
]

≤ C2k
(

1

x ∧ (1− x)

)1/p(
2

(β∗p+ 1)(β∗p+ 2)

)(k−1)/p

E
[
1.15T

]1−1/p
1.15−k(1−1/p)

= Kp,x

(
2

{
2

(β∗p+ 1)(β∗p+ 2)

}1/p

1.151/p−1

)k
,

where Kp,x is a constant that only depends on p and x but on k. Now, one can easily

prove that for p > 1 sufficiently close to 1, the term between brackets in the last display

becomes strictly less than 1. Consequently, letting ε > 0 fixed, there exists an integer

k sufficiently large such that for every t > 0,

t−β
∗
2kE

[
NMkt−Fk

(Xk)1T>k
]
≤ ε. (15)

4.3. Conclusion

Observe that we have for every t > 0

t−β
∗
2kE

[
ÑMkt−Fk

(Xk)1T≤k

]
= 2kE

[
1T≤kE

[
t−β

∗
ÑMkt−Fk

(Xk)
∣∣∣σ(Mk, Fk, T )

]]
= 2kE

[
1T≤k(Mk − t−1Fk)β

∗

+ E
[

(Mkt− Fk)−β
∗

+ ÑMkt−Fk
(Xk)

∣∣∣σ(Mk, Fk, T )
]]
,

where y+ denotes y ∨ 0. By Proposition 4.1, on the event {T ≤ k}, the r.v. Xk is

uniformly distributed over [0, 1] and independent of M1, . . . ,Mk thus of Mk. It is also

independent of Fk and T . Hence, letting θ be the map s 7→ E[s−β
∗

+ Ns(U)], where U is

a random variable uniformly distributed on (0, 1) independent of N , we have:

t−β
∗
2kE

[
ÑMkt−Fk

(Xk)1T≤k

]
= 2kE

[
1T≤k(Mk − t−1Fk)β

∗

+ θ(Mkt− Fk)
]
.

Applying Proposition 2, θ(Mkt − Fk) a.s. tends to a finite limit as t → ∞. Hence by

dominated convergence t−β
∗
2kE

[
NMkt−Fk

(Xk)1T≤k
]

has a finite limit as t→∞. We

deduce from this fact, (14) and (15) that

lim sup
t→∞

t−β
∗
E [Nt(x)]− lim inf

t→∞
t−β

∗
E [Nt(x)] ≤ ε.

Since that inequality holds for every ε > 0, t−β
∗E[Nt(x)] has a finite limit as t → ∞

which we denote by n∞(x):

n∞(x) = lim
t→∞

t−β
∗
E
[
Nt(x)

]
.
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5. Identifying the limit

In this section, we show that x 7→ n∞(x) is proportional to x 7→ (x(1 − x))β
∗/2

using a fixed point argument for integral equation (see also [4, Section 4.1] for a similar

application) . The normalizing constant will come from the L1-norm of x 7→ (x(1 −

x))β
∗/2 and the constant of Proposition 2.

Combining (2) with the densities computed in (4), we deduce that

t−β
∗
E[Nt(x)] = t−β

∗
P(t ≥ τ1) + 2

(∫ 1

x

dy

y

∫ x
y

0

dmmβ∗
E
[
(mt)−β

∗
Nm(t−τ1)(y)

]
+

∫ x

0

dy

1− y

∫ 1−x
1−y

0

dmmβ∗
E
[
(mt)−β

∗
Nm(t−τ1)(y)

])
.

Thanks to Lemma 2, we get by dominated convergence

n∞(x) =
2

β∗ + 1

(
xβ

∗+1

∫ 1

x

dy
1

yβ∗+2
n∞(y) + (1− x)β

∗+1

∫ x

0

dy
1

(1− y)β∗+2
n∞(y)

)
.

In other words, if we define

gx(y) =
2

β∗ + 1

(
xβ

∗+1 1

yβ∗+2
1x<y<1 + (1− x)β

∗+1 1

(1− y)β∗+2
10<y<x

)
,

we have

n∞(x) =

∫ 1

0

dygx(y)n∞(y).

Let G be the operator that maps a function f ∈ L1[0, 1] to the function

G(f)(x) =

∫ 1

0

dygx(y)f(y).

In particular, n∞ is a fixed point of G. It is easy to check that x ∈ (0, 1) 7→ gx(.) ∈

L1[0, 1] is continuous for the L1-norm. Furthermore, Lemma 2 ensures that |n∞(x)| ≤

C for every x ∈ (0, 1). As a consequence, x 7→ n∞(x) is continuous over (0, 1). An

easy computation shows that for every y ∈ (0, 1),
∫ 1

0
dxgx(y) = 1. Let p be another

fixed point of G having the same integral as n∞. Then∫ 1

0

dx|n∞(x)− p(x)| =

∫ 1

0

dx

∣∣∣∣∫ 1

0

dygx(y)(n∞ − p)(y)

∣∣∣∣
≤

∫ 1

0

dx

∫ 1

0

dygx(y) |n∞(y)− p(y)|

=

∫ 1

0

dy|n∞(y)− p(y)|,
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which shows that the inequality is in fact an equality. Hence n∞−p has a.e. a constant

sign. As we know that the integral of n∞ − p is zero, we deduce that n∞ = p a.e.

Straightforward calculations prove that p0 : x 7→ (x(1− x))β
∗/2 is also a fixed point of

G of L1-norm, so that

n∞(x) = ‖n∞‖1‖p0‖−11

(
x(1− x)

)β∗/2
a.e.

Since n∞ and p0 are continuous, we can remove the a.e. statement (observe that

n∞(0) = n∞(1) = 0 by Theorem 2). Plainly,

‖p0‖1 =
Γ2
(
β∗

2 + 1
)

Γ(β∗ + 2)
.

On the other hand, (10) and the dominated convergence theorem ensure that ‖n∞‖1 =

limt→∞ t−β
∗E[Nt(U)], which was computed in Proposition 2:

‖n∞‖1 =
Γ(2(β∗ + 1))

2Γ3(β∗ + 1)
.

Proof of Theorem 1. To sum up, we have for every x ∈ [0, 1]:

t−β
∗
E
[
Nt(x)

]
−→
t→∞

Γ (2β∗ + 2) Γ(β∗ + 2)

2Γ3(β∗ + 1)Γ2
(
β∗

2 + 1
)(x(1− x)

)β∗/2
.

Applying Lemma 1, Theorem 1 is shown.

6. Extensions and comments

6.1. Various convergences

In this paper, we only proved a convergence in mean of t−β
∗
Nt(x). We may wonder

whether this quantity also converges in distribution, in probability, or even almost

surely. A more interesting question is the following: does the process ((t−β
∗
Nt(x))x∈[0,1], t >

0) converge in distribution in the Skorokhod sense to a random function (C(x))x∈[0,1]

as t → ∞? Observe that if it does, then there exists a random point U uniformly

distributed over (0, 1) such that C(U) = 0, U corresponding to the point x1 of the first

atom of Π (Nt(x1) is indeed of order t
√
2−1 by Theorem 2).

Conjecture 1. We have the functional limit law (t−β
∗
Nt(x))x∈[0,1] → (C(x))x∈[0,1] as
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t→∞ in (D([0, 1]), ‖ · ‖∞), where C satisfies the distributional fixed point equation

(C(x))x∈[0,1]
(d)
=

(
1x<U0

{
(U0U1)

β∗
C(00)

(
x

U0

)
+ (U0(1− U1))

β∗
C(01)

(
x

U0

)}
+1x>U0

{
((1− U0)U1)

β∗
C(10)

(
x− U0

1− U0

)
+ ((1− U0)(1− U1))

β∗
C(11)

(
x− U0

1− U0

)})
x∈[0,1]

,

where U0, U1, C(00), C(01), C(10), C(11) are independent, U0 and U1 are uniformly

distributed on [0, 1] and C(00), C(01), C(10), C(11) have all the same distribution as C.

6.2. Multidimensional case

The strategy adopted in Section 3.1 may be generalized to higher dimensions. As

for the convergence in mean of the number of hyper-rectangles crossed by a fixed affine

subspace having a direction generated by some vectors of the canonical basis, our

approach may also be followed.

6.3. Quadtree as a model of random geometry

On top of its numerous applications in theoritical computer science, the model of

random quadtree may be considered as a model of random geometry. More precisely

one can view, for t ≥ 0, the set of rectangles Q(t) as a random graph, assigning length

1 to each edge of the rectangles. We denote this graph by Q̃(t). A natural question

would be to understand the metric behavior of Q̃(t) as t → ∞? If Lt is the graph

distance in Q̃(t) between the up-left and up-right corners, then Theorem 2 already

shows that Lt is less than the order t
√
2−1.

Problem 1. Is
(
t1−
√
2Lt
)
t≥0 tight? Does it converge in distribution? If not, find the

right power of t.
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théorème de Kesten-Stigum concernant des processus de branchement. Adv. in

Appl. Probab., 29(2):353–373, 1997.

[11] Q. Liu. Asymptotic properties and absolute continuity of laws stable by random

weighted mean. Stochastic Process. Appl., 95(1):83–107, 2001.

[12] S. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge

University Press, Cambridge, second edition, 2009. With a prologue by Peter W.

Glynn.


	1 Introduction
	2 Notations and first properties
	2.1 The continuous-time model
	2.2 Main equations
	2.3 Depoissonization

	3 Particular cases and fragmentation theory
	3.1 The uniform case
	3.2 Case x=0
	3.3 An a priori uniform bound

	4 The convergence at fixed x (0,1)
	4.1 A key Markov chain
	4.2 Study of t-  2k E [ Mk t -Fk (Xk) 1T > k ] 
	4.3 Conclusion

	5 Identifying the limit
	6 Extensions and comments
	6.1 Various convergences
	6.2 Multidimensional case
	6.3 Quadtree as a model of random geometry

	References

