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Abstract

We study in this article some Sobolev-type inequalities on polynomial volume growth Lie

groups. We show in particular that improved Sobolev inequalities can be extended without

the use of the Littlewood-Paley decomposition to this general framework.
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1 Introduction

Sobolev inequalities have been studied in many different frameworks. Initially stated over R
n, they were

succesively generalized to more general settings such as manifolds or Lie groups; see the book [15] for a
detailed treatment in this last case. Since the work of P. Gérard, Y. Meyer & F. Oru [7], we know that is
possible to improve the classical Sobolev inequalities introducing a well-suited Besov space, and it is worth
to know if these improved inequalities can be generalized to Lie groups.

For the Heisenberg group -which is the simplest example of stratified Lie groups- this was done by H.
Bahouri, P. Gérard & C-J Xu in [1] following essentially the same ideas of the original paper of P. Gérard,
Y. Meyer and F. Oru; while, for general stratified Lie groups, the task was achieved in [2] using some
different techniques. In this special setting we obtained a family of Sobolev-type inequalities: namely, for
G = (Rn, ·, δ) a stratified Lie group and for f a function such that f ∈ Ẇ s,p(G) and f ∈ Ḃ−β,∞

∞ (G), we
have:

‖f‖Ẇ s,q ≤ C‖f‖θ
Ẇ s1,p

‖f‖1−θ
Ḃ−β,∞

∞

where the parameters p, q and the indexes θ, β, s and s1 are related in a specific manner. For precise defini-
tions of the Sobolev space Ẇ s,p and the Besov space Ḃ−β,∞

∞ , see section 5 below.

These type of Lie groups are a generalization of Rn when modifying dilations; and in this setting, the
mathematical objects we are dealing with are constructed in such a way in order to respect the homogeneity
induced by these dilations. Thus, several properties of these objects (operators, functional spaces) are very
similar to the euclidean case. See [5] and [13] and the references given there for more details.

Looking for generalizations, it is a natural question to study these inequalities if we remove the dilation
structure from the Lie groups we are working with. In this case we have several possibilities: for example we
can treat nilpotent Lie groups which are a generalization of stratified Lie groups (recall that every stratified
Lie group is nilpotent) but these groups are not necessarily endowed with a dilation structure. A second
example is given by the polynomial volume growth Lie groups, where we have some interesting estimates for
the Haar measure of a ball. Some other examples can be considered such as exponential growth Lie groups,
see the book [15] for definitions and some related results for this last case.

In this article we will specially focus on polynomial volume growth Lie groups and we will treat improved
Sobolev inequalities in this very particular setting. Here are our results:

1

http://arxiv.org/abs/1009.3106v1


Theorem 1 Let G be a polyomial volume growth Lie group. If ∇f ∈ L1(G) and f ∈ Ḃ−β,∞
∞ (G), then we

have the following inequalities:

• [Strong inequalities p = 1]
‖f‖Lq ≤ C‖∇f‖θL1‖f‖1−θ

Ḃ−β,∞
∞

(1)

where 1 < q < +∞, θ = 1/q and β = θ/(1− θ).

• [Strong inequalities p > 1]
‖f‖Ẇ s,q ≤ C‖f‖θ

Ẇ s1,p
‖f‖1−θ

Ḃ−β,∞
∞

(2)

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1− θ)β and −β < s < s1.

• [Weak inequalities]
‖f‖Ẇ s,q

∞
≤ C‖∇f‖θL1‖f‖1−θ

Ḃ−β,∞
∞

(3)

where 1 < q < +∞, 0 < s < 1/q < 1, θ = 1/q and β = 1−sq
q−1 .

The plan of the article is the following: the first section is devoted to a short introduction of polynomial
volume growth Lie groups, section 3 gives some important estimations for the Heat kernel, section 4 expose
some results concerning spectral theory, section 5 gives the precise definition of functional spaces involved
in the inequalities above, while section 6 presents the proof of theorem 1.

2 Polynomial volume growth Lie groups

Let G be a connected unimodular Lie group endowed with its Haar measure dx. Denote by g the Lie algebra
of G and consider a family X = {X1, ...,Xk} of left-invariant vector fields on G satisfying the Hörmander
condition, which means that the Lie algebra generated by the Xj for 1 ≤ j ≤ k is g.

In this setting we have at our disposal the Carnot-Carathéodory metric associated with X defined as fol-
lows: let ℓ : [0, 1] −→ G be an absolutely continuous path. We say that ℓ is admissible if there exists measur-
able functions γ1, ..., γk : [0, 1] −→ C such that, for almost every t ∈ [0, 1], we have ℓ′(t) =

∑k
j=1 γj(t)Xj(ℓ(l)).

If ℓ is admissible, define the length of ℓ by ‖ℓ‖ =
∫ 1
0 (
∑k

j=1 |γj(t)|2)1/2dt. Then, for all x, y ∈ G, the distance
between x and y is the infimum of the lengths of all admissible curves joining x to y. We will note ‖x‖ the
distance between the origin e and x and ‖y−1 · x‖ the distance between x and y.

For r > 0 and x ∈ G, denote by B(x, r) the open ball with respect to the Carnot-Carathéodory metric
centered in x and of radius r, and by V (r) the Haar measure of any ball of radius r. When 0 < r < 1, there
exists d ∈ N

∗, cl and Cl > 0 such that, for all 0 < r < 1 we have

clr
d ≤ V (r) ≤ Clr

d.

The integer d is the local dimension of (G,X). When r ≥ 1, only two situation may occur, independently of
the choice of the family X: either G has polynomial volume growth and there exist D ∈ N

∗, c∞ and C∞ > 0
such that, for all r ≥ 1 we have

c∞r
D ≤ V (r) ≤ C∞r

D, (4)

or G has exponential volume growth, which means that there exist ce, Ce, α, β > 0 such that, for all r ≥ 1
we have

cee
αr ≤ V (r) ≤ Cee

βr.

When G has polynomial volume growth, the integer D in (4) is called the dimension at infinity of G. Recall
that nilpotent groups have polynomial volume growth and that a strict subclass of the nilpotent groups
consists of stratified Lie groups. For more details see the book [15].

We will assume from now on that G is a connected unimodular polynomial volume Lie group with local
dimension d and dimension at infinity D.
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3 Sub-Laplacian and Heat kernel

Once we have fixed the family X, we define the gradient on G by ∇ = (X1, ...,Xk) and we consider a sub-
Laplacian J on G defined by J = −∑k

j=1X
2
j , which is a positive self-adjoint, hypo-elliptic operator since

X satisfies the Hörmander’s condition. Its associated heat operator on G×]0,+∞[ is given by ∂t + J . We
recall in the next theorem some well-known properties of the semi-group Ht obtained from the sub-Laplacian
J .

Theorem 2 There exists a unique family of continuous linear operators (Ht)t>0 defined on L1 + L∞(G)
with the semi-group property Ht+s = HtHs for all t, s > 0 and H0 = Id, such that:

1) the sub-Laplacian J is the infinitesimal generator of the semi-group Ht = e−tJ ;

2) Ht is a contraction operator on Lp(G) for 1 ≤ p ≤ +∞ and for t > 0;

3) the semi-group Ht admits a convolution kernel Htf = f ∗ ht where ht is the heat kernel.

4) ‖Htf − f‖Lp → 0 if t→ 0 for f ∈ Lp(G) and 1 ≤ p < +∞;

5) If f ∈ Lp(G), 1 ≤ p ≤ +∞, then the function u(x, t) = Htf(x) is a solution of the heat equation.

We obtain in particular that Ht is a symmetric diffusion semi-group as considered by Stein in [12] with
infinitesimal generator J .

We need to fix some terminology. To begin with, note that associated to the familyX, we also have a fam-
ily of right-invariant vector fields {Y1, ..., Yk} with similar properties. Let I = (j1, ..., jβ) ∈ {1, ..., k}β (β ∈ N)
be a multi-index, we set |I| = β and define XI and Y I by the formula XI = Xj1 · · ·Xjβ (Y I = Yj1 · · ·Yjβ
resp.) with the convention XI = Id if β = 0. The interaction of operators XI and Y I with convolutions is
clarified by the following identities:

XI(f ∗ g) = f ∗ (XIg), Y I(f ∗ g) = (Y If) ∗ g, (XIf) ∗ g = f ∗ (Y Ig).

In particular we have (∇f) ∗ g = f ∗ (∇̃g) where ∇̃ = (Y1, ..., Yk).

We will say now that ϕ ∈ C∞(G) belongs to the Schwartz’s class S(G) if

Nα,I(ϕ) = sup
x∈G

(1 + ‖x‖)α|XIϕ(x)| < +∞. (α ∈ N, I ∈ ∪
β∈N

{1, ..., k}β).

Remark 1 To characterize the Schwartz class S(G) we can replace vector fields XI in the semi-norms Nk,I

above by right-invariant vector fields Y I .

For a proof of these facts and for further details see [5], [12], [15] and the reference given there.

Theorem 3 Let G be a polynomial volume growth Lie group, then for every j ∈ {1, ..., k}, there exists
C > 0 such that

|Xjht(x)| ≤ Ct−1/2V (
√
t)−1e−

‖x‖2

ct for all x ∈ G, t > 0.

This theorem implies the next proposition

Proposition 3.1 For every j ∈ {1, ..., k} and for all p ∈ [1,+∞] there exists a constant C > 0 such that:

‖Xjht(·)‖Lp ≤ Ct−1/2V (
√
t)−1/p′ , t > 0; (5)

For a proof of theorem 3 and proposition 3.1, see chapter VIII of the book [15].
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4 Spectral decomposition for the sub-Laplacian

The use in this article of spectral resolution for the sub-Laplacian consists roughly in expressing this operator
by the formula J =

∫ +∞
0 λ dEλ and, by means of this characterization, build a family of new operators

m(J ) associated to a Borel function m. This kind of operators have some nice properties as shown in the
next propositions.

Proposition 4.1 If G is polynomial growth Lie group and if m is a bounded Borel function on ]0,+∞[ then
the operator m(J ) fixed by

m(J ) =

∫ +∞

0
m(λ) dEλ, (6)

is bounded on L2(G) and admits a convolution kernel M i.e.: m(J )(f) = f ∗M (∀f ∈ L2(G)).

Following [8] and [6] we can improve the conclusion of the above proposition. Let k ∈ N and m be a
function of class Ck(R+), we write

‖m‖(k) = sup
1≤r≤k

λ>0

(1 + λ)k|m(r)(λ)|.

This formula gives us a necessary condition to obtain some properties of the operators defined by (6):

Proposition 4.2 Let G be polynomial volume growth Lie group with local dimension d. Let j ∈ {1, ..., k}
and p ∈ [1,+∞]. There is a constant C > 0 and an integer k such that, for any function m ∈ Ck(R+) with
‖m‖(k) < +∞, the kernel Mt associated to the operator m(tJ ) with t > 0 satisfies

‖XjMt(·)‖Lp ≤ Ct
−( d

2p′
+ 1

2
)‖m‖(k). (7)

where 1
p +

1
p′ = 1.

Proof . Follow the same steps of the proof of proposition 3.2 in [6] and use inequality (5).

�

Remark 2 Notice that, when 0 < t ≤ 1, we can replace in (7) Xj by X
I for some multi-index I.

5 Functional spaces

We give in this section the precise definition of the functional spaces involved in theorem 1. In a general way,
given a norm ‖ · ‖E , we will define the corresponding functional space E(G) by {f ∈ S ′(G) : ‖f‖E < +∞}.
For the Lebesgue spaces Lp(G) with 1 ≤ p+∞, we will use the following characterization

‖f‖pLp =

∫ +∞

0
pσp−1|{x ∈ G : |f(x)| > σ}|dσ,

and for the Lorentz spaces Lp,∞(G) we set ‖f‖Lp,∞ = sup
σ>0

{σ |{x ∈ G : |f(x)| > σ}|1/p}.

In order to define Sobolev spaces, we need to introduce the fractional powers J s and J−s with s > 0:

J sf(x) = lim
ε→0

1

Γ(k − s)

∫ +∞

ε
tk−s−1J kHtf(x)dt

J −sf(x) = lim
η→+∞

1

Γ(s)

∫ η

0
ts−1Htf(x)dt (8)
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for all f ∈ C∞(G) with k the smallest integer greater than s. We consider then Soblev spaces by the norms
‖f‖Ẇ s,p = ‖J s/2f‖Lp when 1 < p < +∞ and when p = s = 1 we will note ‖f‖Ẇ 1,1 = ‖∇f‖L1 .

We will also need to define weak Sobolev spaces Ẇ s,p
∞ (G) used in (3), and we write here

‖f‖Ẇ s,p
∞

= ‖J s/2f‖Lp,∞ (1 < p < +∞) (9)

Finally, for Besov spaces of indices (−β,∞,∞) which appear in all the inequalities (1)-(3) we have:

‖f‖
Ḃ−β,∞

∞
= sup

t>0
tβ/2‖Htf‖L∞ (10)

For more details on Sobolev and Besov spaces on groups see [11].

6 Improved Sobolev Inequalities on stratified groups: the proofs

We divide the proof of the theorem 1 in two steps. First we study the inequality (2) and then we prove the
strong inequality (1) and the weak inequality (3).

6.1 The general improved Sobolev inequalities (p > 1)

We know that the operator J s/2 carries out an isomorphism between the spaces Ḃ−β,∞
∞ (G) and Ḃ−β−s,∞

∞ (G)
(see [11]); so we can rewrite the inequality (2) in the following way

‖J
s−s1

2 f‖Lq ≤ C‖f‖θLp‖f‖1−θ
Ḃ

−β−s1,∞
∞

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1− θ)β and −β < s < s1. Using the sub-Laplacian fractionnal
powers characterization (8) we have the identity

J −α
2 f(x) =

1

Γ(α2 )

∫ +∞

0
t
α
2
−1Htf(x)dt =

1

Γ(α2 )

(
∫ T

0
t
α
2
−1Htf(x)dt+

∫ +∞

T
t
α
2
−1Htf(x)dt

)

(11)

where α = s1 − s > 0 and T will be fixed in the sequel.

For studying each one of these integrals we will use the estimates

• |Htf(x)| ≤ |f(x)|

• |Htf(x)| ≤ Ct
−β−s1

2 ‖f‖
Ḃ

−β−s1,∞
∞

(by the thermic definition of Besov spaces)

Then, applying these inequalities in (11) we obtain

|J −α
2 f(x)| ≤ c1

Γ(α2 )
T

α
2 |f(x)|+ c2

Γ(α2 )
T

α−β−s
2 ‖f‖

Ḃ
−β−s1,∞
∞

.

We fix now

T =

(

‖f‖
Ḃ

−β−s1,∞
∞

|f(x)|

)
2

β+s1

and we get

|J −α
2 f(x)| ≤ c1

Γ(α2 )
|f(x)|1−

α
β+s1 +

c2
Γ(α2 )

|f(x)|1−
α

β+s1 ‖f‖
α

β+s1

Ḃ
−β−s1,∞
∞

.

Since α
β+s1

= 1− θ and θ = p/q we have

|J −α
2 f(x)| ≤ c

Γ(α2 )
|f(x)|θ‖f‖1−θ

Ḃ
−β−s1,∞
∞

.
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We finally obtain

‖J −α
2 f‖Lq ≤ c‖f‖θLp‖f‖1−θ

Ḃ
−β−s1,∞
∞

and we are done.

�

6.2 Strong an weak inequalities (p = 1)

We treat now the inequalities (1) and (3). For this we will need the following result.

Theorem 4 Let f be a function such that ∇f ∈ L1(G). We have the following estimate for 0 ≤ s < 1 and
for t > 0:

‖J s/2f −HtJ s/2f‖L1 ≤ C t
1−s
2 ‖∇f‖L1 .

Proof. To begin the proof, we observe that the following identity occurs:

(J s/2f −HtJ s/2f)(x) =

(
∫ +∞

0
m(tλ)dEλ

)

t1−s/2J f(x),

where we noted m(λ) = λs/2−1(1 − e−λ) for λ > 0, note that m is a bounded function which tends to 0 at
infinity since s/2− 1 < 0. We break up this function by writing:

m(λ) = m0(λ) +m1(λ) = m(λ)θ0(λ) +m(λ)θ1(λ)

where we chose the auxiliary functions θ0(λ), θ1(λ) ∈ C∞(R+) defined by:

• θ0(λ) = 1 on ]0, 1/2] and 0 on ]1,+∞[,

• θ1(λ) = 0 on ]0, 1/2] and 1 on ]1,+∞[,

so that θ0(λ) + θ1(λ) ≡ 1. Then, we obtain the formula:

(J s/2f −HtJ s/2f)(x) =

(
∫ +∞

0
m0(tλ)dEλ

)

t1−s/2J f(x) +
(
∫ +∞

0
m1(tλ)dEλ

)

t1−s/2J f(x).

If we note M
(i)
t the kernel of the operator fixed by

∫ +∞
0 mi(tλ)dEλ for i = 0, 1, we have:

(J s/2f −HtJ s/2f)(x) = t1−s/2J f ∗M (0)
t (x) + t1−s/2J f ∗M (1)

t (x).

We obtain the inequality

∫

G

∣

∣

∣
J s/2f −HtJ s/2

∣

∣

∣
dx ≤

∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
dx+

∫

G

∣

∣

∣
t1−s/2J f ∗M (1)

t (x)
∣

∣

∣
dx. (12)

We will now estimate the right side of the above inequality by the two following propositions:

Proposition 6.1 For the first integral in the right-hand side of (12) we have the inequality:

∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
dx ≤ Ct

1−s
2 ‖∇f‖L1

Proof. The function m0 is the restriction on R
+ of a function belonging to the Schwartz class. This function

satisfies the assumptions of the proposition 4.2 which we apply after having noticed the identity

I =

∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
dx =

∫

G

∣

∣

∣
t1−s/2∇f ∗ ∇̃M (0)

t (x)
∣

∣

∣
dx

6



where we noted ∇̃ the gradient formed by the vectors fields (Yj)1≤j≤k. We have then

I ≤
∫

G

∫

G
t1−s/2|∇f(y)||∇̃M (0)

t (y−1 · x)|dxdy ≤ t1−s/2‖∇f‖L1‖∇̃M (0)
t ‖L1 .

Using the inequality (7) we obtain
∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
dx ≤ Ct

1−s
2 ‖∇f‖L1 .

�

Proposition 6.2 For the last integral of (12) we have the inequality
∫

G

∣

∣

∣
t1−s/2J f ∗M (1)

t (x)
∣

∣

∣
dx ≤ Ct

1−s
2 ‖∇f‖L1

Proof. Here, it is necessary to make an additional step. We cut out the function m1 in the following way:

m1(λ) =

(

1− e−λ

λ

)

θ1(λ) = ma(λ)−mb(λ)

where ma(λ) =
1
λθ1(λ) and mb(λ) =

e−λ

λ θ1(λ). We will note M
(a)
t and M

(b)
t the associated kernels of these

two operators. We obtain thus the estimate
∫

G

∣

∣

∣
t1−s/2J f ∗M (1)

t (x)
∣

∣

∣
dx ≤

∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
dx+

∫

G

∣

∣

∣
t1−s/2J f ∗M (b)

t (x)
∣

∣

∣
dx (13)

We have the next lemma for the last integral in (13).

Lemma 6.1
∫

G

∣

∣

∣
t1−s/2J f ∗M (b)

t (x)
∣

∣

∣
dx ≤ Ct

1−s
2 ‖∇f‖L1 .

Proof. Observe that mb ∈ S(R+), then the proof is straightforward and follows the same steps as those of
the preceding proposition 6.1.

�

We treat the other part of (13) with the following lemma:

Lemma 6.2
∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
dx ≤ Ct

1−s
2 ‖∇f‖L1 (14)

Proof. We consider the auxiliary function

ψ(λ) = θ0(λ/2) − θ0(λ) = θ1(λ)− θ1(λ/2)

in order to obtain the identity
+∞
∑

j=0

ψ(2−jλ) = θ1(λ).

We have then

ma(tλ) =
1

tλ

+∞
∑

j=0

ψ(2−jtλ) =

+∞
∑

j=0

2−jφ(2−jtλ)

where φ(λ) = ψ(λ)
λ is a function in C∞

0 (R+). Then, from the point of view of operators, one has:

M
(a)
t =

+∞
∑

j=0

2−jKj,t (15)

7



where Kj,t = φ(2−jtJ ). With the formula (15) we return to the left side of (14):

∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
dx ≤

+∞
∑

j=0

2−j
∫

G

∣

∣

∣
t1−s/2J f ∗Kj,t(x)

∣

∣

∣
dx. (16)

Using the sub-Laplacian definition and the vector fields properties, we have

+∞
∑

j=0

2−j
∫

G

∣

∣

∣
t1−s/2J f ∗Kj,t(x)

∣

∣

∣
dx ≤

+∞
∑

j=0

2−jt1−s/2‖∇f‖L1‖∇̃Kj,t‖L1 .

Apply now proposition 4.2 to obtain the estimate ‖∇̃Kj,t‖L1 ≤ C2j/2t−1/2. We have then for (16) the
following inequality

∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
dx ≤ C

+∞
∑

j=0

2−j/2t
1−s
2 ‖∇f‖L1 .

Then, we finally get
∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
dx ≤ C t

1−s
2 ‖∇f‖L1 .

Which ends the proof of the lemma 6.2.

�

With these two last lemmas we conclude the proof of the proposition 6.2. Now, getting back to the formula
(12), with propositions 6.1 and 6.2 we finally finish the proof of theorem 4.

�

6.3 Weak inequalities

To begin the proof notice that operator J s/2 carries out an isomorphism between the spaces Ḃ−β,∞
∞ and

Ḃ−β−s,∞
∞ , see [11] for a proof. Thus inequality (3) rewrites as:

‖J s/2f‖Lq,∞ ≤ C‖∇f‖θL1‖J s/2f‖1−θ
Ḃ−β−s,∞

∞
(17)

By homogeneity, we can suppose that the norm ‖J s/2f‖
Ḃ−β−s,∞

∞
is bounded by 1; then we have to show

‖J s/2f‖Lq,∞ ≤ C‖∇f‖θL1 . (18)

We have thus to evaluate the expression
∣

∣{x ∈ G : |J s/2f(x)| > 2α}
∣

∣ for all α > 0. If we use the thermic
definition of the Besov space (10), we have

‖J s/2f‖
Ḃ−β−s,∞

∞
≤ 1 ⇐⇒ sup

t>0

{

t
β+s

2 ‖HtJ s/2f‖L∞

}

≤ 1.

But, if one fixes tα = α
−
(

2
β+s

)

, we obtain ‖HtαJ s/2f‖L∞ ≤ α. Note also that with the definition of

parameter β one has tα = α
− 2(q−1)

(1−s) . Therefore, since we have the following set inclusion

{

x ∈ G : |J s/2f(x)| > 2α
}

⊂
{

x ∈ G : |J s/2f(x)−HtαJ s/2f(x)| > α
}

,

the Tchebytchev inequality implies

αq
∣

∣

∣
{x ∈ G : |J s/2f(x)| > 2α}

∣

∣

∣
≤ αq−1

∫

G
|J s/2f(x)−HtαJ s/2f(x)|dx.

8



At this point, we use the theorem 4 to estimate the right side of the preceding inequality:

αq
∣

∣

∣
{x ∈ G : |J s/2f(x)| > 2α}

∣

∣

∣
≤ Cαq−1 t

1−s
2

α

∫

G
|∇f(x)|dx. (19)

But, by the choice of tα, one has αq−1α
− 2(q−1)

(1−s)
(1−s)

2 = 1. Then (19) implies the inequality

αq
∣

∣

∣
{x ∈ G : |J s/2f(x)| > 2α}

∣

∣

∣
≤ C‖∇f‖L1 ;

and, finally, using the definition (9) of weak Sobolev spaces it comes

‖J s/2f‖qLq,∞ ≤ C‖∇f‖L1

which is the desired result.

�

6.4 Strong inequalities

When s = 0 in the weak inequalities it is possible to obtain stronger estimations. To achieve this, we will
need an intermediate step:

Proposition 6.3 Let 1 < q < +∞, θ = 1
q and β = θ/(1− θ). Then we have

‖f‖Lq ≤ C‖∇f‖θL1‖f‖1−θ
Ḃ−β,∞

∞

when the three norms in this inequality are bounded.

Proof. We will follow closely [9]. Just as in the preceding theorem, we will start by supposing that
‖f‖

Ḃ−β,∞
∞

≤ 1. Thus, we must show the estimate

‖f‖Lq ≤ C‖∇f‖θL1 . (20)

Let us fix t in the following way: tα = α−2(q−1)/q where α > 0. We have then, by the thermic definition of
Besov spaces, the estimate ‖Htf‖L∞ ≤ α. We use now the characterization of Lebesgue space given by the
distribution function:

1

5q
‖f‖qLq =

∫ +∞

0
|{x ∈ G : |f(x)| > 5α}| d(αq). (21)

It now remains to estimate |{x ∈ G : |f(x)| > 5α}| and for this we introduce the following thresholding
function:

Θα(t) =



































Θα(−t) = −Θα(t)

0 if 0 ≤ T ≤ α

t− α if α ≤ T ≤Mα

(M − 1)α if T > Mα

Here, M is a parameter which depends on q and which we will suppose for the moment larger than 10.

This cut-off function enables us to define a new function posing fα = Θα(f). We write in the next lemma
some significant properties of this function fα:

Lemma 6.3

1. the set defined by {x ∈ G : |f(x)| > 5α} is included in the set {x ∈ G : |fα(x)| > 4α}.

9



2. On the set {x ∈ G : |f(x)| ≤Mα} one has the estimate |f − fα| ≤ α.

3. If f ∈ C1(G), one has the equality ∇fα = (∇f)1{α≤|f |≤Mα} almost everywhere.

We leave the verification of this lemma to the reader.

Let us return now to (21). By the first point of the lemma above we have

∫ +∞

0
|{x ∈ G : |f(x)| > 5α}| d(αq) ≤

∫ +∞

0
|{x ∈ G : |fα(x)| > 4α}| d(αq) = I. (22)

We note Aα = {x ∈ G : |fα(x)| > 4α}, Bα = {x ∈ G : |fα(x) − Htα(fα)(x)| > α} and Cα = {x ∈ G :
|Htα(fα − f)(x)| > 2α}. Now, by linearity of Ht we can write: fα = fα − htα(fα) + htα(fα − f) + htα(f).
Then, holding in account the fact ‖Htf‖L∞ ≤ α, we obtain Aα ⊂ Bα ∪ Cα. Returning to (22), this set
inclusion gives us the following inequality

I ≤
∫ +∞

0
|Bα| d(αq) +

∫ +∞

0
|Cα| d(αq) (23)

We will study and estimate these two integrals, which we will call I1 and I2 respectively, by the two following
lemmas:

Lemma 6.4 For the first integral of (23) we have the estimate:

I1 =

∫ +∞

0
|Bα| d(αq) ≤ C q log(M)‖∇f‖L1 (24)

Proof. The Tchebytchev’s inequality implies

|Bα| ≤ α−1

∫

G
|fα(x)−Htα(fα)(x)|dx.

Using the theorem 4 with s = 0 in the above integral we obtain:

|Bα| ≤ C α−1 t1/2α

∫

G
|∇fα(x)|dx

Remark that the choice of tα fixed before gives t
1/2
α = α1−q, then we have

|Bα| ≤ C α−q

∫

{α≤|f |≤Mα}
|∇f(x)|dx.

We integrate now the preceding expression with respect to d(αq):

I1 ≤ C

∫ +∞

0
α−q

(

∫

{α≤|f |≤Mα}
|∇f(x)|dx

)

d(αq) = C q

∫

G
|∇f(x)|

(

∫ |f |

|f |
M

dα

α

)

dx

It follows then I1 ≤ C q log(M)‖∇f‖L1 and one obtains the estimation needed for the first integral.

�

Lemma 6.5 For the second integral of (23) one has the following result:

I2 =

∫ +∞

0
|Cα| d(αq) ≤

q

q − 1

1

M q−1
‖f‖qLq

10



Proof. For the proof of this lemma, we write:

|f − fα| = |f − fα|1{|f |≤Mα} + |f − fα|1{|f |>Mα}.

As the distance between f and fα is lower than α on the set {x ∈ G : |f(x)| ≤Mα}, one has the inequality

|f − fα| ≤ α+ |f |1{|f |>Mα}

By applying the heat semi-group to both sides of this inequality we obtainHtα(|f−fα|) ≤ α+Htα(|f |1{|f |>Mα})
and we have then the following set inclusion Cα ⊂

{

x ∈ G : Htα(|f |1{|f |>Mα}) > α
}

. Thus, considering the
measure of these sets and integrating with respect to d(αq), it comes

I2 =

∫ +∞

0
|Cα| d(αq) ≤

∫ +∞

0

∣

∣

∣

∣

{Htα(|f |1{|f |>Mα}) > α}
∣

∣

∣

∣

d(αq)

We obtain now, by applying the Tchebytchev inequality, the estimate

I2 ≤
∫ +∞

0
α−1

(
∫

G
Htα

(

|f |1{|f |>Mα}

)

dx

)

d(αq),

then by Fubini’s theorem we have

I2 ≤ q

∫

G
|f(x)|

(
∫ +∞

0
1{|f |>Mα}α

q−2dα

)

dx =
q

q − 1

∫

G
|f(x)| |f(x)|

q−1

M q−1
dx =

q

q − 1

1

M q−1
‖f‖qLq .

And this concludes the proof of this lemma.

�

We finish the proof of proposition 6.3 by connecting together these two lemmas i.e.:

1

5q
‖f‖qLq ≤ Cq log(M)‖∇f‖L1 +

q

q − 1

1

M q−1
‖f‖qLq

Since we supposed all the norms bounded and M ≫ 1, we finally have

(

1

5q
− q

q − 1

1

M q−1

)

‖f‖qLq ≤ Cq log(M)‖∇f‖L1

�

The proof of the theorem 1 is not yet completely finished. The last step is provided by the

Proposition 6.4 In the proposition 6.3 it is possible to consider only the two assumptions ∇f ∈ L1(G)

and f ∈ Ḃ−β,∞
∞ (G).

Proof. For the proof of this proposition we will build an approximation of f writing:

fj =

(
∫ +∞

0

(

ϕ(2−2jλ)− ϕ(22jλ)
)

dEλ

)

(f)

where ϕ is a C∞(R+) function such that ϕ = 1 on ]0, 1/4[ and ϕ = 0 on [1,+∞[.

Lemma 6.6 If q > 1, if ∇f ∈ L1(G) and if f ∈ Ḃ−β,∞
∞ (G) then ∇fj ∈ L1(G), fj ∈ Ḃ−β,∞

∞ (G) and
fj ∈ Lq(G).

11



Proof. The fact that ∇fj ∈ L1(G) and fj ∈ Ḃ−β,∞
∞ (G) is an easy consequence of the definition of fj . For

fj ∈ Lq(G) the starting point is given by the relation:

fj =

(
∫ +∞

0
m(2−2jλ) dEλ

)

2−2jJ (f),

where we noted

m(2−2jλ) =
ϕ(2−2jλ)− ϕ(22jλ)

2−2jλ
.

Observe that the function m vanishes near of the origin and satisfies the assumptions of proposition 4.2.
We obtain then the following identity where Mj is the kernel of the operator m(2−2jJ ):

fj = 2−2jJ f ∗Mj = 2−2j∇f ∗ ∇̃Mj ,

Using inequality (7), we estimate the norm Lq(G) in the preceding identity:

‖fj‖Lq = ‖2−2j∇f ∗ ∇̃Mj‖Lq ≤ 2−2j‖∇f‖L1‖∇̃Mj‖Lq .

Finally, we obtain:

‖fj‖Lq ≤ C 2
j(d(1− 1

q
)−1)‖∇f‖L1 < +∞

�

Thanks to this estimate, we can apply the proposition 6.3 to fj whose L
q(G) norm is bounded, and we

obtain:

‖fj‖Lq ≤ C‖∇fj‖θL1‖fj‖1−θ
Ḃ−β,∞

∞
.

Now, since f ∈ Ḃ−β,∞
∞ (G), we have fj ⇀ f in the sense of distributions. It follows

‖f‖Lq ≤ lim inf
j→+∞

‖fj‖Lq ≤ C‖∇f‖θL1‖f‖1−θ
Ḃ−β,∞

∞
.

We restricted ourselves to the two initial assumptions, namely ∇f ∈ L1(G) and f ∈ Ḃ−β,∞
∞ (G). The strong

inequalities (1) are now completely proved for stratified groups.

�
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Séminaire de l’Ecole Polytechnique, exposé n◦ IV (1996-1997).
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