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Abstract

We use semigroup theory to describe the group of automorphisms of

some semigroups of interest in holomorphic dynamical systems. We show,

with some examples, that representation theory of semigroups is related

to usual constructions in holomorphic dynamics. The main tool for our

discussion is a theorem due to Schreier. We extend this theorem, and our

results in semigroups, to the setting of correspondences and holomorphic

correspondences.

1 Introduction

One of the motivations of this paper is to add a new entry to Sullivan’s dictio-
nary between holomorphic dynamics and Kleinian groups. This entry consist of
the algebraic part of a holomorphic dynamical system, that corresponds to the
algebraic structure of a Kleinian group. From this point of view, the natural
object is a semigroup. This investigation was initiated by the following question
of Étienne Ghys:

• Are there multiplicative characters, defined on the semigroup of polyno-
mials with composition, which do not arises as a multiplicative function
of the degree?

In general, multiplicative characters play an important role in representation
theory, which is also the subject of this work.

We give a positive answer to Ghys’ question, and suggest a general method
to construct multiplicative characters on polynomials. Then, we study the au-
tomorphism groups of several semigroups of interest in holomorphic dynamical
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systems. In the second section, we show that the semigroup of polynomials
and rational maps are generated by linear automorphisms and the Galois group
action on C. A result, due to Hinkkanen, states that the automorphism group
of entire functions consist of the group of continuous inner automorphisms. Us-
ing Hinkkanen’s Theorem, we show that, the group of automorphisms of the
semigroup of meromorphic functions also consists of the group of continuous in-
ner automorphisms. We give algebraic conditions, using sandwich semigroups,
that characterize when two given polynomials, or rational maps, are conformally
conjugated. The main tool is a theorem, due to Schreier, which states that any
representation of a semigroup of maps S is geometric, whenever S contains con-
stant maps. This result is useful to study the representation space of semigroups
of maps and correspondences. Hence, this theorem remarks the importance of
considering semigroups of maps together with constants. This point of view is
also adopted in Eremenko’s paper [5].

On the third section we provide several examples of semigroups representa-
tions that appear in holomorphic dynamical systems. Among these, there is a
connection with the deformation space of a given rational map. The topology
of the deformation space of a rational space is discussed in [2].

On the last section, we generalize the results of Section 2, to the setting
of holomorphic correspondences. In particular, we prove a generalized Schreier
Lemma for correspondences and holomorphic correspondences. This allow us
to characterize the Galois group Gal(C), the group of all field automorphisms
of C, as the subgroup of Bij(C) that under conjugation functionally preserves
the finite holomorphic world.

2 Semigroups.

A semigroup is a set S together with a binary operation which is associative.
Given any set X , consider the semigroupMap(X) of all maps φ : X → X , with
composition as semigroup operation. It contains the group of bijections Bij(X).
A subset I ⊂ S is called a left (respectively right) ideal, if si ∈ I (respectively
is ∈ I), for all s ∈ S and i ∈ I.

For every element s in S, let τs be the left translation by s. The map s 7→ τs
induces a representation φ from S into Map(S). In fact, the same map gives a
representation from S into Map(I) for every left ideal I in S. Note that φ is a
faithful representation only in the case when, for every pair of elements g, h in
S, there is i ∈ I such that gi 6= hi.

Let X be an abstract set, then there is a canonical inclusion of X into
Map(X), sending every x in X to the constant map x. The image of this map
is a left ideal I in Map(X), the ideal of constants of X . An element x in
Map(X) belongs to I if, and only if, for every g ∈Map(X) we have :

i) g ◦ x ∈ I;

ii) x ◦ g = x.
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The ideal of constants is contained in every left ideal of Map(X). In this
sense, the ideal of constants is the smallest left ideal in Map(X). Given any
semigroup S, we can use properties (i) and (ii) to define the ideal of constants,
whenever it exists.

Example. In general, the ideal of constants in Map(X) is not prime. Assume
that X has at least three points x1, x2 and x3, let g1 and g2 in Map(X), such
that, Image(g1) = {x1, x2}, g2(x1) = g2(x2) 6= g2(x3), then g2 ◦ g1 is constant
but g2 is not. However, if we restrict to the space of continuous maps C0(X)
in a topological space X with enough regularity, then the ideal of constants is
prime.

From now on, we will consider the special case where X is either the complex
plane C or the Riemann sphere C̄. Given two subsets S1 and S2 in Map(X),
we denote by 〈S1, S2〉 the semigroup generated by S1 and S2.

2.1 Multiplicative characters of semigroups.

Let Pol(C) denote the semigroup of complex polynomials with composition
as semigroup multiplication. Let us consider the set Hom(Pol(C),C) of all
multiplicative characters, that is, the set of homomorphisms χ in satisfying

χ(P1 ◦ P2) = χ(P1) · χ(P2)

for all P1, P2 ∈ Pol(C).
The degree function deg, is a basic example of a multiplicative character in

Pol(C). Any multiplicative function of deg induces a multiplicative character.
It was a question of É. Ghys whether there are other characters apart from these
examples. We give a positive answer to this question and give a description of
how to construct multiplicative characters on Pol(C). To do so, first let us recall
a theorem due to Ritt, see [13].

Definition. A polynomial P , is called prime, or indecomposable, if whenever
we have P = Q ◦ R, where Q and R are polynomials, then either deg(Q) = 1
or deg(R) = 1. A decomposition of P = P1 ◦ P2 ◦ ... ◦ Pn is called a prime
decomposition if, and only if, each Pi is a prime polynomial of degree at least 2
for all i.

Given a prime decomposition of a polynomial P = P1 ◦ ... ◦ Pn, a Ritt
transformation, say in the j place, is the substitution of the pair Pj ◦ Pj+1, in
the prime decomposition of P , by the pair Qj ◦Qj+1. Where Qj and Qj+1 are
prime polynomials satisfying Pj ◦ Pj+1 = Qj ◦ Qj+1. Now we can state Ritt’s
theorem.

Theorem 1 (Ritt). Let P = P1 ◦ P2 ◦ ... ◦ Pm and P = Q1 ◦ ... ◦ Qn be
two prime decompositions of P , then n = m. Moreover, any two given prime
decompositions of P are related by a finite number of Ritt transformations.
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In [13], Ritt showed that there are three types of Ritt transformations,
namely, see also [1]:

1. Substitute Pi ◦ Pi+1 by (Pi ◦A) ◦ (A
−1) ◦ Pi+1, where A is an affine map.

2. Substitute Pi ◦Pi+1 by Pi+1 ◦Pi, when Pi and Pi+1 are Tchebychev poly-
nomials.

3. If Pi(z) = zk and Pi+1(z) = zrP (zk) for some polynomial P and natural
numbers r and k. Define Qi+1(z) = zr(P (z))k, then substitute Pi ◦ Pi+1

by Qi+1 ◦ Pi.

In particular, there are two invariants of a prime decomposition, the length
of a prime decomposition, and the set of degrees in the prime decomposition.
Hence, for every P ∈ Pol(C) the length of a prime decomposition of P is a well
defined additive character l(P ). That is, it satisfies

l(P1 ◦ P2) = l(P1) + l(P2).

Now, define the function χ by χ(P ) = el(P ). Then, χ is a multiplicative character
which is not a multiplicative function of the degree.

The following theorem gives a method to generate multiplicative characters
in Pol(C).

Theorem 2. Let φ be a complex function, defined on the set of prime polyno-
mials, satisfying:

(i) φ(c) = 0 for every constant c.

(ii) If P1, P2, P3, P4 are prime polynomials with P1 ◦ P2 = P3 ◦ P4, then

φ(P1) · φ(P2) = φ(P3) · φ(P4).

Then, φ generates a multiplicative character Φ. Conversely, if Φ is a multi-
plicative character in Pol(C), which is not the constant map 1, then Φ satisfies
the conditions above.

Proof. Let P be a composite polynomial and P = P1 ◦ P2 ◦ ... ◦ Pn be a prime
decomposition of P , define

Φ(P ) = φ(P1) · φ(P2) · ... · φ(Pn).

Let us check that Φ is well defined. By Theorem 1, it is enough to consider a
step modification of P1 ◦P2 ◦ ...◦Pn. Let Qj and Qj+1 be two polynomials such
that Pj ◦ Pj+1 = Qj ◦ Qj+1, then by condition (ii) we have φ(Pj) · φ(Pj+1) =
φ(Qj) · φ(Qj+1), in consequence

φ(P1) · φ(P2) · ... · φ(Pj) · φ(Pj+1) · ... · φ(Pn) =

φ(P1) · φ(P2) · ... · φ(Qj) · φ(Qj+1) · ... · φ(Pn).
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Hence Φ is invariant under step modifications and, by Theorem 1, it is indepen-
dent of the prime decomposition of P . It follows, from the definition, that Φ is
a multiplicative character.

Conversely, let Φ be a multiplicative character. For any pair of constants c1
and c2, the equations c1 ◦ c2 = c1 and c2 ◦ c1 = c2 imply

Φ(c1) = Φ(c1 ◦ c2) = Φ(c1) · Φ(c2)

= Φ(c2) · Φ(c1) = Φ(c2 ◦ c1) = Φ(c2).

Then, for every constant c, either we have Φ(c) = 1 or Φ(c) = 0. If Φ(c) = 1,
the equation P (c) = P ◦ c implies that Φ(P ) = 1 for all P . Hence if Φ is not
constantly 1, then we have Φ(c) = 0 for every constant c. The second condition
follows from the fact that Φ is a multiplicative character.

Example (Affine characters.). Let H be the ideal of non injective polynomials.
Any multiplicative character χ : Aff(C) → C admits an extension to a multi-
plicative character defined in Pol(C). For instance, put χ(c) = 0 for all constant
c, and χ(h) = 0, for all other h in H.

In the same way, we can extend affine characters to other semigroups con-
taining Aff(C), such as Rat(C), Ent(C) or the semigroup of holomorphic corre-
spondences discussed at the end of this work.

Now let us construct non-trivial extension of the constant affine character
equal to 1. In order to do so, we have to consider the bi-action, left and right, of
Aff(C) on Pol(C). The bi-orbit of a polynomial P is the set of all polynomials of
the form A ◦P ◦B, where A,B belong to Aff(C). We say that a polynomial has
no symmetries if, there are no elements A,B, in Aff(C), such that P = A◦P ◦B.

Lemma 3. Let P be a prime polynomial, and let AF(P ) be the semigroup
generated by the bi-orbit of the Affine group of the set of iterates {Pn}. Let Q
and R be a pair of polynomials, of degree at least 2, such that Q ◦R ∈ AF(P ),
then Q ∈ AF(P ) and R ∈ AF(P ).

Proof. Since Q ◦ R belong to AF(P ), there is a prime decomposition of Q ◦ R
whose elements are of the form A ◦ P ◦B. By Ritt’s Theorem, any other prime
decomposition of Q◦R is obtained by a finite number of Ritt’s transformations.
But, Ritt’s transformations are either permutations, or substitution by a pair
of elements in the bi-affine orbit. Hence, all prime decompositions of Q◦R have
prime elements in AF(P ). Then the conclusion of the Lemma follows.

Example. Let χ be the constant multiplicative character equal to 1 defined on
Aff(C), and P be a prime polynomial of degree at least 2. Let us extend χ to all
Pol(C) defining χ(Q) = 1 for all Q in the bi orbit by Aff(C) of the set {Pn}n∈P,
and χ(Q) = 0 for all the other polynomials Q in Pol(C). By Lemma 3 and
Theorem 2, this is a well defined character. In fact for any number a, defining
χ(A ◦Pn ◦B) = an where A,B are elements in Aff(C) gives other extensions of
χ in Pol(C).
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To extend arbitrary multiplicative characters defined on Aff(C), the construc-
tion of the character is more involved. At least in the case where P is a prime
polynomial, such that every iterate Pn is without symmetries, it is possible to
extend any multiplicative character χ on Aff(C).

The ideal of constants is very useful to understand the structure ofMap(X).
A homomorphism φ :Map(X) →Map(Y ) is called geometric if, there is a map
f : X → Y satisfying φ(P ) ◦ f = f ◦P for every P ∈Map(X). Now we recall a
result due to Schreier that describes the semigroup Map(X) using the ideal of
constants. For further details see [14], and also the discussions in Eremenko’s
paper [5] and Magill’s survey [9].

Lemma 4 (Schreier’s Lemma). Let φ : Map(X) → Map(Y ) be a homo-
morphism, then φ is geometric. In the case where φ ∈ Aut(Map(X)) and
φ(P ) ◦ f = f ◦ P , then f is a bijection of X and φ(P ) = f ◦ P ◦ f−1, for all
P ∈Map(X).

Proof. Consider the restriction f := φ|X to the ideal of constants. Since φ is a
homomorphism, it maps ideals into ideals, it also preserves the properties of the
ideal of constants, hence f sends constants to constants. So f is a map from X

to Y . Moreover,
φ(P (x)) = f(P (x))

since P (x) ∈ X . Also,

φ(P (x)) = φ(P ◦ x) = φ(P ) ◦ f(x) = φ(P )(f(x)),

hence
φ(P )(f(x)) = f(P (x)).

If φ ∈ Aut(Map(X)), then f is a map from X to itself. Moreover, since φ is an
automorphism, we can apply the argument to φ−1, so we get that f is invertible.
Which implies that f is a bijection and the formula φ(P ) = f ◦ P ◦ f−1.

In fact, there is no need that the homomorphism in Lemma 4 is defined in
all Map(X), the same proof above shows.

Corollary 5. Let S1 and S2 be subsemigroups of Map(X) and Map(Y ), re-
spectively, and such that X1 = S1∩X and Y1 = S2∩Y are both non empty sets.
If φ : S1 → S2 is a homomorphism, then there exist f : X1 → Y1, such that for
all h ∈ S1, φ(h) ◦ f = f ◦ h. Moreover,

• the homomorphism φ is injective, or surjective, if and only if, the map f
is injective or surjective. In particular, φ is an isomorphism if, and only
if, f is a bijection.

• When S1 and S2 are topological semigroups, then Φ is continuous if, and
only if, f is continuous.
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Along with the ideal of constants, the affine group Aff(C) plays an important
role in the description of automorphisms of polynomials. Later on, we will con-
sider generalizations to semigroups generated by correspondences. A particular
case of Lemma 4 is the following

Corollary 6. For any set X, the group Aut(Map(X)) is isomorphic to Bij(X).

Let Gal(C) denote the absolute Galois group of C, that is, the full group
of field automorphisms of C. Remind that since every orientation preserving
element in Gal(C) must fix the complex rationals, the identity and complex
conjugation are the only continuous elements in Gal(C). The action of Gal(C)
extends to an action in Rat(C), the semigroup of rational functions in C. In
particular, the action of Gal(C) in C extends to an action in Pol(C).

Proposition 7. The group of automorphisms of Pol(C) is generated by Gal(C)
and Aff(C). Moreover, Aut(Pol(C)) = Aut(Aff(C)).

Proof. Let φ be an element of Aut(Pol(C)). By Lemma 4, the restriction f = φ|C
is a bijection from C to C, and φ(P ) = f ◦P ◦f−1. First, let us check that φ = Id

if, and only if, f = Id. Note that we can realize evaluation as composition with
a constant function. If f = Id, then we have

φ(P )(z) = φ(P ) ◦ f(z) = φ(P (z)) = f(P (z)) = P (z)

for every polynomial P and z ∈ C, that is φ = Id. The converse is clear.
Since, by Lemma 4, φ is a conjugation, then φ(P ) and P have the same

degree. In particular, φ leaves the affine group Aff(C) invariant, so φ(Aff(C)) =
Aff(C). This fact also follows from the characterization of Aff(C) as the set
of injective polynomials. In particular, Aut(Pol(C)) ⊂ Aut(Aff(C)), the con-
verse is also true by Lemma 4, since any conjugacy in the Aff(C) extends to a
conjugacy in Pol(C).

The group of translations T is the commutator of Aff(C), hence T is invariant
under φ. The value of a translation at one point, determines the translation. Let
τc denote the translation z 7→ z + c, since

φ(τc)(f(0)) = f ◦ τc ◦ f
−1(f(0)) = f(c),

then
φ(τc) = τ(f(c)−f(0)).

Define g(z) = f(z)− f(0), then g is a bijection of C which is the restriction
to the constants of the map φ̃ = τ−f(0) ◦ φ and g(0) = 0. By definition, φ̃ ∈
Aut(Pol(C)) and φ(τc) = τg(c), it follows that

φ(τc1+c2) = φ(τc1) ◦ φ(τc2),

that is,
g(c1 + c2) = g(c1) + g(c2).

7



Let A0 be the group of injective polynomials fixing 0, since φ̃(0) = 0, then
φ̃(A0) = A0. Now we repeat the argument above, this time in multiplicative

terms, to show that h(c) = g(c)
g(1) is a bijection of C preserving multiplication

and h(1) = 1. By definition, h also preserves addition with h(0) = 0, hence h ∈
Gal(C). Note that h is the restriction to constants of the map (g(1)−1τ−f(0))◦φ.
This implies that f = g(1)h+ f(0) as we wanted to show.

The proof of Proposition 7 can be adapted to show

Proposition 8. Let Rat(C̄) denote the semigroup of rational maps in the Rie-
mann sphere, then Aut(Rat(C̄)) = 〈Gal(C), PSL(2,C)〉

Proof. Since φ(Id) = Id, and using the formula R ◦ R−1 = Id, one can check
that φ sends PSL(2,C), the group of invertible rational maps, into PSL(2,C).
Post composing φ with an element of PSL(2,C) we can assume that φ(∞) = ∞.
In this case, it follows that φ(Aff(C)) ⊂ Aff(C), hence if φ(∞) = ∞ then φ ∈
Aut(Aff(C)). Since every element in 〈Gal(C), PSL(2,C)〉 induces a conjugation
in Rat(C), we have the claim of the proposition.

Now we want to study the semigroup of meromorphic functions Mer(C).
This semigroup contains the semigroup of entire functions Ent(C). We recall a
theorem by Hinkkanen [6].

Theorem 9 (Hinkkanen). Let φ be a geometric automorphism of Ent(C), then
φ is affine.

In other words, except for the identity, no element in Gal(C) leaves the
semigroup Ent(C) invariant in the space of formal series. The following are
immediate consequences of Lemma 4 and Hinkkanen’s Theorem.

Proposition 10. The group of automorphisms of Mer(C) is isomorphic to
PSL(2,C).

Proof. Let φ be an element in Aut(Mer(C)), and γ be an element in PSL(2,C)
so that γ(φ(∞)) = ∞. By Lemma 4, γ ◦ φ is a geometric automorphism in
Mer(C). Now, a meromorphic map g is entire if, and only if, g has no finite
poles. Since infinity is fixed by γ ◦ φ, the map γ ◦ φ sends entire functions into
entire functions. By Theorem 9, we have γ ◦φ ∈ Aff(C) and φ ∈ PSL(2,C).

Corollary 11. Every automorphism of Mer(C) is continuous.

Corollary 12. A map φ in Aut(Rat(C)) is continuous if, and only if, φ extends
to a map in Aut(Mer(C)).

All above gives a characterization of elements in Bij(C) that belong to the
Galois group Gal(C).
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Theorem 13. Let F be an element in Bij(C), let us assume it fixes three points
in C, then the following are equivalent.

i) The map F belongs to Gal(C).

ii) The induced map in Map(C) sends Rat(C) into itself.

iii) The induced map in Map(C) sends Pol(C) into itself.

iv) The induced map in Map(C) sends Aff(C) into itself.

2.2 Sandwich semigroups.

Here, we give an algebraic condition for when two rational maps are Möbius
conjugated, for this we do not require any dynamical restrictions on the rational
maps. We start with the polynomial case, where the action of PSL(2,C) is
replaced by the action of Aff(C).

Given a map g : Y → X , let us define on Map(X,Y ) the following op-
eration, for f, h ∈ Map(X,Y ) put f ∗g h = f ◦ g ◦ h. We denote this new
semigroup by Mapg(X,Y ) = (Map(X,Y ), ∗g). In particular, if S is a subsemi-
group of Map(X) and g ∈ Map(X), the set Sg := (S, ∗g) is also a semigroup.
In particular, given a polynomial P , let us consider the semigroup PolP (C).

Theorem 14. Let P1 and P2 be two complex polynomials. Let

Φ : PolP1
(C) → PolP2

(C)

be an isomorphism of semigroups. Then there is f ∈ Bij(C), and B ∈ Aff(C),
such that Φ(P ) = f ◦ P ◦ f−1 ◦B−1.

Proof. We first check that φ(Aff(C)) = Aff(C). By definition, for every pair of
polynomials P,Q, we have

φ(P ∗P1
Q) = φ(P ) ∗P2

φ(Q).

Let f = φ|C then, taking for Q a constant c ∈ C, the equality above becomes

f(P ◦ P1(c)) = φ(P ) ◦ P2(f(c)), (1)

for every polynomial P ∈ Pol(C). Since φ is an isomorphism, f is an invertible
map. Hence the equation above implies that f conjugates the polynomial P ◦P1

to φ(P ) ◦P2. Then deg(P ◦P1) = deg(φ(P ) ◦P2). We obtain a similar equation
for φ−1

f−1(P ◦ P2(c)) = φ−1(P ) ◦ P1(f
−1(c))

and deg(P ◦ P2) = deg(φ(P ) ◦ P1). Since deg is a multiplicative character, and
takes values in N, for every invertible polynomial A we obtain

deg(P1) = deg(φ(A)) · deg(P2)

9



and
deg(P2) = deg(φ−1(A)) · deg(P1).

Hence 1 = deg(φ(A)) · deg(φ−1(A)), which implies that φ(Aff(C)) = Aff(C).
Define B = φ(Id), then B is an element of Aff(C), now consider the map

φB : (Pol(C), P2) → (Pol(C), B−1P2), given by φB(P ) = P ◦ B. The φB is an
isomorphism of semigroups. Then the composition Φ = φB◦φ is an isomorphism
from (Pol(C), P1) to (Pol(C), B−1P2), satisfying Φ(Id) = Id. Last equation
implies that Φ(P1) = P2. Moreover, since Φ(c) = φ(c) ◦ B = φ(c) = f(c), the
restrictions to constants, of the maps φ and Φ, are equal. If P = Id in (1), we
obtain that P1 = f−1 ◦ P2 ◦ f , which implies from (1) that for all c ∈ C

f ◦ P ◦ P1(f
−1(c)) = Φ(P ) ◦ P2(f(f

−1(c))

= Φ(P ) ◦ P2(c),

then Φ(P ) = f ◦ P ◦ f−1. Hence φ(P ) = f ◦ P ◦ f−1 ◦ B−1 as we wanted to
show.

Corollary 15. Two polynomials P1 and P2 are affinely conjugate if, and only
if, the semigroups PolP1

(C) and PolP2
(C) are continuously isomorphic with an

isomorphism φ, such that φ(Id) = Id.

By substituting Aff(C) by PSL(2,C), and Pol(C) by Rat(C) in the proof of
previous theorem, we obtain the following

Theorem 16. Let R1 and R2 be two complex rational maps, and consider
an automorphism of semigroups Φ : RatR1

(C̄) → RatR2
(C̄). Then there is

f ∈ Bij(C) and B ∈ PSL(2,C) such that Φ(R) = f ◦ R ◦ f−1 ◦ B−1. In
particular, if Φ is continuous with Φ(Id) = Id, then Φ is conjugation by an
element of PSL(2,C).

Which implies the following

Corollary 17. Two rational maps R1 and R2 are conjugate by a map in
PSL(2,C) if, and only if, the semigroups RatR1

(C) and RatR2
(C) are con-

tinuously isomorphic with an isomorphism φ, such that φ(Id) = Id.

By Theorem 14, the condition φ(Id) = Id is equivalent to require that
φ(R1) = R2. Every automorphism of Rat(C) induces an isomorphism of sand-
wich semigroups. Indeed, if φ ∈ Aut(Rat(C)) take Q,R rational maps such
that φ(Q) = R, then φ is an isomorphism between RatQ(C) and RatR(C). Let
ψ be an isomorphism of sandwich semigroups in Rat(C). By Theorem 14 and
Lemma 4, ψ induces an automorphism of Rat(C) if, and only if, ψ(Id) = Id.
Let us now discuss the situation of sandwich isomorphisms for small semigroups.
Let Q y R be two non-constant rational maps, and consider the semigroup
S = 〈Q,R,C〉. Take R1 and R2 in S and consider an isomorphism φ between

10



SR1
and SR2

. Since Q and R are the non constant elements in S with smaller
degree, then we have either

φ(Q) = R and φ(R) = Q

or
φ(Q) = Q and φ(R) = R.

In any case, φ2 fixes Q and R. Then the restriction of φ to constants is a non
trivial bijection of C, which commutes with Q and R.

3 Semigroup representations.

In this section, we give examples of how the theory of semigroup representations
applies to holomorphic dynamics. For every X , let us consider the decompo-
sition of Map(X) into the ideal of constants, I(X), the group of bijections
Bij(X) and the rest H(X). That is Map(X) = I(X) ∪ Bij(X) ∪ H(X), as
a consequence of Corollary 5, it follows that every homomorphism of Map(X)
into I is constant. Similarly, the only homomorphism fromMap(X) to Bij(X)
is the constant map with value Id.

In the spirit of Lemma 4, we consider semigroups together with the ideal of
constants. Let A be any set in X and S a subset of Map(X), then we denote
by 〈S,A〉 the semigroup generated by S and the constants in A regarded as
semigroups of Map(O+

S (A)), where O+
S(A) denotes the forward S-orbit of A.

With this construction, the ideal of constants of 〈S,A〉 is precisely O+
S (A) ∪ A.

Example. Let f0 = z2, then 〈f0, 1〉 = 1, since f0 = Id = 1 in Map({1}).
Analogously, if a is a periodic orbit of f0, then 〈f0, a〉 consists of the orbit of a
and the cyclic permutations of this orbit.

We can generalize the previous example to rational functions R : C → C.
In this case, we obtain a family of semigroups 〈R, a〉 parametrized by a point a
in the plane C. In this way, the set DR = {〈R, a〉 : a ∈ C} inherits the usual
topology from C. Let XR ⊂ DR be the set of finite semigroups, we call the set
JR = XR \ {isolated points}, the algebraic Julia set of R. The complement
FR = {〈R, a〉 : a ∈ C} \JR will be called the algebraic Fatou set of R in DR. In
this setting, the algebraic Fatou set is the interior of the set of free semigroups in
DR. These definitions reflect the dynamical Julia set J(R), which is the closure
of the repelling periodic points in C and, the dynamical Fatou set F (R) which
is the complement of J(R) in C.

3.1 Representations of semigroups of polynomials.

Let P be a partition of Pol(C), we say that P is a compatible partition if for
A,B ∈ P , and a pair of points a ∈ A, b ∈ B, the composition a ◦ b belongs to
a component C in P which do not depend on the representatives a and b. A
graduation is a partition of Pol(C) which is compatible with composition.
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As we discussed earlier in the paper, Pol(C) has a non empty set of mul-
tiplicative characters. Each multiplicative character in Pol(C) induces a grad-
uation in Pol(C). The fibers of multiplicative characters induce compatible
partitions. In particular, the degree of a polynomial induces a compatible par-
tition of Pol(C). In this case, the classes of this partition are Pold(C), the
set of polynomials of given degree d. We will describe now some examples of
representations of semigroups of the form 〈P,A〉 into Pold(C).

Note that since we are including an ideal of constants A in the domain, then
we have to include the constants in Pold(C) as well. Otherwise, there is no
representation from 〈P,A〉 into Pold(C). Nevertheless, including constants, in
both domain and range, is consistent with the philosophy of Lemma 4. In this
setting, every representation of S in Pol(C) is geometric, and realized by a map
defined in the complex plane. Let S be a subsemigroup in Pol(C) containing
Id, and let us consider representations of S into Pol0(C), the semigroup of
constant polynomials. Let φ : S → Pol0(C) be a homomorphism, since φ(Id)
is constant, then φ(R) = φ(Id) ◦ φ(R) = φ(Id). Hence, any representation of S
into the constant polynomials is a constant map.

The theory of representation of semigroups of the form 〈P, J(P )〉 into Pol(C)
is widely discussed in holomorphic dynamics in other terms. For example, the
theory of the continuous representations of 〈P, J(P )〉 into Pol(C) is parameter-
ized by the J-stable components of P . For example, see [2].

Another important situation is representations of semigroups 〈P,P(P )〉 into
Pol(C), here P(P ) is the postcritical set of P . Interior components of the
representation space can be parameterized by combinatorially equivalent poly-
nomials. Uniformization of these components by suitable geometric objects
(like suitable Teichmüller spaces), shed light on many problems in holomorphic
dynamics. In this direction, important advances were made by Douady, Hub-
bard, Lyubich, McMullen, Sullivan and Thurston, among many others. See for
example [4] and [10].

Now, let us consider the space of representations of affine semigroups into the
space of polynomials of degree d. This space includes all linearizations around
periodic orbits. Here, we review the repelling case. A complete treatment of
linearization theory in holomorphic dynamics can be found in Milnor’s book
[12].

Let Aλ in Aff(C) of the form z 7→ λz. Let P be a polynomial such that
there exist a repelling cycle O = {z0, z1, ..., zn} with multiplier λ. The Poincaré
function associated to z0, is a map φ : C → C sending 0 to z0 which locally
conjugates Aλ to Pn around z0. This construction induces a representation
of 〈Aλ,C〉 into 〈P,U0〉 for a suitable neighborhood U0 of z0. Moreover, since
Poincaré functions turn out to be meromorphic functions, it also induces a rep-
resentation of affine semigroups into the semigroups of meromorphic functions.
Similar constructions apply to other kind of linearizations. In the attracting
case, the inverse of the Poincaré function, defined on a neighborhood U0 of
z0, is known as König’s coordinate and gives a representation of 〈P,U0〉 into
〈Aλ,Dr〉, where Dr denotes the disk of radius r and r < 1. This construction
can also be applied to the parabolic case.

12



The process of renormalization, in holomorphic dynamics, gives examples of
semigroups of the form 〈P,U〉 that admit representations into themselves.

Let P be a polynomial P (z), of degree n, with connected and locally con-
nected Julia set. Then, ∞ is a superattracting fixed point of P . If A0(∞)
denotes the basin of ∞ of P , by Böttcher’s theorem, there is a homeomorphism
φ : C̄ \ D̄ → A0(∞), that conjugates z 7→ zn in C̄ \ D̄ with P in A0(∞). Since
J(P ) is connected and locally connected, the map φ extends to the boundaries
by Caratheodory’s theorem. The map on the boundaries induces a representa-
tion of 〈zn, S1〉 into 〈P, J(P )〉.

It would be interesting to have results, analogous to Theorem 13 or Theorem
14, that characterizes the action of quasiconformal maps in C. This would allow
us to determine quasiconformal conjugation in terms of semigroup representa-
tions.

3.2 When Julia set is homeomorphic to a Cantor set.

Now consider the special case where J(R) is homeomorphic to a Cantor set. For
simplicity in the arguments, let us assume that deg(R) = 2.

Let us consider a Jordan curve γ containing in its interior the Julia set and
a critical point; while the other critical point and all critical values lie outside
γ. Choosing a suitable γ, we assume that R−1(γ) is contained in the interior
of γ and consists of two Jordan curves γ1 and γ2. We get an scheme similar to
the one sketched in Figure 1. Let us call D1 and D2 the interiors of γ1 and γ2,
respectively.

R

R

γ2

γ1

γ

Figure 1: Cantor scheme.

With this scheme, we obtain representations of 〈R,D〉 into other semigroups.
To do so, let us modify topologically the Cantor scheme, and instead of the
restrictions of R on Di, consider affine maps Ai sending the modified γi to γ.
This induces a representation of 〈R, J(R)〉 into Aff(C).

If we modify the curves γ, γ1 and γ2 to circles and considering Möbius trans-
formations gi, instead of the maps that send γi to γ. We get a representation
Φ of 〈R, J(R)〉 into a “half” classical Schottky group Γ with two generators.
This is an example of a representation of non cyclic Kleinian groups in rational
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semigroups. The conjugating map of Φ may be taken quasiconformal, hence
the Hausdorff dimension of the limit set of the Schottky group can be esti-
mated in terms of the Hausdorff dimension of J(R). In particular, let R(z) be
a quadratic polynomial of the form z2 + c, such that J(R) is a Cantor set. In
this case, the parameter c belongs to the complement of the Mandelbrot set.
A theorem of Shishikura shows that there are sequences of quadratic polyno-
mials Rcn(z) = z2 + cn, with parameters cn tending to the boundary of the
Mandelbrot set, and such that the Hausdorff dimension of the Julia sets tends
to 2. With this result, Shishikura showed that the Hausdorff dimension of the
boundary of the Mandelbrot set is 2. Perhaps, using the representation above
is possible to get a result analogous of Shishikura’s theorem for the boundary
of the Classical Schottky space.

It is interesting to solve the extremal problem between these two objects from
holomorphic dynamics. In case there exist an extremal map from 〈R, J(R)〉 into
the Classical Schottky space, there would be a sort of estimate from above of
the distance between this two pieces of Sullivan’s dictionary.

The problem to describe the set of representations of 〈P,A〉, for an invariant
set A, into 〈Aff(C),C〉 is difficult, still remain many questions. In the case where
S ∈ Rat(C), it is interesting to understand the space of representations of 〈S,A〉
into PSL(2,C).

3.3 Binding semigroups of maps with constants.

Let us consider two semigroups of the form S1 = 〈g1, A1〉 and S2 = 〈g2, A2〉, in
this case the categorical sum, or coproduct, S1

∐

S2, is defined as 〈g1
∐

g2, A1×
{1}⊔A2×{2}〉, where g1

∐

g2 is a map defined on the disjoint union A1×{1}⊔
A2 × {2} by

g1
∐

g2(x) =

{

g1(x) if x ∈ A1

g2(x) if x ∈ A2

Analogously, we define the binding of a countable family of semigroups of the
form 〈gi, Ai〉. A classical example of such construction in dynamics is the process
of mating of quadratic polynomials, first described by Douady in [3]. We start
with two mateable polynomials S1 = 〈P1,C〉 and S2 = 〈P1,C〉. Using a topolog-
ical construction, the mating P1

∐

P2 is a quadratic rational map 〈R,C〉. Thus
we have a representation of S1

∐

S2 into the space of rational maps of degree 2.

3.3.1 Simultaneous linearizations and deformation spaces.

Let us now discuss a more elaborated example, associated to a fixed rational
map R0 of degree d. Let {a0, a1, ..., an−1} be a periodic cycle of R0, of period
n and multiplier λ, with |λ|> 1. Let us denote by Aλ the map z 7→ λz, and
φ the Poincaré function associated to Rn

0 and a0. As we discussed above φ
induces a representation of 〈Aλ,C〉 into 〈R0,C〉. The same is true for Ri

0 ◦ φ,
for each i = 0, ..., n − 1, all together, induce a representation of the binding
〈
∐n−1

i=0 Aλ,⊔
n−1
i=0 C × {i}〉 into 〈R0,C〉, here we put a component 〈Aλ,C〉 for

each periodic point in the cycle {a0, a1, ..., an−1}. Let us carry this construction
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further considering all repelling periodic cycles of R0, we obtain a countable
binding of semigroups of the form 〈Aλ,C〉 associated to all Poincaré functions
of R0. Let us call A(R0) this countable binding, so we have a representation
Ψ : A(R0) → 〈R0,C〉. Taking instead of 〈R0,C〉, the corresponding Poincaré
functions, we obtain a representation Ψ̃ from A(R0) into Mer(C). The image
φ(A(R0)) has a compactification which is related to Lyubich-Minsky laminations
discussed in Section 7 of [8].

Let us assume that R0 is hyperbolic of degree d. Since 〈R0,C〉 is a sub-
semigroup of Rat(C), let us now regard Ψ as a homomorphism from A(R0) into
Rat(C). Let X (R0) be the space of representations from A(R0) into Rat(C),
whose image is of the form 〈R,C〉 for some R of degree d. In other, words we
are considering all graduated representations that arise by deformations of the
semigroup 〈R0,C〉. Let us define the map P : X (R0) → Ratd(C), such that
for every Φ ∈ X (R0), let P (Φ) = R where R is the non constant rational map
generating P (Φ).

Let Pard(C) be the set of all rational maps, of degree d, that admit a
parabolic periodic point. Then P (X (R0)), in Ratd(C), is equal to Ratd(C) \
Pard(C). By a result of Lyubich, see [7], the space Ratd(C) \ Pard(C) consists
of the union of J-stable components in Ratd(C).

In [2], the authors construct a dynamical Teichmüller space T2(R0), which
uniformize the J-stable components of R0. It turns out that the space T2(R0)
is isomorphic to X (R0).

4 Correspondences.

Let A and B be two sets, let G be a subset of A × B. A correspondence is a
triple (G,A,B). If (a, b) ∈ G we say that b corresponds to a under G. The
notion of correspondences generalizes, in a way, the notion of functions. Indeed,
for every map f : X → Y , the graph of f induces a correspondence in X × Y .
Borrowing notation from Function Theory, we define the set

Im(G) = {b ∈ B : ∃a ∈ A such that (a, b) ∈ G}

is called the image of G, analogously the domain of G is defined by

Dom(G) = {a ∈ A : ∃b ∈ B such that (a, b) ∈ G}.

For every b ∈ Im(G) we call G−1(b) = {a ∈ A : (a, b) ∈ G} the preimage of b
under G. Similarly, the image of an element a ∈ A is the set G(a) = {b ∈ B :
(a, b) ∈ G}. Given a set G ⊂ A×B, the set G−1 = {(b, a) ∈ B×A : (a, b) ∈ G} is
called the inverse ofG. Let G1 ⊂ A×B andG2 ⊂ B×C be two correspondences,
the composition G1 ◦G2 of G1 and G2 is the correspondence induced by the set

G2 ◦G1 = {(a, c) ∈ A× C : ∃b ∈ B such that (a, b) ∈ G1 and (b, c) ∈ G2}.

Let X be a set, a correspondence K in X is a correspondence of the form
(K,X,X), additionally we require that Dom(K) = X . A correspondence K in
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X is called surjective if Im(K) = X and, finite if every image is a finite set. In
particular, constant maps are finite correspondences.

If G is a finite correspondence, the degree of the image of G is the maximum
of the cardinalities of its images.

4.1 Schreier’s Lemma for correspondences.

With composition, the set of correspondences Corr(X) in X is a semigroup.
Since functions are special cases of correspondences, the semigroup of correspon-
dences of X contains Map(X). The proof of the following lemma is immediate
by contradiction.

Lemma 18. Let K1 and K2 be two correspondences in Corr(X) such that
g = K1 ◦K2 is a map and K2 is surjective, then K1 is a map.

We will start by generalizing Schreier’s lemma restricted to correspondences
generated by maps. Let us start with some definitions,

Definition. A correspondence K in a set X is called a block if K has the form
R1 ◦R

−1
2 , where R1 and R2 belong to Map(X) and R2 is surjective.

We denote by BL(X) the subsemigroup of Corr(X), generated by all block
correspondences.

Theorem 19 (Schreier Lemma for blocks). Let φ : BL(X) → BL(Y ) be an
homomorphism then, there exist f ∈Map(X,Y ) such that for every K ∈ BL(X)
we have φ(K) = f ◦K ◦ f−1.

Proof. The identity Id is characterized among Corr(X) by the properties Id ◦
Id = Id and that for every C ∈ Corr(X) we have Id ◦ C = C ◦ Id = C.
Since this properties are preserved by homomorphisms we have Φ(Id) = Id.
Let R ∈ Corr(X) be any map, then R ◦ R−1 = Id. But then Φ(R ◦ R−1) =
Φ(R) ◦ φ(R−1) = Id is a map, by Lemma 18 then Φ(R) is a map. Hence
Φ sends maps into maps, so φ restricted to Map(X) is a homomorphism of
semigroups. By Lemma 4, there exist f ∈Map(X,Y ) such that, for every map
R, Φ(R) ◦ f = f ◦R. Then Φ(R) = f ◦R ◦ f−1 for all maps R.

Since blocks generate BL(X), it is enough to check that the theorem holds
for every correspondence of the form K = R−1

1 , where R1 is a map. Since
R1 ◦R

−1
1 = Id we have

Φ(R1 ◦R
−1
1 ) = Φ(R1) ◦ Φ(R

−1
1 ) = Id

on the other hand,
Φ(R1) = f ◦R−1

1

then
f ◦R1 ◦ f

−1 ◦ Φ(R−1
1 ) = Id

it follows that
Φ(R−1

1 ) = f ◦R−1
1 ◦ f−1

and then for every block K, Φ(K) = f ◦K ◦ f−1 as we wanted to prove.
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We now include in the discussion the constant maps in Corr(X), these are no
longer an ideal, but we can consider the unique minimal left ideal I in Corr(X),
which is generated by all constant maps. The semigroup of correspondences
acts on I. That is, there is a map α : Corr(X) → Map(I) that sends every
correspondence K ∈ Corr(X) to the left translation by K in Map(I).

Lemma 20. The map α : Corr(X) →Map(I) is a one-to-one map. Moreover,
for every c ∈ I, we have α(c) = c.

Proof. Suppose that K1 and K2 are correspondences in Corr(X) such that
α(K1) = α(K2). In particular, for every constant c ∈ I, we haveK1◦c = K2◦c.
However, a correspondence is characterized by the set of images, then K1 = K2.
The second part of the Lemma follows from the equation c ◦ K = c for all
c ∈ I.

Now we are set to prove:

Theorem 21. [Schreier’s Lemma for correspondences] Let

Φ : Corr(X) → Corr(Y )

be a homomorphism of semigroups. Then, there is a map f ∈Map(X,Y ), such
that, for every K ∈ Corr(X) we have Φ(K) = f ◦K ◦ f−1.

Proof. By the same argument in the proof of Theorem 19, the map Φ sends
maps to maps. Moreover, the restriction of Φ to BL(X), is an homomorphism
from BL(X) to BL(Y ), by Theorem 19 there is f ∈ Map(X,Y ) such that for
every K ∈ BL(X), we have that φ(K) = f ◦K ◦ f−1.

Let I and J denote the minimal ideals in Corr(X) and Corr(Y ), re-
spectively. Let us consider the maps αX : Corr(X) → Map(I), and αY :
Corr(Y ) → Map(J ) as in Lemma 20, and define SX = α(Corr(X)) and
SY = α(Corr(Y )). By Lemma 20, the maps αX and αY are bijections to their
images. Moreover, αX and αY send constants to constants. Hence the map
αY ◦ φ ◦ α−1

X is a homomorphism between the semigroups GX and GY , sending
constants to constants. By Corollary 5, there exist F ∈ Map(I,J ) such that
for every g ∈ G, we have

αY ◦ φ ◦ α−1
X (g) = F ◦ g ◦ F−1.

Since α, restricted to minimal ideal is the identity, then for every c in I and
every correspondence K ∈ Corr(X) we have F (c) = f(c), also

αY (K) ◦ c = K ◦ c,

and
α−1
X (c) = c

evaluating in c the equation above, we get

(αY ◦ φ(K) ◦ α−1
X ) ◦ c = φ(K) ◦ c
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= F ◦K ◦ F−1 ◦ c.

But then φ(K) = f ◦K ◦ f−1.

Note that in the proof of Theorem 21, we need the theorem on block corre-
spondences to get the existence of the map f . Once we have Schreier’s lemma for
the whole semigroup of correspondences, we can generalize it for subsemigroups
of correspondences, as long as they contain the minimal ideal of constants.

Corollary 22. Let S1 and S2 be subsemigroups of Corr(X) and Corr(Y ),
respectively, such that X1 = S1 ∩ X and Y1 = S2 ∩ Y are both non empty. If
φ : S1 → S2 is a homomorphism of semigroups, then there is f : X1 → Y1, such
that for all K ∈ S1, φ(K) = f ◦K ◦ f−1. Moreover,

• the homomorphism φ is injective, or surjective, if and only if, the map f
is injective or surjective. In particular, φ is an isomorphism if, and only
if, f is a bijection.

• When S1 and S2 are topological semigroups, then Φ is continuous if, and
only if, f is continuous.

4.2 Holomorphic correspondences.

A correspondence K in C is holomorphic if, as a set of C × C, K can be de-
composed as a countable union of analytic varieties, see McMullen’s book [11].
However recall that, in our setting, we require that Dom(K) = C. Moreover,
we assume that the preimage of every point admits an analytic extension to
the whole Riemann sphere, with the exception of finitely many points. Let us
denote by HCorr(C) the semigroup of holomorphic correspondences, which in-
cludes the semigroup of entire maps and constants. We denote by FHCorr(C̄),
the semigroup of finite correspondences on the Riemann sphere. By definition
FHCorr(C̄) contains the semigroup of rational maps Rat(C) together with all
constant maps. Hence, there exist a minimal left ideal of finite holomorphic
correspondences. Since rational maps are onto the Riemann sphere, if R1 and
R2 are rational maps, the block R−1

1 ◦R2 belongs to FHCorr(C).
Let K ∈ FHCorr(C̄), a holomorphic correspondence with degree d. That

is there is z such that K(z) consists of d points. Let S1, S2, ..., Sd denote all the
symmetric polynomials with d variables. For every i, Si(K) induces a holomor-
phic map from C̄ to C̄, it follows that Si(K) is a rational map. Moreover, for
every z the image K(z) are the roots of the polynomial

S1(K(z)) + S2(K(z))Z + ...+ Sd(K(z))Zd−1 + Zd.

Reciprocally any polynomial in Z, whose coefficients are rational maps in z,
defines a finite holomorphic correspondence in C̄. From this discussion, we have
the following known fact.
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Proposition 23. The space FHCorr(C̄) is equivalent to the space of monic
polynomials with coefficients in Rat(C).

The proof of Theorem 21, can be repeated in the setting of holomorphic
correspondences. In this case, every automorphism ofHCorr(C) or FHCorr(C̄)
is induced by conjugation of some function in Bij(C) or Bij(C̄). Nevertheless,
the holomorphic structure imposes holomorphic conditions in such bijections.

Theorem 24. The following statements are true

• Every automorphism of HCorr(C) is continuous. Moreover,

Aut(HCorr(C)) ≃ Aff(C).

• The action of Gal(C) extends to an action in FHCorr(C̄). In fact,

Aut(FHCorr(C̄)) ≃ 〈PSL(2,C), Gal(C)〉.

Proof. The semigroup of maps in HCorr(C) coincides with the semigroup of
entire maps. The first part of the theorem is a consequence of Corollary 11.
Since the semigroup of maps in FHCorr(C̄) is equal to Rat(C̄). By restriction,
any automorphism of FHCorr(C̄) induces an automorphism of Rat(C̄). But
every automorphism of Rat(C̄) is generated by PSL(2,C) and Gal(C). Now
let us see that, in fact, Gal(C) also acts on FHCorr(C̄). Let γ an element in
Gal(C), and let K ∈ FHCorr(C̄), then γ ◦K ◦ γ−1 is a finite correspondence
in Corr(C̄). Let d be the maximum cardinality of a fiber of K. Remind that
K is holomorphic in the Riemann sphere if, and only if, there is a symmetric
polynomial Sd in d variables, such that Sd(K) is a rational map in C̄. Since γ
acts on symmetric polynomials, there is a symmetric polynomial S̃d such that

S̃d(K) = γ ◦ Sd(K) ◦ γ−1 = Sd(γ ◦K ◦ γ−1)

But the second equality is the conjugation of a rational map by a Galois map,
hence is rational. This implies that γ ◦K ◦γ−1 is a holomorphic correspondence.
It follows that the group of automorphisms of FHCorr(C̄) is isomorphic to the
group of automorphisms of Rat(C), which by Proposition 8 is isomorphic to
〈PSL(2,C), Gal(C)〉.

The central argument for Theorem 14 is Schreier’s Lemma, with some mod-
ifications we can prove the corresponding theorem for holomorphic correspon-
dences.

Theorem 25. Let K1 and K2 be two holomorphic correspondences. Let

Φ : CorrK1
(C) → CorrK2

(C)

be an isomorphism of sandwich semigroups. Then there is f ∈ Bij(C), and
B ∈ Aff(C), such that Φ(P ) = f ◦ P ◦ f−1 ◦B−1.
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It is not clear whether the Galois group action acts on holomorphic cor-
respondences. Perhaps there is a generalization to Hinkkanen’s argument in
this setting. Now, we can state an analogous statement to Theorem 13 for
FHCorr(C̄).

Corollary 26. Let F be an element in Bij(C̄), that fixes 0, 1 and ∞. Then F
belongs to Gal(C) if, and only if, F induces an automorphism of FHCorr(C̄).
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