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Abstract

We compute the quantum isometry group of the finite noncommutative geometry F describing

the internal degrees of freedom in the Standard Model of particle physics. We show that this

provides genuine quantum symmetries of the spectral triple corresponding to M × F where

M is a compact spin manifold. We also prove that the bosonic and fermionic part of the

spectral action are preserved by these symmetries.

1 Introduction

In modern theoretical physics, symmetries play a fundamental role in determining the dynamics

of a theory. In the two foremost examples, namely General Relativity and the Standard Model

of elementary particles, the dynamics is dictated by invariance under diffeomorphisms and under

local gauge transformations respectively. As a way to unify external (i.e. diffeomorphisms)

and internal (i.e. local gauge) symmetries, Connes and Chamseddine proposed a model from

Noncommutative Geometry [15] based on the product of the canonical commutative spectral

triple of a compact Riemannian spin manifold M and a finite dimensional noncommutative

one, describing an “internal” finite noncommutative space F [12, 13, 18, 20]. In this picture,

diffeomorphisms are realized as outer automorphisms of the algebra, while inner automorphisms

correspond to the gauge transformations. Inner fluctuations of the Dirac operator are divided

in two classes: the 1-forms coming from commutators with the Dirac operator of M give the

gauge bosons, while the 1-forms coming from the Dirac operator of F give the Higgs field. The

gravitational and bosonic part Sb of the action is encoded in the spectrum of the gauged Dirac

operator, which is invariant under isometries of the Hilbert space. The fermionic part Sf is also

defined in terms of the spectral data. The result is an Euclidean version of the Standard Model

minimally coupled to gravity (cf. [20] and references therein).

In his “Erlangen program”, Klein linked the study of geometry with the analysis of its group

of symmetries. Dealing with quantum geometries, it is natural to study quantum symmetries.

The idea of using quantum group symmetries to understand the conceptual significance of the

finite geometry F is mentioned in a final remark by Connes in [17]. Preliminary studies on
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the Hopf-algebra level appeared in [30, 21, 26]. Following Connes’ suggestion, quantum auto-

morphisms of finite-dimensional complex C∗-algebras were introduced by Wang in [37, 38] and

later the quantum permutation groups of finite sets and graphs have been studied by a number

of mathematicians, see e.g. [3, 4, 11, 34]. These are compact quantum groups in the sense of

Woronowicz [41]. The notion of compact quantum symmetries for “continuous” mathematical

structures, like commutative and noncommutative manifolds (spectral triples), first appeared

in [28], where quantum isometry groups were defined in terms of a Laplacian, followed by the

definition of “quantum groups of orientation preserving isometries” based on the theory of spec-

tral triples in [7], and on spectral triples with a real structure in [29]. Computations of these

compact quantum groups were done for several examples, including the tori, spheres, Podleś

quantum spheres, and Rieffel deformations of compact Riemannian spin manifolds. For these

studies we refer to [6, 7, 8, 9, 10] and references therein.

The finite noncommutative geometry F = (AF ,HF ,DF , γF , JF ) describing the internal space

of the Standard Model is given by a unital real spectral triple over the finite-dimensional real

C∗-algebra AF = C ⊕ H ⊕ M3(C), with H the field of quaternions. Let BF ⊂ B(H) be the

smallest complex C∗-algebra containing AF as a real C∗-subalgebra. In this article we first

compute the quantum group of orientation and real structure preserving isometries of the spectral

triple (BF ,HF ,DF , γF , JF ); next we show that this quantum symmetry can be extended to get

quantum isometries of the product of this spectral triple with the canonical spectral triple of M .

Thus, we have genuine quantum symmetries of the full spectral triple of the Standard Model.

Moreover these quantum symmetries preserves the spectral action in a suitable sense. Finally

we compute the maximal quantum subgroup of the quantum isometry group whose coaction is

a quantum automorphism of the real C∗-algebra AF .

The plan of this article is as follows. We start by recalling in Sec. 2 some basic definitions

and facts about compact quantum groups and quantum isometries. In Sec. 3 we introduce the

spectral triple F and state the main result. Since quantum groups, coactions, etc. are defined

in the framework of complex (C∗-)algebras, we replace AF by BF and compute the quantum

isometry group of the latter in the sense of [29]. As shown in Sec. 3.2, this is given by the free

product C(U(1))∗Aaut(M3(C)), where Aaut(Mn(C)) is Wang’s quantum automorphism group of

Mn(C) [37]. In Sec. 4, we discuss the invariance of the spectral action under quantum isometries.

In Sec. 5 we explain how the result changes if we work with real instead of complex algebras.

The final section deals with the proof of the main result, that is, Proposition 3.3.

Throughout the paper, by the symbol ⊗alg we will always mean the algebraic tensor product

over C, by ⊗ minimal tensor product of complex C∗-algebras or the completed tensor product

of Hilbert modules over complex C∗-algebras. The symbol ⊗R will denote the tensor product

over the real numbers. Unless otherwise stated, all algebras are assumed to be unital complex

associative involutive algebras. We denote byN ∗ the set of all bounded linear functionalsN → C

on the normed linear space N , by M(A) the multiplier algebra of the complex C∗-algebra A, by

L(H) the adjointable operators on the Hilbert module H and by K(H) the compact operators on

the Hilbert space H. For a unital complex C∗-algebra A, we will implicitly use the identification

of M(K(H) ⊗A) with the set of all adjointable operators on the Hilbert A-module H ⊗A. By

abelianization of A we will mean the quotient of A by its commutator C∗-ideal. Lastly, we want

to attract the reader’s attention to a choice of notation. The notation Q̃ISO+
J used in this article

is the same as Q̃ISO+
real of [29]. We did this to avoid confusion with the newly defined object

Q̃ISO+
R of Section 5 in the context of quantum isometries of real C∗-algebras.
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2 Compact quantum groups and quantum isometries

2.1 Some generalities on Compact Quantum Groups

We begin by recalling the definition of compact quantum groups and their coactions from [40, 41].

We shall use most of the terminology of [36], for example Woronowicz C∗-subalgebra, Woronowicz

C∗-ideal, etc., however with the exception that Woronowicz C∗-algebras will be called compact

quantum groups, and we will not use the term compact quantum groups for the dual objects as

done in [36].

Definition 2.1. A compact quantum group (to be denoted by CQG from now on) is a pair (Q,∆)

given by a complex unital C∗-algebra Q and a unital C∗-algebra morphism ∆ : Q→ Q⊗Q such

that

i) ∆ is coassociative, i.e.

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆

as equality of maps Q→ Q⊗Q⊗Q;

ii) Span
{
(a⊗1Q)∆(b)

∣∣ a, b∈Q
}
and Span

{
(1Q⊗a)∆(b)

∣∣ a, b∈Q
}
are norm-dense in Q⊗Q.

For Q = C(G), where G is a compact topological group, conditions i) and ii) correspond to the

associativity and the cancellation property of the product in G, respectively.

Definition 2.2. A unitary corepresentation of a compact quantum group (Q,∆) on a Hilbert

space H is a unitary element U ∈ M(K(H) ⊗Q) satisfying

(id⊗∆)U = U(12)U(13)

where we use the standard leg numbering notation (see e.g. [32]).

If Q = C(G), U corresponds to a strongly continuous unitary representation of G.

For any compact quantum group Q (see [40, 41]), there always exists a canonical dense ∗-

subalgebra Q0 ⊂ Q which is spanned by the matrix coefficients of the finite dimensional unitary

corepresentations of Q and two maps ǫ : Q0 → C (counit) and κ : Q0 → Q0 (antipode) which

make Q0 a Hopf ∗-algebra.

Definition 2.3. A Woronowicz C∗-ideal of a CQG (Q,∆) is a C∗-ideal I of Q such that ∆(I) ⊂

ker(πI ⊗ πI), where πI : Q → Q/I is the projection map. The quotient Q/I is a CQG with the

induced coproduct.

If Q = C(G) are continuous functions on a compact topological group G, closed subgroups

of G correspond to the quotients of Q by its Woronowicz C∗-ideals. While quotients Q/I give

“compact quantum subgroups”, C∗-subalgebras Q′ ⊂ Q such that ∆(Q′) ⊂ Q′ ⊗ Q′ describe

“quotient quantum groups”.

Definition 2.4. We say that a CQG (Q,∆) coacts on a unital C∗-algebra A if there is a unital

C∗-homomorphism (called a coaction) α : A → A⊗Q such that:

i) (α⊗ id)α = (id⊗∆)α,

ii) Span
{
α(a)(1A ⊗ b)

∣∣ a ∈ A, b ∈ Q
}
is norm-dense in A⊗Q.
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The coaction is faithful if any CQG Q′ ⊂ Q coacting on A coincides with Q.

It is well known (cf. [33, 37]) that condition (ii) in Def. 2.4 is equivalent to the existence of a

norm-dense unital ∗-subalgebra A0 of A such that α(A0) ⊂ A0 ⊗alg Q0 and (id ⊗ ǫ)α = id on

A0. For later use, let us now recall the concept of universal CQGs Au(R) as defined in [35, 38]

and references therein.

Definition 2.5. For a fixed n×n positive invertible matrix R, Au(R) is the universal C∗-algebra

generated by {uij , i, j = 1, . . . , n} such that

uu∗ = u∗u = In , ut(RuR−1) = (RuR−1)ut = In

where u := ((uij)), u
∗ := ((u∗ji)) and u := (u∗)t. The coproduct ∆ is given by

∆(uij) =
∑

k
uik ⊗ ukj .

Note that u is a unitary corepresentation of Au(R) on Cn.

The Au(R)’s are universal in the sense that every compact matrix quantum group (i.e. ev-

ery CQG generated by the matrix entries of a finite-dimensional unitary corepresentation) is

a quantum subgroup of Au(R) for some R > 0 [38]. It may also be noted that Au(R) is the

universal object in the category of CQGs which admit a unitary corepresentation on Cn such

that the adjoint coaction on the finite-dimensional C∗-algebra Mn(C) preserves the functional

Mn(C) ∋ m 7→ Tr(Rtm) (see [39]).

We observe the following elementary fact which is going to be used in the sequel.

Lemma 2.6. Let H = Cn, n ∈ N and B ∈Mn(B) be a matrix with entries in a unital ∗-algebra

B. Then

(TrH ⊗ id)B(L⊗ 1)B∗ = TrH(L) · 1B

for any linear operator L on H if and only if Bt is unitary.

A matrix B (with entries in a unital ∗-algebra B) such that both B and Bt are unitary

is called a biunitary [5]. We remark that the CQG Au(n) := Au(In), called the free quantum

unitary group, is generated by the biunitary matrix u given in Def. 2.5. We refer to [38] for a

detailed discussion on the structure and classification of such quantum groups.

The analogue of projective unitary groups was introduced in [2] (see also Sec. 3 of [5]). Let

us recall the definition.

Definition 2.7. We denote by PAu(n) the C
∗-subalgebra of Au(n) generated by {uij(ukl)

∗ : i, j,

k, l = 1, . . . , n}. This is a CQG with the coproduct induced from Au(n).

Remark 2.8. The projective version of any quantum subgroup of Au(n) can be defined similarly.

In [37], Wang defines the quantum automorphism group of Mn(C), denoted by Aaut(Mn(C))

to be the universal object in the category of CQGs with a coaction on Mn(C) preserving the

trace (and with morphisms given by CQGs homomorphisms intertwining the coactions). The

explicit definition is in Theorem 4.1 of [37].

We conclude this section by quoting Théorème 1(iv) of [2] (cf. also Prop. 3.1(3) of [5]).

Proposition 2.9 ([2, 5]). We have PAu(n) ≃ Aaut(Mn(C)).
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2.2 Noncommutative Geometry and quantum isometries

In noncommutative geometry, compact Riemannian spin manifolds are replaced by real spectral

triples. Recall that a unital spectral triple (A,H,D) is the datum of: a complex Hilbert space

H, a complex unital associative involutive algebra A with a faithful unital ∗-representation

π : A → B(H) (the representation symbol is usually omitted), a (possibly unbounded) self-

adjoint operator D on H with compact resolvent and having bounded commutators with all

a ∈ A. The canonical commutative example is given by (C∞(M), L2(M,S),D/ ), where C∞(M)

are complex-valued smooth functions on a compact Riemannian spin manifold with no boundary,

L2(M,S) is the Hilbert space of square integrable spinors and D/ is the Dirac operator.

A spectral triple is even if there is a Z2-grading γ onH commuting with A and anticommuting

with D. We will set γ = 1 when the spectral triple is odd.

A spectral triple is real if there is an antilinear isometry J : H → H, called the real structure,

such that

J2 = ǫ1 , JD = ǫ′DJ , Jγ = ǫ′′γJ , (2.1)

and

[a, JbJ−1] = 0 , [[D, a], JbJ−1] = 0 , (2.2)

for all a, b ∈ A 1. ǫ, ǫ′ and ǫ′′ are signs and determine the KO-dimension of the space [16].

For the finite part of the Standard Model ǫ = +1, ǫ′ = +1, ǫ′′ = −1 and the KO-dimension is

6 [14]. Imposing a few additional conditions, it is possible to reconstruct a compact Riemannian

spin manifold from any commutative real spectral triple [19].

In the example (C∞(M), L2(M,S),D/ , J, γ) of the spectral triple associated to a compact

Riemannian spin manifold M with no boundary, there exists a covering group G̃ of the group of

orientation preserving isometries G of M having a unitary representation U on the Hilbert space

of spinors L2(M,S) commuting with D/ , J, γ whose adjoint action AdU on B(L2(M,S)) preserves

the subalgebra C∞(M). This picture is used to generalize the notion of isometries as in [29].

Definition 2.10. A CQG (Q,∆) coacts by “orientation and real structure preserving isometries”

on the spectral triple (A,H,D, γ, J) if there is a unitary corepresentation U ∈ M(K(H) ⊗ Q)

such that

U commutes with D ⊗ 1 and γ ⊗ 1; (2.3a)

(J ⊗ ∗)U(ξ ⊗ 1Q) = U(Jξ ⊗ 1Q) for all ξ ∈ H; (2.3b)

(id⊗ ϕ)AdU(a) ∈ A′′ for all a ∈ A and every state ϕ on Q, (2.3c)

where AdU = U( . ⊗ 1Q)U
∗ is the adjoint coaction and A′′ is the double commutant of A.

Note that in Definition 4 of [29] two antilinear operators J and J̃ appear. J̃ is a generalized

real structure (it is not assumed to be an isometry) and J is its antiunitary part. As in the

case of this article the real structure is an antilinear isometry J and J̃ coincide and hence our

definition is a particular instance of Definition 4 of [29].

We end this section by recalling Theorem 1 of [29]. Let (A,H,D, γ, J) be a real spectral triple

with ǫ′ = 1 and CJ be the category with objects (Q,U) as in Definition 2.10 and morphisms

given by CQG morphisms intertwining the corresponding corepresentations. Then

1Notice that in some examples, although not in the present case, the condition (2.2) has to be slightly relaxed,

cf. [22, 23, 24, 25].
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Theorem 2.11. The category CJ has a universal object denoted by Q̃ISO+(A,H,D, γ, J) (or

simply Q̃ISO+
J (D)) whose unitary corepresentation, say U0, is faithful. The quantum isome-

try group, denoted by QISO+(A,H,D, γ, J), (or simply QISO+
J (D)) is given by the quantum

subgroup of Q̃ISO+
J (D) generated by the elements {(ϕ ⊗ id)AdU0

(a) : a ∈ A, ϕ ∈ A∗}.

Q̃ISO+
J (D) is the quantum analogue of the covering G̃ of the classical group G of orientation

preserving isometries of a spin manifold M . It’s projective version (in the sense of Sec. 3 of [5])

is the quantum group QISO+
J (D), which is the quantum analogue of G.

3 Quantum isometries of the internal non-commutative space of

the Standard Model

3.1 The finite non-commutative space F

The spectral triple (AF ,HF ,DF , γF , JF ) describing the internal space F of the Standard Model

is defined as follows (cf. [20] and references therein). The algebra AF is

AF := C⊕H⊕M3(C) , (3.1)

where we identify H with the real subalgebra of M2(C) with elements

q =

(
α β

−β α

)
(3.2)

for α, β ∈ C (cf. Cayley-Dickson construction).

Let us denote by C[v1, . . . , vk] ≃ Ck the vector space with basis v1, . . . , vk. For our conve-

nience, we adopt the following notation for the Hilbert space HF . It can be written as a tensor

product

HF := C2 ⊗ C4 ⊗ C4 ⊗ Cn

where, in the notations of [20], we have

i) the first two factors C2 ⊗ C4 with

C2 = C[↑, ↓] , C4 = C[ℓ, {qc}c=1,2,3] ,

where ↑ and ↓ stand for weak isospin up and down, ℓ and qc stand for lepton and quark of

color c respectively. These may be combined into

C8 = C[ν, e, {uc, dc}c=1,2,3] ,

where ν stands for “neutrino”, e for “electron”, uc and dc for quarks with weak isospin +1/2

and −1/2 respectively and of color c. Explicitly, the isomorphism C2 ⊗ C4 → C8 is the

map

↑ ⊗ ℓ 7→ ν , ↓ ⊗ ℓ 7→ e , ↑ ⊗ qc 7→ uc , ↓ ⊗ qc 7→ dc .

ii) a factor

C4 = C[pL, pR, pL, pR] ,

where L,R stand for the two chiralities, p for “particle” and p for “antiparticle”;

6
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iii) a factor Cn since each particle comes in n generations. Presently only 3 generations have

been observed, but for the sake of generality we will work with an arbitrary n ≥ 3.

From a physical point of view, rays (lines through the origin) of HF are states describing the

internal degrees of freedom of the elementary fermions. The charge conjugation JF changes a

particle into its antiparticle, and is the composition of the componentwise complex conjugation

on HF with the linear operator

J0 := 1⊗ 1⊗




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


⊗ 1 . (3.3)

The grading is

γF := 1⊗ 1⊗ diag(1, 1,−1,−1) ⊗ 1 .

The element a = (λ, q,m) ∈ AF (with λ ∈ C, q ∈ H and m ∈M3(C)) is represented by

π(a) = q ⊗ 1⊗ e11 ⊗ 1 +

(
λ 0

0 λ

)
⊗ 1⊗ e44 ⊗ 1

+ 1⊗




λ 0 0 0

0

0 m

0


⊗ (e22 + e33)⊗ 1 , (3.4)

where m is a 3 × 3 block and {eij}i,j=1,...,k is the canonical basis of Mk(C) (eij is the matrix

with 1 in the (i, j)-th position and 0 everywhere else). In particular, in (3.4) e11 projects on the

space C[pL] of particles with left chirality, e22 on C[pR], e33 on C[pL] and e44 on C[pR].

The Dirac operator is

DF := e11 ⊗ e11 ⊗




0 0 0 Υν

0 0 Υt
ν ΥR

0 Υν 0 0

Υ∗
ν Υ∗

R 0 0


+ e11 ⊗ (1− e11)⊗




0 0 0 Υu

0 0 Υt
u 0

0 Υu 0 0

Υ∗
u 0 0 0




+ e22 ⊗ e11 ⊗




0 0 0 Υe

0 0 Υt
e 0

0 Υe 0 0

Υ∗
e 0 0 0


+ e22 ⊗ (1− e11)⊗




0 0 0 Υd

0 0 Υt
d 0

0 Υd 0 0

Υ∗
d 0 0 0


 , (3.5)

where each of the Υ matrices are in Mn(C), m := (m∗)t is the matrix obtained from m by

conjugating each entry, and we identify B(HF ) = M2(C) ⊗M4(C) ⊗
(
M4(C) ⊗ Mn(C)

)
with

M2(C) ⊗ M4(C) ⊗ M4n(C) by writing M4n(C) as a 4 × 4 matrix with entries in Mn(C); in

particular eij ⊗m ∈M4(C)⊗Mn(C) will be the matrix with the n×n block m in position (i, j).

The physical meaning of the Υ matrices is explained in section 17.4 of [20]: for x = e, u, d

the eigenvalues of Υ∗
xΥx give the square of the masses of the n generations of the particle x;

the eigenvalues of Υ∗
νΥν give the Dirac masses of neutrinos; the eigenvalues of Υ∗

RΥR give the

Majorana masses of neutrinos.

If we replace a spectral triple with one that is unitary equivalent we do not change the

symmetries. Lemma 1.190 in [20] tells us that modulo an unitary equivalence, we can take Υe

and Υd diagonal with non-negative eigenvalues, and we can take Υν = Cδ↑C
∗ and Υu = C ′δ′↑C

′∗

7
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where δ↑ resp. δ′↑ are diagonal with non-negative eigenvalues and C,C ′ ∈ SU(n). In view of their

physical meaning — the masses of the n generations of the electron and of the 2n quarks — we

can assume that the eigenvalues of Υe,Υd,Υu are all distinct and non-zero (this is true for the

three generations that we know).

Lemma 3.1. Up to a unitary transformation commuting with AF , JF and γF , we can assume

that Υe,Υd,Υu and Υν are diagonal (positive) matrices.

Proof. The first two matrices Υe and Υd are already diagonal. The change of basis of HF given

by the (unitary) matrix

e11 ⊗ (1− e11)⊗ diag(C ′, C ′, C ′, C ′) + e11 ⊗ e11 ⊗ 1⊗ 1 + e22 ⊗ 1⊗ 1⊗ 1

commutes with JF , γF and π(a), for any a ∈ AF , and its effect on DF is to diagonalize Υu.

Similarly the unitary matrix

e11 ⊗ e11 ⊗ diag(C,C,C,C) + e11 ⊗ (1− e11)⊗ 1⊗ 1 + e22 ⊗ 1⊗ 1⊗ 1

has the only effect of diagonalizing Υν and transforming ΥR into the matrix Υ′
R = CtΥRC. The

new matrix Υ′
R is still a complex symmetric matrix, and will be denoted by the same symbol

ΥR in the sequel.

In view of previous lemma, Υν = Υt
ν = Υ∗

ν = Υν and similar for Υe,Υu,Υd. Therefore

DF = e11 ⊗ e11 ⊗ (X ⊗Υν + e24 ⊗ΥR + e42 ⊗Υ∗
R) + e11 ⊗ (1− e11)⊗X ⊗Υu

+ e22 ⊗ e11 ⊗X ⊗Υe + e22 ⊗ (1− e11)⊗X ⊗Υd , (3.6)

with X := e14 + e23 + e32 + e41.

3.2 Quantum isometries of F

Since the definition of quantum isometry group is given for spectral triples over complex ∗-

algebras, we first need to explain how to canonically associate one to any spectral triple over a

real ∗-algebra.

Lemma 3.2. To any real spectral triple (A,H,D, γ, J) over a real ∗-algebra A we can associate a

real spectral triple (B,H,D, γ, J) over the complex ∗-algebra B ≃ AC/ ker πC, where AC ≃ A⊗RC

is the complexification of A, with conjugation defined by (a⊗Rz)
∗ = a∗⊗Rz for a ∈ A and z ∈ C,

and πC : AC → B(H) is the ∗-representation

πC(a⊗R z) = zπ(a) , a ∈ A , z ∈ C . (3.7)

Notice that kerπC may be nontrivial since the representation πC is not always faithful. For

example, if A is itself a complex ∗-algebra (every complex ∗-algebra is also a real ∗-algebra) and

π is complex linear, then for any a ∈ A the element a⊗R 1+ ia⊗R i of AC is in the kernel of πC.

This happens in the Standard Model case, where the complexification of AF = C⊕ H⊕M3(C)

is the algebra (AF )C := C ⊕ C ⊕M2(C) ⊕M3(C) ⊕M3(C), where we have used the complex

∗-algebra isomorphism Mn(C)⊗R C →Mn(C)⊕Mn(C) given by

m⊗R z 7→ (mz,mz)

8
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having inverse

(m,m′) 7→ m+m′

2 ⊗R 1 + m−m′

2i ⊗R i (3.8)

for all m,m′ ∈Mn(C), z ∈ C.

Using (3.7), (3.8) and (3.4) we get πC(λ, λ
′, q,m,m′) = 〈λ, λ′, q,m〉, where

〈
λ, λ′, q,m

〉
:= q ⊗ 1⊗ e11 ⊗ 1 +

(
λ 0

0 λ′

)
⊗ 1⊗ e44 ⊗ 1

+ 1⊗




λ 0 0 0

0

0 m

0


⊗ (e22 + e33)⊗ 1 . (3.9)

The complex ∗-algebra BF := (AF )C/ ker πC is simply the algebra BF ≃ C⊕C⊕M2(C)⊕M3(C)

with elements 〈λ, λ′, q,m〉. With AF replaced by BF , we can now study quantum isometries.

We notice that in the case of the spectral triple of the internal part of the Standard Model,

the conditions (2.3b-2.3c) are equivalent to

(J0 ⊗ 1)U = U(J0 ⊗ 1) ; (3.10a)

AdU(BF ) ⊂ BF ⊗alg Q ; (3.10b)

with J0 given by (3.3). The equivalence between (2.3b) and (3.10a) is an immediate consequence

of the definition of JF . The equivalence between (2.3c) and (3.10b) follows from the equality of

B′′
F and BF , the latter being a finite-dimensional C∗-algebra.

We state here the main proposition (whose proof can be found in Sec. 6).

Proposition 3.3. Q̃ISO+
J (DF ) is generated by unitaries xk, (k = 0, . . . , n), elements of n 3× 3

biunitaries {Tm : m = 1, 2, ..., n}, an n× n biunitary V such that

VΥν = V tΥν = diag(x∗1x
∗
0, ..., x

∗
nx

∗
0)Υν , VΥR = ΥR V , (3.11a)

((Tm)ki)
∗(Tm)lj = ((Tm′)ki)

∗(Tm′)lj ∀ m,m′ . (3.11b)

The coproduct is given by

∆(xk) = xk ⊗ xk, ∆(Vij) =

n∑

k=1

Vik ⊗ Vkj , ∆((Tm)ij) =

3∑

k=1

(Tm)ik ⊗ (Tm)kj.

The corepresentation on HF is given by

U = e11 ⊗ e11 ⊗ e11 ⊗
n∑

k=1

ekk ⊗ x0xk + e22 ⊗ e11 ⊗ e11 ⊗
n∑

k=1

ekk ⊗ xk

+ e11 ⊗ e11 ⊗ e22 ⊗
n∑

j,k=1

ejk ⊗ Vjk + e22 ⊗ e11 ⊗ e22 ⊗
n∑

k=1

ekk ⊗ x∗k

+ e11 ⊗ e11 ⊗ e33 ⊗
n∑

k=1

ekk ⊗ x∗kx
∗
0 + e22 ⊗ e11 ⊗ e33 ⊗

n∑

k=1

ekk ⊗ x∗k

+ e11 ⊗ e11 ⊗ e44 ⊗
n∑

j,k=1

ejk ⊗ V jk + e22 ⊗ e11 ⊗ e44 ⊗
n∑

k=1

ekk ⊗ xk

9
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+ e11 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e11 ⊗
n∑

m=1

emm ⊗ (Tm)j,k

+ e22 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e11 ⊗
n∑

m=1

emm ⊗ x∗0(Tm)j,k

+ e11 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e22 ⊗
n∑

m=1

emm ⊗ ((Tm)j,k)
∗

+ e22 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e22 ⊗
n∑

m=1

emm ⊗ ((Tm)j,k)
∗x0

+ e11 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e33 ⊗
n∑

m=1

emm ⊗ ((Tm)j,k)
∗

+ e22 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e33 ⊗
n∑

m=1

emm ⊗ ((Tm)j,k)
∗x0

+ e11 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e44 ⊗
n∑

m=1

emm ⊗ (Tm)j,k

+ e22 ⊗
∑

j,k=1,2,3

ej+1,k+1 ⊗ e44 ⊗
n∑

m=1

emm ⊗ x∗0(Tm)j,k , (3.12)

Q̃ISO+
J (DF ) coacts trivially on the two summands C of BF = C ⊕ C ⊕M2(C) ⊕M3(C), while

on the remaining summands the coaction is

AdU(〈0, 0, eii, 0〉) = 〈0, 0, eii, 0〉 ⊗ 1 , (3.13a)

AdU(〈0, 0, e12, 0〉) = 〈0, 0, e12, 0〉 ⊗ x0 , (3.13b)

AdU(〈0, 0, e21, 0〉) = 〈0, 0, e21, 0〉 ⊗ x∗0 , (3.13c)

AdU(〈0, 0, 0, eij〉) =
∑

k,l=1,2,3
〈0, 0, 0, ekl〉 ⊗ (T1)

∗
ki(T1)lj . (3.13d)

Let us denote by Qn the amalgamated free product of n copies of Au(3) over the common

Woronowicz C∗-subalgebra Aaut(M3(C)) (cf. Theorem 3.4 of [36]).

Corollary 3.4. Q̃ISO+
J (DF ) is a quantum subgroup of the free product

C(U(1)) ∗ C(U(1)) ∗ . . . ∗ C(U(1))︸ ︷︷ ︸
n+1

∗ Qn ∗Au(n) .

The Woronowicz C∗-ideal of this CQG giving Q̃ISO+
J (DF ) is determined by the relations (3.11a).

From (3.13), it is clear that QISO+
J (DF ) is the free product of C(U(1)), with generator x0, and

the CQG PAu(3) ≃ Aaut(M3(C)) with generators (T1)
∗
ki(T1)lj (cf. Def. 2.7 and Prop. 2.9).

Corollary 3.5. The quantum isometry group of the internal space of the Standard Model is

QISO+
J (DF ) = C(U(1)) ∗Aaut(M3(C)) .

Its abelianization is given by (complex functions on) the classical group U(1)× PU(3).

10
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Although Q̃ISO+
J (DF ) depends on Υν and ΥR (cf. (3.11a)), the quantum group QISO+

J (DF )

does not depend on the explicit form of these two matrices. We stress the importance of this

results, since neutrino masses are not known (at the moment, we only know that they cannot be

all zero [27, 1]). Also, QISO+
J (DF ) is independent on the number of generations.

Let us conclude this section by explaining how elementary particles transform under the

corepresentation U in physics notation. As explained in Sec. 3.1, we have

νL,k := e1 ⊗ e1 ⊗ e1 ⊗ ek , (left-handed neutrino, generation k)

νR,k := e1 ⊗ e1 ⊗ e4 ⊗ ek , (right-handed neutrino, generation k)

eL,k := e2 ⊗ e1 ⊗ e1 ⊗ ek , (left-handed electron, generation k)

eR,k := e2 ⊗ e1 ⊗ e4 ⊗ ek , (right-handed electron, generation k)

uL,c,k := e1 ⊗ ec+1 ⊗ e1 ⊗ ek , (left-handed up-quark, color c, generation k)

uR,c,k := e1 ⊗ ec+1 ⊗ e4 ⊗ ek , (right-handed up-quark, color c, generation k)

dL,c,k := e2 ⊗ ec+1 ⊗ e1 ⊗ ek , (left-handed down-quark, color c, generation k)

dR,c,k := e2 ⊗ ec+1 ⊗ e4 ⊗ ek , (righ-handed down-quark, color c, generation k)

where {ei , i = 1, . . . , r} is the canonical orthonormal basis of Cr, c = 1, 2, 3 and k = 1, . . . , n.

These together with the corresponding antiparticles form a linear basis of HF . A straightforward

computation using (3.12) proves that we have the following transformation laws

U(νL,k) := νL,k ⊗ x0xk , U(νR,k) :=
∑n

j=1
νR,j ⊗ V jk ,

U(eL,k) := eL,k ⊗ xk , U(eR,k) := eR,k ⊗ xk ,

U(uL,c,m) :=
∑3

c′=1
uL,c′,m ⊗ (Tm)c′c , U(uR,c,m) :=

∑3

c′=1
uR,c′,m ⊗ (Tm)c′c ,

U(dL,c,m) :=
∑3

c′=1
dL,c′,m ⊗ x∗0(Tm)c′c , U(dR,c,m) :=

∑3

c′=1
dR,c′,m ⊗ x∗0(Tm)c′c ,

where U(v), v ∈ HF , is a shorthand notation for U(v ⊗ 1Q). Antiparticles transform according

to the conjugate corepresentations.

3.3 Q̃ISO
+

J for the minimal Standard Model

As we already noticed, Q̃ISO+
J (DF ) depends upon the explicit form of Υν and ΥR. In particular,

on one extreme we have the case when Υν is invertible (this is the case of the Dirac operator in

the moduli space as in Prop. 1.192 of [20]) and on the other extreme we have the case Υν = 0.

If Υν is invertible, the first equation in (3.11a) is equivalent to V = diag(x∗1x
∗
0, . . . , x

∗
nx

∗
0) and

the factor Au(n) in Corollary 3.4 disappear. The second equation becomes (ΥR)ij(x
∗
ix

∗
0−x0xj) =

0, which implies x∗i x
∗
0 = x0xj whenever (ΥR)ij 6= 0. We get the following corollary.

Corollary 3.6. If Υν is invertible, Q̃ISO+
J (DF ) is the free product of Qn with the quotient of

C(U(1)) ∗ C(U(1)) ∗ . . . ∗ C(U(1))︸ ︷︷ ︸
n+1

by the relations

x∗ix
∗
0 = x0xj ∀ i, j such that (ΥR)ij 6= 0 .
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Although disproved by experiment, it is an interesting exercise to study the case of massless

(Υν = 0) left-handed neutrinos, that is the so-called minimal Standard Model.

Corollary 3.7. If Υν = 0, Q̃ISO+
J (DF ) is isomorphic to

C(U(1)) ∗ C(U(1)) ∗ . . . ∗ C(U(1))︸ ︷︷ ︸
n+1

∗ Qn ∗A′,

where A′ := Au(n)/ ∼ , Au(n) is generated by the n × n biunitary V and “∼” is the relation

VΥR = ΥRV .

Now we take a closer look at this corollary.

The factor A′ coacts only on the subspace (e11 ⊗ e11 ⊗ (e22 + e44) ⊗ 1)HF of right-handed

neutrinos, and can be neglected in the minimal Standard Model (where we consider only left-

handed neutrinos). As a consequence of Noether’s theorem, there exists a conservation law

corresponding to each classical group of symmetries.

It is easy to give an interpretation to the C(U(1)) factors generated by xi, i = 1, . . . , n.

Passing from the C(U(1)) coaction to the dual U(1) action, one easily sees that for i > 0, xi
gives a phase transformation of the i-th generation of νL, eL, eR (plus the opposite transformation

for the antiparticles). In the minimal Standard Model, which has only left-handed (massless)

neutrinos, these symmetries give the conservation laws of the total number of leptons in each

generation (electron number, muon number, tau number, plus other n− 3 for the other families

of leptons).

To conclude the list of conservation laws, there is still one classical U(1) subgroup of the

factor Qn that should be mentioned. If we denote by y the unitary generator of C(U(1)), a

surjective CQG homomorphism ϕ : Q̃ISO+
J (DF ) → C(U(1)) is given by

x0 7→ 1 , xi 7→ 1 , Vj,k 7→ δj,k , (Ti)j,k 7→ δj,ky ,

for all i = 1, . . . , n and j, k = 1, 2, 3. From U we get the following corepresentation of this U(1)

subgroup on HF :

(id⊗ ϕ)(U) = 1⊗ e11 ⊗ 1⊗ 1⊗ 1C(U(1))

+ 1⊗ (1 − e11)⊗ (e11 + e44)⊗ 1⊗ y

+ 1⊗ (1 − e11)⊗ (e22 + e33)⊗ 1⊗ y∗ .

The representation of U(1) dual to this corepresentation of C(U(1)) is given by a phase trans-

formation on the subspace C2 ⊗ (1 − e11)C
4 ⊗ (e11 + e44)C

4 ⊗ Cn of quarks and the inverse

transformation on the subspace C2 ⊗ (1 − e11)C
4 ⊗ (e22 + e33)C

4 ⊗ Cn of anti-quarks and is

called in physics the “baryon phase symmetry”. It corresponds to the conservation of the baryon

number (total number of quarks minus the number of anti-quarks).

In this section we discussed conservation laws associated to classical subgroups of Q̃ISO+
J (DF )

in the massless neutrino case. It would be interesting to extend this study to the full quantum

group Q̃ISO+
J (DF ) in the sense of a suitable Noether analysis extended to the quantum group

framework. If we consider massive neutrinos, we lose a lot of classical symmetries, but we

still have many quantum symmetries. A natural question is whether quantum symmetries are

suitable for deriving conservation laws (i.e. physical predictions). A first step in this direction

is to investigate whether the spectral action is invariant under quantum isometries. We discuss

this point in the next section.

12
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4 Quantum isometries of M × F

4.1 Quantum isometries of a product of spectral triples

Before discussing the spectral action, we want to understand whether the quantum isometry

group of the finite geometry F is also a quantum group of orientation preserving isometries of

the full spectral triple of the Standard Model, that is the product of F with the canonical spectral

triple of a compact Riemannian spin manifold M with no boundary. The answer is affirmative

and we can prove it in a more general situation:

◮ Let (A1,H1,D1, γ1, J1) be any unital real spectral triple (γ1 = 1 if the spectral triple is

odd).

◮ Let (A2,H2,D2, γ2, J2) be a finite-dimensional unital even real spectral triple.

◮ Let (A,H,D, γ, J) be the product triple, i.e.

A := A1 ⊗alg A2 , H := H1 ⊗H2 , D := D1 ⊗ γ2 + 1⊗D2 ,

γ := γ1 ⊗ γ2 , J := J1 ⊗ J2 .

In the case of the Standard Model, (A1,H1,D1, γ1, J1) and (A2,H2,D2, γ2, J2) will be the canon-

ical spectral triple of M and the spectral triple (BF ,HF ,DF , γF , JF ) respectively.

We claim that:

Lemma 4.1. Q̃ISO+(A2,H2,D2, γ2, J2) coacts by “orientation and real structure preserving

isometries” on the product triple (A,H,D, γ, J).

Proof. Let Q0 be the quantum group Q̃ISO+
J2
(D2) and U its corepresentation on H2. Then

Û := 1 ⊗ U is a unitary corepresentation on H1 ⊗ H2, and we need to prove that it satisfies

(2.3a), (2.3b), and (2.3c). The first two conditions are easy to check. Indeed, if U commutes

with D2 and γ2, clearly 1⊗U commutes with D = D1⊗ γ2+1⊗D2 and γ = γ1⊗ γ2. Moreover,

for any vector ξ = ξ1 ⊗ ξ2 ∈ H1 ⊗H2,

(J ⊗ ∗)Û (ξ ⊗ 1) = (J1 ⊗ J2 ⊗ ∗)(1 ⊗ U)(ξ1 ⊗ ξ2 ⊗ 1)

= J1ξ1 ⊗ (J2 ⊗ ∗)U(ξ2 ⊗ 1)

= J1ξ1 ⊗ U(J2ξ2 ⊗ 1)

= (1⊗ U)(J1ξ1 ⊗ J2ξ2 ⊗ 1)

= Û(Jξ ⊗ 1) ,

and thus (2.3b) is proved.

Any element of A is a finite sum of tensors a1 ⊗ a2, with a1 ∈ A1 and a2 ∈ A2, and since A2

is finite dimensional implies U(a2 ⊗ 1Q0
)U∗ ∈ A2 ⊗alg Q0, we have

AdÛ(a1 ⊗ a2) = Û(a1 ⊗ a2 ⊗ 1Q0
)Û∗ = a1 ⊗ U(a2 ⊗ 1Q0

)U∗ ∈ A1 ⊗alg A2 ⊗alg Q0

which implies (2.3c).

13
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4.2 Invariance of the spectral action

The dynamics of a unital spectral triple (A,H,D, J, γ) is governed by an action functional.

According to the spectral action principle [12], the bosonic part of the action is

Sb[A] = TrH f(DA/Λ) ,

where the trace is on the Hilbert space H, f is a suitable cut-off function (with Λ > 0), and

DA := D+A+ǫ′JAJ−1 is the gauged Dirac operator, with A ∈ Ω1,s.a.
D ⊂ B(H) a self-adjoint one-

form and ǫ′ is the sign in (2.1). More precisely, f is a smooth approximation of the characteristic

function of the interval [−1, 1], so that f(DA/Λ) is a trace class operator on H and Sb[A] is well

defined. The full spectral action is

S[A,ψ] := Sb[A] + Sf [A,ψ] ,

where the fermionic part

Sf [A,ψ] = 〈Jψ,DAψ〉

is a functional Ω1,s.a.
D ⊕ V → C, with V either H or the eigenspace H+ corresponding to the

eigenvalue +1 of the grading γ. While one uses V = H in Yang-Mills theories, the reduction to

H+ is employed in the Standard Model to solve the fermion doubling problem [31, 20].

Given a CQG Q with a unitary corepresentation Û on V, its coaction on Ω1,s.a.
D ⊕ V is given

by,

β : (A,ψ) 7→
(
Û(A⊗ 1)Û∗, Û(ψ ⊗ 1)

)
.

Since β maps Ω1,s.a.
D ⊕V into (Ω1,s.a.

D ⊕V)⊗Q, to discuss the (co)invariance of the spectral action

we need to extend it to the latter space. There is a natural way to do it. The inner product

〈 , 〉 : V ⊗ V → C can be extended in a unique way to an Hermitian structure 〈 , 〉Q : M⊗M →

Q on the right Q-module M := V ⊗ Q by the rule 〈ψ ⊗ q, ψ′ ⊗ q′〉Q = q∗q′ 〈ψ,ψ′〉. Unitary

(resp. antiunitary) maps L on V are extended in a unique way to Q-linear (resp. antilinear)

maps on M as L⊗ 1 (resp. L⊗ ∗). The corresponding extension of the spectral action is given

by the Q-valued functional

S̃[Ã, ψ̃] := S̃b[Ã] + S̃f [Ã, ψ̃] ,

where

S̃b[Ã] := (TrH ⊗ id) f(DÃ/Λ) ,

S̃f [Ã, ψ̃] :=
〈
(J ⊗ ∗)ψ̃,DÃψ̃

〉
Q
,

and Ã ∈ Ω1,s.a.
D ⊗Q, ψ̃ ∈ M = V ⊗Q, DÃ := D ⊗ 1 + Ã+ ǫ′(J ⊗ ∗)Ã(J ⊗ ∗)−1.

In the remaining part of the section we prove that under reasonable assumptions

S̃[β(A,ψ)] = S[A,ψ] · 1Q. (4.1)

We give the proof separately first for the fermionic part and then for the bosonic part.

Proposition 4.2. If Û satisfies (2.3a) and (2.3b), then

S̃f [β(A,ψ)] = Sf [A,ψ] · 1Q

for all (A,ψ) ∈ Ω1,s.a.
D ⊕ V.

14
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Proof. This is a simple algebraic identity. Since Û commutes with D and J ⊗ ∗, we have

D
Û(A⊗1)Û∗ = D ⊗ 1 + Û(A⊗ 1)Û∗ + ǫ′(J ⊗ ∗)Û (A⊗ 1)Û∗(J ⊗ ∗)−1 = Û(DA ⊗ 1)Û∗. (4.2)

Thus,

S̃f [β(A,ψ)] =
〈
(J ⊗ ∗)Û (ψ ⊗ 1Q),DÛ (A⊗1)Û∗Û(ψ ⊗ 1Q)

〉
Q

=
〈
Û(Jψ ⊗ 1Q), Û (DAψ ⊗ 1Q)

〉
Q

= 〈Jψ,DAψ〉 · 1Q = Sf [A,ψ] · 1Q ,

by the unitarity of Û .

For the rest of the subsection, we will assume that (A,H,D, J, γ) is the product of two real

spectral triples, one of them being even and finite-dimensional. In fact, we will use the notations

in Subsection 4.1. Moreover, we assume that Û := 1⊗ U where U is a unitary corepresentation

of the CQG Q such that (Q,U) coacts by orientation and real structure preserving isometries

on the finite dimensional spectral triple (A2,H2,D2, γ2, J2). Under these assumptions, we now

establish the invariance for the bosonic part.

Lemma 4.3. For any trace-class operator L on H = H1 ⊗H2

(TrH ⊗ id)Û (L⊗ 1)Û∗ = TrH(L) · 1Q .

Proof. Let L = L1 ⊗ L2 with L1 ∈ L1(H1) and L2 ∈ B(H2). Since

Û(L⊗ 1)Û∗ = L1 ⊗ U(L2 ⊗ 1)U∗,

by Lemma 2.6, we have:

(TrH1⊗H2
⊗ id)Û(L⊗ 1)Û∗ = TrH1

(L1) · (TrH2
⊗ id)U(L2 ⊗ 1)U∗ · 1Q

= TrH1⊗H2
(L) · 1Q .

Since H2 is finite dimensional, any element of L1(H1 ⊗ H2) is a finite sum of elements of the

form L := L1 ⊗ L2, with L1 ∈ L1(H1) and L2 ∈ B(H2), and thus by the linearity of the trace,

the proof is finished.

Proposition 4.4. For any A ∈ Ω1,s.a.
D , S̃b[AdÛ(A)] = Sb[A] · 1Q.

Proof. From (4.2) we have

S̃b[Û(A⊗ 1)Û∗] = (TrH ⊗ id) f(D
Û(A⊗1)Û∗/Λ)

= (TrH ⊗ id) f
(
Û(DA ⊗ 1)Û∗/Λ

)
.

By continuous functional calculus,

f
(
Û(DA ⊗ 1)Û∗/Λ

)
= Ûf

(
(DA ⊗ 1)/Λ

)
Û∗ = Û

(
f(DA/Λ)⊗ 1

)
Û∗

and applying Lemma 4.3 to the trace-class operator L := f(DA/Λ) we get

S̃b[Û (A⊗ 1)Û∗] = (TrH ⊗ id) Û (L⊗ 1)Û∗

= TrH(L) · 1Q ≡ TrHf(DA/Λ) · 1Q

= Sb[A] · 1Q ,

which concludes the proof.
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Corollary 4.5. The bosonic and the fermionic part of the spectral action of the Standard Model

are preserved by the compact quantum group Q̃ISO+(BF ,HF ,DF , γF , JF ).

Proof. For the spectral triple of the Standard Model, Q̃ISO+(BF ,HF ,DF , γF , JF ) is a valid can-

didate for Q because of Lemma 4.1 and as its corepresentation preserves H+. Thus, Proposition

4.2 and Proposition 4.4 taken together proves the desired result.

5 Some remarks on real ∗-algebras and their symmetries

In Sec. 3.2 we computed the quantum isometry group of the finite part of the Standard Model

by replacing the real C∗-algebra AF with the complex C∗-algebra BF . Here we explain what

happens if we work with AF .

Any real ∗-algebra A (i.e. unital, associative, involutive algebra over R) can be thought of as

the fixed point subalgebra of its complexification AC = A ⊗R C with respect to the involutive

(conjugate-linear) real ∗-algebra automorphism σ defined by

σ(a⊗R z) = a⊗R z ∀ a ∈ A, z ∈ C , (5.1)

that is

A = {a ∈ AC : σ(a) = a} .

A crucial observation is that we can characterize the automorphisms ofA as those automorphisms

of AC which commute with σ, as proved in the following lemma.

Lemma 5.1. For any real ∗-algebra A,

Aut(A) ≃
{
φ ∈ Aut(AC) : σφ = φσ

}
. (5.2)

Proof. If ϕ is any (real) ∗-algebra morphism of A, φ(a ⊗R z) := ϕ(a) ⊗R z defines a (complex)

∗-algebra morphism of AC clearly satisfying σφ = φσ. The map ϕ 7→ φ gives an inclusion of the

left hand side of (5.2) into the right hand side. Conversely, if φ ∈ Aut(AC) satisfies σφ = φσ,

then it maps the real subalgebra A ≃ A⊗R 1 ⊂ AC into itself, since

σφ(a⊗R 1) = φσ(a ⊗R 1) = φ(a⊗R 1)

for any a ∈ A. Therefore, we can define an element ϕ ∈ Aut(A) by ϕ(a)⊗R 1 := φ(a⊗R 1).

The two group homomorphisms ϕ 7→ φ and φ 7→ ϕ are the inverses of each other and thus,

we have the isomorphism in (5.2).

From a dual point of view, if G = Aut(A), the right coaction of C(G) on AC is the map

α : AC → AC ⊗ C(G) ≃ C(G;AC) defined by

(id⊗ evφ)α(a) := φ(a), φ ∈ G, a ∈ AC .

We can rephrase Lemma 5.1 as follows.

Lemma 5.2. For a finite dimensional real C∗-algebra A, the condition σ φ = φσ ∀ φ ∈ G is

equivalent to

(σ ⊗ ∗C(G))α = ασ .
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Proof. Let αφσ = (σ⊗ evφ ∗C(G))α and φ ∈ G, a ∈ AC. Let us suppose that (σ⊗∗C(G))α = ασ.

Then σφ(a) = (id ⊗ evφ)ασ(a) = (σ ⊗ evφ ∗C(G))α(a) = (σ ⊗ ∗C evφ)α(a) = φσ(a) by the

antilinearity of σ. Conversely, if σ φ = φσ ∀ φ ∈ G then for all φ, (id ⊗ evφ)α(σ(a)) = (σ ⊗

evφ)(α(a)). Thus, (σ⊗evφ ∗C(G))α(a) = (σ⊗∗C evφ)α(a) = σ((id⊗evφ)α(a)) = σφ(a) = φσ(a) =

(id ⊗ evφ)α(σ(a)). As {evφ : φ ∈ G} separates points on G, this proves (σ ⊗ ∗C(G))α = ασ.

Motivated by this lemma, we consider the category CJ,R of CQGs coacting by orientation and

real structure preserving isometries via a unitary corepresentation U (in the sense of Def. 2.10)

on the spectral triple (BF ,HF ,DF , γF , JF ) whose adjoint coaction AdU can be extended to a

coaction α on (AF )C = AF ⊗R C satisfying

(σ ⊗ ∗)α = ασ . (5.3)

We notice that it is a subcategory of CJ : objects of CJ,R are those objects of CJ compatible with

σ in the sense explained above, and the morphisms in the two categories are the same.

Thus any object, say Q, of CJ,R satisfies the relations of the universal object Q̃ISO+
J (DF ) of

CJ in Prop. 3.3. In the rest of this subsection, with a slight abuse of notation, we will continue

to denote the generators of Q by the same symbols as in Prop. 3.3.

Theorem 5.3. A CQG Q is an object in CJ,R if and only if the generators satisfy

(Tm)jk(Tm)∗j′k′(Tm)j′′k′′ = (Tm)j′′k′′(Tm)∗j′k′(Tm)jk (5.4)

for all m = 1, . . . , n and all j, j′, j′′, k, k′, k′′ ∈ {1, 2, 3}.

Proof. The real algebra AF = C⊕H⊕M3(C) is the fixed point subalgebra of (AF )C ≃ C⊕C⊕

M2(C)⊕M3(C)⊕M3(C) with respect to the automorphism

σ(λ, λ′, q,m,m′) = (λ ′, λ, σ2qσ2,m
′,m) ,

where σ2 is the second Pauli matrix:

σ2 :=

(
0 −i

i 0

)

It is easy to check that q ∈ M2(C) satisfies σ2qσ2 = q if an only if it is of the form (3.2), and

that under the isomorphism (3.8) C is identified with the real subalgebra of C⊕C with elements

(λ, λ) and M3(C) with the real subalgebra of M3(C)⊕M3(C) with elements (m,m).

The coaction on the factor BF ⊂ (AF )C is given by (3.13), and an extension ÃdU to (AF )C
satisfying (5.3) exists if and only if

ÃdU(0, 0, 0, 0, eij ) = (σ ⊗ ∗)ÃdU σ(0, 0, 0, 0, eij )

= (σ ⊗ ∗)ÃdU(0, 0, 0, eij , 0)

= (σ ⊗ ∗)
(
AdU(〈0, 0, 0, eij 〉), 0

)

= (σ ⊗ ∗)
∑

k,l=1,2,3
(0, 0, 0, ekl , 0)⊗ (T1)

∗
ki(T1)lj

=
∑

k,l=1,2,3
(0, 0, 0, 0, ekl)⊗ (T1)

∗
lj(T1)ki .

The only conditions left to impose is that this extension is a coaction of a CQG. As it is already a

coaction on BF , we need to impose it for the coaction on the second copy ofM3(C), which has to

17
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be preserved by ÃdU. At this point, we note that as ÃdU is an extension of AdU, which preserves

the trace on the first copy of M3(C), the formula ÃdU(0, 0, 0, 0, eij ) =
∑

k,l=1,2,3(0, 0, 0, 0, ekl)⊗

(T1)
∗
lj(T1)ki forces ÃdU to preserve the trace on the second copy of M3(C). Thus, by Theorem

4.1 of [37], it suffices to impose the conditions (4.1-4.5) in that paper with aklij replaced by

(Tm)∗lj(Tm)ki. It is easy to check that (4.3-4.5) are automatically satisfied. The only non trivial

conditions come from (4.1) and (4.2).

From (4.1), we get

∑3

v=1
(Tm)∗vj(Tm)ki(Tm)∗ls(Tm)vr = δjr(Tm)∗ls(Tm)ki (5.5)

From (4.2), we get the same relation with (Tm)t instead of Tm. Now we show that (5.5) and (5.4)

are equivalent, which will finish the proof since if Tm satisfies (5.4), then (Tm)t satisfies it too.

If we multiply both sides of (5.5) by (Tm)qj from the left and sum over j, we get

∑3

v=1
δvq(Tm)ki(Tm)∗ls(Tm)vr =

∑3

j=1
δjr(Tm)qj(Tm)∗ls(Tm)ki

using biunitarity of Tm. The last equation is clearly equivalent to (5.4). To prove that (5.4)

implies (5.5), it is enough to multiply both sides by (Tm)j′′k′′′ from the left, then sum over j′′

and use the biunitarity of Tm again.

It is easy to check that (5.4) defines a Woronowicz C∗-ideal, and hence the quotient of

Q̃ISO+
J (DF ) by (5.4) is a CQG. This leads to the following corollary.

Corollary 5.4. Let Q̃ISO+
R (DF ) be the quantum subgroup of the CQG Q̃ISO+

J (DF ) in Prop. 3.3

defined by the relations (5.4). Then Q̃ISO+
R (DF ) is the universal object in the category CJ,R.

Motivated by (5.4), we give the following definition.

Definition 5.5. For a fixed N , we call A∗
u(N) the universal unital C∗-algebra generated by a

N ×N biunitary u = ((uij)) with relations

ab∗c = cb∗a , ∀ a, b, c ∈ {uij , i, j = 1, . . . , N} . (5.6)

A∗
u(N) is a CQG with coproduct given by ∆(uij) =

∑
k uik ⊗ ukj.

We will call A∗
u(N) the N -dimensional half-liberated unitary group. This is similar to the

half-liberated orthogonal group A∗
o(N), that can be obtained by imposing the further relation

a = a∗ for all a ∈ {uij , i, j,= 1, . . . , N} (cf. [5]).

Remark 5.6. We notice that there are two other possible ways to “half-liberate” the free unitary

group. Instead of ab∗c = cb∗a (which by adjunction is equivalent to a∗bc∗ = c∗ba∗), one can

consider respectively the relation a∗bc = cba∗ (which is equivalent to abc∗ = c∗ba and to the

adjoints ab∗c∗ = c∗b∗a and a∗b∗c = cb∗a∗) or abc = cba (equivalent to a∗b∗c∗ = c∗b∗a∗) for any

triple a, b, c ∈ {uij , i, j = 1, . . . , N}.

Like A∗
o(N), the projective version of A∗

u(N) is also commutative, as proved in the next

proposition.

Proposition 5.7. The CQG PA∗
u(N) is isomorphic to C(PU(N)).
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Proof. We recall (Rem. 2.8) that for a CQGQ generated by a biunitary u = ((uij)), the projective

version is the C∗-subalgebra generated by products u∗ijukl.

Clearly C(U(N)) is a quantum subgroup of A∗
u(N), and the latter is a quantum subgroup of

Au(N). Thus, C(PU(N)) is a quantum subgroup of PA∗
u(N), which is a quantum subgroup of

PAu(N). Since the abelianization of PAu(N) is exactly C(PU(N)), any commutative (as a C∗-

algebra) quantum subgroup of PAu(N) containing C(PU(N)) coincides with C(PU(N)). Thus,

the proof will be over if we can show that the C∗-algebra of PAu(N) is commutative, i.e. PAu(N)

is the space of continuous functions on a compact group. This is a simple computation. Using

first (5.6) and then its adjoint we get:

(u∗ijukl)(u
∗
pqurs) = u∗ij(uklu

∗
pqurs) = u∗ij(ursu

∗
pqukl)

= (u∗ijursu
∗
pq)ukl = (u∗pqursu

∗
ij)ukl

= (u∗pqurs)(u
∗
ijukl) .

This proves that the generators of PAu(N) commute, which concludes the proof.

In complete analogy with Corollary 3.4 we have:

Corollary 5.8. Q̃ISO+
R (DF ) is a quantum subgroup of the free product

C(U(1)) ∗ C(U(1)) ∗ . . . ∗ C(U(1))︸ ︷︷ ︸
n+1

∗ Q∗
n ∗ Au(n)

where Q∗
n is the amalgamated free product of n copies of A∗

u(3) over the common Woronowicz

C∗-subalgebra C(PU(3)). The Woronowicz C∗-ideal of this CQG defining Q̃ISO+
R (DF ) is deter-

mined by the relations (3.11).

As in the complex case, let us denote by QISO+
R (DF ) the C

∗-subalgebra of Q̃ISO+
R (DF ) generated

by {(ϕ⊗ id)AdUR
: ϕ ∈ (BF )

∗}, where UR is the corepresentation of Q̃ISO+
R (DF ). An immediate

corollary of Prop. 5.7 and Corollary 5.8 is the following.

Corollary 5.9. QISO+
R (DF ) = C(U(1)) ∗ C(PU(3)).

Remark 5.10. Since Q̃ISO+
R (DF ) is a quantum subgroup of Q̃ISO+

J (DF ), its coaction still pre-

serves the spectral action.

A detailed study of quantum automorphisms for finite-dimensional real C∗-algebras, along

the lines of the discussion in this section, will be reported elsewhere.

6 Proof of Proposition 3.3

In this section, we prove the main result, that is, Proposition 3.3. Throughout this section,

(Q,U) will denote an object in CJ . We start by exploiting the conditions regarding γF and JF ,

then we use the conditions regarding DF and AdU to get a neater expression for U in Lemma

6.2, 6.3 and 6.4 and then using these simplified expressions in the next Lemmas, we derive the

desired form of U from which we can identify the quantum isometry group.
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Lemma 6.1. U ∈M32n(C)⊗Q satisfies (γF ⊗ 1)U = U(γF ⊗ 1) and (J0 ⊗ 1)U = U(J0 ⊗ 1) iff

U =
∑

IJ
(ei1j1 ⊗ ei2j2 ⊗ ei3j3 ⊗ ei4j4)⊗ uIJ

+
∑

IJ
(ei1j1 ⊗ ei2j2 ⊗ ei3+2,j3+2 ⊗ ei4j4)⊗ u∗IJ , (6.1)

where the multi-indices I = (i1, . . . , i4), J = (j1, . . . , j4), etc. run in {1, 2}×{1, 2, 3, 4}×{1, 2}×

{1, 2, . . . , n}.

Proof. (γF ⊗ 1)U = U(γF ⊗ 1) implies that ui1,j1,i2,j2,i3,j3,i4,j4 = 0 unless (i3, j3) belongs to

{1, 2} × {1, 2} or {3, 4} × {3, 4}. Using the reduced form of U obtained from this observation,

the relation (J0 ⊗ 1)U = U(J0 ⊗ 1) is applied to reach the desired expression.

Let V1, V2, V3, V4 denote the subspaces (e11 ⊗ e11 ⊗ 1⊗ 1)H, (e22 ⊗ e11 ⊗ 1⊗ 1)H, (e11 ⊗ (1−

e11)⊗ 1⊗ 1)H, and (e22 ⊗ (1− e11)⊗ 1⊗ 1)H respectively.

Lemma 6.2. If U commutes with DF , the subspaces Vi, i = 1, 2, 3, 4 are kept invariant by U

and thus (6.1) becomes

U =
∑

i=1,2

eii ⊗ e11 ⊗




αi
11

αi
12

0 0

αi
21

αi
22

0 0

0 0 αi
11

αi
12

0 0 αi
21

αi
22




+
∑

i=1,2
j,k=1,2,3

eii ⊗ ej+1,k+1 ⊗




β i,j,k
11

β i,j,k
12

0 0

β i,j,k
21

β i,j,k
22

0 0

0 0 β
i,j,k

11
β

i,j,k

12

0 0 β
i,j,k

21
β

i,j,k

22


 (6.2)

where, as in (3.5) we identify M4(C) ⊗Mn(C) ⊗ Q with M4n(Q), we called αi
j1k1

is the n × n

matrix with entries (αi
j1k1

)j2k2 := uJK with J = (i, 1, j1, j2) and K = (i, 1, k1, k2) and we called

β i,j0,k0
j1k1

the n × n matrix with entries (β i,j0,k0
j1k1

)j2k2 := uJK with J = (i, j0 + 1, j1, j2) and K =

(i, k0 + 1, k1, k2) (all the other elements uIJ being zero).

Proof. The subspaces Vi, i = 1, 2, 3, 4 are DF -invariant and correspond to distinct sets of eigen-

values (masses of the generations of ν, e, u and d respectively). Since (DF ⊗ 1)U = U(DF ⊗ 1)

these four subspaces must be preserved by U and this completes the proof of the lemma.

Lemma 6.3. Let (Q,∆) be any CQG satisfying (2.3a), (3.10a) and (3.10b). Then each one

of the four summands in BF = C ⊕ C ⊕M2(C) ⊕M3(C) is a coinvariant subalgebra under the

adjoint coaction AdU(a) = U(a⊗ 1)U∗ of Q.

Proof. We start with the basis element 〈0, 1, 0, 0〉 of the second copy of C. Equation (3.10b)

means that

AdU(〈0, 1, 0, 0〉) = 〈1, 0, 0, 0〉 ⊗ a〈1,0,0,0〉 + 〈0, 1, 0, 0〉 ⊗ a〈0,1,0,0〉

+
∑

i,j=1,2

〈0, 0, eij , 0〉 ⊗ a〈0,0,eij ,0〉 +
∑

i,j=1,2,3

〈0, 0, 0, eij 〉 ⊗ a〈0,0,0,eij〉 (6.3)

where a〈.〉 are some elements of Q.
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By (6.2), U(〈0, 1, 0, 0〉⊗1)U∗ has e22 in the first position and ejk in the third, with j, k = 3, 4.

Therefore, U(〈0, 1, 0, 0〉⊗1)U∗ vanishes on the subspaces (e11⊗1⊗e44⊗1)HF , (1⊗1⊗e11⊗1)HF

and (1⊗ (1− e11)⊗ (e22 + e33)⊗ 1)HF . Applying (6.3) on these three subspaces and using (3.9)

we get respectively:

0 = (e11 ⊗ 1⊗ e44 ⊗ 1)⊗ a〈1,0,0,0〉 + 0 + 0 + 0 ,

0 = 0 + 0 +
∑

i,j=1,2
〈0, 0, eij , 0〉 ⊗ a〈0,0,eij ,0〉 + 0 ,

0 = 0 + 0 + 0 +
∑

i,j=1,2,3
〈0, 0, 0, eij 〉 ⊗ a〈0,0,0,eij〉 .

Therefore a〈1,0,0,0〉 = a〈0,0,eij ,0〉 = a〈0,0,0,eij〉 = 0 and AdU(〈0, 1, 0, 0〉) ⊂ 〈0, 1, 0, 0〉 ⊗Q. The proof

for the other three factors is similar.

For the rest of the proof, let λ ∈ C, q ∈M2(C),m ∈M3(C) be arbitrary.

U(〈1, 0, 0, 0〉⊗1)U∗ vanishes on the subspaces (e22⊗(1−e11)⊗e44⊗1)HF , (1⊗e11⊗e11⊗1)HF

and (1 ⊗ (1 − e11) ⊗ e22 ⊗ 1)HF and hence this implies respectively that the coefficients of

〈0, λ, 0, 0〉 , 〈0, 0, q, 0〉 , 〈0, 0, 0,m〉 in AdU(〈1, 0, 0, 0〉) are zero.

U(〈0, 0, q, 0〉 ⊗ 1)U∗ vanishes on the subspaces (e11 ⊗ 1⊗ e44 ⊗ 1)HF , (e22 ⊗ 1⊗ e44 ⊗ 1)HF

and (1 ⊗ (1 − e11) ⊗ e33 ⊗ 1)HF and hence this implies respectively that the coefficients of

〈λ, 0, 0, 0〉 , 〈0, λ, 0, 0〉 , 〈0, 0, 0,m〉 in AdU(〈0, 0, q, 0〉) are zero.

Finally, U(〈0, 0, 0,m〉 ⊗ 1)U∗ vanishes on the subspaces (e11 ⊗ e11 ⊗ e44 ⊗ 1)HF , (e22 ⊗

e11 ⊗ e44 ⊗ 1)HF and (1 ⊗ e11 ⊗ e11 ⊗ 1)HF which implies respectively that the coefficients of

〈λ, 0, 0, 0〉 , 〈0, λ, 0, 0〉 , 〈0, 0, q, 0〉 in AdU(〈0, 0, 0,m〉) are zero.

Lemma 6.4. If (3.10b) is satisfied, the matrices αi
j1k1

and β i,j0,k0
j1k1

in (6.2) are zero for all

j1 6= k1.

Proof. We are under the hypothesis of Lemma 6.3. Since AdU(〈1, 0, 0, 0〉) ⊂ 〈1, 0, 0, 0〉 ⊗ Q, it

is easy to see that (eii ⊗ e11 ⊗ e11 ⊗ 1 ⊗ 1Q)AdU(〈1, 0, 0, 0〉) equals zero for all i = 1, 2. On the

other hand, straightforward computation gives

(eii ⊗ e11 ⊗ e11 ⊗ 1⊗ 1Q)AdU(〈1, 0, 0, 0〉) = eii ⊗ e11 ⊗ e11 ⊗ αi
12(α

i
12)

∗ = 0 ,

from which it follows that αi
12 = 0 for all i = 1, 2. Similarly,

(1⊗ e11 ⊗ e22 ⊗ 1⊗ 1Q)AdU(〈0, 0, eii, 0〉) = eii ⊗ e11 ⊗ e22 ⊗ αi
21(α

i
21)

∗ = 0

gives αi
21 = 0 for all i = 1, 2. Finally, AdU(〈0, 0, 0, ek0 l0〉) applied to the projections 1⊗1⊗e11⊗1

and 1⊗ 1⊗ e44 ⊗ 1, we get the conditions

βi,j0,k012 (βi,l0,n0

12 )∗ = β
i,j0,k0
21 (βi,l0,n0

21 )t = 0

for all i, j0, k0, l0, n0. In particular setting j0 = l0 and k0 = n0 we get βi,j0,k012 = βi,j0,k021 = 0.

Now we impose U(DF ⊗ 1) = (DF ⊗ 1)U , with DF as in (3.6) and the reduced form of U as

in (6.2) by imposing Lemma 6.4, that is, αi
j1k1

and β i,j0,k0
j1k1

are zero for all j1 6= k1.

Lemma 6.5. Any U of the form as in (6.2) satisfies U(DF ⊗ 1) = (DF ⊗ 1)U if and only if

1. all α2
ss and β i,j,k

rr are diagonal n× n matrices,
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2. α2
22 = α2

11, β
i,j,k
22 = β

i,j,k

11 ,

3. α1
11Υν = Υν α

1
22, α

1
22Υν = Υν α

1
11, α

1
22ΥR = ΥR α

1
22.

Proof. The above condition is equivalent to the following sets of equations:

α1
11Υν = Υν α

1
22 , α1

22Υν = Υν α
1
11 , α1

22ΥR = ΥR α
1
22 , (6.4a)

α2
11Υe = Υeα

2
22 , α2

22Υe = Υeα
2
11 , β1,j,k11 Υu = Υuβ

1,j,k
22 , (6.4b)

β1,j,k22 Υu = Υu β
1,j,k
11 , β2,j,k11 Υd = Υdβ

2,j,k
22 , β2,j,k22 Υd = Υdβ

2,j,k
11 , (6.4c)

Actually, there are additional 9 relations that — recalling that Υx (x = ν, e, u, d) are positive

and diagonal and ΥR is symmetric — turn out to be the “bar” of previous ones and hence they

do not give any new information.

From α2
22Υe = Υe α

2
11 and α2

11Υe = Υe α
2
22, since Υe is positive diagonal, we deduce

α2
22Υ

2
e = Υe(α2

11Υe) = Υe(Υe α2
22) = Υ2

eα
2
22 .

In a similar way we find that all α2
ss commute with Υ2

e, and all β 2,j,k
rr commute with Υ2

d. Since

Υ2
x (x = e, u, d) are diagonal with distinct eigenvalues, we deduce that all α2

ss and β
i,j,k
rr must be

diagonal n×n matrices. Conversely, if these matrices are diagonal and since Υx (x = e, u, d) are

invertible, then the relations in (6.4b) are satisfied if α2
22 = α2

11 and β i,j,k
22 = β

i,j,k

11 which proves

the lemma.

In view of Lemma 6.5, we introduce the notation

α2
11 =

n∑

k=1

ekk ⊗ xk, β
i,j,k
11 =

n∑

m=1

emm ⊗ z i,j,k
m

Hence,

β i,j,k
22 =

n∑

m=1

emm ⊗ (z i,j,k
m )∗.

Moreover, we define 3× 3 matrices (T (i,m))j,k = z i,j,k
m and (T ′(i,m))j,k = (z i,j,k

m )∗.

Lemma 6.6. U being a unitary corepresentation implies that the matrices αi
rr and T (i,m) are

biunitaries. In particular, {x1, x2, ....., xn} are unitary elements.

Proof. The condition UU∗ = 1⊗ 1 implies that for r = 1, 2,

αi
rr(α

i
rr)

∗ = αi
rr(α

i
rr)

∗ = 1,
∑

k

β i,j,k
rr (β i,l,k

rr )∗ =
∑

k

β
i,j,k

rr (β
i,j,k

rr ) = δjl.

Similarly, from U∗U = 1⊗ 1 we get the relations

(αi
rr)

∗αi
rr = (αi

rr)
∗αi

rr = 1,
∑

k

(β i,l,k
rr )∗β i,j,k

rr =
∑

k

(β
i,l,k

rr )∗β
i,j,k

rr = δjl..

Thus, the matrices αi
rr, (T (i,m)) and (T ′(i,m)) are biunitaries. In fact, the biunitarity of

T ′(i,m) follows from the biunitarity of T (i,m). This proves the result.
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Lemma 6.7. From the condition (3.10b), i.e. that the coaction AdU preserves the subalgebra

BF , we derive that there exists a unitary b such that

α1
11 = diag(bx1, .., bxn) , α2

22 =
n∑

k=1

ekk ⊗ x∗k , (6.5a)

T (1, r)(T (2, r))∗ = diag(b, b, b) , (z1kim )∗z1ljm = (z1kim′ )∗z
1lj
m′ , ∀ r,m,m′ = 1, 2, ..., n , (6.5b)

and the adjoint coaction is

AdU(〈0, 0, e12, 0〉) = 〈0, 0, e12, 0〉 ⊗ b, (6.6a)

AdU(〈0, 0, e21, 0〉) = 〈0, 0, e21, 0〉 ⊗ b∗, (6.6b)

AdU(〈0, 0, 0, eij 〉) =
∑

kl
〈0, 0, 0, ekl〉 ⊗ (z1ki1 )∗z1lj1 . (6.6c)

Moreover, 〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉 and 〈0, 0, eii, 0〉 (i = 1, 2) are coinvariant.

Proof. We use the notations of the previous lemmas. The coinvariance of 〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉

and 〈0, 0, eii, 0〉 (i = 1, 2) follows automatically from unitarity of U . Since

AdU(〈0, 0, e12, 0〉) = e12 ⊗ e11 ⊗ e11 ⊗ α1
11(α

2
11)

∗ +
∑

ijk
e12 ⊗ ei+1,k+1 ⊗ e11 ⊗ β1,i,j11 (β2,k,j11 )∗ ,

condition (3.10b) implies that there exists b ∈ Q such that

α1
11(α

2
11)

∗ =

n∑

i=1

eii ⊗ b ,
∑

j

β1,i,j11 (β2,k,j11 )∗ = δi,k(

n∑

i=1

eii ⊗ b) . (6.7)

Unitarity of αi
rr implies unitarity of b. Moreover, we have that α1

11 = diag(bx1, .., bxn).

Using the relation α2
11 = α2

22 in Lemma 6.5, we deduce that α2
22 =

∑n
k=1 ekk ⊗ x∗k.

We get AdU(〈0, 0, e12, 0〉) = 〈0, 0, e12, 0〉 ⊗ b and AdU(〈0, 0, e21, 0〉) = 〈0, 0, e21, 0〉 ⊗ b∗.

From the second equation of (6.7), we deduce that T (1, r)(T (2, r))∗ = diag(b, b, b).

From coinvariance of M3(C) we deduce that for all m,m′, (z1kim )∗z1ljm = (z1kim′ )∗z
1lj
m′ . Hence, the

adjoint coaction is given by (6.6c).

Definition 6.8.

1. We will denote by Qn the amalgamated free product of n copies of Au(3) over the common

Woronowicz C∗-subalgebra Aaut(3) (cf. Theorem 3.4 of [36]).

2. We will denote by Q′ be the universal unital C∗ algebra generated by elements

i. {x′i : i = 0, 1, 2, ..., n}, each of which is a unitary,

ii. matrix entries of a n× n biunitary V ′,

iii. matrix entries of n 3× 3 biunitaries {T ′
m : m = 1, 2, .., n}.

satisfying the conditions (3.11) with xi, V, Tm replaced by x′i, V
′, T ′

m respectively.

We will denote the matrix entries of V ′ and T ′
m by V ′

ij and (T ′
m)kl respectively, where i, j

belong to {1, 2, ..., n} and k, l belong to {1, 2, 3}. Finally, let U ′ be the element in B(HF ) ⊗ Q′

obtained from (3.12) by a similar change in symbols for xi, V, Tm.

Proposition 6.9. Q′ is a compact quantum group.
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Proof. Noting that for each i = 0, 1, 2, ..., n, x′i generate a ∗-subalgebra of C(U(1)), while matrix

entries of V ′ and those of T ′
m generate ∗-subalgebras of Au(n) and Au(3) respectively, it follows

that Q′ is a ∗-subalgebra of

Z = C(U(1)) ∗ C(U(1)) ∗ . . . ∗ C(U(1))︸ ︷︷ ︸
n+1

∗Au(n) ∗ Au(3) ∗ Au(3) ∗ . . . ∗ Au(3)︸ ︷︷ ︸
n

.

Z has a CQG structure by [36] with the coproduct ∆′ on the generators given by

∆′(xk) = x′k ⊗ x′k, ∆
′(V ′

ij) =

n∑

k=1

V ′
ik ⊗ V ′

kj, ∆
′((T ′

m)ij) =

3∑

k=1

(T ′
m)ik ⊗ (T ′

m)kj .

By (3.11b) and Theorem 3.4 of [36], C∗{(T ′
m)j,k : j, k = 1, 2, 3, m = 1, 2, ..., n} is isomorphic

to Qn. Hence, the proposition follows by checking that the C∗-ideal generated by the relations

V ′Υν = V ′tΥν = diag(x′∗1 x
′∗
0 , ..., x

′∗
n x

∗
0)Υν , V

′ΥR = ΥR V ′ in (3.11a) is actually a Woronowicz

C∗-ideal of Z. The check is quite routine remembering that the matrix Υν is a diagonal matrix

and hence we omit its proof.

Proposition 6.10. (Q′, U ′) is an object of the category CJ .

Proof. It is an easy check that (id ⊗∆′)U ′ = U ′
(12)U

′
(13), that is, U

′ is a unitary representation

of Q′ on HF . From the formula of U ′, it can be checked that U ′ commutes with DF . Moreover,

the conditions with γ and J follow by comparing the formula of U in Lemma 6.1. Finally, by

(3.11a) and (3.11b), it follows that AdU′ coacts trivially on the two summands C of BF , while on

the remaining summands the coaction is given by (3.13), with the obvious change in notations.

Thus AdU′ preserves BF and this finishes the proof of the proposition.

We are now in a position to prove Proposition 3.3.

Proof of Proposition 3.3.

We redefine T (1,m) as Tm, b as x0 and α1
22 as V. By collecting all the results in this section, it

follows that U has to be of the form given in (3.12) and the only conditions that the generators

need to satisfy are those listed in Proposition 3.3. The relation (id ⊗∆)U = U(12)U(13) implies

that the coproduct ∆ on Q has to satisfy

∆(xk) = xk ⊗ xk, ∆(Vij) =
n∑

k=1

Vik ⊗ Vkj , ∆((Tm)ij) =
3∑

k=1

(Tm)ik ⊗ (Tm)kj .

From (3.12), we note that for each i = 1, 2;m = 1, 2, 3, 4 and k = 1, 2, ..n, U keeps the

following sets of subspaces invariant: (eii⊗e11⊗emm⊗err)HF and (eii⊗(1−e11)⊗emm⊗err)HF .

Since U is a unitary corepresentation onHF , it follows that it restricts to a unitary representation

on these subspaces. Using the fact that Tm, V are biunitaries, by the universality of the CQG

Au(n), we conclude that for each m, C∗{(Tm)kl : k, l = 1, 2, 3} and C∗{Vij : i, j = 1, 2, ..., n}

are quantum subgroups of Au(3) and Au(n) respectively. The exact structure of V depends on

the matrices Υν and ΥR as can be seen from (3.11a), while from (3.11b) (as previously noted

in Proposition 6.9), C∗{(Tm)kl : k, l = 1, 2, 3, m = 1, 2, ..., n} is a quantum subgroup of Qn. It

is clear that the map π sending x′k, V
′
ij and (T ′

m)kl to xk, Vij and (Tm)kl extends to a CQG

morphism from Q′ to Q. Thus, any object of CJ is a sub-object of (Q′, U ′). Conversely, as Q′ is

an object of CJ by Proposition 6.10, the proof is finished.
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