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Abstract

We investigate edge-intersection graphs of paths in the plane grid re-

garding a parameter called the bend-number. The bend-number is related

to the interval-number and the track-number of a graph. We provide new

upper and lower bounds of the bend-number of any given simple graph in

terms of the coloring number, edge clique covers and the maximum de-

gree. We show that the bend-number of an outerplanar graph is at most

two and that several subclasses of planar graphs have a bend-number of at

most three or four. Moreover we determine the bend-numbers of several

complete bipartite graphs. Finally, we prove that recognizing single-bend

graphs is NP-complete, providing the first such result in this field.

1 Introduction

Golumbic, Lipshteyn and Stern [11] introduced edge-intersection graphs of paths
on a grid (EPG graphs), a concept arising from VLSI grid layout problems [6].
A simple graph G is an EPG graph, if there is an assignment of paths in the
plane grid to the vertices, such that two vertices are adjacent if and only if the
corresponding paths intersect in at least one grid edge. The paths may not have
u-turns but may intersect themselves even in grid edges. EPG graphs generalize
edge-intersection graphs of paths on degree 4 trees as considered by Golumbic,
Lipshteyn and Stern in [12]. A proof is contained in [11], showing that every
graph is an EPG graph, however a certain parameter of EPG representations has
awoken some interest. The bend-number of G (written b(G)) is the minimum
k, such that G has an EPG representation, with each path having at most k

bends. Here a bend of a grid path is a switch in its direction between horizontal
and vertical. Figure 1 shows K3,3 after the removal of one edge and an EPG
representation where each path has at most one bend, hence b(K3,3/e) ≤ 1.
Generally, a graph G with b(G) ≤ k is referred to as a k-bend graph.

Remark. Most of the literature concerning this topic, including [2, 4, 11], is
considering Bk, the class of k-bend graphs. Clearly b(G) ≤ k just paraphrases
G ∈ Bk. However, we prefer to use b(G) rather than Bk.

Graphs with bend-number at most 1, called single-bend graphs, already aroused
interest in several respects, as seen in [11, 19]. In [2, 4] it has been shown that the
bend-number of a simple graph can be arbitrary large. Hence it is interesting to
determine graphs or graph classes with bounded bend-number. Asinowski and
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Figure 1: The K3,3/e is a single-bend graph.

Suk [2] give bounds on the bend-number of complete bipartite graphs. Biedl
and Stern [4] show b(G) ≤ 5 for planar G and b(G) ≤ 3 for outerplanar G. They
also give upper bounds on b(G) in terms of tree-width, path-width, coloring
number and maximum degree of G.

In this paper we do the following:
In Section 2 we compare the bend-number with other graph parameters. In
particular, a graph’s bend-number is closely related to its interval-number i(G),
see [21], and its track-number t(G), see [16]. Although not apparent in the
literature so far, this connection seems to be natural to us. We also introduce
some notation. The end of the section contains a first important lemma that
will be used now and then in the paper, the Lower-Bound-Lemma.

Section 3 covers complete bipartite graphs. We prove a lower bound on
b(Km,m), which equals the upper bound given in [2]. In particular, this will
prove that for every k ≥ 0 there is a G with b(G) = k, which answers a question
of [2, 11]. Moreover we derive upper and lower bounds on the bend-number of
Km,n for m ≠ n. We determine b(Km,n) in a couple of cases: if n is a specific
quadratic function of m and if n is bigger than some degree 4 polynomial in m

(improving a result of [4]).
Section 4 focuses on the relation between the coloring number and the bend-

number of a graph. We improve the upper bound from [4] and show that it is
tight even for bipartite graphs.

In Section 5 we provide a general method to bound b(G) from above de-
pending on edge clique covers of G. In particular we improve a result of [4]
concerning the maximum degree.

Section 6 deals with planar and outerplanar graphs. We prove a conjecture
of [4], namely that the bend-number of an outerplanar graph is at most two.
This bound is best possible. We also improve the bounds of other classes of
planar graphs.

In Section 7 we show that recognizing single-bend graphs is NP-complete,
which answers a question of [11, 19].

We conclude the paper with some open problems in Section 8.

2 Comparing parameters and a first lemma

Interval graphs are intersection graphs of intervals on the real line. Every vertex
is associated with an interval, in such a way that two intervals overlap if and
only if the corresponding vertices are adjacent. This subject has been extended
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to intersection graphs of systems of intervals. In a k-interval representation
of a graph G every vertex is associated with a set of at most k intervals on
the real line, such that vertices are adjacent iff any of their intervals intersect.
The interval-number i(G) is then defined as the minimum k, such that G has a
k-interval representation.

In a k-track representation of a simple graph G there are k parallel lines,
called tracks. Every vertex is associated with one interval from each track. Again
vertex adjacency is equivalent to interval intersection and the track-number t(G)
is the minimum k, such that G has a k-track representation. It is easy to see that
i(G) ≤ t(G), since a k-track representation can be transferred into a k-interval
representation by putting the tracks in any order on a single real line.

A k-bend representation associates every vertex with at most k+1 intervals,
called segments in this context. Each segment lies on either a horizontal or a
vertical grid line. Additionally, the segments of a vertex have to form a grid path,
that is they are ordered such that horizontal and vertical segments alternate and
the endpoint of a segment equals the starting point of the subsequent segment.
The common point of successive segments is called a bend. Clearly the number
of bends of a path is one less than the number of segments. We say that two
segments intersect if they have a grid edge in common, touch if they have a
grid point in common, and cross if they don’t intersect and the touching point
is not an endpoint of either segment. We say that two grid paths intersect,
touch, or cross if any of their segments intersect, touch, or cross. This notation
is illustrated in Figure 2. Now two vertices in G are adjacent if and only if their
paths intersect. For convenience we will sometimes refer to a vertex and the
path that represents this vertex with the same name.

a) b) c) d)

Figure 2: Four examples of two grid paths that touch at a grid point. The paths
intersect in case a) and cross in case b). In cases c) and d) they neither cross,
nor intersect.

The bend-number b(G) (the minimum k, such that G has a k-bend represen-
tation) can be set in relation to i(G) and t(G): Since the grid lines of a k-bend
representation can be stringed together on a single line, i(G) ≤ b(G)+1. On the
other hand b(G) is only a constant factor away from i(G) and t(G): An interval
or track representation may be considered as part of the infinite grid and the in-
tervals of a vertex may be connected without introducing unwanted adjacencies.
Using this one easily gets b(G)+1 ≤ 4⋅i(G) and b(G)+1 ≤ 4⋅t(G). Moreover, note
that interval graphs are precisely the graphs with i(G) = t(G) = b(G) + 1 = 1.

Many extremal questions about interval-numbers and track-numbers have
been studied. In Table 1 we have listed some considered graph classes and
the maximum i(G), t(G) and b(G) + 1 among all G in this class. In the last
two columns (corresponding to the track-number and the bend-number) some
values remain unknown. In particular this includes the bend-number of complete
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i(G) t(G) b(G) + 1
forest 2 [17] 2 [7] 2 [11]
outerplanar 2 [21] 2 [18] 3 Thm 6.1
planar 3 [21] 4 [13] ≤ 6 [4]

+ bipartite 3 [21] 4 [13, 14] 3 [4]

Km,n (m ≤ n) ⌈mn+1
m+n ⌉ [17] ⌈ mn

m+n−1 ⌉ [16] ≥ ⌈mn+√mn

m+n ⌉ Lem 2.2
≤ ⌈n

2
⌉ + 1 [2]

≤ 2m − 1 [2]
line graph 2 – 3 [4]
max degree ∆ ⌈∆+1

2
⌉ [15] ≤∆ + 1 ≤∆ + 1 Cor 5.3

Table 1: Some graph classes and their maximum interval-number, track-number
and bend-number.

bipartite graphs (c.f. Section 3), line graphs, graphs with maximum degree ∆
(c.f. Section 5 for both) and planar graphs (c.f. Section 6). We are not aware
of any result concerning the following question and conjecture.

Question 1. Is t(G)/b(G) (or equivalently t(G)/i(G)) bounded by a constant
independent of G?

We expect that the answer is ’No’. We even conjecture a statement which,
if true, would immediately imply a negative answer to the above question. A
good candidate for proving Conjecture 2.1 seems to be the line graph of Kn.

Conjecture 2.1. The track-number of line graphs is not bounded by a constant.

Scheinerman and West [21] already considered depth-r interval represen-
tations. In any such representation the number of intervals with non-trivial
common intersection is bounded by r. This notion makes sense for interval-,
track- and bend-representations. Clearly every representation of a triangle free
graph has depth at most 2. In the construction of representations of any kind
it is convenient to restrict to depth-2 representations, which we will call sim-
ple. Indeed almost all EPG representations in the literature so far (except the
2-bend representation of line graphs in [4]) are simple. Also, all upper bounds
in this paper, except those in Section 5, rely on simple representations.

In general a simple EPG representation may require many more bends than
a non-simple one: A good example is Kn. But when restricted to simple repre-
sentations we quickly obtain a lower bound on the required number of bends.

Lemma 2.2 (Lower-Bound-Lemma). Let L denote the set of grid lines, a
simple k-bend representation of G = (V,E) uses. Then we have

∣E∣ + ∣L∣ ≤ (k + 1)∣V ∣.
Moreover there is a k-bend representation in which

∣L∣ ≥
√
k∣V ∣.

Proof. W.l.o.g. consider a simple k-bend representation in which every vertex
path has exactly k bends. Look at the rightmost or upmost grid edge of each
of the k + 1 segments of each vertex v. If this grid edge is shared by another
vertex w (there can be only one in a simple representation), we assign v to the
edge {v,w} in the graph. This way
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• every vertex is assigned to at most k + 1 edges,

• every edge is assigned at least once, and

• at the rightmost (upmost) grid edge of every line in L either no assignment
is done or an edge is assigned twice.

Hence we have ∣E∣ ≤ (k + 1)∣V ∣ − ∣L∣.
Moreover, since the representation is simple, at most 4 bends can share a grid

point. Hence at least 1

4
k∣V ∣ grid points support a bend. The minimal number

of grid lines crossing in that many grid points is at least 2
√

1

4
k∣V ∣ =√k∣V ∣.

Although the Lower-Bound-Lemma only depends on the number of vertices
and edges, it turns out to be very powerful in several cases. Note that a direct
analog is used in [15] to derive tight lower bounds on the interval-number of
every complete bipartite graph. It can be used for tight lower bounds on the
track-number of every such graph as well. When considering the bend-number
the Lower-Bound-Lemma is weaker. Nevertheless it is tight for some particular
Km,n (c.f. Theorem 3.1 and Theorem 3.2).

3 Complete bipartite graphs

The interval-number of complete bipartite graphs has been determined indepen-
dently by Harary and Trotter [17] and Griggs and West [15]. The track-number
of complete bipartite graphs was determined by Gyárfás and West [16]. Table 1
contains the specific values. In this section we investigate the bend-number
of complete bipartite graphs. Throughout this paper we denote the bipartition
classes of Km,n by A = {a1, . . . , am} and B = {b1, . . . , bn} and will always assume
2 ≤m ≤ n. For convenience we depict vertices of A by black paths and vertices
of B by grey paths.

In [2] it is shown that b(Km,n) ≤ ⌈max{m,n}
2

⌉ = ⌈n
2
⌉, see Figure 3. They also

ask, whether this representation is best-possible in the casem = n. We prove this
(Theorem 3.1), which solves a conjecture of [11], asking whether for every k ≥ 0
there is a graph G with b(G) = k. Since bipartite graphs are triangle-free, any
representation is simple here. Hence we can apply the Lower-Bound-Lemma.

Theorem 3.1. For all 2 ≤ m ≤ n we have b(Km,n) ≤ ⌈n2 ⌉. This holds with
equality if m = n and if m + 1 = n is even.

Proof. Figure 3 shows a representation of K5,6 with ⌈n/2⌉ = 3 bends. This
example is due to [2] and is meant to be instructive for general values of m and
n, certifying b(Km,n) ≤ ⌈n/2⌉. For equality we will prove that Km,2⌈m

2
⌉ cannot

be represented with less than ⌈m
2
⌉ bends. Supposing that we could use less, the

Lower-Bound-Lemma (Lemma 2.2) gives 2m⌈m
2
⌉+ ∣L∣ ≤ ⌈m

2
⌉(m+ 2⌈m

2
⌉). If m is

even we obtain m2
+ ∣L∣ ≤m2 which is a contradiction since ∣L∣ ≥ 1. For odd m

we calculate ∣L∣ ≤ 1

2
(m + 1). But by the Lower-Bound-Lemma we can assume

∣L∣ ≥
√

1

2
(m − 1)(2m + 1) which leads to a contradiction for m ≥ 2.

When considering Km,n with increasing n compared to m, the bound in
Theorem 3.1 gets worse. Being interested in the behavior of b(Km,n), we now
determine the exact value for a certain n ∈ θ(m2).
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Figure 3: A 3-bend representation of K5,6. The smaller bipartition class A is
black.

Theorem 3.2. Let m ≥ 3. For even m we have b(Km,(m+1)(m−2)) =m − 1 and
for odd m we have b(Km,m(m−2)) =m − 1.
Proof. Let m be even. We use a braid-like path P with m−1 bends and m/2−1
crossings as a template for every path in A. We represent each of the m vertices
in A by a copy of P translated by a very small amount along the diagonal. See
the left of Figure 4 for an illustration. The vertices of B are represented by
small staircases with m − 1 bends, each interlaced around a bend or a crossing
of P . At every bend of P , except the braid’s turning point, we interlace m

grey staircases and at every crossing another two staircases (see the right of
Figure 4). This gives in total the (m − 2) ⋅m + (m/2 − 1) ⋅ 2 = (m − 2)(m + 1)
vertices of B.

Figure 4: Representing Km,(m+1)(m−2) (m even) with m−1 bends: Vertices in A

(black) are represented by braid-like paths. Vertices in B (grey) are represented
by staircases interlaced at the bends and crossings.

For odd m, first represent Km−1,m(m−3) as described in the even case with
m− 2 bends for each path. Then add the missing vertex am ∈ A by a snake-like
(m − 1)-bend path like the dashed one on the left of Figure 5. The vertical
end of the so far existing paths in B/{b∗} can be extended to reach am and
endowed with another bend to connect to it. The special vertex b∗ is extended
horizontally to reach am as depicted in Figure 5.
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Finally, every path ai ∈ A/{am} receives a last bend at its vertical or hori-
zontal end, depending on the parity of i. We obtain several new crossings where
an additional set of m paths may be threaded in, see the right of Figure 5. This
way B contains m(m − 2) vertices.

b∗

Figure 5: Representing Km,m(m−2) (m odd) with m − 1 bends: Vertices in
A/{am} (black) are represented by braid-like paths and am (dashed) by a snake-
like path. The first m(m − 3) vertices in B (grey) are interlaced as in the even
case and extended vertically to reach am. Only b∗ is extended as depicted.
Another m vertices in B are threaded in as shown on the right.

The above constructions show that both bend-numbers are at most m − 1.
Equality follows from a straightforward application of the Lower-Bound-Lemma.

Theorem 3.2 only holds if m ≥ 3. The bend-number of K2,n has been deter-
mined for all n in [2]: b(K2,n) = 2 iff n ≥ 5 and b(K2,n) = 0 iff n = 0,1.

Now we investigate the extremal case where n gets very large compared to
m. Asinowski and Suk [2] showed that b(Km,n) = 2m − 2 for every n ≥ N with
N ∈ Ω(mm), see Figure 8 for a representation. Later on, Biedl and Stern [4]
improved this to N = 4m4

− 8m3
+ 2m2

+ 2m + 1. In Theorem 3.5 we lower this
once more to N =m4

− 2m3
+ 5m2

− 4m + 1 and show in Theorem 3.6 that this
leaves at most a quadratic gap to the true value, disproving a conjecture of [4].
We begin with bounding the number of crossings of two paths which have a
given odd number of bends. This bound may be of interest on its own.

Lemma 3.3. Two (2m− 1)-bend paths cross in at most m(m+ 1) points. This
is tight.

Proof. Consider two given (2m − 1)-bend paths v and w. Both have exactly m

horizontal and m vertical segments. We color the vertical segments of v and the
horizontal segments of w blue and the remaining segments red. Along each path
we index the segments, starting with its blue end, i.e., v1 and w1 are blue and

7



v = (v1, . . . , v2m) and w = (w1, . . . ,w2m). Now every crossing is monochromatic,
either blue with odd indices or red with even indices. We partition the pairs
of segments that have the same color but come from different paths into four
sets. Set B contains all blue pairs that do cross and B all blue pairs that do not
cross. Similarly R and R are defined for red segments.

Consider a blue crossing {vi,wj} ∈ B and the grid line ℓ containing vi. Each
of vi−1, vi+1,wj−1,wj+1, if existent, is red and lies completely on one side of ℓ.
Moreover wj−1 and wj+1 cannot lie on the same side since wj crosses ℓ. Now
consider vi−1 (or vi+1) and the w-segment on the other side of ℓ. This pair
evidently is in R. This way we associate up to two red non-crossings with every
blue crossing, even if there are more (see Figure 6).

w1

w2

wj−1
wj+1 vi−1vi−1

vi+1vi+1
ℓℓ

Figure 6: A blue crossing is associated with every pair of red segments from
different sides of ℓ: The blue crossing on the left is associated with {vi−1,wj+1}
and {vi+1,wj−1}. The blue crossing on the right is associated with no red non-
crossing.

Next we partition B in two ways. Firstly, divide B into B0,B1, and B2
according to the number of red non-crossings, the blue crossings are associated
with in the above way. Secondly, we write B(v1) for the set of blue crossings
v1 participates in and do the same with w1. We denote Bi(w1) ∶= Bi ∩ B(w1)
for i = 0,1,2. Then B0 = B0(w1) and B1 = (B(v1)/B(w1)) ∪ B1(w1). Note that
every red non-crossing is associated with at most two blue crossings and hence
we have ∣B1∣ + 2∣B2∣ ≤ 2∣R∣. This leads to:

2∣B∣ ≤ 2∣R∣ + ∣B(v1)/B(w1)∣ + ∣B1(w1)∣ + 2∣B0(w1)∣
Now observe the following: When tracing the path v between any two blue

segments contributing to a B0(w1)-crossing there must be a blue segment of v
that either participates in a B2(w1)-crossing or does not cross w1 at all. Hence,
because v has only m blue segments, we have 2∣B0(w1)∣ − 1 + ∣B1(w1)∣ ≤ m as
well as ∣B(v1)/B(w1)∣ ≤m − 1.

Plugging both into the above inequality, we calculate 2∣B∣ ≤ 2∣R∣+2m. Thus,
∣B∣− ∣R∣ ≤m. Now adding m2 on both sides we obtain: ∣B∣+ ∣R∣ ≤m2

+m, where
R denotes the set of red crossings.

Figure 7 shows that m(m + 1) can indeed be attained.

Part (i) of the following lemma is due to Biedl and Stern [4].

Lemma 3.4. Consider a k-bend representation of Km,n and a subset B′ of B,
such that every vertex in B′ establishes two of its incidences with either a single
segment or two consecutive segments. Then

(i) ∣B′∣ ≤ 2(m(k+1)
2
) and
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m = 5 m = 6 m = 7

Figure 7: Two (2m − 1)-bend paths can cross in m(m + 1) points.

(ii) ∣B′∣ ≤ (k + 1)(k+3
2
(m
2
) + 2m) if k is odd.

Proof. Let s and s′ be segments of distinct vertices in A and b ∈ B′ a path
intersecting s and s′ with either the same or consecutive segments. In the first
case, the corresponding segment of b must contain an endpoint of each s and
s′. Since B is an independent set, b is the only vertex that intersects s and s′

with the same segment. In the second case b must have a bend where the grid
lines through s and s′ intersect. Here, beside b at most one other vertex in B

can intersect s and s′ with consecutive segments.
Since there are at most (m(k+1)

2
) pairs of segments of vertices in A, there are

at most twice as many vertices in B′. This concludes part (i).
For a more careful analysis, in the case of odd k, observe that two paths in

B can intersect s and s′ with consecutive segments only if s and s′ cross. By
Lemma 3.3, two k-bend paths can cross in at most (k + 1)(k + 3)/4 points if k
is odd. Hence there are at most (m

2
)(k + 1)(k + 3)/4 crossings between vertices

in A.
If s and s′ are perpendicular but do not cross, at most one vertex b ∈ B can

intersect both with consecutive segments and at least one such segment of bmust
contain an endpoint of s or s′. Since there are at most 2m(k + 1) endpoints of
segments of vertices inA, we conclude that ∣B′∣ ≤ 2(m

2
)(k+1)(k+3)/4+2m(k+1) =

(k + 1)((m
2
)(k + 3)/2 + 2m).

Theorem 3.5. We have b(Km,n) = 2m − 2 for all n >m4
− 2m3

+ 5m2
− 4m.

Proof. If m = 1, then Km,n is a star and thus an interval graph, i.e., b(K1,n) = 0
for all n > 0.

For m > 1 suppose b(Km,n) ≤ 2m − 3. Then applying Lemma 3.4–(ii) with
k = 2m − 3 yields, that at most N ∶= (2m − 2)((m

2
)m + 2m) = m4

− 2m3
+

5m2
− 4m vertices in B can establish two of its incidences with the same or

consecutive segments. Hence if ∣B∣ > N , there must be a vertex b ∈ B with at
least one “empty” segment between any two “non-empty” segments. Moreover
every segment of b establishes at most one incidence. Since b has degree m, we
conclude that b must have at least 2m − 1 segments.

Figure 8 shows that b(Km,n) ≤ 2m − 2, regardless of n.
Biedl and Stern [4] conjectured that Theorem 3.5 is already true for all n ≥ N

with N ∈ O(m2). We disprove this and show that Theorem 3.5 is not far from
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Figure 8: A representation verifying b(Km,n) ≤ 2m − 2.

being tight.

Theorem 3.6. If n ≤m4
−2m3

+
5

2
m2
−2m−4 then b(Km,n) ≤ 2m−3. Note that

this leaves only a quadratic discrepancy to the bound of the preceeding theorem.

Proof. We equally divide A into A1 and A2. We use the two (2m − 3)-bend
paths P1 and P2 from the tight example in Figure 7 as templates for vertices in
A1 and A2, respectively. Note that each Pi has (m−12

) crossings and P1 and P2

cross m(m − 1) times.
For i = 1,2 every a ∈ Ai runs within a small distance along Pi. We ensure

that at every bend of Pi every pair of paths in Ai crosses. This way, every such
pair crosses 2(m−1

2
) + 2m − 3 =m(m − 1) − 1 times. A pair of vertices, one from

A1 and the other from A2, crosses m(m − 1) times. Hence the total number

of crossings between vertices in A is given by ⌊m
2
⌋⌈m

2
⌉m(m − 1) + ((⌈m/2⌉

2
) +

(⌊m/2⌋
2
))(m(m − 1) − 1). At every crossing we can interlace two vertices of B.

Figure 9: A (2m−3)-bend representation of Km,n, where n ≤m
4
−2m3

+
5

2
m2
−

2m − 4: Every vertex in A (black) runs within a small distance along one of
two paths with the maximum number of crossings. Every vertex in B (grey) is
interlaced around one crossing or two endpoints of black segments.

Moreover every endpoint of a segment from A (except the ends of the paths
and the eight endpoints of the topmost, rightmost, bottommost, and leftmost
segment) can be used to interlace vertices of B. There are 2m(2m − 3) − 8
suitable endpoints. Interlacing one vertex uses two of them.
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Figure 9 suggests how to insert one vertex b ∈ B with two suitable endpoints
and two vertices b, b′ ∈ B at one crossing. By doing this we can insert n =
⌊m4
− 2m3

+
5

2
m2
− 2m − 4⌋ vertices into B.

Question 2. What is the maximal n for which b(Km,n) ≤ 2m − 3?
The representations we have given for complete bipartite graphs can natu-

rally be extended to different values of n, though they might not be optimal
anymore. For instance the first and the second representation in Theorem 3.2
yields that b(K5,24) ≤ 5 and b(K5,25) ≤ 6, respectively. Moreover Figure 11
certifies b(K3,10) ≤ 2, i.e., b(K3,5) ≤ 2. In Figure 10 we sketch a region which
contains the graph of b(K5,n).
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Figure 11

Figure 3

[2]
Thm 3.1

Thm 3.2

Lower-Bound-Lemma

Thm 3.6

Thm 3.5

Figure 10: Upper and lower bounds for b(K5,n). The filled circles and the
straight line are values of b(K5,n).

Figure 11: A 2-bend representation of K3,10.

Question 3. What is the behavior of b(Km,n) for n ∈ θ(m3)?

4 Coloring number

In [4] an acyclic orientation of G with maximum indegree k is referred to as a
k-regular acyclic orientation. The coloring number col(G) of G is the smallest
number k, such thatG has a (k−1)-regular acyclic orientation. It was introduced
by Erdős and Hajnal in [9].
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In this section we provide a tight upper bound on the bend-number of graphs
with a fixed coloring number. In [4] the following result was suspected to be
true.

Theorem 4.1. Every graph G has a simple (2col(G) − 3)-bend representation.

Proof. Take a (col(G)−1)-regular acyclic orientation of G in the above sense. A
topological ordering then gives us a building recipe forG, where every new vertex
will be connected to at most col(G)−1 vertices of the already constructed part.
We construct a simple (2col(G)− 3)-bend representation simultaneously to the
building process of G. We maintain one private vertical part for every already
inserted vertex, all running parallel. At the segment containing the vertical part
(either above or below it) ends another, horizontal, private part. In Figure 12
we explain how to insert a new vertex while maintaining this invariant.

v

Figure 12: Building a (2col(G) − 3)-bend representation of G, a vertex v is
inserted. Private parts before and after the insertion are highlighted with light-
grey and dark-grey, respectively.

Theorem 4.2. For every m there is a bipartite G with col(G) = m + 1 and
b(G) = 2col(G) − 3.
Proof. The graph G is huge and arises from a Km,n with very large n = ∣B∣.
Firstly, we connect m(2m − 2) + 1 new vertices with every m-subset of B. The
set of the (m(2m − 2) + 1)(n

m
) added vertices is denoted by C. Moreover, we

connect m(2m−2)+1 new vertices with everym-subset of C. This set of vertices
is denoted by D.

Clearly col(G) =m+1. Now suppose b(G) ≤ 2m−2 and consider the induced
Km,n the construction started with. By Lemma 3.4–(i) all but roughly 4m4

vertices in B are represented by paths in which exactly every second segment is
establishing one incidence. By this with increasing n an arbitrary large subset
B′ ⊂ B must look like in Figure 8, i.e., vertices in B′ can establish further
incidences only with vertical segments. Additionally, there are many pairs of
m-subsets of B′ such that every path in one subset lies to the left of every path
in the other subset.

We fix m distinct m-subsets B1, . . . ,Bm of B′, such that every path in B1

lies to the left of every path in B2 ∪ . . . ∪Bm. Hence every vertex in C that is
connected to B1 lies completely to the left of every vertex in C that is connected
to one of B2, . . . ,Bm.
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c1 c2

c3

Figure 13: A part of a hypothetical (2col(G)−4)-bend representation of G. The
sets B′ and C′ = {c1, c2, c3} are depicted grey and thick, respectively.

We connected m(2m − 2) + 1 vertices with every Bi, that is, one more than
there are bends in Bi. Hence for every i ∈ {1, . . . ,m} there is at least one vertex
ci ∈ C that is connected to Bi and whose vertical segments are contained in
segments of Bi (see Figure 13 for an example). In G a setD′ ⊂D ofm(2m−2)+1
vertices is connected to C′ ∶= {c1, . . . , cm}; again one more than there are bends
in C′. Hence of at least one vertex in D′ all horizontal segments are contained
in segments of C′. But this is impossible since the path c1 ∈ C

′ lies to the left
of all other paths in C′.

5 The Clique Cover Argument

In this section we present a general method to represent any graph with a
number of bends depending on an edge clique cover. Note, that the acquired
representations are not simple in general.

Theorem 5.1. Let C be a cover of the edges of a graph G with not necessarily
disjoint cliques. If we can color the cliques in C with k colors, such that every
color class is a set of vertex disjoint cliques, then we have b(G) ≤ k − 1.
Proof. Let Ci be the set of cliques with color i, extended by 1-cliques, such that
each Ci covers all vertices. We use an arbitrary, not self-intersecting (k−1)-bend
path P as a template (In Figure 14 we have chosen a snake-like path P ). Every
vertex in G runs within a small distance of P . Along the i-th segment, vertices
run through the same grid line if and only if they are in the same clique in Ci.

As illustrated in Figure 15, every induced subgraph of the triangular plane
grid admits an edge clique cover C with cliques of size at most three, which can
be 3-colored as in Theorem 5.1. We conclude:

Corollary 5.2. The bend-number of the triangular plane grid and all of its
induced subgraphs is at most 2.

Note that the remark at the end of Section 6 implies that the triangular
plane grid has no simple 2-bend representation.

A proper edge coloring of G is a special case of a colored edge clique cover
of G as in Theorem 5.1. Hence a graph’s bend-number b(G) is bounded by its
edge chromatic number χ′(G). This implies a strengthening of a result of [4]
concerning the maximal degree ∆ of G:
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1

2

3

4

5

u v

Figure 14: A (k − 1)-bend representation based on an edge clique cover with
k colors: The grey blocks correspond to the colors of the clique cover. Every
clique of color i is assigned a grid line within the i-th block. Paths are inserted
as demonstrated by u and v according to the cliques they are in.

Figure 15: A subgraphG of the triangular plane grid with a 3-colored edge clique
cover. Every color class is a set of vertex disjoint cliques. Hence b(G) ≤ 2.

Corollary 5.3. If χ′(G) denotes the edge chromatic number of G, then b(G) ≤
χ′(G) − 1. In particular Vizing’s Theorem [24] yields b(G) ≤ ∆ for G with
maximum degree ∆.

Question 4. What is the maximum bend-number of a graph with maximum
degree ∆? By Theorem 3.1 and Corollary 5.3 it is between ⌈∆

2
⌉ and ∆.

The degree of an edge clique cover C of G is defined to be the maximum
number of cliques in C that a vertex of G participates in.

Theorem 5.4. If G has an edge clique cover of degree k, then b(G) ≤ 2k − 2.
Proof. Consider an edge clique cover C of G of degree k. Reserve parallel parts
of vertical grid lines, one for each clique in C. We represent every vertex v by a
snake-like path with at most 2k − 2 bends whose (at most k) vertical segments
contain the reserved parts corresponding to the cliques v participates in. All
horizontal segments are chosen without introducing unwanted adjacencies. See
Figure 16 for an illustration.

Line graphs are exactly the graphs that admit an edge clique cover of degree
at most 2. Hence Theorem 5.4 generalizes a result of [4], stating that line graphs
have bend-number at most 2. Since triangle graphs (see [3]) admit edge clique
covers of degree at most 3, we conclude in this case from Theorem 5.4 that
b(G) ≤ 4. Some classes of triangle graphs are listed in [3].
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vu

Figure 16: A (2k − 2)-bend representation based on an edge clique cover of
degree k: Each vertical grey part is reserved for a clique in C. Paths are inserted
as demonstrated by u and v according to the cliques they are in.

6 Planar and outerplanar graphs

The maximum interval-number of a planar graph is 3, see [21], and its maximum
track-number is 4, see [13]. Biedl and Stern [4] showed that the maximum bend-
number of a planar graph is at most 5. In this secton we present several classes
of planar graphs, with bend-number less than 5.

The maximum interval-number of an outerplanar graph is 2, see [18], and so
is its maximum track-number, see [21]. In [4] Biedl and Stern conjectured, that
the maximum bend-number of an outerplanar graph is 2 as well. We confirm
this conjecture in Theorem 6.1. That 2 is best possible follows from the graph
in Figure 17.

Figure 17: An outerplanar graph with bend-number 2. This example is due
to [4].

A 2-bend representation of an outerplanarG can be deduced from the 2-track
representation of G given in [18]. But we can even prove:

Theorem 6.1. Every outerplanar graph has a simple 2-bend representation.

Proof. We prove the statement for an edge-maximal outerplanar graph G. But
observe that any adjacency in the construction sequence can be omitted. The
graph G can be constructed starting with an edge. Then every new vertex v is
connected to the two vertices a, b of an edge of the already constructed graph
G′. Every edge will be used at most once.

We build a simple 2-bend representation step by step as the graph is built.
We use the following invariant: Adjacent vertices a, b ∈ G′, which have not been
connected to a new vertex yet, have private parts, positioned as in one of the
cases that are illustrated in the top row of Figure 18. The second row shows how
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to introduce a vertex v and maintain the invariant for the new edges x = {a, v}
and y = {b, v}.

aa

aa
b

b b

b

v
v

yy xx

x

Figure 18: Building a 2-bend representation of an outerplanar graph, a vertex v

is attached to the edge {a, b}: The private parts of {a, b} and x = {a, v}, y = {b, v}
are highlighted in the upper and lower row respectively.

Theorem 6.2. Every planar graph of tree-width at most 3 has a simple 4-bend
representation.

Proof. By a result of El-Mallah and Colbourn [8], planar graphs of tree-width at
most 3 are exactly the subgraphs of planar 3-trees. Planar 3-trees, also known
as stacked triangulations, can be constructed starting with a triangle. Every
further vertex v is inserted into an inner facial triangle {a, b, c} in the so far
constructed G′ and connected to its vertices a, b and c. As in the proof for
outerplanar graphs we will produce a simple 4-bend representation on the fly,
maintaining an invariant for some private parts of a, b and c. See Figure 19 for
an explanation. Note that the construction works, even if we only want to build
a subgraph of a planar 3-tree.

aa

b b

c c

v

x

x

y

y

z

z

Figure 19: Building a 4-bend representation of a planar graph of tree-width
at most 3, a vertex v is attached to the triangle {a, b, c}: The private parts of
{a, b, c} and x = {a, b, v}, y = {a, c, v}, z = {b, c, v} are highlighted on the left and
the right respectively. The part of an L-shape that is not filled may or may not
contain the path within this leg, but does not contain any other path.
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a

a b b c

Figure 20: The representation of the starting edge in an outerplanar graph and
the starting triangle in a stacked triangulation.

Theorem 6.3. Planar 4-connected triangulations and their subgraphs have sim-
ple 3-bend representations.

Proof. In [23] Thomassen proves, that every proper subgraph of a 4-connected
planar triangulation can be represented as the contact graph of axes aligned
boxes. Moreover every contact is realized as a line segment. The boundary of
each box can be seen as a closed path with 3 bends starting and ending at the
same corner of the box.

inner part

Figure 21: A 3-bend representation of a planar 4-connected triangulation: This
shows how to represent the missing edge e.

If G is a 4-connected triangulation itself, take a rectangle representation of
G/{e} for some e. It looks as depicted in Figure 21, i.e., the facial quadrilateral
obtained by deleting e is represented by the four grey boxes; every other box lies
inside. We replace the outer boxes by the black paths (as shown in the figure)
and each inner box again by its boundary path.

It is easy to see that Theorem 6.3 is best possible. For instance in every
plane triangulation ∣E∣ = 3∣V ∣ − 6. Hence by the Lower-Bound-Lemma every
simple 2-bend representation may use at most 6 grid lines, which is obviously
not possible when the graph is large.

Remark. Indeed one can argue that no plane triangulation with 9 or more
vertices admits a simple 2-bend representation. On the other hand Figure 22
shows a plane triangulation on 8 vertices with a simple 2-bend representation.
Moreover Euler’s Formula together with the Lower-Bound-Lemma immediately
shows that no higher-genus surface triangulation has a simple 2-bend represen-
tation.

Due to [4] the bend-number of a planar graph is at most 5. In contrast we
do not even know of an example of a planar graph having no simple 3-bend
representation. This leads to the:
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Figure 22: A planar (stacked) triangulation on 8 vertices with a simple 2-bend
representation.

Conjecture 6.4. The bend-number of planar graphs is at most 4.

By Corollary 5.3, Theorem 4.1, and Theorem 6.2, a counter-exampleG to the
above conjecture should have χ′(G) ≥ 6, col(G) ≥ 3, treewidth ≥ 4. Theorem 6.3
and [23] yield, that such a G would contain one of the subgraphs listed in [23].
In particular, G must contain a triangle. Moreover Theorem 6.2 with [1] or [8]
gives, that G must have either the octahedral graph (Figure 23) or K2×C5 (the
prism over a 5-cycle) as a minor.

7 Complexity

In [19] it is asked for the complexity of recognizing k-bend graphs. In general, the
bend-number of a graph can be computed by solving a mixed integer program
(MIP). Unfortunately the problem instance becomes so huge, that this approach
is inapplicable even for graphs with only 10 vertices. It is well-known that
interval graphs, that is 0-bend graphs, can be recognized in polynomial time [5].
In this section we prove that recognizing single-bend graphs (1-bend graphs)
is NP-complete. In [16] it was shown that recognizing 2-track graphs is NP-
complete and [22] proves that recognizing k-interval graphs is NP-complete for
every fixed k ≥ 2. One easily sees that every single-bend graph is a 2-track
graph as well as a 2-interval graph. But the converse is not true. For example
every outerplanar G has t(G) ≤ 2 [18] and i(G) ≤ 2 [21], but is not necessarily
a single-bend graph (see Figure 17).

It is easy to verify a single-bend representation, so SINGLE-BEND-RECOG-
NITION is in NP. For NP-hardness we set up a reduction from ONE-IN-THREE
3-SAT, i.e., we are given a formula F = (C1 ∧ ⋯ ∧ Cn) that is a conjunction of
clauses C1, . . . ,Cn. Each clause is the exclusive disjunction of exactly three
literals Ci = (xi1 / xi2 / xi3) which are in turn either negated or non-negated
boolean variables. Given such a formula F , it is NP-complete [10, 20] to decide,
whether there is an assignment of the variables fulfilling F , that is in each clause
there is exactly one true literal. Moreover ONE-IN-THREE 3-SAT remains NP-
complete if each literal is a non-negated variable and each clause consists of three
distinct literals. We will use both additional assumptions on F , even though
the first is just for convenience. The distinctness assumption is crucial in the
following reduction.

Given a ONE-IN-THREE 3-SAT formula F we will define a graph GF ,
such that b(GF) = 1 if and only if F can be fulfilled. The graph consists of
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an induced subgraph GC for every clause C with 13 vertices, called the clause
gadget, a vertex vj for every variable xj and 31 additional vertices.

7.1 Clause Gadgets

Constructing a clause gadgetGC starts with an induced octahedral graphO. La-
bel the vertices by {a,A, b,B, c,C} as in Figure 23. This way {a,A}, {b,B} and
{c,C} are the three non-edges and their complements {b,C,B, c}, {a,C,A, c}
and {a,B,A, b} are the three induced 4-cycles in O.

a

a b

b

c

c

AA

B

B

CC

1)

2)

Figure 23: The labeled octahedral graph O, a single-bend representation of O,
and the two possible ways a triangle of O is represented.

Lemma 7.1. We have b(O) = 1 and in every single-bend representation

(i) there is a unique grid point, called the center, that is contained in every
path,

(ii) each intersection between vertices in O lies on a half ray starting at the
center, called a center ray,

(iii) for every pair of center rays, there is a unique vertex in O intersecting
exactly these two center rays, and

(iv) every triangle in O is represented in one of the two ways on the right of
Figure 23.

Proof. Figure 23 shows b(O) ≤ 1 and since O contains induced 4-cycles it is not
an interval graph. Hence b(O) = 1.

By a result of [11], every induced 4-cycle in a single-bend representation is
either a frame, a true pie or a false pie. These terms are illustrated in Figure 24.
If an induced 4-cycle is represented by a frame, then the bends of its vertices are
distinct. Thus in a single-bend representation no other vertex can be adjacent to
all of them. Since for each induced 4-cycle in O there is a vertex that is adjacent
to all of its vertices, {a,B,A, b}, {a,C,A, c} and {b,C,B, c} are pies. So all pies
share the middle point, the claimed center, and every vertex intersects exactly
two center rays. Since every edge in O is part of an induced 4-cycle, no two
vertices in O can intersect the same pair of center rays. This concludes (i)–(iii).
Part (iv) is easily obtained from this.
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Figure 24: Single-bend representations of an induced 4-cycle: A frame, a true
pie and a false pie.

To complete a clause gadgetGC seven vertices are added: WABC is connected
to {A,B,C}, wabC , waBc and wAbc are connected to {a, b,C}, {a,B, c} and
{A, b, c}, respectively, and sab, sac and sbc are connected to {a, b}, {a, c} and
{b, c}, respectively. The resulting graph is depicted in Figure 25.

a

b

c

A

B

C

sab

sabsbc

sbc

sac

sac

WABC WABC

wAbc

wAbc

waBc

waBc
wabC

wabC

Figure 25: The clause gadget GC with a single-bend representation.

Lemma 7.2. We have b(GC) = 1 and in every single-bend representation

(i) every center ray contains a segment of exactly one of WABC , wabC , waBc,
and wAbc and

(ii) every such segment, except the one of WABC , is contained in a segment
from {a, b, c}.

Proof. Let w ∈ {WABC ,wabC ,waBc,wAbc}. Then w is connected to every vertex
of the triangle ∆ in O. By Lemma 7.1–(iv), ∆ is represented in one of the two
ways that are illustrated on the right of Figure 23. In case 1), w has to be
contained in two center rays in order to intersect with all three vertices. But
then, by Lemma 7.1–(iii), w would intersect vertices in O that are not adjacent
to w. Hence ∆ is represented as in case 2) and one segment of w is necessarily
contained in the center ray that carries all three vertices in ∆. This concludes
part (i).

Now consider a pair (w,s) in {(wabC , sab), (waBc, sac), (wAbc, sbc)}. Both, w
and s, are contained in at most one center ray. Moreover it is the same center
ray and it contains one of the capitalized vertices, that is adjacent to w but not
s. Hence the segment of s lies further away from the center than the segment of
w. Thus the segment of w is contained in a segment of each neighbor of s.
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7.2 The reduction

Given a formula F = (C1∧⋯∧Cn) with clauses Ci = (xi1/xi2/xi3) for i = 1, . . . , n
we are now ready to define the graph GF as follows. See Figure 26 for an
example.

1. For each clause C there is a clause gadget GC .

2. For each variable xj there is a vertex vj that is adjacent to wAbc, waBc, or
wabC , whenever xj is the first, second, or third variable in C, respectively.

3. There is a vertex V adjacent to every W in the clause gadgets.

4. There is a K2,4 with a specified vertex T of the larger part, called the
truth-vertex. T is adjacent to every vj and V .

5. There are two octahedral graphs O1 and O2. The vertex T is connected
to the vertices of a triangle of each.

6. There are two more octahedral graphs O3 and O4. The vertex V is con-
nected to the vertices of a triangle of each.

V

T

v1 v2 v3 v4

Figure 26: The graph GF for F = (x1 /x2 /x3)∧ (x1 /x3 /x4)∧ (x2 /x3 /x4).

We will prove that a ONE-IN-THREE 3-SAT-formula F can be fulfilled if
and only if b(GF) = 1.
Theorem 7.3. SINGLE-BEND-RECOGNITION is NP-hard.

Proof. First suppose b(GF) = 1 and consider a single-bend representation of
GF . W.l.o.g. assume, that V and T intersect with their horizontal segments.
We set a variable xj true if vj intersects the truth-vertex T with its horizontal
segment and false if vj intersects T with its vertical segment.
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Note that in every single-bend representation of a K2,4, every vertex of
the larger part, in particular T here, has its bend in a false pie (see [2] for a
reasoning). The truth-vertex T is attached to a triangle ofO1 andO2. The proof
of Lemma 7.2–(i) shows that a segment of T is contained in exactly one center
ray of each, O1 and O2. As the bend of T is in a false pie of K2,4, the endpoints
of T are contained in O1 and O2, respectively. Hence every further segment that
intersects T is necessarily contained in a segment of T . Consequently, a vertex vj
intersects the lower-case w-vertex in each clause gadget with its vertical segment
if and only if xj is true.

For the same reason V intersects every neighbor other than T with its verti-
cal segment. Since V is attached to a triangle of O3 and O4, the two endpoints
of the vertical segment of V are contained in O3 and O4, respectively. Thus,
the vertical segment of the upper-case W -vertex in each clause gadget is con-
tained in the vertical segment of V . In consequence, the horizontal segment
of every such W by Lemma 7.2–(i) is contained in a horizontal center ray.
Hence of the other three center rays, two are vertical and one is horizontal.
Together with Lemma 7.2–(ii) this yields, that in every clause gadget exactly
two of {wabC ,waBc,wAbc} intersect the corresponding vj with their horizontal
segment and exactly one with its vertical segment. In other words every clause
contains exactly one true variable.

O3

O4

O1

O2

K2,4true

false

true

false

false

WTV

Figure 27: On the left: A single-bend representation of GF . The vertex V

and the truth-vertex T are drawn bold. The clause gadgets are omitted. On
the right: A single-bend representation of a clause gadget GC . The vertices vj
that correspond to the variables in the clause C and the vertex W of the clause
gadget are drawn bold.

Now given a truth assignment fulfilling F , we can construct a single-bend repre-
sentation of GF . First represent all of GF but the clause gadgets as on the left
side in Figure 27. A vertex vj is connected to the truth-vertex T horizontally if
xj is true and vertically if xj is false.

To interlace a clause gadget GC , introduce a horizontal grid line lh between
the horizontal grid lines used by the two false variables in C. Then connect
the W -vertex in GC to V vertically with its bend on lh. Furthermore introduce
a vertical grid line lv between the vertical grid lines used by V and the true
variable in C. Where lh and lv cross, introduce the center of the clause gadget
as illustrated on the right side in Figure 27. Note that the clause gadget is
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symmetric in A, B and C and hence it can be represented with every center ray
pointing into the desired direction.

To the end of this section there is an obvious question. Note that the com-
plexity of recognizing k-track graphs for k ≥ 3 is open.

Question 5. What is the complexity of recognizing k-bend graphs for k ≥ 2?

8 Open Problems and Concluding Remarks

Still, the maximum bend-number of many graph classes is unknown. It is known
that the interval-number of planar graphs is at most 3, see [21], and the track-
number of planar graphs is at most 4, see [13]. We conjecture that the bend-
number of planar graphs is at most 4 and can be achieved even with simple
representations. Also the general relation between track-number and bend-
number seems interesting to us. Is it true that the track-number is not bounded
by a constant multiple of the bend- or interval-number?

A large gap appears when putting bend-number of G in relation to its max-
imum degree ∆. Corollary 5.3 implies that b(G) ≤∆. On the other hand Km,m

requires (m + 1)/2 bends if m is odd. So the maximum bend-number among
graphs with maximum degree ∆ lies between ⌈∆/2⌉ and ∆. What is the exact
value?

Looking at bipartite graphs, we ask for the bend-number of Km,n with fixed
m and different values of n. How does it grow with n? In Section 3 we give
some explicit intermediate values from which lower and upper bounds can be
derived. In particular the behavior for n ∈ θ(m3) is unknown.

In Section 7 we prove NP-hardness of SINGLE-BEND-RECOGNITION.
Hence computing b(G) is NP-hard. But the complexity of recognizing k-bend
graphs for k ≥ 2 remains open.

Modifying the global settings yields interesting questions. As done in [21]
and mentioned in Section 2, one can parameterize k-bend representations by the
maximal number of paths that are allowed to share a grid edge. Introducing
simple representations (a first step in this procedure) already allowed us to derive
optimal representations for triangle-free graphs. The main tool, the Lower-
Bound-Lemma, can be adapted to depth-r bend representations with r > 2 in a
straightforward way. There might be interesting results for Kr+1-free graphs at
reach.

Instead of the plane grid as the host graph, the grid on the torus may be
worthwhile to consider. We obtain a generalization of circular arc graphs. Can
the number of bends be reduced in this case? This seems to be the case for most
of the representations of complete bipartite graphs. How does the bend-number
of a graph relate to its toroidal bend-number?
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