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AHs-MANIFOLDS OF CONSTANT
ANTIHOLOMORPHIC SECTIONAL CURVATURE [}

OGNIAN T. KASSABOV

The purpose of this paper is to prove that an AHs-manifold of constant antiholomorphic
sectional curvature is a real space form or a complex space form.

1. Introduction. Let M be a 2m-dimensional almost Hermitian manifolds with metric
tensor g and almost complex structure J. The Riemannian connection and the curvature
tensor are denoted by V and R, respectively.

IfVJ=0,or (VxJ)X =0or

9(Vx )Y, Z) + g(Vy ) Z, X) + 9((V2J)X,Y) =0,

then M is said to be a Kahler, or nearly Kahler, or almost Kéahler manifold, respectively.
The corresponding classes of manifolds are denoted by K, NK, AK. The general class
of almost Hermitian manifold is denoted by AH. If L is a class of almost Hermitian
manifolds, its subclass of L;-manifolds is defined by the identity i), where

1) R(X,Y,Z,U)=R(X,Y,JZ, JU);

2) RIX,Y,Z,U)=R(X,Y,JZ,JU)+ R(X,JY, Z, JU)+ R(JX,Y, Z, JU);

3) RIX,Y,Z,U)=R(JX,JY,JZ JU).
It is well known, that

K=K CNK=NK,, KCAK,,

K=NKnAK, AH, C AH, C AH3,
see e.g. [4].

A plane « in T,(M) is said to be holomorphic (resp. antiholomorphic) if o = Ja (resp.
a L Ja). The manifold M is said to be of pointwise constant holomorphic (respectively,
antiholomorphic) sectional curvature v, if for each point p € M the curvature of an
arbitrary holomorphic (resp. antiholomorphic) plane « in 7,(M) doesn’t depend on a:
K(a) = vlp).

For Kahler manifolds the requirements for constant holomorphic and constant antiholo-
morphic sectional curvature are equivalent [2]. In [3] it is proved a classification theorem
for nearly Kahler manifolds of constant holomorphic sectional curvature.

If M is a 2m-dimensional A Hs-manifold of pointwise constant antiholomorphic sectional
curvature v, and if m > 2, then v is a global constant [5]. In [1] it is proved a classification
theorem for nearly Kéahler manifolds of constant antiholomorphic sectional curvature and
a corresponding result for AKs-manifolds is obtained in [6].

In section 3 we shall prove the following theorem:

Theorem. Let M be a 2m-dimensional AHs-manifold, m > 2. If M is of pointwise
constant antiholomorphic sectional curvature, then M 1is a real space form or a complex
space form.
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Here a real space form means a Riemannian manifold of constant sectional curvature
and a complex space form means a Kéahler manifold of constant holomorphic sectional
curvature.

2. Basic formulas. If M is an AHz-manifold, its Ricci tensor S satisfies
S(X,)Y)=5Y,X)=S8(JX,JY).

If moreover M has pointwise constant antiholomorphic sectional curvature v, its curvature
tensor has the form

(2.1) R= é¢(5)+u7r1 —

2m — 1

VT,

where

Y(Q)(z,y, z,u) = g(z, Ju)Q(y, J2) — g(x, J2)Q(y, Ju) — 29(x, Jy)Q(2, Ju)
+9(y, J2)Q(z, Ju) — g(y, Ju)Q(r, J2) — 29(z, Ju)Q(z, Jy)

for an arbitrary tensor @ of type (0,2) and
7T1([L’, Y, z, U) = g(l’, u)g(ya Z) - g(ZE, Z)g(ya U) )

1
T2 = §¢(9)7

see [1]. According to (2.1), M is an AHs-manifold.

On the other hand, it is known, that if M is an AKs-manifold,

1

holds good [4].

We shall use also the second Bianchi identity
(2.3) (VoR)(y, z,u,v) + (V,R)(z,z,u,v) + (V,R)(z,y,u,v) = 0.

3. Proof of the theorem.

Lemma. The conditions of the theorem imply that M is an Finsteinian manifold.

Proof of Lemma. Let p be an arbitrary point of M and let =, y € T,(M). According
to the second Bianchi identity,

(3.1) (VoR)(Jz,y,y, Jx) + (Vi R)(y, z,y, Jx) + (V,R)(x, Jz,y, Jr) = 0.

Let {e;, Je;; i = 1,...,m} be an orthonormal basis of T,(M) such that Se; = \e;,
i=1,...,m. Puttingin (3.1) x =e;, y =e; or x = e, y =€; +e; for i # j # k # i and
using (2.1), we obtain

(3.2) (Ve,S)(eiej) +{ i+ X —2(2m — )v}g(Je;, (Ve,J)ej) = 0;

(3.3) (VeS)(ejyer) +{Ai + A — 2(2m — N)v}g(Jey, (Ve; J)ei)

+(Ve,9) (i, ex) + {N; + A — 2(2m — L)v}g(Jey, (Ve J)e;) =0,
respectively. Analogously from
(Ve R)(Jej,e5,¢e5, Jer) + (Ve R)(ej, €, €5, Jer) + (Ve, R) (e, Jej, e5, Jeg) =0



we find
(3.4) 3(VeS) (€. ex) + 6{\; — (2m — 1)v}g((Ve, J)e;, Jex)
. —(Ve, ) (es ex) —{Ai+ X —2(2m — 1)v}g((Ve,J)es, Jer) =0
and hence
(3.5) 8(Ve,S)(ej,ex) +{17A; — N; — 16(2m — 1)v}g((Ve,J)e;, Jex)

+3(Ni — A))g((Ve,J)ei, Jep) = 0.
In (3.5) we change j and k and we add the result with (3.5)
16(Ve,S)(ej, ex) +17(N; — M)g((Ve, S ey, Jer)
+3(\ — A)g((Ve, Des, Jer) + 30\ — M) g(Ve J)er, Jej) = 0.
On the other hand, (3.3) and (3.4) imply
(3.7) BN = Ai =20 39((Ve, J)ej, Jer) + 3N — Aj — 2M19((Ve, J)es, Jep) = 0.
Hence it is not difficult to find
3N = M)g(Ve, J)ej, Jer) + (N — Aj)g(Ve, J)ei, Jer) + (A — M) g(Ve, e, Jej) = 0
and by using (3.6) this implies
(3.8) 2(Ve,S)(ej,er) = (A — A1)9((Ve, J)ej, Jey) -
Let us first assume that g((Ve,J)e;, Jex) # 0. Using three times (3.7), we obtain
(BAi — Ak —2X0) (BN — A — 2X0)(BAr — Aj — 2))
— (3 = Aj — 22 (3 — e — 20) Bk — A — 24,) = 0

(3.6)

or equivalently
(A = A) (A — A) (A — Ai) = 0.
Hence it follows A\; = A\; = A;. Indeed we have to consider two cases:
Case 1. X\ =\ In (3.7) we made a cyclic change of 4, j, k and we use \; = \;:

(N = AN{B9((Ve, Tews Jes) + 9((Vep T)eis Jes)} = 0.
(= A9V )es, Jeg) + 3g((Vo)es, Jer)} = 0.

If g((Ve,J)es, Je;) = 0 the last equation implies A; = Ag, i.e. \; = A; = A;. So we assume
9((Ve,J)es, Je;) # 0. In (3.5) we change ¢ and k and we use A\; = \; and (3.8):

{17)\2 — >\k — 16(2m — 1)V}g((V6kJ)ej, Jel) —+ 3(>\k — )\Z-)g((VejJ)ek, J@Z) =0.
Hence, using (3.9), we obtain \; = (2m — 1)v. On the other hand, (3.5) and (3.8) result
3Ni+ A —42m —1)r =0

and so we find A\, = (2m — D)y, ie. \; = A\ = Ag.
Case 2. A\j =\, From (3.7)we obtain

(A = A g((Ve s, Jer) = 39((Ve,J)es, Jer)} = 0.

If g((Ve;J)ei, Jex) = 0 this implies A\; = Aj, so Ay = Aj = M. But g((Ve,J)es, Jer) # 0 is
the Case 1.

(3.9)



So we have \; = \; = \; and using (3.5) and (3.8), we find \; = 2m — 1)v. If m =3
M is Einsteinian in p. Let m > 3. For s # i, 7, k we have

(Ve,R)(es, Jes, e, Jeg) + (Ve R)(Jes, €1, €5, Jex) + (Ve R) (i, €5, €5, Jeg) = 0.
Because of (2.1) this implies
(Ve S)(ej,ex) +{Aj + s —2(2m — D)v}g((Ve,J)ej, Jep) = 0.

Hence, using A\; = A\, = (2m — 1)v and (3.8), we derive Ay = (2m — 1)v. Consequently M
is Einsteinian in p.
Now we assume that
9((VeJ)y, 2) =0
whenever z, y, z are choosen among the basic vectors ¢;, Je;; i = 1,...,m and = #
y,2z,Jy, Jz. In (2.3) we put v = Je;, y =v =¢j, 2 = —Ju = ¢, for i # j # k # i. Using
(2.1), we obtain

(Ve,S) (e ej) +{Nj + A — 2(2m — 1)v}g(Jes, (Ve J)ej, ) = 0.

From this equality and (3.2) it follows that if g(Je;, (V¢;J)e;) # 0 for some 4, j, then
As = A for s, k # j. Consequently if (V. J)es # 0 for any s # j then M is Einsteinian
in p.

Let us assume that M is not Einsteinian in p. Then M is not Einsteinian in a neigh-
bourhoohd U of p. We shall prove that M is an AKs-manifold in U. Let ¢ € U. If
M is a Kéhler manifold in ¢, M is an AKs-manifold in U. Let M is not Kéhler in q.
Let {fi, Jfi,i = 1,...,m} be an orthonormal basis of T,(M), such that Sf; = wf;,

t = 1,...,m. Since M is non Kahler and non Einsteinian in ¢ we may assume that
(V) fi #0, po = ... =y, = p and

(3.10) (Vo)y=0,  g((VpJ)z,y) =0

whenever x, y are choosen among f;, Jf; for i > 1. Analogously to (3.2)

(3.2)) (Vi )i f3) + A + 5 = 22m = Dvig(Jfi, (Vg J) f5) = 0

holds good and according to (3.10) this implies

(3.11) (Vi S)(fis fi) = (Vug S)(fi, Jf5) =0 for j>1, j#1.

In (23) weput z = fi, y = —Jv = f;, 2= —Ju = f, for i # j # 1 # i and using (2.1),
(3.10) and (3.11) we obtain

(3.12) (Vi S)(f5, i) + (VeS)(fr, fr) = (Vi S)(fis fr)
' +2{p— (2m — Vw}g(J fi, (V5 J) f1) = 0.

Now let k # i. From

it follows
2V S) (s fr) = (Vo S)(fis Jr) + L + pe — 2(2m — Dv}g(J fi, (Vi ) fr)
—(VpS)(fis I fi) + {ps + g — 22m — Vv }g(J fis (Vg J) I fi) = 0.



Hence using (3.2) we derive
(3.13) (VS (e, fi) = (V5. 9) (i fu) + (Vs ) fiy T fie) -
Now (3.11) and (3.13) imply
(szs)(.fjmfj) =0 for i, g >1,1 7é J-
Then (3.12) takes the form
(VS 1) = (Vi S)(fis fr) + 2{w = 2m = Dvg(J fi, (V4 J) 1) =0

and using (3.13), we obtain

(VunS)(fi, Jf) + 28— @m = D}g(Jfi, (V) f1) = 0
which implies

(VaS)(fis f1) + (Vupn S)(fis I fr)

21— (2m— V}g(Tfi (Vi) fo + (Vg J)Tf1) = 0.
Since M is not Einsteinian in ¢ the first equation of (3.2) and (3.14) result
(3.15) (Vi) fr+ (Vapd) T f = 0.

From (3.10) and (3.15) it follows easily that M is an almost Kéhler maniflod in gq. Con-
sequently it is an almost Kéahler manifold in U and hence an AKs-manifold in U. If M
is a Kéhler manifold in U it is of constant holomorphic sectional curvature [2] and hence
Einsteinian in U which contradicts our assumption. Let M is non Kéhler in ¢ (we shall
use the above notations for the basis of T,(M)) and let

(Vi) fi=afi+BiJfi for i>1.
In (22)weputx =u=f;,y=2= fi:

(3.14)

2m —1 1
v =5l +5)

1
V_E(N+M1)+

for ¢ > 1 which implies
(3.16) of + Bl =ai+p7 for i, j>1.

Now we put in (2.2) (v = fi,y =2 = fi,u = f1), (x = fi,y = 2z = f;, u = Jf))
respectively and we obtain

a0 + BiB; =0,
;B —a;f; =0,

respectively. But (3.16) and (3.17) imply a; = §; = 0 for ¢ > 1 which is a contradiction.
This proves the Lemma.
Now we prove the Theorem. Since M is Einsteinian (2.1) takes the form

(3.17)

R=vm + M\my

with a constant A. Consequently M is a real space form or a complex space form [7].
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