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Abstract

In this paper, we show that the convergence order of the numerical scheme introduced
in [12] for sweeping processes is equal to one. The considered differential inclusions involve
a set-valued map, given by a finite number of constraints. The proof rests on a metric
qualification condition between the sets associated with each constraint.

Key-words: Differential inclusions - Subdifferential calculus - Numerical analysis - Prediction-
correction algorithm.

MSC: 34A60, 65L20.

1 Introduction

In [12], an implementable scheme was introduced to compute the discretized solutions of some
sweeping processes. Its convergence was proved by using compactness arguments. The aim
of this paper is to specify the convergence order of this scheme by directly estimating the
approximation error.

Let us briefly recall the mathematical framework. A problem of perturbated sweeping process
is a first order differential inclusion which can be expressed as follows

dq

dt
(t) + N(Q(t), q(t)) ∋ f(t, q(t)), (1)
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where Q(·) is a set-valued map, N denotes the proximal normal cone (see Definition 2.1) and f
represents a perturbation. We refer the reader to [9, 2, 3] for an overview of this topic.

The current work falls within the realm introduced in [12] (recalled in Section 2). We deal with a
set-valued map Q(·), defined by a finite number of smooth convex constraints (more precisely for
all t, the set Q(t) is the intersection of complements of convex sets). The considered numerical
scheme is based on a local approximation of Q(t) by convex sets, which makes this algorithm
implementable.

In this context, we prove the following result:

Theorem 1.1. There exists a constant C0 > 0 such that for h small enough

‖qh − q‖L∞([0,T ]) ≤ C0h,

where q and qh are the continuous and discrete solutions of (1).

We emphasize that this new approach allows us to go around the compactness arguments, used
in [12]. So it permits to extend the convergence result of[12] in an infinite dimensional Hilbert
space (see Remark 3.5).

The paper is structured as follows: In Section 2, we describe the mathematical framework by
specifying notations and assumptions which will be used throughout the paper. Then in Sec-
tion 3, after recalling the prediction-correction scheme proposed in [12], we prove in Theorem 3.4
that the discretized solution converges to the exact solution with order 1 . This proof rests on
a metric qualification condition which is checked in Section 4.

2 Preliminaries

In the sequel, the space R
d is equipped with its Hilbertian structure. We write B(x, r) for the

closed ball of center x ∈ R
d and radius r > 0.

We consider perturbed sweeping process by a set-valued map Q : [0, T ] ⇉ R
d satisfying that

for every t ∈ [0, T ], Q(t) is the intersection of complements of smooth convex sets. Let us first
specify the set-valued map Q. For i ∈ {1, . . . , p}, let gi : [0, T ] × R

d → R be a convex function
with respect to the second variable. For every t ∈ [0, T ], we introduce the sets Qi(t) defined by

Qi(t) :=
{

q ∈ R
d , gi(t, q) ≥ 0

}

, (2)

and the feasible set Q(t) (supposed to be nonempty) is

Q(t) :=

p
⋂

i=1

Qi(t). (3)

The associated perturbed sweeping process can be expressed as follows:







dq

dt
(t) + N(Q(t), q(t)) ∋ f(t, q(t)) for a.e. t ∈ [0, T ]

q(0) = q0 ∈ Q(0).

(4)

We write N(Q(t), q(t)) for the proximal normal cone to Q(t) at q(t), below defined.
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Definition 2.1 ([1]). Let S be a closed subset of Rd.
The proximal normal cone to S at x is defined by:

N(S,x) :=
{

v ∈ R
d, ∃α > 0, x ∈ PS(x+ αv)

}

,

where
PS(y) := {z ∈ S, dS(y) = |y − z|}, with dS(y) := inf

z∈S
|y − z|

corresponds to the Euclidean projection onto S.

This differential inclusion can be thought as follows: the point q(t), submitted to the pertur-
bation f(t, q(t)), has to stay in the feasible set Q(t). To obtain well-posedness results for (4),
we will make the following assumptions which ensure the uniform prox-regularity of Q(t) for all
t ∈ [0, T ]. We suppose there exists c > 0 and for all t in [0, T ] open sets Ui(t) ⊃ Qi(t) such that

dH(Qi(t),R
d \ Ui(t)) > c, (A0)

where dH denotes the Hausdorff distance. We set U(t) :=
⋂p

i=1 Ui(t). Moreover we assume there
exist constants α, β,M > 0 such that for all t in [0, T ], gi(t, ·) belongs to C

2(Ui(t)) and satisfies

∀ q ∈ Ui(t) , α ≤ |∇qgi(t, q)| ≤ β, (A1)

∀ q ∈ R
d , |∂tgi(t, q)| ≤ β, (A2)

∀ q ∈ Ui(t) , |∂t∇qgi(t, q)| ≤M, (A3)

and
∀ q ∈ Ui(t) , |D2

qgi(t, q)| ≤M. (A4)

For all t ∈ [0, T ] and q ∈ Q(t), we denote by I(t, q) the active set at q

I(t, q) := {i ∈ {1, . . . , p} , gi(t, q) = 0} (5)

and for every ρ > 0, we put:

Iρ(t, q) := {i ∈ {1, . . . , p} , gi(t, q) ≤ ρ} . (6)

In addition we assume there exist γ > 0 and ρ > 0 such that for all t ∈ [0, T ],

∀ q ∈ Q(t) , ∀λi ≥ 0,
∑

i∈Iρ(t,q)

λi|∇q gi(t, q)| ≤ γ

∣

∣

∣

∣

∣

∣

∑

i∈Iρ(t,q)

λi∇q gi(t, q)

∣

∣

∣

∣

∣

∣

. (A5)

We will use the following weaker assumption:

∀ q ∈ Q(t) , ∀λi ≥ 0,
∑

i∈I(t,q)

λi|∇q gi(t, q)| ≤ γ

∣

∣

∣

∣

∣

∣

∑

i∈I(t,q)

λi∇q gi(t, q)

∣

∣

∣

∣

∣

∣

. (A5’)

In particular, this last assumption implies that for all t, the gradients of the active inequality
constraints ∇q gi(t, q) are positive-linearly independent at all q ∈ Q(t), which is usually called
the Mangasarian-Fromowitz constraint qualification (MFCQ). Conversely the MFCQ condition
at a point q yields a local version of Inequality (A5’).

We recall some useful results established in [12] (Propositions 2.8, 2.9, 2.11 and Theorem 2.12
in [12]).
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Proposition 2.2. For all t ∈ [0, T ] and q ∈ Q(t),

N(Q(t), q) =
∑

N(Qi(t), q) = −
∑

i∈I(t,q)

R
+∇q gi(t, q).

Proposition 2.3. Under assumptions (A1), (A4) and (A5’), the set Q(t) is η-prox-regular with

η =
α

Mγ
, for every t ∈ [0, T ].

Proposition 2.4. Under assumptions (A0), (A1), (A2) and (A5), the set-valued map Q is
Lipschitz continuous with respect to the Hausdorff distance. More precisely there exists KL > 0
such that

∀t, s ∈ [0, T ] , dH(Q(t), Q(s)) ≤ KL|t− s|.

Theorem 2.5. Let T > 0 and f : [0, T ]× R
d → R

d be a measurable map satisfying:

∃Kf > 0 , ∀q ∈
⋃

s∈[0,T ]

Q(s) , ∀t ∈ [0, T ] , |f(t, q)− f(t, q̃)| ≤ Kf |q− q̃| (7)

∃Lf > 0 , ∀q ∈
⋃

s∈[0,T ]

Q(s) , ∀t ∈ [0, T ] , |f(t, q)| ≤ Lf(1 + |q|). (8)

Then, under Assumptions (A0), (A1), (A2), (A4) and(A5) for all q0 ∈ Q(0), the following
problem







dq

dt
(t) + N(Q(t), q(t)) ∋ f(t, q(t)) for a.e. t ∈ [0, T ]

q(0) = q0,

(9)

has one and only one absolutely continuous solution q satisfying q(t) ∈ Q(t) for every t ∈ [0, T ].

3 Time-stepping scheme

Let us detail the numerical scheme proposed in [12] to approximate the solution of (9) on the
time interval [0, T ]. Let n ∈ N

⋆, h = T/n be the time step and tnk = kh be the computational
times. We denote by qnk the approximation of q(tnk) with qn0 = q0. The next configuration is
computed as follows:

qnk+1 := PQ̃(tn
k+1,q

n
k
)(q

n
k + hf(tnk , q

n
k)) (10)

with

Q̃(t, q) := {q̃ ∈ R
d , gi(t, q) + 〈∇q gi(t, q), q̃ − q〉 ≥ 0 ∀ i} for q ∈ U(t) :=

p
⋂

i=1

Ui(t).

We recall that all the gradients ∇q gi(t, q) are well-defined provided that q ∈ U(t). Indeed it can
be checked that this scheme is well-defined (more precisely Q̃(tnk+1, q

n
k ) ⊂ Q(tnk+1) ⊂ U(tnk+2))

for h < c
KL

with c and KL respectively given by Assumption (A0) and Proposition 2.4 (see

Proposition 3.1 in [12]). Thus every computed configuration is feasible and the set Q̃(t, q) can
be seen as an inner convex approximation of Q(t) with respect to q.
This scheme is a prediction-correction algorithm: predicted position vector qnk + hf(tnk , q

n
k), that

may not be admissible, is projected onto the approximate set of feasible configurations.

Before stating the result of convergence, we introduce some notations. We define the piecewise
constant function fn as follows,

fn(t) = f(tnk , q
n
k ) if t ∈ [tnk , t

n
k+1[, k < n and fn(T ) = f(tnn−1, q

n
n−1). (11)
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We denote by qn the continuous, piecewise linear function satisfying for k ∈ {0, . . . , n}, qn(tnk) =
qnk . To finish, we introduce the functions ρ and θ defined by

ρn(t) = tnk and θn(t) = tnk+1 if t ∈ [tnk , t
n
k+1[, ρ

n(T ) = T and θn(T ) = T.

We recall some results about these approximate solutions (see Subsection 3.2 in [12] for details) :

Theorem 3.1. Let suppose that for all q ∈
⋃

s∈[0,T ]Q(s),

f(·, q) is Riemann-integrable on [0, T ]. (12)

Then with the assumptions of Theorem 2.5, qn tends to q in C0([0, T ],Rd), where t 7→ q(t) is
the unique solution of (9).

Remark 3.2. If we replace the definition (11) of fn with

fn(t) =
1

h

∫ tnk+1

tnk

f(s, qnk)ds if t ∈ [tnk , t
n
k+1[, k < n and fn(T ) =

1

h

∫ T

T−h
f(s, qnn−1)ds,

the hypothesis (12) is unnecessary.

Proposition 3.3. There exists C,D,K > 0 such that

sup
n

‖qn‖L∞([0,T ]) ≤ C, sup
n

∥

∥

∥

∥

dqn

dt

∥

∥

∥

∥

L∞([0,T ])

≤ K

and for n large enough,
dQ̃(tn

k+1,q
n
k
)(q

n
k) ≤ Dh. (13)

We now come to the main result of the present paper which specifies the convergence order of
the previous scheme.

Theorem 3.4. There exists a constant C0 > 0 such that for n large enough

‖qn − q‖L∞([0,T ]) ≤ C0
T

n
,

where q is the solution of (4).

Proof. We check that the sequence (qn)n is of Cauchy type.
Let m ≥ n be large enough. Since for k ∈ {0, .., n − 1}

qnk+1 = PQ̃(tnk+1,q
n
k )
(qnk + hf(tnk , q

n
k))

and Q̃(tnk+1, q
n
k) is a closed convex set, it comes : for all y ∈ R

d

〈qnk + hf(tnk , q
n
k )− qnk+1, y − qnk+1〉 ≤ |qnk + hf(tnk , q

n
k )− qnk+1|dQ̃(tn

k+1,q
n
k
)(y). (14)

By Assumption (8) and Proposition 3.3, we get for almost t ∈ [0, T ],
∣

∣

∣

∣

fn(t)−
dqn

dt
(t)

∣

∣

∣

∣

≤ Lf(1 + C) +K. (15)

Consequently by dividing (14) by h, we obtain for all y ∈ R
d

−

〈

dqn

dt
(t)− fn(t), y − qn(θn(t))

〉

≤ C1dQ̃(θn(t),qn(ρn(t))(y)
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with C1 := L(1 + C) +K.
Taking y = qm(θm(t)), it follows

−

〈

dqn

dt
(t)− fn(t), qm(θm(t))− qn(θn(t))

〉

≤ C1dQ̃(θn(t),qn(ρn(t))(q
m(θm(t))).

First case : |qm(θm(t))− qn(ρn(t))| ≤ r/8 (with r introduced in Theorem 4.9).
Let us chose w ∈ PQ(θn(t))(q

m(θm(t))). Hence w ∈ Q(θn(t)) and

|w − qn(ρn(t))| ≤ |w − qm(θm(t))| +
r

8
≤ dH(Q(θn(t)), Q(θm(t))) +

r

8
≤
KL

n
+
r

8
≤
r

4

by Proposition 2.4, for n large enough. Moreover qn(ρn(t)) ∈ Q(ρn(t)) ⊂ U(θn(t)) for n > KL/c
and Inequality (13) implies that

dQ̃(θn(t),qn(ρn(t))(q
n(ρn(t))) ≤

r

4

for n large enough. Then, by Theorem 4.9 and Proposition 3.6, we deduce

dQ̃(θn(t),qn(ρn(t))(w) ≤ κ|qn(ρn(t))− w|2

where κ := ΘpM/(2α). Hence with Propositions 3.3 and 2.4

dQ̃(θn(t),qn(ρn(t))(q
m(θm(t))) ≤ κ|qn(ρn(t))− w|2 + |qm(θm(t))− w|

≤ κ|qn(ρn(t))− w|2 + dH(Q(θn(t)), Q(θm(t)))

≤ 2κ|qn(t)− qm(t)|2 +
KL

n
+ 2κ

(

K +KL

n

)2

.

Finally,

−

〈

dqn

dt
(t)− fn(t), qm(θm(t))− qn(θn(t))

〉

≤ 2C1κ|q
n(t)− qm(t)|2 +

C2

n
,

with C2 := C1(KL + 2κ(K +KL)
2).

Second case : |qm(θm(t))− qn(ρn(t))| ≥ r/2.
Then by (15),

−

〈

dqn

dt
(t)− fn(t), qm(θm(t)) − qn(θn(t))

〉

≤ C1|q
m(θm(t))− qn(θn(t))|

≤
2

r
C1|q

m(θm(t))− qn(θn(t))|2

≤
4

r
C1|q

m(t)− qn(t)|2 +
4

r
C1

(

2K

n

)2

.

End of the proof :

By setting C3 := max{2C1κ, 4C1/r} and C4 := max{C2,
16C1K2

r }, we get

−

〈

dqn

dt
(t)− fn(t), qm(θm(t))− qn(θn(t))

〉

≤ C3|q
m(t)− qn(t)|2 +

C4

n
.
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By summing the previous inequality and the other one obtained by changing the role of n and
m, it yields

〈

dqm

dt
(t)−

dqn

dt
(t), qm(t)− qn(t)

〉

≤ (2C3 +Kf)|q
m(t)− qn(t)|2 +

C5

n

where Lf is introduced in (7) and C5 := 2C4 + 4K2(Kf + 1).
By applying Gronwall’s Lemma, we have

‖qm − qn‖L∞([0, T ]) ≤
C4

n
exp((2C3 + Lf)T ).

Then, we conclude the proof by taking the limit for m→ ∞.

Remark 3.5. This proof allows us to get around the compactness arguments employed in [12]
to obtain the convergence of qh. Consequently, this result can be extended to the Hilbertian
case. Then it can be checked that the limit satisfies the differential inclusion (4) by following the
same reasoning as in [12]. In particular, we also find the existence of solutions again. However
the uniqueness requires the uniform prox-regularity of sets Qi(t) (which implies the uniform
prox-regularity of sets Q(t)).

It remains to prove Proposition 3.6 and Theorem 4.9. We now check the first result whereas the
second one will be established in the next Section.

Proposition 3.6. For all t ∈ [0, T ], q0 ∈ U(t) and all q ∈ Q(t), we have for all i ∈ {1, ..., p}

dQ̃i(t,q0)
(q) ≤

M

2α
|q− q0|

2. (16)

Proof. Let consider i ∈ {1, ..., p}, q0 ∈ U(t) and q ∈ Q(t) ⊂ Qi(t). We assume that q /∈ Q̃i(t, q0)
(otherwise (16) obviously holds).
For ℓ ≥ 0, we define

z(ℓ) := q + ℓ∇gi(t, q0).

The point z(ℓ) belongs to Q̃i(t, q0) if and only if

gi(t, q0) + 〈∇gi(t, q0), q− q0〉+ ℓ|∇gi(t, q0)|
2 ≥ 0,

which is equivalent to

ℓ ≥ ℓ0 := −
gi(t, q0) + 〈∇gi(t, q0), q− q0〉

|∇gi(t, q0)|2
≥ 0.

Thus,

dQ̃i(t,q0)
(q) ≤ |q− z(ℓ0)| ≤ ℓ0|∇gi(t, q0)|

≤ −
gi(t, q0) + 〈∇gi(t, q0), q− q0〉

|∇gi(t, q0)|

≤
1

|∇gi(t, q0)|

∫ 1

0
sD2

qgi(t, q0 + s(q− q0))(q − q0, q− q0)ds,

because gi(t, q) ≥ 0. We conclude to (16) by Assumptions (A1) and (A4).
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4 Metric qualification condition

This section is devoted to the proof of Theorem 4.9, which corresponds to a metric qualification
condition for the sets Q̃i. Aiming that, we recall some notions of subdifferential calculus.

Definition 4.1 (proximal subdifferential). Let f : Rd → R be a lower semicontinuous function
which is finite at x ∈ R

d. The proximal subdifferential of f at x is defined by:

∂P f(x) :=
{

x⋆ ∈ R
d, ∃α, β > 0, ∀|h| ≤ β, f(x+ h)− f(x) ≥ 〈x⋆, h〉 − α|h|2

}

.

Definition 4.2 (limiting subdifferential). Let f : Rd → R be a lower semicontinuous function
which is finite at x ∈ R

d. The limiting (or Mordukhovich) subdifferential of f at x is defined by

∂Lf(x) :=

{

x⋆ ∈ R
d, x⋆ = lim

k→∞
x⋆k with x⋆k ∈ ∂P f(xk), xk → x and f(xk) → f(x)

}

.

Definition 4.3 (Clarke subdifferential). Let f : Rd → R be a Lipschitzian function. The Clarke
subdifferential ∂Cf(x) of f at x can be defined (see [1]) as the closed convex hull of the limiting
subdifferential :

∂Cf(x) := conv ∂Lf(x).

This notion has been extended for less regular functions, we refer the reader to [11] for details.

The following property is a special case of the exact sum rule for the Clarke subdifferential (see
Theorem 2 of [11]):

Lemma 4.4 (Optimality property). Let f : Rd → R∪{+∞} be a lower semicontinuous function
and φ : Rd → R a convex Lipschitz function. If x ∈ R

d is a finite local minimum of f + φ then

0 ∈ ∂Cf(x) + ∂Cφ(x).

Let us recall the variational principle of Ekeland (see [4]).

Proposition 4.5 (Ekeland variational principle). Let f : Rd → R ∪ {+∞} be a lower semi-
continuous which is bounded from below. Let ǫ > 0 and x ∈ R

d such that

inf f ≤ f(x) ≤ inf f + ǫ.

Then for all λ > 0, there exists w ∈ R
d satisfying

• f(w) ≤ f(x)

• |x− w| ≤ λ

• for all z 6= w, f(z) > f(w)− ǫ
λ |z − w|.

The following result comes from Theorem 2.1 in [5]. For an easy reference, we detail the proof.

Lemma 4.6. Let f : R
d → R

+ ∪ {+∞} be a lower semi-continuous function and x0 with
f(x0) = 0. Assume there exist γ, δ > 0 such that for all

x⋆ ∈
⋃

x∈B(x0,2δ)
f(x)>0

∂Cf(x)

we have |x⋆| ≥ γ. Then for all x ∈ B(x0, δ), d{f=0}(x) ≤ γ−1f(x).
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Proof. Let x ∈ B(x0, δ). If f(x) ≥ γδ, then

d{f=0}(x) ≤ |x− x0| ≤ δ ≤ γ−1f(x).

Now, we assume that 0 < f(x) < γδ and we set ǫ := f(x). Applying the variational principle
of Ekeland (see Proposition 4.5) to f with ǫ and any λ ∈]γ−1ǫ, δ[. There exists w = w(λ) ∈ R

d

such that f(w) ≤ f(x), |x− w| ≤ λ and

∀z 6= w, f(z) > f(w)−
ǫ

λ
|w − z|.

Consequently, w minimizes f + ǫλ−1| · −w| and by Lemma 4.4 it comes

0 ∈ ∂Cf(w) + ∂Cψ(w)

where ψ(·) = ǫλ−1| · −w|.
So there exists x⋆ ∈ ∂Cf(w) with |x⋆| ≤ ǫλ−1 < γ. That is in contradiction with the assumptions
as |w − x0| ≤ |w − x| + |x − x0| ≤ 2δ and so we deduce that necessarily f(w) = 0. Then we
conclude to the desired result, since

d{f=0}(x) ≤ |x− w| ≤ λ

holds for every λ ∈]γ−1ǫ, δ[.

Frow now on, we come back to the framework of the previous sections and prove the metric
qualification condition of sets Q̃i.

In the sequel, we introduce convex sets Ci for i ∈ {1, ..., p} and their intersection C =

p
⋂

i=1

Ci.

We consider the following set-valued map F

F :

{

R
d

⇉ R
dp

x 7→ F (x) := (C1 − x)× · · · × (Cp − x).
(17)

Let us note that 0 ∈ F (x) if and only if x ∈ C.

Proposition 4.7. Consider the function f defined by f(x) := dF (x)(0) where F is given by (17).
The map f is Lipschitzian and for all x /∈ C,

∂P f(x) ⊂ ∂Cf(x) =







∑

i, x/∈Ci

yi
|y|







,

where y = PF (x)(0). In other words, for all i ∈ {1, ..., p}, yi + x ∈ PCi
(x), hence −yi ∈

N(Ci, x+ yi).

Proof. For all x ∈ R
d,

f(x) = dF (x)(0) = dΠ(φ(x))

where Π := ⊗p
i=1Ci and φ(x) := (x, . . . , x) ∈ R

dp. For x /∈ C,

∂Cf(x) = ∂C(dΠ ◦ φ)(x) = t(1, . . . , 1) · ∂CdΠ(φ(x))

thanks to Corollary 1 in [11]. By convexity of the sets Ci, dΠ is a convex functions and so

∂Cf(x) = t(1, . . . , 1) · ∂P dΠ(φ(x)),

9



see Remark 4.8. First we claim that

∂P dΠ(φ(x)) ⊂ [⊗p
i=1Ei(x)]

⋂

S(0, 1), (18)

with Ei(x) :=
dCi

(x)

dΠ(φ(x))∂
P dCi

(x) if x /∈ Ci and Ei(x) := {0} else.

Indeed, let x⋆ belong to ∂P dΠ(φ(x)). By definition, for some α > 0 and for all small enough
h ∈ R

dp,
dΠ(φ(x) + h)− dΠ(φ(x)) ≥ 〈x⋆, h〉 − α|h|2.

Let us fix an index i ∈ {1, . . . , p}. It follows that for all small enough hi ∈ R
d

√

dΠ(φ(x))2 + dCi
(x+ hi)2 − dCi

(x)2 −
√

dΠ(φ(x))2 ≥ 〈x⋆i , hi〉 − α|hi|
2.

By a first order expansion, we get

dCi
(x+ hi)

2 − dCi
(x)2

2dΠ(φ(x))
≥ 〈x⋆i , hi〉 − α′|hi|

2,

with another numerical constant α′. Then, we obtain with another constant α′′ and for all small
enough hi ∈ R

d

dCi
(x)

dΠ
(φ(x)) (dCi

(x+ hi)− dCi
(x)) ≥ 〈x⋆i , hi〉 − α′′|hi|

2.

If x ∈ Ci then dCi
(x) = 0 and so we deduce that x⋆i = 0. If x /∈ Ci then by definition of the

proximal normal cone,
dΠ(φ(x))

dCi
(x)

x⋆i ∈ ∂P dCi
(x) ⊂ S(0, 1),

see Remark 4.8.
So |x⋆i | = dCi

(x)dΠ(φ(x))
−1 and so |x⋆| = 1, which concludes the proof of (18).

Let us now finish the proof of the proposition. Thus

∂Cf(x) ⊂
∑

i, x/∈Ci

Ei(x) ⊂
∑

i, x/∈Ci

dCi
(x)

dΠ(φ(x))
∂P dCi

(x).

We set z = (z1, ..., zp) ∈ R
dp with for all i, zi = PCi

(x) or equivalently z = PΠ(φ(x)). By
Theorem 1.105 in [10],

∂P dCi
(x) ⊂ ∂P dCi

(zi) ∩ S(0, 1) =

{

x− zi
|x− zi|

}

.

Consequently, we have

∂Cf(x) ⊂
∑

i, x/∈Ci

Ei(x) ⊂







∑

i, x/∈Ci

dCi
(x)

dΠ(φ(x))

x− zi
|x− zi|







=







∑

i, x/∈Ci

x− zi
|φ(x)− z|







.

We finish the proof by choosing y := φ(x)− z ∈ R
dp.

Remark 4.8. Let S ⊂ R
d be a closed convex set and x /∈ S, then ∂P dS(x) = ∂CdS(x) ⊂

S(0, 1). Indeed with w := PS(x) and vectors h = ǫ(w − x) for small enough ǫ, we remark that
dS(x+ ǫ(w−x)) = dS(x)− ǫ|w−x|. Hence, by Definition 4.1, we obtain for every x⋆ ∈ ∂P dS(x)

−|h| ≥ 〈x⋆, h〉 − α|h|2.

By dividing by |h| and letting ǫ go to 0, we deduce that |x⋆| ≥ 1. We also conclude to |x⋆| = 1
since dS is 1-Lipschitz.
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Theorem 4.9. There exist r and Θ such that for all t ∈ [0, T ], q0 ∈ U(t) satisfying dQ̃(t,q0)
(q0) ≤

r/4 and all q ∈ B(q0, r/4)
⋂

Q(t),

dQ̃(t,q0)
(q) ≤ Θ

p
∑

i=1

dQ̃i(t,q0)
(q).

Indeed we can choose Θ = 2γβ
α and r = min( ρ

6β ,
α

4Mγ ).

Proof. Consider r = min( ρ
6β ,

α
4Mγ ). Let us fix t ∈ [0, T ], q0 ∈ U(t) satisfying dQ̃(t,q0)

(q0) ≤ r/4.

Consequently there exists q1 ∈ B(q0, r/4) such that q1 ∈ Q̃(t, q0). We define a Lipschitz map
f := dF (·)(0) where F is given by (17) with Ci = Q̃i(t, q0). First we check the assumptions of

Lemma 4.6 for the function f with x0 = q1. Indeed f(q1) = 0 because q1 ∈ Q̃(t, q0).
Let us consider q ∈ B(q1, r) ∩ Q̃(t, q0)

c ∩Q(t), so q ∈ B(q0, 2r). By Proposition 4.7, ∂Cf(q) =
{q⋆} where

q⋆ :=
∑

i, q/∈Q̃i(t,q0)

p⋆i

with p⋆ = p/|p| and p = PF (q)(0). Moreover for i satisfying q /∈ Q̃i(t, q0), −p⋆i ∈ N(Ci, q + pi).
Let us define

J(t, q) := {j, gj(t, q0) + 〈∇gj(t, q0), q− q0〉 < 0} = {j, q /∈ Q̃j(t, q0)}.

It is well-known that there also exist nonnegative reals (λi)i∈J(t,q) satisfying

q⋆ =
∑

i∈J(t,q)

λi∇gi(t, q0).

Hence by Assumption (A4)

|q⋆| =

∣

∣

∣

∣

∣

∣

∑

i∈J(t,q)

λi∇gi(t, q0)

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

∑

i∈J(t,q)

λi∇gi(t, q)

∣

∣

∣

∣

∣

∣

− 2Mr
∑

i∈J(t,q)

λi

Since q + pi ∈ PCi
(q) and q ∈ Q(t), Proposition 3.6 yields |pi| = dCi

(q) ≤ 2M
α r2. Moreover for

all i ∈ J(t, q), q + pi ∈ ∂Q̃(t, q0) so we have by Assumption (A1)

gi(t, q0) = −〈∇gi(t, q0), q + pi − q0〉 ≤ β(|q− q0|+ |pi|)

≤ 2βr

(

1 +
Mr

α

)

.

Hence by Assumption (A1),

gi(t, q) ≤ 2βr

(

2 +
Mr

α

)

.

Due to the choice of r, we deduce that 2βr
(

2 + Mr
α

)

≤ ρ and thus J(t, q) ⊂ Iρ(t, q). From
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Assumptions (A1), (A4) and (A5’), we deduce that

|q⋆| ≥ γ−1
∑

i∈J(t,q)

λi |∇gi(t, q)| − 2Mr
∑

i∈J(t,q)

λi

≥ (αγ−1 − 2Mr)
∑

i∈J(t,q)

λi

≥
α

2γ

∑

i∈J(t,q)

λi

≥
α

2γβ

∑

i∈J(t,q)

λi |∇gi(t, q0)|

≥
α

2γβ

∑

i∈J(t,q)

|p⋆i |

≥
α

2γβ
|p⋆| =

α

2γβ
.

We can also apply Lemma 4.6 and we obtain that for all q ∈ B(q1, r/2) ⊃ B(q0, r/4)

dQ̃(t,q0)
(q) ≤ Θ





∑

i∈J(t,q)

dQ̃i(t,q0)
(q)2





1/2

≤ Θ

p
∑

i=1

dQ̃i(t,q0)
(q).
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