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Abstract

We prove the existence of a local time, the continuity of the local time about ¢, and
the regular property for a.e. x € R of a Ornstein-Uhlenbeck type {X;, t € RT} driven
by a general Lévy process, under mild regularity conditions. We discuss the asymptotic
behaviour of the local time when X is ergodic. We also investigate the first passage
problem. These results give precise information about the local properties of the sample

functions.
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1 Introduction

Let (2,3, P) be a probability space, and M+(Rd) be the totality of real d x d matrices
whose all eigenvalues have positive real parts. The starting at x Markov process of

Ornstein-Uhlenbeck (O-U) type X = {X;,t € RT, P} over (Q,F, P) is a Feller process
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with infinitesimal generator

d d
A=G- ZZQM

7j=1k=1
where G is the infinitesimal generator of a Lévy process Z = {Z;,t € R1} taking values
in R, Q € M, (R? and x € R%. An equivalent definition of this process X is given by

the unique solution of the equation
X ::n—/OtQXsds+Zt,
which can be expressed as
X, =e 9z + /0 t eIz, (1.1)

where the stochastic integral with respect to the Lévy process Z is defined by convergence
in probability from integrals of simple functions. When Z is the Brownian motion taking

values in R%, X is the ordinary O-U process.

The study of Markov processes of O-U type keeps receiving much attention both in
the physical and the mathematical literature, for example, in climate models to explain
the so-called Dansgaard-Oeschger events—see [7] and the references therein. Many authors
investigated the recurrence [13] [I5], the strong Feller property and the exponential -
mixing property [10]. In [9], the authors used the local time as the kernel function of
the empirical likelihood inference, but as to the author’s knowledge, there is not paper

investigated the existence of the local time of X.

In this paper, we will prove the existence of a local time under mild regularity
conditions, and its continuous properties about time ¢. Here we consider the local time
as the Radon-Nikodym derivative of the occupation measure of X relative to a Borel set
A. There are some different between this definition and the Blumenthal-Getoor local
time. We will consider their connection. Many authors like to consider X on R?, but
when d > 2, single points are essentially polar even for Brownian motion, that is to say,
L(z,t) = 0 for a.e. z. Hence, we define X on R. It is well-known that X is ergodic under
very mild regularity condition, let £’ be the unique invariant distribution of X, if there

is a density f of the distribution F', then

1t
lim lim —/ I{x,—zj<eyds = f(z).
0

e—0t—o00 2te

Under some conditions, we have



L(xz,t)

1t . . . .
T OT 51 fo I/ x,—z|<cds is a unbiased consistent estimator of f, but we

that is to say,

do not go any further in this direction in this paper.

The paper is organized as follows. we will give some basic results about the Lévy
process and X in section 2. In Section 3, we establish completely general criteria for the
existence of the local time of X in terms of Fourier analysis following Berman [2]. In
section 4, we shall discuss the continuity and the asymptotic behavior of the local time

about time ¢. In section 5, we study the first passage cross a lever.

Throughout this paper, x is the starting point of the Markov process of O-U type. C
always stands for a positive constant, whose value is irrelevant. The expectation operator
under P and P, are denoted by E and E,. ¢,(-) stands for the characteristic function
of a random variable or a distribution 7 and §; is the P-completed sigma-field generated

by (Xs,s < t).

2 Preliminaries

In this section, we collect some basic results about the Lévy process and the Markov

process of O-U type which will be used in the following section.

Let {Z;, t € R™} be a Lévy process taking values in R, whose characteristic function

is given by
E(e%) = exp{—t(0)},
where )
= L (et - 2.1
wio) =0+ T~ | e elau) (21)

is called the Lévy exponent, b € R, ¢ > 0 and p is a measure on R satisfying that
p({0}) = 0 and the integrability condition

/ (1A ul*)p(du) < oco.
Rd

Certainly, the process Z is characterized by the generating triplet (b, o, p(-)).
Let X = {X;,t € RT, P} be a Markov process of O-U type defined by (1.1). The

next proposition specifies the characteristic function of the transition probability of X.

Proposition 2.1. (Sato and Yamazato 1984, Theorem 3.1)
Let P(t,x,-) be the transition probability of X. The characteristic function of P(t,x, )
18

t
©p(t,z,)(0) = exp {z’:pe_tQH — /0 T,Z)(G_SQH)dS}, (2.2)
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where 1 is given in (2.1). In particular, the generating triplet of P(t,x,-) is given by

(bt,myo-typt), where
t t
bt,:c = e—th—i—/ e_szdS—i-// 6_5Q2{1{|E—SQZ|S1}—I{‘Z‘Sl}}dsp(dz)7
0 RJo
t
op = /6_28Q02ds,
0
t
p(E) = [ peB)ds,
0

Now assume that
/ log |z|p(dz) < oo, (2.4)
|z|>1

or, equivalently, Eflog{max(1,|Z1|)}] < oc.

Proposition 2.2. (Sato and Yamazato 1984, Theorem 4.1 and 4.2)
(a) If (2.4) holds, there exists a limit distribution F such that

P(t,z,A) — F(A), as t— o

for any x € R and A € B(R). This F is the unique invariant distribution of X. More-

over, the characteristic function of F' is given by

er(®) = e { [ uie 0y},

where ) is given in (2.1). In particular, the generating triplet of P(t,x,-) is given by

(boos Toos Poo), where

boo

Q_ler/R/O e 92 { Iz <1y — Ijz<1y dsp(d2)
o = / e 2Q02ds
0
pu(B) = [ peOB)s, B B(R)
0

(b) If (2.4) fails to hold, then X has no invariant distribution, and moreover, for

any x € R, P(t,z,-) does not converge to any probability measure as t — oo.

According to Proposition 2.2, under condition (2.4), X is ergodic. We shall use this

in the section 4.

To begin, we introduce some definitions following [3].



Definition 2.1. (Occupation measure) For every t > 0, the occupation measure

on the time [0,t] is the measure u; given for every measurable function f : R — [0, 00)
by
t
[ s@ptds) = [ 5(x)ds.
R 0
When the occupation measure is absolutely continuous, Lebesque’s differentiation

theorem enables us to define a particular version of the density of the occupation measure,

called the local time.

Definition 2.2. (Local time) For every t > o and x € R, the quantity

. I
lim sup % /0 It x,—z<eyds

denoted by L(x,t) and called the local time at level x and time t.

The local time is defined at last in three different ways, namely via stochastic calcu-
lus, via excursion theory, and via additive functions. Definition 2.2 is the first approach.
the Blumenthal-Getoor local time is defined as the unique continuous additive function
supported by a single point x, and L(x,t) exist if and only if x is a regular point. See [5]

and [§]

3 The local time of the Markov process of O-U type

In this section, we will give a completely general criterion for the existence of local time
as a density of occupation measure. The proof is based on Fourier analysis approach due

to S. M. Berman [I], [2], See also [3].

At first, we calculate Fourier transform of X; — X; for 0 < t < s. For every 0 € R,
by the Markov property, the time-homogeneous and (2.2),

px,x(0) = Be<0XX = B (Bl gy
- E |:€_i9XtEXt ei@(XS,t)}
) s—t
= Ee "%texp {z’Xte_(S_t)QG - / T,Z)(G_UQQ)d’LL}
0
. s—t
EeiXib(e™t709-1) eXp{ - (e_“QH)du}
0
¢
= exp {i:ne_tQ(e_(S_t)Q - 16— / P(e"9O(e” 9 — 1)) du
0

_ /0 U(e"90)du}). (3.1)



Hence, we have

t s—t
lox,—x,(0)] = exp{— /0 Reg(e*90(e” 709 — 1))du — /0 %ew(e‘“QH)dU}

IN

s—t
exp{ — / S{ew(e_“QH)du}, (3.2)
0
where Ret) is the real part of .
Theorem 3.1.  Let X be defined by (1.1) and 1) is the characteristic exponent of Z.
Suppose that either of the following conditions holds true for each t € R™
(a) o > 0.

(b) There exist constants o € (0,2) and ¢ > 0 such that
[ welatds) = clufe (33)
{z:lvz|<1}
for any v € R satisfying |v| > 1. Then the local time exist in L?(dp) a.e

Proof.  Introduce the measure p by

| twutan = [ " e (X, )ds = / " e | fe(a), (3.4)

the occupation measure u; is absolutely continuous with respect to u with density

t

bounded from above by e’. Now, by Fubini’s theorem and Plancherel’s theorem, what

we have to check is
/ E(5u(0)]2)d0 < oo, (3.5)

where §(0) denotes the Fourier transform of p.

Noted that E(|F(0)|?) is a non-negative real function, from the definition of x (3.4,
(32), and Fubini’s theorem,

E(I5u(0)?) E[Fu(0)3u(—0)]

= E[(/Ooo e 208 exp{i@Xs}ds)(/oo e 29 exp{—ifX;})]

0

= B / / e 200H) exp{if( X, — X;) Ydtds)

/ / Q(s+t) exp / Rerp(e “Qe)du}dtds) (3.6)

When o > 0, by ([8.2) and the definition of v,

IN

exp { - /0 o Re(e " W)du } < exp{—%(ea)2 /0 gy (3.7)
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By B.6), (8.7) and Fubini’s theorem,

0 o0 2 s—t
[ B < 2 [ ao [T a2 [T s e U [ omagy
R r Jo ¢ 2 Jo

o] o0 2
= 2/Rd0/0 dte_QQt/t dse_QQsexp{—(Ui(l—6_2(8_t)Q)}d9

4Q

o0 00 9
= 2/ dte—z@t/ dse—2Qs/ exp{_(UH) (1_6_2(s_t)Q)}

0 t R 4Q
= C / dte2Q! / e2Q5(1 — ¢ 2s=DQ) =3 g5

0 t

1
= Cg) <o (3.8)

So that, whenever o > 0, assertion (a) follows (B.8)).
Turing to (b), by B.2),

exp | - /Os_ti)%ez/z(e_“QO)du} < |- /0 /R [1— cos(e™"902)]p(dz)du }(3.9)

o =esp{~ [ [ 11 costem 0otz

Using the inequality 1 — cos > 2(z/m)? for |z| < 7 and assumption (3.3]), when
e %90 > 1,

Let

s—t
0) < exp{—C / =Ry} (3.10)
0

By B6) and @3I0]), we have

| BwuoRas
< / / / 0)e 26+ dsdtde
00 00 )
= 4 / / / J(0)e 26t0R g dsdt 4 4 / / / J(0)e26tDR dsdfdsdt
0 t es@ 0 t 0
o

00 s—t
< exp{—C’/ le™uQ1 2 du e 2T dhd st

es@ 0

[e'¢) o0 esQ

+4 / dte 29! / / J(0)e~ 2+ agdsdt
< / / / 2+ g0 d sdt (3.11)
< oo.

The proof is complete. O



Remark 3.1. The local time could be expressed at the "sum of times spent at x up

to time t”. To avoid fized t, p is defined. For the 2Q in e=2% of u, it is used in (I11).

Remark 3.2. As above, Theorem 3.1 is not true a.s. at every x. From the point
of view of occupation densities, such aberrant behavior at a single state is irrelevant. the
local time as occupation density is different from the Blumenthal-Getoor local time, as a
continuous additive function of some point. For example, when Z is a Poisson process,
the start point is 0, then there is the Blumenthal-Getoor local time at 0 about X. In fact,
0 is a holding point, so a reqular point. But there do not exit a occupation density about

X.

Remark 3.3. Meyer [11] has proved: let the process Y = (Y3), adapted to the natural
o—fields of a Brownian motion W = (W}), have trajectories of bounded variation; then
there exit an occupation density of Wy +Y;. Theorem 3.1 asserts that there are local time

when W is a general O-U process, and Y is O-U type of pure jump.

4 Some properties of local time

In this section, we shall obtain the smoothness of the local time in the time variable, when
the level has been fixed. At the end of the section, we shall discuss the limit property of

the local time at t — co when X is ergodic.

We assume that the conditions of Theorem 3.1 is satisfied in this section. Lebesgue’s
differentiation theorem enables us to define a particular version of the occupation density,

called the local time as ,
i 1
lim sup ﬂ/o I x,—z<eyds
for every t < 0 and z € R. Now, we can replace ”lim sup” by ”lim” in the definition of

local time. Before proving it, we have some lemmas. The following Lemma come from

Masuda [10].
Lemma 4.1.  The following statements hold true for each t € R, .
(a) If 0 > 0, then P(t,x,-) admits a C;° density.

(b) If there exist constants a € (0,2) and ¢ > 0 such that (3.3) satisfy, then P(t,z,-)

admits a Cp° density.

For Lévy process Z, because it has stationary independent increments, p(t,z,y) =

p(t,0,y — x) for every t € R4+ and = € R. Unfortunately, there is not this property for



X, but there is a similar property as following:

Lemma 4.2.  Let p(t,x,y) be the density of P(t,x,-), then

p(t7$7y) :p(t707y_$e_tQ)' (41)

Moreover, p(t,z,y) is continuous about x and tends to 0 as x — oo.

Proof.  This is immediate from the inversion formula and (2.2). The last assertion

stems from Lemma 4.1 and the property of probability density function. O

Theorem 4.1. For a.e. z € R

1

t
Jim oo [ T acads = L)

uniformly on compact intervals of time, in L*(P). As a consequence, the process L(x,")

1 continuous a.s.

Proof. By Theorem 3.1, there exists a local time L(x,7) in L?(dy ® dP), where T is an
independent random time with an exponential distribution of parameter 1. Mimicking

the argument of Bertoin [3], for a.e.y € R, the following convergence holds in L?(P):

. 1 [7 . 1 [yte
dm e [ Toxmneds = tim o [ 100 = 1) (12)

Pick any y for which (£2]) is fulfilled and for every € > 0, consider the martingale
€ 1 T
Mf = E(g/o LX< ds[1), ¢ <0, (4.3)

where § = §t V o(t A 7). By ([E2), and Doob’s maximal inequality, Mf converges as
¢ — 0+, uniformly on t € [0,00), in L%(P).

By the Markov property and the lack of memory of the exponential law, we have

a.s
1 t/\T
Mp =5 /0 Lix.—yl<eyds + Tp<ry e Xe), (4.4
where
1 T
fe(z) = E:v(2_/ I x,—y|<eyds).-
€Jo

Now, what we have to do is proving f.(X;) convergence uniformly on ¢t € [0, 00).

Applying Fubini’s theorem,

1 [ _
folw) = 2_/ e PL(|X, — y| < e)dt).
€Jo
Applying Lemma 4.2, we get our assertion. O



By Theorem 4.1, a.e. © € R, L(x,t) is continuous additive function about ¢ € R+,

L(x,t) also is the Blumenthal-Getoor local time. Hence we have the following corollary:

Corollary 4.1. Under the conditions of Theorem 3.1, a.e. x in the range of X are

reqular.
Recalling Proposition 2.2, assume that
/ log |z|p(dz) < oo, (4.5)
|z|>1
then there exists a limit distribution F' such that
P(t,z,A) - F(A) as t— o0

for any x € R and Borol set A. This F' is the unique invariant distribution of X. Hence

under (43H]), X is ergodic. By the ergodic theorem, we have

1t .
lim — [{|X5—:c|<e}d3 = ,uF(B(x,E))a mn L2(P) (46)

If the conditions of Theorem 3.1 is holding, F' has a density f by Lemma 4.1, hence,

. . 1 t . NF(B(x7 6))
L R e ) D
On the other hand, by Theorem 4.1,

o L)

tllglo 11—% ﬁ/o Lx—al<qds = tllglo ’ (4.8)
We can get (.0
. L(x,t) . 9
tgngoT = f(=), mn L7(P),

if the limits in (£7)) can commute. But this is obvious, because

1

t
61_i>%1+ 2_6/0 I{\Xs—:v\<e}ds = L(x,1)

uniformly on [0, ] for any ¢ € RT. More precisely, we have the following:

Theorem 4.2. Assume that the conditions of Theorem 3.1 and (4.5) hold true, then a.e.
x in the range of X,

— 2 = (), in  L*(P).



5 The first passage cross a lever

Let X = {X;,t € R™, P*} be one dimensional Markov process of O-U type defined by
(1.1) taking values in R. Given a real number a > x, let us introduce the first passage
time strictly above a, T, = inf{t > 0 : X; > a}, and let 0, = inf{t > 0: X; = a}
provided that the sets in braces is not empty, and +oo otherwise.

When 7 is a Lévy process with non-positive jumps, AX; = AZ; < 0. If T, < oo,
one gets immediately

XT = a. (31)

a

Using martingle technique, Hadjiev [6] proved that

o0

0/Q—1 d
Eexp{_6T,) = J0_Y exp{zy + g(y) }dy

e s 0> 0, 3.2
Jo7 y?/Q Y explay + g(y) }dy (3.2)

where

Yy
9(y) = Q‘l/l uwlp(iu)du, y > 0.

When Z is a Lévy process with positive jumps, does the similar property (3.1) hold?

We will prove that the answer is negative.

Lemma 5.1. Let X = {X;,t € R, P*} be a Markov process of O-U type defined by
(1.1). Then for every x # 0 and y € R?, the potential measure of X is diffuse, that is,

U(z,{y}) = 0.

Proof. Since

t
X, =e Qg+ / e g7,
0

and the distribution of Z is a diffuse except when Z is a compound Poisson process for
every z # 0,
PH{X; =y} =0,

which implies

Uz, {y}) = /0 ¥ P, = gyt = 0.

Theorem 5.1. Let X = {Xy,t € RT,P®} be a Markov process of O-U type defined
by (1.1). If p(—00,0) = 0, we have

Px{XT(a)_ <a= XT(a)} =0.

11



Proof. Letf,g > 0 be two Borel functions with f(a) = 0. Applying the com-

pensation formula and recalling AX; = AZ; > 0, we have
/ f()g(2) P {Xp)— € dy, Xp(a) € dz}
0<y<a<lz

= B (f(Xrw-)9(Xrw))

= Ex(z F(Xi)g(Xow + AX ) 1a-ax,<x;_<a})
>0

= [T T o [ 0+ )Ty ()
= / fW)g(2) P {Xp)- € dy, Xp(a) € dz}

0<y<a<lz
_ / dt / F@)gly + ) PH{X; € dy}p(ds)

0 0<y<a,s>a—y

= /0< » fW)g(2)U(z, dy)p(dz — y).

Taking f = I|g ) and g = I,), we obtain

P Xp@)- <a=Xp@e}= 0 )U(l’, dy)p({a —y}). (3.3)
There are at most countably many y € [0,a) with p({a — y}) > 0 and p({0}) = 0.
Moreover the potential measure is diffuse by Lemma 3.1. Hence the right-hand side of

(3.3) is zero.

We deduce from Theorem 3.1 that X is a.s. continuous at time 7'(a) on the event
Xrp@ = a, 50 P{Xp@)- = a|Xpe) = a} =1 on P{Xpg) = a} > 0 and P{Xp(, >
al X7 <a}=1on P{Xp_ <a}>0.

It is well known from [3] that we can write Z; = at + oW, + Z1, where at is a drift,
W, is the Brownian motion and Z! is a Lévy process of pure jumps type. Hence X has

the following decomposition:

X,=e 2 +a /0 t s + o /0 t eTILW, + /0 t e Rzl (3.4)
Theorem 5.2.  Assume that x =a =0 =0 in (3.4), if

p(—00,0) =0 and /01 zp(dx) = C < +o0, (3.5)
then X7 > a a.s.

Proof. Note that 0 < e®~9Q < 1 for s < t, X gets its supremum just by jumping,
that is, P{X7(,)— < a} > 0 by Theorem 3.1, the theorem is proved.

12
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