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Dynamics of Stock Market Correlations
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Abstract We present a novel approach to the study the dynamics of stock market correlations.
This is achieved through an innovative visualization tool that allows an investigation of the struc-
ture and dynamics of the market, through the study of correlations. This is based on the Stock
Market Holography (SMH) method recently introduced. This qualitative measure is comple-
mented by the use of the eigenvalue entropy measure, to quantify how the information in the
market changes in time. Using this innovative approach, we analyzed data from the New York
Stock Exchange (NYSE), and the Tel Aviv Stock Exchange (TASE), for daily trading data for
the time period of 2000–2009. This paper covers these new concepts for the study of financial
markets in terms of structure and information as reflected by the changes in correlations over
time.
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1. Introduction

To date, the fact that financial systems exhibit distinct dynamical and chaotic beha-
vior is well understood. Much work has been devoted to the analysis of financial data
and financial systems, yet the dynamics of such systems remains a puzzling mystery.
Commonly used and well documented methods include autocorrelations (Mantegna
and Stanley 2000), non-linear time series analysis (Kodba et al. 2005), cross corre-
lation (Coronnello et al. 2005; Coronnello et al. 2007; Garas and Argyrakis 2007;
Gopikrishnan et al. 2000; Jung et al. 2006; Laloux et al. 1999; Mantegna 1999; Noh
2000; Pafka and Kondor 2004; Plerou et al. 2002; Utsugi et al. 2004), eigenvalue ana-
lysis, hierarchal clustering (Coronnello et al. 2005; Coronnello et al. 2007; Garas and
Argyrakis 2007; Gopikrishnan et al. 2000; Jung et al. 2006; Laloux et al. 1999; Man-
tegna 1999; Noh 2000; Pafka and Kondor 2004; Plerou et al. 2002; Utsugi et al. 2004).
The events of the recent past, seeing what is perhaps the biggest economic crisis since
the great depression in the 1930’s emphasize the importance of the attempts to study
and understand these dynamical properties.
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Recently, we have investigated system level information embedded in the stock
market (Shapira et al. 2009), such as the existence of modular organization into sub-
groups that share similar dynamical properties. Identification of such system level
organization is essential for understanding the complexity of the market behavior. In
our previous work (Shapira et al. 2009) we focused on the stationary correlations be-
tween stocks, mainly by using the Stock Market Holography (SMH) analysis—that is
the correlations between stocks calculated for the entire time period investigated.

Here we re-analyze the data presented in our previous work (Shapira et al. 2009),
belonging to the New York and Tel Aviv stock markets. For both markets we com-
puted the matrices of stock correlations (correlations between the relative daily return
of the different stocks) using the Pearson’s pair-wise correlations. However, here we
extended the length of the investigated time period, which is now a period of 9 years,
from 1/2000–03/2009. The correlation matrices were investigated using the Stock Mar-
ket Holography (SMH) methodology (Shapira et al. 2009).

The SMH method includes collective normalization of the correlations according
to the correlations of each stock with all the others followed by dimension reduction
algorithms (Principal Component Analysis algorithm – PCA, Chou 1975) which is
applied on the matrices of normalized correlations. The results are presented by placing
the stocks (and the index when it is included) in a reduced 3-dimensional PCA space
(whose axes are the three leading principal components of the PCA). Using Principal
Component Analysis (PCA) is similar in concept to the Random Matrix Theory (RMT)
approach, used by many others (Garas and Argyrakis 2007; Jung et al. 2006; Laloux
et al. 1999; Noh 2000; Plerou et al. 2002; Utsugi et al. 2004) to study stock movement
cross-correlations. Both involve constructing the matrix of pair wise cross-correlations,
and investigation of the principal eigenvalues of this matrix to identify the key driving
forces of the market.

However, here we do not focus on the spectrum and statistics of the eigenval-
ues, rather on the structure and dynamics that govern the stocks in the reduced 3-
dimensional space. Furthermore, the collective normalization we apply in the process
of the SMH analysis uncovers hidden information about the system. Finally, unlike
RMT, our SMH analysis tool enables a visual presentation of the stocks in the reduced
correlation space. To retrieve information that can be lost in the dimension reduc-
tion process, the stocks in the reduced (Holographic) space are linked according to the
correlations—color-coded lines (according to the correlations before normalization)
are drawn between the stocks. Furthermore, it is possible to combine the SMH analy-
sis with a simple sliding window approach, in order to uncover and study the dynamics
of the market correlations.

Here we focus on the dynamics of the correlations. We do this using a sliding
window approach. Keeping the Epps effect in mind (Epps 1979), we searched for the
smallest possible time window which still contained in it a significant amount of data,
and that was compliant with the Epps effect. For this purpose, we began with a time
window of 500 time periods, and decreased it until we were able to account for the
two constraints. Finally, it was found that a 22-day time window best meets these
two criteria. For each time window, the correlation matrix is calculated for the given
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set of stocks. Then, the correlation matrix is used to calculate the average correlation
between stock i and all the other stocks, which represents the relationship between
the given stock and the market, for that time window. We then calculate the average
correlation in the market in the given time window, and the STD of the correlations.

To gain a more comprehensive understanding of how the market evolves, we com-
bine this sliding window approach with the SMH analysis. In each window we apply
the SMH analysis, and are thus able to follow the time evolution of the correlations in
the market in the special 3-D PCA space. Furthermore, using the idea of eigenvalue
entropy (Kenett et al. 2009), we study how the information in the market evolves in
time. This adds to the more qualitative sliding window SMH analysis a quantitative
measure to study how the market changes in time.

2. Similarity matrices

We begin by calculating the stock raw correlations that are calculated using the Pearson
correlation coefficient:

C(i, j) =
(r(i)−〈r(i)〉) · (r( j)−〈r( j)〉)

σ(i) ·σ( j)
, (1)

where r(i) and r( j) are the return of stock i and j, 〈r(i)〉 and 〈r( j)〉 denote the corre-
sponding means, σ(i) and σ( j) are the corresponding standard deviations (STD). Note
that C(i, j) is a symmetric square matrix and C(i, i) = 1 for all i.

The correlation matrices are normalized using the affinity transformation, a special
collective normalization procedure first proposed by Baruchi et al. (2006) and Baruchi
et al. (2005). The idea is to normalize the correlations between each pair of stocks
according to the correlations of each of the two stocks with all other stocks. This
process is in fact calculation of the correlation of correlations or meta-correlation. The
meta-correlations MC(i, j) are the Pearson’s correlation between rows i and j in the
correlation matrix after reordering. In the reordering process, the elements C(i, i) and
C( j, j) are taken out. The correlation vector for i is {C(i, j),C(i,1),C(i,2), . . .} and for
j it is {C(i, j),C( j,1),C( j,2), . . .},

MC(i, j) =
∑

N
k 6=i, j (C(i,k)−〈C(i)〉) · (C( j,k)〈C( j)〉)(

〈̂C(i)2〉 · ̂〈C( j)2〉
) 1

2
. (2)

In other words, the meta-correlation is a measure of the similarity between the
correlations of stock i with all other stocks to the correlations of stock j with all other
stocks. Using the meta-correlations, the normalized correlations A(i, j) are

A(i, j) =
√

C(i, j) ·MC(i, j). (3)

The affinity transformation process emphasizes subgroups of variables (stocks) in
the system, by removing the effect of the background noise of correlation. Groups
(clusters) identified in the affinity matrix are significant in the system, and warrant
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(a) The correlation matrix (b) The affinity matrix

Figure 1. Comparison of the correlation matrix to the affinity matrix for the 455 S&P500 stocks

further investigation. We demonstrate the strength of the affinity transformation in Fi-
gure 1, where we compare the S&P500 dataset correlation matrix to its affinity matrix.
Both matrices are ordered similarly, and the groups weakly visible in the correlation
matrix (Figure 1a) are emphasized and highlighted by the affinity transformation pro-
cess (Figure 1b). The affinity transformation emphasizes the stock clusters, making
them stand out in comparison to the background.

3. SMH analysis using a sliding window

While applying the Stock Market Holography (SMH), analysis on the entire time pe-
riod, using the full stock time series, provides many insightful observations (Shapira et
al. 2009), there is also room to consider applying the SMH analysis on shorter time pe-
riods. To this end, we combine the use of a sliding window algorithm together with the

Figure 2. The normalized correlations matrices for the Tel-Aviv dataset
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SMH analysis. At each time window, we compute the correlation matrix, normalize it
to gain the affinity matrix, and then use the PCA algorithm to create the 3-dimensional
space. Here we have used a 22-day time window, which corresponds to one working
month of trading, however different time windows are also possible. While this is con-
ceptually simple, it provides a lot of information and insights on the dynamics of the
market. In Figure 2 we present some examples of different affinity matrices, calculated
for different time windows, for the Tel-Aviv (TA) dataset. It is clear that the normalized
correlations change quite significantly throughout time.

We are faced with two main problems when aiming to combine these two analysis
methods. First, Due to the fact that at each time window we are in fact calculating
new principal vectors, we first have to verify that the principal vectors at each time
window truly do capture at least 75% of the variance of the system. Second, we in
fact have n (n being the number of time windows) 3-dimensional spaces. In order to
combine them, we choose one set of principal vectors, and project the results on the
selected principal components. Here we have chosen to compute the 3 leading principal
components for the entire time period of the given set of stocks, and then project on it
the results of each time window SMH analysis. At each time window, we transpose the
specific affinity matrix to coordinates on the three chosen principal vectors. Figure 3
presents the percentage of information in the first three principal vectors (15 different
time windows shown). While the percentage varies for the different time windows, it
remains above 75%.
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Figure 3. Percentage of information in the first three principal vectors

The outcome of this process is an animated movie of the stock correlations in the 3-
dimensional affinity space. This tool allows an easy visual analysis of the dynamics of
the system. An example of such movies is also presented in Figure 4, where we present
four frames from such a movie for the TA dataset (see also http://tamar.tau.ac.il/∼dror).

Next, we can make use of the running window SMH analysis method to follow the
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Figure 4. The SMH analysis using a running window for the TA stock dataset

stability of a given sector. For example, we focus on the energy sector (in this dataset,
34 stocks), and study how the intra-sector correlations evolve in time. Looking at Fi-
gure 5 we can see that the dispersion in the different panels shows how the correlations
in the sector first become weaker, and then stronger, as time progresses.

4. Eigenvalue entropy

The concept of eigenvalue entropy has been used as a measure to quantify the deviation
of the eigenvalue distribution from a uniform one (Alter et al. 2000). The idea was
first used in the context of biological systems (Varshavsky et al. 2007; Varshavsky et
al. 2006), and recently applied to the study of stock similarity matrices (Kenett et al.
2009). The spectral entropy, SE, is defined as

SE ≡− 1
log(N)

N

∑
i=1

Ω(i) log[Ω(i)], (4)

335 AUCO Czech Economic Review, vol. 4, no. 3



Dynamics of Stock Market Correlations

−4 −2 0 2 4 −2

0

2

−1

0

1

P
C

A
2

PCA1

P
C

A
3

−4 −2 0 2 4 −2

0

2

−1

0

1

P
C

A
2

PCA1

P
C

A
3

(a) July 2002 (b) January 2004

−4 −2 0 2 4 −2

0

2

−1

0

1
P

C
A

2

PCA1

P
C

A
3

−4 −2 0 2 4 −2

0

2

−1

0

1

P
C

A
2

PCA1

P
C

A
3

(c) March 2005 (d) September 2007

Note: S&P500 index marked in red. The threshold for lines connecting the stocks is 0.7 for all panels.

Figure 5. The SMH analysis using a running window for the energy sector stocks

where Ω(i) is given by

Ω(i) =
λ (i)2

∑
N
i=1 λ (i)2

. (5)

Note that the 1/ log(N) normalization was selected to ensure that SE = 1 for the maxi-
mum entropy limit of flat spectra (all λ are equal).

First, we make use of this measure to compare the information contained in the
correlation matrix versus that contained in the affinity matrix (see Table 1, and also
Kenett et al. 2009). Next, we study the entropy value of the similarity matrix computed
for stocks only, versus that computed for the stocks and the index, as an additional
“ghost” stock (see Shapira et al. 2009). These values are presented in Table 1. We find
that more information (less entropy) is embedded in the affinity matrices in comparison
to the correlation matrices, and that the inclusion of the index as a “ghost” stock adds
significant information on the system.

Table 1. Entropy values for the S&P and TA datasets

S&P TA
Correlation Affinity Correlation Affinity

Stocks+Index 0.1322 0.0972 0.1485 0.0408
Stocks 0.1344 0.1007 0.1720 0.0450
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Figure 7. Sliding window entropy calculation for the TA dataset

Next, we make use of this quantitative measure to study how the information in
the markets changes throughout time. This is done by repeating the sliding window
analysis discussed above, using a 22 day window. In each time window we calculate
the affinity matrix, and from it compute the eigenvalue entropy. We perform this sliding
window entropy calculation for the two datasets separately. In Figure 6 we present the
results for the S&P dataset. These results present evidence of significant changes in the
entropy in the market, and moreover the existence of distinct time periods in respect to
the market entropy.

In Figure 7 we present the results of the sliding window entropy calculation for the
TA dataset. Once more, it is possible to observe the stochastic nature of the market
entropy across time. Comparing Figure 7 to Figure 6, it s possible to note that the
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entropy for the TA dataset is not characterized by distinct time periods, as is in the case
of the S&P dataset.

5. Discussion

We present here an investigation of the dynamics of stock market correlations using
the SMH analysis (Shapira et al. 2009), and by means of entropy analysis (Kenett et al.
2009). This study was performed on an extension of the dataset investigated by Shapira
et al. (2009). Our work is also motivated by the investigations of the stock market in
terms of correlations pioneered by Mantegna and Stanley (2000).

The SMH analysis (Shapira et al. 2009) provides an innovative way of investigat-
ing the market structure and dynamics. Displaying the stocks in the special correla-
tion based 3-dimensional space provides an easy and first-hand comprehension of the
structure and relationships in the market. A key step in the SMH analysis is the affin-
ity transformation. This collective normalization of the correlations reduces the noise
embedded in the correlation matrix, and produces a better estimation of the real rela-
tionships between stocks. Furthermore, it allows for a comparison between different
datasets, since the correlations are normalized in the same way. This allows, for exam-
ple, to compare between different markets, or to compare between a set of stocks with
and without the index.

Expanding the analysis using a sliding window algorithm, one can follow and study
the dynamics of the correlations in the market, and how the market evolves throughout
time. Unlike the case of the 2-D correlation matrices, the 3-D representation of the
correlations through the SMH provides an easy and intuitive way to investigate how
the correlations evolve in the market. This important visualization tool can be further
used to study the stability of different sectors in the market, identify unusual formation
of correlated groups of stocks, and uncover time periods in which the market structure
changes. For example, this can tool can serve as an “early warning” mechanism for the
regulators, trying to prevent unhealthy changes in the structure of the market.

In our previous work (Shapira et al. 2009), we discussed the presence of a special
feedback mechanism between the index, and the stocks belonging to it. Here we made
use of the eigenvalue entropy measure (Kenett et al. 2009) to further investigate this
issue. We found that indeed, there is more information (less entropy) in the system,
when we include the index in the analysis.

The eigenvalue entropy also provides us with a quantitative measure to study how
the information in the market changes in time. Combining the eigenvalue entropy ana-
lysis with the sliding window approach achieves this goal. This analysis complements
the sliding window SMH analysis—where the former is a quantitative tool, the latter is
a qualitative tool to study the dynamics of the correlations in the market. Our findings
show that the amount of information in the market changes quite significantly over
time, and it is possible to observe time periods with significantly more information.
Furthermore, we see that fluctuations of the entropy are quite different for the two in-
vestigated markets. The S&P dataset clearly exhibits periods characterized by different
behavior of the entropy, while this is not the case for the TA dataset. This provides us
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with another way to quantify how a small emerging market (TASE) is different from a
large mature on (NYSE).

In conclusion, we present here new tools for the empirical analysis of the dynam-
ics of stock market correlations. The methods discussed here could be used to study
the “healthiness” of the market, serve as a method to compare and evaluate the perfor-
mance of different types of markets, and serve as a crises prediction mean.
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