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Abstract We focus on finite sample properties of two mostly used methods of Hurst exponent
H estimation—rescaled range analysis (R/S) and detrended fluctuation analysis (DFA). Even
though both methods have been widely applied on different types of financial assets, only seve-
ral papers have dealt with the finite sample properties which are crucial as the properties differ
significantly from the asymptotic ones. Recently, R/S analysis has been shown to overestimate
H when compared to DFA. However, we show that even though the estimates of R/S are truly
significantly higher than an asymptotic limit of 0.5, for random time series with lengths from
29 t0 2!7, they remain very close to the estimates proposed by Anis & Lloyd and the estimated
standard deviations are lower than the ones of DFA. On the other hand, DFA estimates are very
close to 0.5. The results propose that R/S still remains useful and robust method even when
compared to newer method of DFA which is usually preferred in recent literature.

Keywords Rescaled range analysis, detrended fluctuation analysis, Hurst exponent, long-range
dependence, confidence intervals
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1. Introduction

Long-range dependence and its presence in the financial time series has been discussed
in several recent papers (Czarnecki et al. 2008; Grech and Mazur 2004; Carbone et al.
2004; Matos et al. 2008; Vandewalle et al. 1997; Alvarez-Ramirez et al. 2008; Peters
1994; Di Matteo et al. 2005; Di Matteo 2007). However, most authors interpret the
results on the basis of comparison of estimated Hurst exponent H with the theoret-
ical value for an independent process of 0.5. In more detail, Hurst exponent of 0.5
indicates two possible processes: either independent (Beran 1994) or short-range de-
pendent process (Lillo and Farmer 2004). If H > 0.5, the process has significantly
positive correlations at all lags and is said to be persistent (Mandelbrot and van Ness
1968). On the other hand, if H < 0.5, it has significantly negative correlations at all
lags and the process is said to be anti-persistent (Barkoulas et al. 2000).
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However, the estimates for pure Gaussian process can strongly deviate from the
limit of 0.5 (Weron 2002; Couillard and Davison 2005). Moreover, the estimates are
influenced by choice of minimum and maximum scale (Weron 2002; Kristoufek 2009).
There have been several papers dealing with finite sample properties of estimators of
Hurst exponent (Peters 1994; Couillard and Davison 2005; Grech and Mazur 2005;
Weron 2002). With the exception of Kristoufek (2009), none of the papers use the
proposition for optimal scales presented elsewhere (Grech and Mazur 2004; Matos
et al. 2008; Alvarez-Ramirez et al. 2005; Einstein et al. 2001). This paper attempts
to fill this gap and presents results of Monte Carlo simulations for two mostly used
techniques—rescaled range analysis and detrended fluctuation analysis.

In Section 2, we present and describe both techniques in detail. In Section 3, we
show results of Monte Carlo simulations for time series lengths from 512 to 131,072
observations and support that R/S overestimates Hurst exponent for all examined time
series lengths. The overestimation decreases significantly with growing length. In
Section 4, we present results for simulations for time series of length from 256 to
131,072 observations but this time, on the same series, both procedures are applied and
we comment on differences. We find out that even if R/S shows higher values of Hurst
exponent than DFA, the standard deviations are lower for R/S so that the confidence
intervals are narrower. Nevertheless, both methods show very similar estimates, when
the bias is taken into consideration, whereas they are more correlated with growing
time series length. Section 5 concludes.

2. Hurst exponent estimation methods

In this section, we briefly introduce rescaled range analysis and detrended fluctuation
analysis procedures. For more detailed reviews, see Taqqu et al. (1995), Kantelhardt
(2008) or references in the following subsections.

2.1 Rescaled range analysis

Rescaled range analysis (R/S) was developed by Harold E. Hurst while working as
a water engineer in Egypt (Hurst 1951) and was later applied to financial time series
by Mandelbrot and van Ness (1968), Mandelbrot (1970). The basic idea behind R/S
analysis is that a range, which is taken as a measure of dispersion of the series, follows
a scaling law. If a process is random, the measure of dispersion scales according to
the square-root law so that a power in the scaling law is equal to 0.5. Such value is
connected to Hurst exponent of 0.5.

In the procedure, one takes returns of the time series of length 7 and divides them
into N adjacent sub-periods of length v while Nv = T'. Each sub-period is labeled as
I, withn=1,2,...,N. Moreover, each element in , is labeled r; , withk=1,2,...,v.
For each sub-period, one calculates an average value and constructs new series of ac-
cumulated deviations from the arithmetic mean values (a profile).

The procedure follows in calculation of the range, which is defined as a difference
between a maximum and a minimum value of the profile X} ,, and a standard deviation
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of the original returns series for each sub-period I,. Each range R;, is standardized by
the corresponding standard deviation S;, and forms a rescaled range as

_ Ry,
R/S 1
(®/5) = 5 m

The process is repeated for each sub-period of length v. We get average rescaled ranges
(R/S)y for each sub-interval of length v.

The length v is increased and the whole process is repeated. We use the procedure
used in recent papers so that we use the length v equal to the power of a set integer
value. Thus, we set a basis b, a minimum power pmin and a maximum power pmax so
that we get v = pPmin ppmintl - ppmax where hPMY < T (Weron 2002).

Rescaled range then scales as

(R/S)y ~ cvf? 2)

where c is a finite constant independent of v (Tagqqu et al. 1995; Di Matteo 2007).
A linear relationship in double-logarithmic scale indicates a power scaling (Weron
2002). To uncover the scaling law, we use an ordinary least squares regression on
logarithms of each side of (2). We suggest using logarithm with basis equal to b. Thus,
we get

log, (R/S)y ~ log, c+ Hlog, v, 3)

where H is Hurst exponent.

2.2 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was firstly proposed by Peng et al. (1994) while
examining series of DNA nucleotides. Compared to the R/S analysis examined above,
DFA uses different measure of dispersion—squared fluctuations around trend of the
signal. As DFA is based on detrending of the sub-periods, it can be used for non-
stationary time series contrary to R/S.

Starting steps of the procedure are the same as the ones of R/S analysis as the
whole series is divided into non-overlapping periods of length v which is again set
on the same basis as in the mentioned procedure and the series profile is constructed.
The following steps are based on Grech and Mazur (2005). Polynomial fit X, ; of the
profile is estimated for each sub-period I,. The choice of order / of the polynomial
is rather a rule of thumb but is mostly set as the first or the second order polynomial
trend as higher orders do not add any significant information (Vandewalle et al. 1997).
The procedure is then labeled as DFA-0, DFA-1 and DFA-2 according to an order of
the filtering trend (Hu et al. 2001). We stick to the linear trend filtering and thus use
DFA-1 in the paper. A detrended signal Yy ; is then constructed as

Yo (1) = X (1) = Xo,. ©)

Fluctuation F2.,(v,1), which is defined as

Fpa(0,0) Z 3)
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scales as
Fppa(0,1) ~ cv??0), 6)

where again c is a constant independent of v (Weron 2002).
We again run an ordinary least squares regression on logarithms of (6) and estimate
Hurst exponent H (1) for set /-degree of polynomial trend in same way as for R/S as

logy, Fpra(v,1) ~log,c+H(l)log, v. @)

DFA can be adjusted and various filtering functions X, ; can be used. For a detailed
review of DFA, see Kantelhardt (2008).

3. Finite sample properties of R/S and DFA

3.1 R/S analysis

R/S analysis has one significant advantage compared to the other methods—as it has
been known and tested for over 50 years, the methods for testing have been well devel-
oped and applied.

The condition for a time series to reject long-term dependence is that H = 0.5.
However, it holds only for infinite samples and therefore is an asymptotic limit. The
correction for finite samples is thoroughly tested in Couillard and Davison (2005). Anis
and Lloyd (1976), which we note AL76, states the expected value of rescaled range as

reh) v fo—1
v sV T

We performed original tests for time series lengths from T = 512 = 2° up to
T = 131,072 = 2'7. All steps of R/S analysis on 10,000 time series drawn from stan-
dardized normal distribution N(0, 1) were performed. Hurst exponent was estimated
by log-log regression according to the presented procedure. Averaged rescaled ranges
applied in the regression were the ones for 2 < v < 2772, The logic behind this step
is rather intuitive—very small scales can bias the estimate as standard deviations are
based on just few observations; on the other hand, large scales can bias the estimate as

E(R/S)v =

®)

Table 1. Monte Carlo simulations descriptive statistics (R/S)

512 1024 2048 4096 8192 16384 32768 65536 131072

Mean 0.5763 0.5647 0.5570 0.5494 0.5430 0.5380 0.5338 0.5296 0.5267
AL76 0.56570.5572  0.5500 0.5438 0.5386 0.5342 0.5304 0.5272 0.5132
SD 0.05510.0404 0.0310 0.0246 0.0199 0.0162 0.0138 0.0118 0.0102

Skewness 0.0104 0.0003 —0.0231 —0.0316 —0.0223 —0.0331 —0.0329 0.0068 —0.0762
Kurtosis ~ —0.1316 0.0730 —0.0595 —0.0567 0.0220 —0.0271 0.0136 —0.1108 0.0237
Jarque-Bera 7.45692.1800 2.3895 3.0314 1.0196 2.1440 1.8737 5.2405 9.9080
P-value 0.02400.3362 0.3028 0.2197 0.6006 0.3423 0.3919 0.0728 0.0071
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Figure 1. Histogram of Monte Carlo simulations (R/S)

outliers or simply extreme values are not averaged out (Peters 1994; Grech and Mazur
2004; Matos et al. 2008; Alvarez-Ramirez et al. 2005; Einstein et al. 2001). The same
procedure is applied for DFA-1 later.

The expected values of Hurst exponent and corresponding descriptive statistics to-
gether with Jarque-Bera test (Jarque and Bera 1981) for normality are summarized in
Table 1 and histograms are showed in Figure 1.

The estimates of Hurst exponent are not equal to 0.5 as predicted by asymptotic
theory. Therefore, one must be careful when accepting or rejecting hypotheses about
long-term dependence present in time series solely on its divergence from 0.5. This
statement is most valid for short time series. However, the Jarque-Bera test rejected
normality of Hurst exponent estimates for time series lengths of 512, 65,536 and
131,072 and therefore, we should use percentiles rather than standard deviations for
the estimation of confidence intervals (Weron 2002). Nevertheless, the differences for
mentioned estimates not normally distributed are only of the order of the tenths of the
thousandth and therefore, we present confidence intervals based on standard deviations
for R/S. Standard deviation can be estimated as

1
6(H)~ 2703 )
with R? of 98.55% so that the estimates are very reliable (Figure 2). Therefore, we
propose (9) for other time series lengths but for the same minimum and maximum
scales only as the estimates can vary for different scales choice (Peters 1994; Weron
2002; Couillard and Davison 2005; Kristoufek 2009).
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Figure 2. Standard deviations based on Monte Carlo simulations (R/S)
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Figure 3. Confidence intervals for R/S

In Figure 3, we present the estimated confidence intervals for 90%, 95% and 99%
two-tailed significance level. From the chart, we can see that all shown confidence
intervals are quite wide for short time series. Even if time series of 512 observations
yields H equal to 0.65, we cannot reject the hypothesis of no long-term dependence in
the process even at 90% significance level.
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3.2 DFA

DFA-1 was already shown to estimate Hurst exponent with expected value close to 0.5
for random normal series (Weron 2002; Grech and Mazur 2005) so that there is no need
for similar procedure as for rescaled range presented before. We present the results of
simulations for DFA-1 with minimum scale of 16 observations and maximum scale of
one quarter of the time series length as was the case for R/S.

Table 2. Monte Carlo simulations descriptive statistics (DFA)

512 1024 2048 4096 8192 16384 32768 65536 131072

Mean 0.5079 0.5062 0.504 0.5031 0.5025 0.5022 0.502 0.5015 0.5013
SD 0.0687 0.0500 0.0386 0.0304 0.0247 0.0202 0.0173 0.0149 0.0126
Skewness 0.1189 0.0630 0.0430 —0.0069 0.0053 —0.0258 —0.0398 —0.0227 —0.0323
Kurtosis ~ —0.0205 —0.0512 —0.0796 —0.0711 —0.0795 —0.0739 —0.0051  0.0109 —0.0919
Jarque-Bera 23.741 7.7276 5.7584 22171 2.7205 3.4246 2.658 0.899 5.3017
P-value 0.0000 0.0210 0.0562 0.3300 0.2566 0.1804 0.2647 0.6379 0.0706

350

512 w1024 =—=2048 —-—4096 — —-8192 - 16384 ——-32768 ——65536 —— 131072

Figure 4. Histogram of Monte Carlo simulations (DFA)

Figure 4 and Table 2 show that expected values for DFA-1 are very close to the
asymptotic limit of 0.5 even for short time series. Normal distribution of the simulated
Hurst exponents cannot be rejected with exception for two lowest scales. Therefore,
we stick to the use of standard deviations for estimation of confidence intervals. The
standard deviation can be modeled as

N 0.3912
6(H)~ o3 (10)
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Figure 5. Standard deviations based on Monte Carlo simulations (DFA)
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Figure 6. Confidence intervals for DFA

The evolution of standard deviation for different time series lengths together with
the fit are shown in Figure 5. The fit is again reliable with R? equal to 98.44%. Note
that power values in both (9) and (10) are equal to 0.3 which might be the case of future
research. The estimates for the expected value of Hurst exponent are close to 0.5 so that
we do not present any approximation for different time series lengths. Therefore, we
propose to use 0.5 as the expected values and our approximation of standard deviation
for construction of confidence intervals for different time series lengths than the ones
we present.
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Even though the expected values are in hand with asymptotic limit, the constructed
confidence intervals are still rather wide (Figure 6) and rejection of hypothesis for short
time series might be again quite problematic. Nevertheless, the confidence intervals are
quite narrow for long time series. However, the most interesting results come if, for a
single time series, we estimate Hurst exponent with both R/S and DFA-1 and compare
the results. We present the results in detail in the following section.

4. Simultaneous finite sample properties

We again simulated 10,000 random standardized normally distributed N(0, 1) time
series for each set length. This time, we estimated Hurst exponent based on both R/S
and DFA-1 on each time series while estimating the results for the lengths from 256 to
131,072 observations. Descriptive statistics for differences between estimates of R/S
and DFA-1 are summed in Table 3. The results show that R/S on average overestimates
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0.5
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DFA

(@)

0.54

R/S
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0.45 0.47 0.49 0.51 0.53 0.55

DFA
(b)
Figure 7. Comparison of R/S and DFA-1 estimates
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Table 3. Descriptive statistics of differences between R/S and DFA estimates

256 512 1024 2048 4096 8192 16384 32768 65536 131072

Mean  0.0783 0.0687 0.0598 0.0525 0.0458 0.0406 0.0358 0.0321 0.0285 0.0256
SD 0.0573 0.0351 0.0239 0.0174 0.0136 0.0110 0.0089 0.0075 0.0063 0.0054
Max 0.3159 0.2130 0.152 0.1130 0.0989 0.0861 0.0750 0.0624 0.0600 0.0477
Min  —0.1143 —0.0726 —0.032 —0.0073 —0.0057 —0.0059 0.0035 0.0081 0.0059 0.0052
Py75 0.1933  0.1394 0.1074  0.087 0.0734 0.0626 0.0541 0.0472 0.0410 0.0366
Ps —0.0320 0.0012 0.014 0.0193 0.0202 0.0195 0.0189 0.0177 0.0167 0.0151
Skew.  0.1114 0.0832 0.0962 0.0944 0.1539 0.0849 0.1523 0.1217 0.1263 0.1177
Kurt. 0.1187 0.0829 0.0192 —0.0332 0.0992 0.0947 0.1030 0.0252 0.0417 0.1214
J.-B. 26.565 14.394 15.584 15.319 43.585 15.737 43.064 24.955 27.292 29.221
P-value 0.0000 0.0007 0.0004 0.0005 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000

1.00 . . . . . . .
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Figure 8. Comparison of R/S and DFA-1 estimates and corresponding correlations

Hurst exponent when compared to DFA-1 while the overestimation decreases with
growing time series length. For illustration, we present Figure 7 which shows the
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estimates for both techniques for the time series lengths of 512 and 131,072.

From the figure, we can see that estimates are both strongly correlated and also
that the relationship between both estimates is rather linear and not related in more
complicated way. Moreover, the overestimation of Hurst exponent by R/S is evidently
decreasing with the time series length. The proportion of estimates which are higher
for R/S than for DFA-1 is illustrated in Figure 8a. From the time series of length 4,096
onwards, all of the estimates are higher for R/S. Figure 8b shows the evolution of corre-
lations between the estimates of the used methods for different time series lengths. We
can see that the correlations are quite high even for short time series and convergence
above the value of 0.9 for the time series with more than 2,048 observations.

R/S - DFA
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100 1,000 10,000 100,000 1,000,000

-0.05

(a)

0.30

.
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100 1,000 10,000 100,000 1,000,000

(b)

Figure 9. Comparison of R/S and DFA-1 percentiles and maximum differences

Different aspects are shown in Figure 9. Percentiles (97.5% and 2.5%) show that
the estimates can differ significantly for low scales. The difference can be as high as
0.32 for time series length of 256 observations. Nevertheless, the difference narrows
significantly for longer time series. The statistics are summed in Table 4.
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Table 4. Further statistics

256 512 1024 2048 4096 8192 16384 32768 65536 131072

Correlation 0.8255 0.8611 0.8825 0.8960 0.9017 0.9043 0.9086 0.9059 0.9089 0.9101
R/S > DFA (%) 0.8362 0.9536 0.9918 0.9984 0.9996 0.9998 1.0000 1.0000 1.0000 1.0000
Max. difference 0.3159 0.2130 0.1520 0.1130 0.0989 0.0861 0.0750 0.0624 0.0600 0.0477

However, the most important findings, which contradict results in Weron (2002),
are based on results of estimated standard deviations of Hurst exponents. R/S is ge-
nerally considered as the less efficient method and is replaced by DFA in majority of
recent applied papers (Grech and Mazur 2004; Czarnecki et al. 2008; Alvarez-Ramirez
et al. 2008). Reasons for such replacement are usually stated as bias for non-stationary
data and general overestimation of Hurst exponent of R/S. However, we have already
shown that the overestimation is built in the procedure for finite samples (as was al-
ready shown in Weron 2002, Couillard and Davison 2005, Peters 1994). Moreover,
non-stationarity is usually not the case for the financial time series while the statement
is more valid for daily data which are mostly examined (Cont 2001). Further, as we
show in Figure 10, the standard deviations are lower for R/S than for DFA-1 for all exa-
mined time series lengths. Therefore, also confidence intervals are narrower for R/S
which makes the long-term dependence better testable by this procedure. The values of
the standard deviations are more important than expected values of the Hurst exponent
for the hypothesis testing. Nevertheless, we need to keep in mind that expected values
for Hurst exponent based on R/S for finite samples are far from the asymptotic limit.

0.12
RIS

0.10 ° oDFA
=]
o
=]
2

B
5 008
3
=
2 o
3
= 0.06
S .
k= o
>
3
= 0.04 ¢ o
<
7] . o
o
0.02 M . o
o
. ° 9

0.00
100 1,000 10,000 100,000 1,000,000

T

Figure 10. Comparison of standard deviations of R/S and DFA-1
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5. Conclusions and discussion

We have shown that rescaled range analysis can still stand the test against new methods.
Our comparison with detrended fluctuation analysis has supported the known fact that
R/S overestimates Hurst exponent. However, the overestimation is in hand with esti-
mates of Anis and Lloyd (1976) and thus is not unexpected. Importantly, the standard
deviations of R/S are lower than those of DFA-1 which is crucial for the construction
of confidence intervals for hypothesis testing. The results are different from the ones of
Weron (2002) who asserts that DFA-1 is a clear winner when compared to R/S. Such
difference is caused by different choice of minimum and maximum scales for Hurst ex-
ponent estimation. Our results are based on recommendations of several other authors
(Peters 1994; Grech and Mazur 2004; Matos et al. 2008; Alvarez-Ramirez et al. 2005;
Einstein et al. 2001) so that we use minimum scale of 16 observations with maximum
scale equal to a quarter of time series length. The choice of scales is thus crucial for
final results and its research should be of future interest.

Nevertheless, we show that both methods show similar results which become closer
as the time series becomes longer. We show that testing the hypothesis of no long-
range dependence for short time series, especially with 256 and 512 observations, can
be complicated as the confidence intervals are very broad.
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